TWI756192B - Glass, glass materials for press molding, optical element blanks and optical elements - Google Patents

Glass, glass materials for press molding, optical element blanks and optical elements Download PDF

Info

Publication number
TWI756192B
TWI756192B TW105135659A TW105135659A TWI756192B TW I756192 B TWI756192 B TW I756192B TW 105135659 A TW105135659 A TW 105135659A TW 105135659 A TW105135659 A TW 105135659A TW I756192 B TWI756192 B TW I756192B
Authority
TW
Taiwan
Prior art keywords
glass
content
refractive index
range
preferable
Prior art date
Application number
TW105135659A
Other languages
Chinese (zh)
Other versions
TW201733942A (en
Inventor
根岸智明
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW201733942A publication Critical patent/TW201733942A/en
Application granted granted Critical
Publication of TWI756192B publication Critical patent/TWI756192B/en

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

本發明提供一種玻璃,其為氧化物玻璃,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上,阿貝數(νd)的範圍為39.5~41.5,折射率(nd)相對於阿貝數(νd)滿足下述關係:nd

Figure 105135659-A0305-02-0001-34
2.0927-0.0058×νd,且對於表1中記載的陽離子成分,各陽離子成分的含量乘以表1記載的係數的值的合計D相對於折射率(nd)滿足下述(B)式。 The present invention provides a glass, which is oxide glass, expressed in cation %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta Total content of 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ is 90% or more, the Abbe number (νd) ranges from 39.5 to 41.5, and the refractive index (nd) satisfies the following relationship with respect to the Abbe number (νd): nd
Figure 105135659-A0305-02-0001-34
2.0927-0.0058×νd, and for the cation components described in Table 1, the total D of the values obtained by multiplying the content of each cation component by the coefficient described in Table 1 satisfies the following formula (B) with respect to the refractive index (nd).

Figure 105135659-A0305-02-0001-4
Figure 105135659-A0305-02-0001-4

Figure 105135659-A0305-02-0001-1
Figure 105135659-A0305-02-0001-1
Figure 105135659-A0305-02-0002-3
Figure 105135659-A0305-02-0002-3

Description

玻璃、壓製成型用玻璃材料、光學元件坯件和光學元件 Glass, glass materials for press molding, optical element blanks and optical elements

本發明關於一種玻璃、壓製成型用玻璃材料、光學元件坯件和光學元件。 The present invention relates to a glass, a glass material for press molding, an optical element blank and an optical element.

藉由將由高折射率低色散玻璃形成的透鏡與由超低色散玻璃形成的透鏡等進行組合而製成膠合透鏡,從而能夠校正色像差並且使光學系統的緊湊化成為可能。因此,高折射率低色散玻璃作為構成攝像光學系統、投影機等投影光學系統的光學元件而佔有非常重要的位置。這樣的高折射率低色散玻璃記載於例如專利文獻1~20中。 By combining a lens formed of high-refractive-index, low-dispersion glass, and a lens formed of ultra-low-dispersion glass to form a cemented lens, chromatic aberration can be corrected and the optical system can be made compact. Therefore, the high-refractive-index, low-dispersion glass occupies a very important position as an optical element constituting a projection optical system such as an imaging optical system and a projector. Such a high-refractive-index, low-dispersion glass is described in, for example, Patent Documents 1 to 20.

[先前技術文獻] [Prior Art Literature]

[專利文獻] [Patent Literature]

專利文獻1:日本特開2007-063071號公報。 Patent Document 1: Japanese Patent Laid-Open No. 2007-063071.

專利文獻2:日本特開2007-230835號公報。 Patent Document 2: Japanese Patent Laid-Open No. 2007-230835.

專利文獻3:日本特開2007-249112號公報。 Patent Document 3: Japanese Patent Laid-Open No. 2007-249112.

專利文獻4:日本特開2007-261826號公報。 Patent Document 4: Japanese Patent Laid-Open No. 2007-261826.

專利文獻5:日本特開2003-267748號公報。 Patent Document 5: Japanese Patent Laid-Open No. 2003-267748.

專利文獻6:日本特開2009-203083號公報。 Patent Document 6: Japanese Patent Laid-Open No. 2009-203083.

專利文獻7:日本特開2011-230992號公報。 Patent Document 7: Japanese Patent Laid-Open No. 2011-230992.

專利文獻8:日本特開2012-025638號公報。 Patent Document 8: Japanese Patent Laid-Open No. 2012-025638.

專利文獻9:日本特開昭54-090218號公報。 Patent Document 9: Japanese Patent Laid-Open No. 54-090218.

專利文獻10:日本特開昭56-160340號公報。 Patent Document 10: Japanese Patent Laid-Open No. 56-160340.

專利文獻11:日本特開2001-348244號公報。 Patent Document 11: Japanese Patent Laid-Open No. 2001-348244.

專利文獻12:日本特開2008-001551號公報。 Patent Document 12: Japanese Patent Laid-Open No. 2008-001551.

專利文獻13:日本特表2013-536791號公報。 Patent Document 13: Japanese Patent Publication No. 2013-536791.

專利文獻14:WO10/053214。 Patent Document 14: WO10/053214.

專利文獻15:日本特開2012-180278號公報。 Patent Document 15: Japanese Patent Laid-Open No. 2012-180278.

專利文獻16:日本特開2012-236754號公報。 Patent Document 16: Japanese Patent Laid-Open No. 2012-236754.

專利文獻17:日本特開2014-084235號公報。 Patent Document 17: Japanese Patent Laid-Open No. 2014-084235.

專利文獻18:日本特開2014-062025號公報。 Patent Document 18: Japanese Patent Laid-Open No. 2014-062025.

專利文獻19:日本特開2014-062026號公報。 Patent Document 19: Japanese Patent Laid-Open No. 2014-062026.

專利文獻20:日本特開2011-93780號公報。 Patent Document 20: Japanese Patent Laid-Open No. 2011-93780.

對於光學元件用的玻璃,為了示出光學特性的分佈,廣泛地使用光學特性圖(或者也稱為阿貝圖表)。光學特性圖將阿貝數(Abbe number,νd)取在橫軸、將折射率(nd)取在縱軸,以阿貝數(νd)自橫軸的右側向左側依次增加、折射率自縱軸的下方向上方依次增加的方式作成。應予說明的是,以下只要沒有特別的記載,折射率、阿貝數是指對於氦的d線(波長587.56nm)的折射率(nd)、對於氦的d線(波長587.56nm)的阿貝數(νd)。 For glass for optical elements, in order to show the distribution of optical properties, an optical property diagram (or also referred to as an Abbe diagram) is widely used. In the optical characteristic diagram, the Abbe number (νd) is taken on the horizontal axis, and the refractive index (nd) is taken on the vertical axis. The shaft is made so that it increases in order from the bottom to the top. It should be noted that, unless otherwise specified, the refractive index and Abbe number refer to the refractive index (nd) for helium d-line (wavelength 587.56 nm) and the d-line (wavelength 587.56 nm) for helium. Shell number (νd).

光學特性圖中,高折射率低色散玻璃(高nd高νd玻璃)的光學特性一般顯示出當阿貝數變小時折射率增加、當 阿貝數增加時折射率降低的所謂的向右上升的分佈。這可認為是由於以下的理由。 The optical properties of high-refractive-index, low-dispersion glass (high nd and high νd glass) generally show that when the Abbe number decreases, the refractive index increases, and when the Abbe number decreases, A so-called rightward-rising profile in which the refractive index decreases as the Abbe number increases. This is considered to be due to the following reasons.

高折射率低色散玻璃大多含有氧化硼和氧化鑭等稀土氧化物。在這樣的玻璃中,為了在不減少阿貝數的情況下提高折射率就要提高稀土氧化物的含量。但是,在先前技術的高折射率低色散玻璃中,當提高稀土氧化物的含量時,玻璃的熱穩定性下降,在製造玻璃的過程中玻璃會顯示出失透的傾向。因此,在先前技術的高折射率低色散的玻璃中,難以在抑制想要用作光學元件材料的玻璃的失透的同時使阿貝數和折射率一同提高。這點被認為是先前技術的高折射率低色散玻璃在光學特性圖中顯示出上述這樣的分佈的理由。 Most of the high-refractive-index and low-dispersion glasses contain rare earth oxides such as boron oxide and lanthanum oxide. In such glass, in order to increase the refractive index without reducing the Abbe number, the content of the rare earth oxide must be increased. However, in the high-refractive-index, low-dispersion glass of the prior art, when the content of rare earth oxide is increased, the thermal stability of the glass decreases, and the glass tends to devitrify in the process of manufacturing the glass. Therefore, in the high-refractive-index, low-dispersion glass of the prior art, it is difficult to increase both the Abbe number and the refractive index while suppressing devitrification of the glass intended to be used as an optical element material. This is considered to be the reason why the high-refractive-index, low-dispersion glass of the prior art exhibits such a distribution in the optical characteristic diagram.

另一方面,在光學系統的設計中,折射率高、阿貝數也大(色散低)的玻璃是對於色像差的校正、光學系統的高功能化、緊湊化極其有效的光學元件用的材料。因此,在光學特性圖上設定向右上升的直線,提供這條直線上和比直線折射率高(圖上位於直線左側的區域)的玻璃的意義非常大。 On the other hand, in the design of an optical system, glass with a high refractive index and a large Abbe number (low dispersion) is used as an optical element that is extremely effective for chromatic aberration correction, functionalization and compactness of the optical system. Material. Therefore, it is very meaningful to set a straight line rising to the right on the optical characteristic graph, and to provide a glass with a higher refractive index than the straight line (the area on the left side of the straight line on the graph).

從以上的方面出發,阿貝數(νd)為39.5~41.5、相對於該阿貝數、折射率(nd)為用2.0927-0.0058×νd求得的值以上的玻璃即滿足nd

Figure 105135659-A0202-12-0003-93
2.0927-0.0058×νd的關係的玻璃是在光學系統中有用的高折射率低色散玻璃。 From the above point of view, a glass having an Abbe number (νd) of 39.5 to 41.5 and a refractive index (nd) of 2.0927-0.0058×νd or more with respect to the Abbe number satisfies nd
Figure 105135659-A0202-12-0003-93
Glass having a relationship of 2.0927-0.0058×νd is a high-refractive-index, low-dispersion glass useful in optical systems.

另外,構成攝像光學系統、投影機等投影光學系統的光學元件期望輕量化。這是因為將光學元件輕量化關係到安裝該光學元件的攝像光學系統、投影光學系統的輕量化。例如,當將重的光學元件安裝在自動對焦式的照相機中時,驅動 自動對焦時消耗的電耗增加,電池會很快地消耗。相對於此,如果將光學元件進行輕量化,則驅動自動對焦時的電耗降低,能夠延長電池的壽命。 In addition, it is desired to reduce the weight of optical elements constituting projection optical systems such as imaging optical systems and projectors. This is because reducing the weight of the optical element is related to the weight reduction of the imaging optical system and the projection optical system to which the optical element is mounted. For example, when mounting heavy optics in an autofocus camera, driving The power consumption during autofocusing increases and the battery drains quickly. On the other hand, if the weight of the optical element is reduced, the power consumption when driving the autofocus is reduced, and the life of the battery can be extended.

但是,本發明者認為,專利文獻1~20中記載的玻璃中使用阿貝數(νd)的範圍為39.5~41.5、滿足nd

Figure 105135659-A0202-12-0004-94
2.0927-0.0058×νd的關係的高折射率低色散玻璃而製作的光學元件有變重的傾向。這是因為,在專利文獻1~20中記載的用於高折射率低色散化的組成調整中,有玻璃的比重增大的傾向。 However, the present inventors considered that the range of Abbe's number (νd) used in the glasses described in Patent Documents 1 to 20 is 39.5 to 41.5, which satisfies nd
Figure 105135659-A0202-12-0004-94
The optical element produced by the high-refractive-index, low-dispersion glass having the relationship of 2.0927-0.0058×νd tends to be heavy. This is because, in the composition adjustment for high refractive index and low dispersion described in Patent Documents 1 to 20, the specific gravity of the glass tends to increase.

本發明的一個方式的目的在於提供一種阿貝數(νd)為39.5~41.5、滿足nd

Figure 105135659-A0202-12-0004-95
2.0927-0.0058×νd的關係、且可有助於光學元件的輕量化的玻璃。 One aspect of the present invention aims to provide an Abbe number (νd) of 39.5 to 41.5 that satisfies nd
Figure 105135659-A0202-12-0004-95
A glass that has a relationship of 2.0927-0.0058×νd and can contribute to the weight reduction of optical elements.

本發明的一個方式關於一種玻璃,其為氧化物玻璃,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上,阿貝數(νd)的範圍為39.5~41.5,相對於阿貝數(νd),折射率(nd)滿足下述(1)式:

Figure 105135659-A0202-12-0004-102
One aspect of the present invention relates to a glass, which is an oxide glass, expressed in % of cations, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4 . + , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ The total content of MgO is 90% or more, the Abbe number (νd) is in the range of 39.5 to 41.5, and the refractive index (nd) relative to the Abbe number (νd) satisfies the following formula (1):
Figure 105135659-A0202-12-0004-102

對於下述所示的表1中記載的陽離子成分,相對於折射率(nd),各陽離子成分的含量乘以表1中記載的係數的值的合計D滿足下記(B)式:

Figure 105135659-A0202-12-0004-5
Regarding the cationic components described in Table 1 shown below, with respect to the refractive index (nd), the total D of the values obtained by multiplying the content of each cationic component by the coefficient described in Table 1 satisfies the following formula (B):
Figure 105135659-A0202-12-0004-5

在上述玻璃中,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+(以下,稱這些陽離子成分為“主要陽離子成分”)的合計含量為90%以上。本發明人在為了實現上述目的而反復深刻研究中,著眼於上述主要陽離子成分給予玻璃的比重的影響各自不同。而且,重複了相當多次數的試驗,結果對於各主要陽離子成分決定了如表1所示的係數。藉由以使用這些係數計算的合計D滿足(B)式的方式進行組成調整,從而能夠提供可有助於在阿貝數(νd)的範圍為39.5~41.5中滿足nd

Figure 105135659-A0202-12-0005-97
2.0927-0.0058×νd的關係的高折射率低分散玻璃的低比重化即光學元件的輕量化的玻璃。 In the above glasses, expressed in % of cations, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ (hereinafter, these cationic components are referred to as “main The total content of cationic components") is 90% or more. In order to achieve the above-mentioned object, the inventors of the present invention have paid attention to the difference in the influence of the specific gravity of the glass given by the above-mentioned main cationic components. Furthermore, the experiment was repeated a considerable number of times, and as a result, the coefficients shown in Table 1 were determined for each main cationic component. By adjusting the composition so that the total D calculated by using these coefficients satisfies the formula (B), it is possible to provide a value that contributes to satisfying nd in the range of Abbe number (νd) of 39.5 to 41.5.
Figure 105135659-A0202-12-0005-97
The low specific gravity of the high-refractive-index, low-dispersion glass with the relationship of 2.0927-0.0058×νd is the glass that reduces the weight of the optical element.

根據本發明的一個方式,能夠提供具有在光學系統中有用的光學特性且可有助於光學元件的輕量化的玻璃。進而,根據本發明的一個方式,能夠提供由上述玻璃形成的壓製成型用玻璃材料、光學元件坯件和光學元件。 According to one aspect of the present invention, it is possible to provide a glass that has optical properties useful in an optical system and can contribute to the weight reduction of optical elements. Furthermore, according to one aspect of this invention, the glass material for press molding, the optical element blank, and the optical element which consist of the said glass can be provided.

圖1是將實施例1的各玻璃和比較例1~4的各玻璃的比重取在橫軸、將各陽離子成分的含量乘以表1中記載的係數的值的合計D取在縱軸的圖表。 1 is a graph in which the specific gravity of each glass of Example 1 and each glass of Comparative Examples 1 to 4 is taken on the horizontal axis, and the total D of the values obtained by multiplying the content of each cationic component by the coefficient described in Table 1 is taken on the vertical axis. chart.

圖2是將實施例1的各玻璃和比較例1~4的各玻璃的阿貝數(νd)取在橫軸、將根據後述的(A)式算出的值A取在縱軸的圖表。 2 is a graph in which the Abbe number (νd) of each glass of Example 1 and each of the glasses of Comparative Examples 1 to 4 is plotted on the horizontal axis, and the value A calculated from the equation (A) described later is plotted on the vertical axis.

[玻璃] [grass]

本發明的一個方式的玻璃是如下的氧化物玻璃,亦即,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上,阿貝數(νd)的範圍為39.5~41.5,相對於阿貝數(νd),折射率(nd)滿足上述(1)式,且對於下述所示的表1中記載的陽離子成分,相對於折射率(nd),各陽離子成分的含量乘以表1中記載的係數的值的合計D滿足上述(B)式。 The glass of one aspect of the present invention is an oxide glass, that is, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , in terms of cation %, Ti 4+ , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi The total content of 3+ is 90% or more, the Abbe number (νd) is in the range of 39.5 to 41.5, and the refractive index (nd) with respect to the Abbe number (νd) satisfies the above formula (1), and for the following For the cationic components described in Table 1, the total D of the values obtained by multiplying the content of each cationic component by the coefficient described in Table 1 with respect to the refractive index (nd) satisfies the above formula (B).

Figure 105135659-A0202-12-0006-6
Figure 105135659-A0202-12-0006-6

以下,對上述玻璃的細節進行說明。 Hereinafter, the details of the above-mentioned glass will be described.

本發明中的玻璃組成能夠藉由例如ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)等方法進行定量。藉由ICP-AES求得的分析值有時包含分析值的±5%左右的測定誤差。應予說明的是,本說明書和本發明中,構成成分的含量為0%、不包含或者不導入意味著基本上不含該構成成分,指的是該構成成分的含量為雜質水平程度以下。 The glass composition in the present invention can be quantified by a method such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). The analytical value obtained by ICP-AES may include a measurement error of about ±5% of the analytical value. It should be noted that, in the present specification and the present invention, the content of a constituent component is 0%, and no inclusion or introduction means that the constituent component is not substantially contained, and it means that the content of the constituent component is equal to or less than the impurity level.

本發明中,對於陽離子成分用陽離子%來表示玻璃組成。陽離子%眾所周知是將含在玻璃中的全部的陽離子成分的合計含量設為100%的百分率。 In the present invention, the glass composition is represented by cation % with respect to the cationic component. It is well known that the cation % is a percentage based on the total content of all the cationic components contained in the glass as 100%.

以下,只要沒有特別的記載,陽離子成分的含量、多種陽離子成分的含量的合計(合計含量)用陽離子%表示。進而,在陽離子%表示中,將陽離子成分彼此的含量(也含多種陽離子成分的合計含量)的比稱為陽離子比。 Hereinafter, unless otherwise specified, the content of the cationic component and the sum (total content) of the content of a plurality of cationic components are represented by cationic %. Furthermore, in the cation % representation, the ratio of the contents of cation components (including the total content of a plurality of cation components) is referred to as a cation ratio.

以下,對於數值範圍,有時將(更佳)較佳的下限和(更佳)較佳的上限示於表中記載。表中越記載於下方的數值越佳,記載於最下方的數值最佳。此外,只有沒有特別的記載,(更佳)較佳的下限是指記載值以上的值(更佳)較佳,(更佳)較佳的上限是指記載值以下的值(更佳)較佳。能夠使表中的(更佳)較佳的下限的列記載的數值和(更佳)較佳的上限的列記載的數值任意地組合來規定數值範圍。 Hereinafter, about the numerical range, the (more preferable) lower limit and the (more preferable) preferable upper limit may be shown in a table|surface. The numerical value described at the bottom in the table is better, and the numerical value written at the bottom is the best. In addition, unless otherwise specified, the (preferable) lower limit refers to a value greater than or equal to the stated value (more preferred), and the (more preferred) upper limit refers to a value below the stated value (more preferred) good. The numerical range can be defined by arbitrarily combining the numerical values described in the column of the (preferable) lower limit and the numerical value described in the column of the (more preferred) upper limit in the table.

<玻璃組成> <Glass composition>

對於上述玻璃,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、 Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+(主要陽離子成分)的合計含量為90%以上。上述玻璃中,含有的陽離子成分可以僅為主要陽離子成分(亦即主要陽離子成分的合計含量為100%),也可以除了主要陽離子成分之外含有1種以上的其它陽離子成分。主要陽離子成分的合計含量的較佳的下限如下表2所示。 For the above glasses, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta 5+ , W 6+ , Zr 4+ , Zn 2 The total content of + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ , and Bi 3+ (main cationic components) is 90% or more. The above-mentioned glass may contain only the main cationic components (that is, the total content of the main cationic components is 100%), or may contain one or more other cationic components in addition to the main cationic components. The preferable lower limit of the total content of the main cationic components is shown in Table 2 below.

Figure 105135659-A0202-12-0008-7
Figure 105135659-A0202-12-0008-7

在上述玻璃的玻璃組成中,對於主要陽離子成分的各種陽離子成分,以相對於折射率(nd)各陽離子成分的含量乘以表1中記載的係數的值的合計D滿足下述(B)式:

Figure 105135659-A0202-12-0008-98
In the glass composition of the above-mentioned glass, for each cationic component as the main cationic component, the total D of the value obtained by multiplying the content of each cationic component with respect to the refractive index (nd) by the coefficient described in Table 1 satisfies the following formula (B) :
Figure 105135659-A0202-12-0008-98

的方式進行調整。由此能夠實現阿貝數(νd)的範圍為39.5~41.5、且折射率(nd)相對於阿貝數(νd)滿足上述(1)式的高折射率低分散玻璃的輕量化。這點是本發明人經過深入研究,結果新發現的。應予說明的是,對於上述合計D的細節如下,下 述含量的單位為陽離子%。 way to adjust. Thereby, the range of Abbe's number (νd) is 39.5-41.5, and the refractive index (nd) with respect to Abbe's number (νd) satisfies the weight reduction of the high-refractive-index, low-dispersion glass that satisfies the above formula (1). This point is newly discovered as a result of intensive research by the present inventors. It should be noted that the details of the above-mentioned total D are as follows, and the following The unit of the content is cation %.

D=B3+含量×0.032 +Si4+含量×0.029 +La3+含量×0.066 +Y3+含量×0.053 +Gd3+含量×0.093 +Yb3+含量×0.094 +Nb5+含量×0.049 +Ti4+含量×0.045 +Ta5+含量×0.104 +W6+含量×0.111 +Zr4+含量×0.080 +Zn2+含量×0.051 +Mg2+含量×0.030 +Ca2+含量×0.024 +Sr2+含量×0.043 +Ba2+含量×0.055 +Li+含量×0.031 +Na+含量×0.021 +K+含量×0.012 +Al3+含量×0.034 +Bi3+含量×0.090 D=B 3+ content×0.032 +Si 4+ content×0.029 +La 3+ content×0.066 +Y 3+ content×0.053 +Gd 3+ content×0.093 +Yb 3+ content×0.094 +Nb 5+ content×0.049 +Ti 4+ content × 0.045 +Ta 5+ content × 0.104 +W 6+ content × 0.111 +Zr 4+ content × 0.080 +Zn 2+ content × 0.051 +Mg 2+ content × 0.030 +Ca 2+ content × 0.024 + Sr 2+ content × 0.043 + Ba 2+ content × 0.055 + Li + content × 0.031 + Na + content × 0.021 + K + content × 0.012 + Al 3+ content × 0.034 + Bi 3+ content × 0.090

上述(B)式較佳為下述(B-1)式,更佳為下述(B-2)式,進一步較佳為下述(B-3)式,再進一步較佳為下述(B-4)式, 更進一步較佳為下述(B-5)式,再更進一步較佳為下述(B-6)式,進而再更進一步較佳為下述(B-7)式,再進而再更進一步較佳為下述(B-8)式,更進而再更進一步較佳為下述(B-9)式。 The above formula (B) is preferably the following formula (B-1), more preferably the following formula (B-2), still more preferably the following formula (B-3), and still more preferably the following ( B-4) formula, Still more preferably the following formula (B-5), still more preferably the following (B-6) formula, still more preferably the following (B-7) formula, and further still further The following formula (B-8) is preferable, and the following formula (B-9) is still more preferable.

Figure 105135659-A0305-02-0013-5
Figure 105135659-A0305-02-0013-5

Figure 105135659-A0305-02-0013-6
Figure 105135659-A0305-02-0013-6

Figure 105135659-A0305-02-0013-7
Figure 105135659-A0305-02-0013-7

Figure 105135659-A0305-02-0013-8
Figure 105135659-A0305-02-0013-8

Figure 105135659-A0305-02-0013-9
Figure 105135659-A0305-02-0013-9

Figure 105135659-A0305-02-0013-10
Figure 105135659-A0305-02-0013-10

Figure 105135659-A0305-02-0013-11
Figure 105135659-A0305-02-0013-11

Figure 105135659-A0305-02-0013-12
Figure 105135659-A0305-02-0013-12

Figure 105135659-A0305-02-0013-13
Figure 105135659-A0305-02-0013-13

在上述玻璃的玻璃組成中,只要是主要陽離子成分的合計含量是90%以上且滿足(B)式即可,主要陽離子成分中也可以有上述玻璃中所不含(亦即含量為0%)的陽離子成分。對於各陽離子成分的含量的較佳的範圍等,在後面會進一步敘述。但是,本發明並不限定在下述的較佳的範圍。 In the glass composition of the above-mentioned glass, as long as the total content of the main cationic components is 90% or more and satisfies the formula (B), the main cationic components may be not contained in the above-mentioned glass (that is, the content is 0%). cationic components. The preferable range etc. of content of each cation component will be described further later. However, the present invention is not limited to the following preferable ranges.

B3+、Si4+是玻璃的網絡形成成分。當B3+和Si4+的合計含量(B3++Si4+)為43%以上時,能夠提高玻璃的熱穩定性,抑制製造中的玻璃的晶化。另一方面,當B3+和Si4+的合計含量為65%以下時,能夠抑制折射率(nd)的降低,因此從製作具有上述的光學特性的玻璃的方面考慮較佳。因此,上述玻璃中的B3+和Si4+的合計含量的範圍較佳設為43~65%。B3+和Si4+的合計含量的更佳的下限和更佳的上限如下表3所示。 B 3+ and Si 4+ are network-forming components of glass. When the total content of B 3+ and Si 4+ (B 3+ +Si 4+ ) is 43% or more, the thermal stability of the glass can be improved, and the crystallization of the glass during production can be suppressed. On the other hand, when the total content of B 3+ and Si 4+ is 65% or less, the decrease in the refractive index (nd) can be suppressed, which is preferable from the viewpoint of producing glass having the above-mentioned optical properties. Therefore, the range of the total content of B 3+ and Si 4+ in the glass is preferably 43 to 65%. A more preferable lower limit and a more preferable upper limit of the total content of B 3+ and Si 4+ are shown in Table 3 below.

Figure 105135659-A0202-12-0011-17
Figure 105135659-A0202-12-0011-17

La3+、Y3+、Gd3+和Yb3+是具有抑制阿貝數(νd)的減少並且提高折射率的作用的成分。此外,這些成分也具有改善玻璃的化學耐久性、耐候性、提高玻璃化轉變溫度的作用。 La 3+ , Y 3+ , Gd 3+ and Yb 3+ are components that have the effect of suppressing the decrease in Abbe's number (νd) and increasing the refractive index. In addition, these components also have the effect of improving the chemical durability, weather resistance, and glass transition temperature of the glass.

當La3+、Y3+、Gd3+和Yb3+的合計含量(La3++Y3++Gd3++Yb3+)為25%以上時,能夠抑制折射率(nd)的降低,因此從製作具有上述的光學特性的玻璃的方面考慮較佳。進而也能夠抑制玻璃的化學耐久性、耐候性的降低。另外,當玻璃化轉變溫度降低時,在對玻璃進行機械加工(切斷、切削、研磨、拋光等)時,玻璃變得易於破損(機械加工性的降低),當La3+、Y3+、Gd3+和Yb3+的合計含量為25%以上時,能夠抑制玻璃化轉變溫度的降低,因此也能夠提高機械加工性。另一方面,當La3+、Y3+、Gd3+和Yb3+的合計含量為50%以下時,因為能夠提高玻璃的熱穩定性,所以也能夠抑制製造玻璃時的晶化,降低熔融玻璃時的原料的熔融殘留。此外,從抑制比重的上升方面考慮亦較佳。因此,在上述玻璃中,La3+、Y3+、Gd3+和Yb3+的合計含量的範圍較佳設為25~50%。La3+、Y3+、Gd3+和Yb3+的合計含量的更佳的下限和更佳的上限如下表4所 示。 When the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ (La 3+ +Y 3+ +Gd 3+ +Yb 3+ ) is 25% or more, the refractive index (nd) can be suppressed Therefore, it is preferable from the viewpoint of producing glass having the above-mentioned optical properties. Furthermore, the chemical durability and weather resistance of glass can also be suppressed from falling. In addition, when the glass transition temperature is lowered, when the glass is subjected to mechanical processing (cutting, cutting, grinding, polishing, etc.), the glass becomes prone to breakage (reduction in machinability), and when La 3+ , Y 3+ , when the total content of Gd 3+ and Yb 3+ is 25% or more, the decrease in the glass transition temperature can be suppressed, so that the machinability can also be improved. On the other hand, when the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is 50% or less, since the thermal stability of the glass can be improved, the crystallization during glass production can also be suppressed and the reduction The melting of the raw material at the time of melting glass remains. Moreover, it is also preferable from the viewpoint of suppressing the rise of a specific gravity. Therefore, in the above-mentioned glass, the range of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is preferably 25 to 50%. The more preferable lower limit and the more preferable upper limit of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ are shown in Table 4 below.

Figure 105135659-A0202-12-0012-18
Figure 105135659-A0202-12-0012-18

Nb5+、Ti4+、Ta5+和W6+是具有提高折射率的作用的成分,藉由使其適量含有從而還具有改善玻璃的熱穩定性的作用。當Ti4+、Nb5+、Ta5+和W6+的合計含量(Nb5++Ti4++Ta5++W6+)為3%以上時,從維持熱穩定性並且實現上述的光學特性方面考慮較佳。另一方面,當Nb5+、Ti4+、Ta5+和W6+的合計含量為12%以下時,能夠抑制熱穩定性的降低和阿貝數(νd)的降低。因此,在上述玻璃中,較佳將Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍設為3~12%。Nb5+、Ti4+、Ta5+和W6+的合計含量的更佳的下限和更佳的上限如下表5所示。 Nb 5+ , Ti 4+ , Ta 5+ and W 6+ are components that have the effect of increasing the refractive index, and also have the effect of improving the thermal stability of the glass by including an appropriate amount. When the total content of Ti 4+ , Nb 5+ , Ta 5+ and W 6+ (Nb 5+ +Ti 4+ +Ta 5+ +W 6+ ) is 3% or more, the thermal stability is maintained and the above-mentioned It is better to consider the optical properties. On the other hand, when the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 12% or less, the decrease in thermal stability and the decrease in Abbe number (νd) can be suppressed. Therefore, in the above-mentioned glass, it is preferable to set the range of the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ to 3 to 12%. The more preferable lower limit and the more preferable upper limit of the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ are shown in Table 5 below.

Figure 105135659-A0202-12-0012-19
Figure 105135659-A0202-12-0012-19

Zr4+是具有提高折射率的作用的成分,藉由使其適 量含有從而還具有改善玻璃的熱穩定性的作用。此外,Zr4+還具有藉由提高玻璃化轉變溫度從而在機械加工時使玻璃難以破損的作用。為了良好地得到這些效果,較佳在上述玻璃中將Zr4+的含量設為2%以上。另一方面,當Zr4+的含量為8%以下時,因為能改善玻璃的熱穩定性,所以能夠抑制玻璃製造時的晶化、玻璃熔融時的熔融殘留的產生。因此,上述玻璃中的Zr4+的含量的範圍較佳設為2~8%。Zr4+含量的更佳的下限和更佳的上限如下表6所示。 Zr 4+ is a component which has the effect of increasing the refractive index, and by containing an appropriate amount thereof, also has the effect of improving the thermal stability of the glass. In addition, Zr 4+ has the effect of making glass difficult to break during machining by increasing the glass transition temperature. In order to obtain these effects favorably, the content of Zr 4+ in the above-mentioned glass is preferably 2% or more. On the other hand, when the content of Zr 4+ is 8% or less, since the thermal stability of the glass can be improved, the crystallization during glass production and the occurrence of melting residue during glass melting can be suppressed. Therefore, the range of the content of Zr 4+ in the above-mentioned glass is preferably 2 to 8%. A better lower limit and a better upper limit of the Zr 4+ content are shown in Table 6 below.

Figure 105135659-A0202-12-0013-20
Figure 105135659-A0202-12-0013-20

為了實現阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性,較佳在上述玻璃中將Zr4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的範圍設為0.48~2.20。從抑制玻璃化轉變溫度的降低(由此改善機械加工性)的觀點出發,亦較佳上述陽離子比的範圍為0.48~2.20。此外,從熱穩定性的提高和玻璃的低色散化的觀點出發,亦較佳上述陽離子比為0.48以上。另一方面,從熔解性的改善和晶化的抑制的觀點出發,亦較佳上述陽離子比為2.20以下。陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和更佳的上 限如下表7所示。 In order to realize optical properties in which the Abbe number (νd) is 39.5 to 41.5, the refractive index (nd) and the Abbe number (νd) satisfy the relationship of the above formula (1), it is preferable that the Zr 4+ content in the above-mentioned glass be The range of the cation ratio {Zr 4+ content/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} of the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ was set to 0.48 ~2.20. It is also preferable that the range of the said cation ratio is 0.48-2.20 from a viewpoint of suppressing the fall of glass transition temperature (thereby improving machinability). In addition, from the viewpoint of improvement of thermal stability and low dispersion of glass, it is also preferable that the above-mentioned cation ratio is 0.48 or more. On the other hand, from the viewpoints of improvement in solubility and suppression of crystallization, the cation ratio is preferably 2.20 or less. A better lower limit and a better upper limit of the cation ratio {Zr 4+ content/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 7 below.

Figure 105135659-A0202-12-0014-21
Figure 105135659-A0202-12-0014-21

為了實現改善玻璃的熱穩定性並且阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性,較佳在上述玻璃中將B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{B3++Si4+/(La3++Y3++Gd3++Yb3+)}設為0.70~1.75。當陽離子比((B3++Si4+)/(La3++Y3++Gd3++Yb3+))為0.70以上時,因為能夠改善玻璃的熱穩定性,所以能夠抑制玻璃的失透。此外,從抑制玻璃的比重的增大的方面考慮亦較佳。另一方面,陽離子比((B3++Si4+)/(La3++Y3++Gd3++Yb3+))為1.75以下從實現上述的光學特性的方面考慮較佳。陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表8所示。 In order to improve the thermal stability of the glass and achieve optical properties in which the Abbe number (νd) is 39.5 to 41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the relationship of the above-mentioned formula (1), it is preferable in the above-mentioned glass. The cation ratio of the total content of B 3+ and Si 4+ to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ {B 3+ +Si 4+ /(La 3+ +Y 3 + +Gd 3+ +Yb 3+ )} is set to 0.70~1.75. When the cation ratio ((B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )) is 0.70 or more, since the thermal stability of the glass can be improved, it is possible to suppress the glass loss of clarity. In addition, it is also preferable from the viewpoint of suppressing an increase in the specific gravity of the glass. On the other hand, a cation ratio ((B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )) of 1.75 or less is preferable from the viewpoint of achieving the above-mentioned optical properties. A better lower limit and a better upper limit of the cation ratio {(B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 8 below.

Figure 105135659-A0202-12-0015-22
Figure 105135659-A0202-12-0015-22

為了實現改善玻璃的熱穩定性並且抑制折射率(nd)的降低的上述的光學特性,較佳在上述玻璃中將B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為9.00以下。 In order to achieve the above-mentioned optical properties of improving the thermal stability of the glass and suppressing the decrease in the refractive index (nd), it is preferable that the total content of B 3+ and Si 4+ in the above-mentioned glass is relative to Nb 5+ , Ti 4+ , The cation ratio {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} of the total content of Ta 5+ and W 6+ is set to 9.00 or less.

為了抑制阿貝數(νd)的減少並且改善玻璃的熱穩定性,較佳將陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為5.00以上。進一步地從低比重化的觀點出發,亦較佳將陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為5.00以上。 In order to suppress the decrease in Abbe number (νd) and improve the thermal stability of the glass, it is preferable to set the cation ratio {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is set to 5.00 or more. Furthermore, from the viewpoint of lowering the specific gravity, the cation ratio {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is preferably 5.00 or more.

陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和更佳的上限如下表9所示。 A better lower limit and a better upper limit of the cation ratio {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 9 below.

Figure 105135659-A0202-12-0016-23
Figure 105135659-A0202-12-0016-23

從改善玻璃的熱穩定性、抑制玻璃的晶化並且使玻璃低比重化的觀點出發,較佳將W6+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}設為0.50以下。此外,從玻璃的高折射率化、著色降低的觀點出發,亦較佳陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}為0.50以下。陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和更佳的上限如下表10所示。 From the viewpoint of improving the thermal stability of the glass, suppressing the crystallization of the glass, and reducing the specific gravity of the glass, it is preferable to set the W 6+ content to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ The cation ratio of {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is set to 0.50 or less. Also, from the viewpoint of increasing the refractive index of the glass and reducing the coloration, the cation ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is preferably 0.50 or less. A better lower limit and a better upper limit of the cation ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 10 below.

Figure 105135659-A0202-12-0016-24
Figure 105135659-A0202-12-0016-24

為了改善玻璃的熱穩定性、抑制玻璃的晶化並且實現上述的光學特性,較佳在上述玻璃中將Zn2+含量相對於 La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}設為小於0.2。此外,從抑制玻璃化轉變溫度的降低(由此改善機械加工性)和提高化學耐久性的觀點出發,亦較佳陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}小於0.20。從改善熔融性的觀點出發,陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}較佳為0%以上,更佳大於0%。陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限如下表11所示。 In order to improve the thermal stability of the glass, suppress the crystallization of the glass, and realize the above-mentioned optical properties, the content of Zn 2+ in the above-mentioned glass is preferably adjusted relative to the sum of La 3+ , Y 3+ , Gd 3+ and Yb 3+ The content cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to be less than 0.2. Furthermore, from the viewpoints of suppressing a decrease in glass transition temperature (thereby improving machinability) and improving chemical durability, a cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +) is also preferable Yb 3+ )} is less than 0.20. From the viewpoint of improving meltability, the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is preferably 0% or more, more preferably 0% or more. The preferable lower limit and preferable upper limit of the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 11 below.

Figure 105135659-A0202-12-0017-25
Figure 105135659-A0202-12-0017-25

在稀土元素La、Y、Gd和Yb中,Gd屬於重稀土元素,從玻璃的穩定供給的觀點出發,其為要求降低玻璃中的含量的成分。此外,Gd也是原子量大、使玻璃的比重增加的成分。 Among rare earth elements La, Y, Gd, and Yb, Gd is a heavy rare earth element, and is a component required to be reduced in content in glass from the viewpoint of stable supply of glass. Moreover, Gd is also a component which has a large atomic weight and increases the specific gravity of glass.

Yb也屬於重稀土元素、且原子量大。此外,Yb在近紅外線區域有吸收。另一方面,單反照相機用的交換透鏡、監控攝 像機的透鏡期望在近紅外線區域的光線透射率高。因此,位於成為對於這些透鏡的製作有用的玻璃,期望將Yb的含量降低。 Yb is also a heavy rare earth element and has a large atomic weight. In addition, Yb has absorption in the near-infrared region. On the other hand, interchangeable lenses for single-lens reflex cameras, surveillance cameras The lens of the camera is expected to have high light transmittance in the near-infrared region. Therefore, it is desired to reduce the content of Yb in order to be a useful glass for the production of these lenses.

與此相對,La、Y不對近紅外區域的光線透射率帶來不良影響,藉由相對於稀土元素的合計含量適量分配從而改善熱穩定性並且抑制比重的增大,是從提供高折射率低色散玻璃的方面考慮有用的成分。 On the other hand, La and Y do not adversely affect the light transmittance in the near-infrared region, and by distributing an appropriate amount relative to the total content of rare earth elements, the thermal stability is improved and the increase in specific gravity is suppressed. Aspects of dispersive glass consider useful components.

因此,在上述玻璃中,較佳對於La3+,將La3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的範圍設為0.50~0.95。陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表12所示。 Therefore, in the above-mentioned glass, it is preferable for La 3+ to set the cation ratio of La 3+ content to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ {La 3+ /(La 3+ The range of + +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.50~0.95. A better lower limit and a better upper limit of the cation ratio {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 12 below.

Figure 105135659-A0202-12-0018-26
Figure 105135659-A0202-12-0018-26

此外,對於Y3+,較佳將Y3+的含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}的範圍設為0.10~0.50。陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表13所示。 Further, for Y 3+ , it is preferable to set the cation ratio of the content of Y 3+ to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ {Y 3+ /(La 3+ +Y 3 The range of + +Gd 3+ +Yb 3+ )} is set to 0.10~0.50. A better lower limit and a better upper limit of the cation ratio {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 13 below.

Figure 105135659-A0202-12-0019-27
Figure 105135659-A0202-12-0019-27

如上述記載,從玻璃的穩定供給的觀點出發,Gd3+是應該降低玻璃中的含量的成分。從穩定供給具有上述的光學特性的高折射率低色散玻璃的觀點出發,較佳在上述玻璃中將Gd3+的含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}設為0.10以下。滿足上述陽離子比還可有助於玻璃的低比重化。陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表14所示。 As described above, Gd 3+ is a component whose content in glass should be reduced from the viewpoint of stable supply of glass. From the viewpoint of stably supplying high-refractive-index, low-dispersion glass having the above-mentioned optical properties, it is preferable that the content of Gd 3+ in the above-mentioned glass be adjusted to the sum of La 3+ , Y 3+ , Gd 3+ and Yb 3+ The content of the cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is made 0.10 or less. Satisfying the above-mentioned cation ratio also contributes to lowering the specific gravity of the glass. A better lower limit and a better upper limit of the cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 14 below.

Figure 105135659-A0202-12-0019-28
Figure 105135659-A0202-12-0019-28

對於La3+、Y3+、Gd3+和Yb3+的合計含量,以及La3+含量、Y3+含量、Gd3+含量相對於該合計含量的陽離子比,如上所述。La3+、Y3+、Gd3+、Yb3+的各成分的含量的較佳的下限和較佳的上限如下表15~18所示。另外,對於Y3+的含量,從 改善玻璃的熱穩定性和熔融性的觀點出發,亦較佳下表15~18所示的下限。 The total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ and the cation ratios of La 3+ content, Y 3+ content, and Gd 3+ content to the total content are as described above. The preferable lower limit and preferable upper limit of the content of each component of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ are shown in Tables 15 to 18 below. In addition, the lower limit shown in Tables 15 to 18 below is also preferable from the viewpoint of improving the thermal stability and meltability of the glass for the content of Y 3+ .

Figure 105135659-A0202-12-0020-29
Figure 105135659-A0202-12-0020-29

Figure 105135659-A0202-12-0020-30
Figure 105135659-A0202-12-0020-30

Figure 105135659-A0202-12-0020-31
Figure 105135659-A0202-12-0020-31

Figure 105135659-A0305-02-0024-14
Figure 105135659-A0305-02-0024-14

對於Nb5+、Ti4+、Ta5+和W6+,藉由適量含有,從而發揮提高折射率、改善玻璃的熱穩定性的作用。但是,Ta5+儘管具有提高折射率的作用,但是它是極其昂貴的成分。因此,從玻璃的穩定供給的觀點出發,不是較佳積極地使用Ta5+。此外,當Ta5+的含量多時,熔融玻璃時原料變得容易熔融殘留。此外,玻璃的比重增加。總之,Ta5+是應該降低含量的成分。因此,不是較佳積極地使用Ta5+。為了改善玻璃的熱穩定性並且謀求高折射率低色散化和Ta的使用量削減,對於Ta5+,較佳Ta5+的含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}設為0.2以下。陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限如下表19所示。 When Nb 5+ , Ti 4+ , Ta 5+ and W 6+ are contained in an appropriate amount, the refractive index is increased and the thermal stability of the glass is improved. However, Ta 5+ is an extremely expensive component although it has the effect of increasing the refractive index. Therefore, from the viewpoint of stable supply of glass, it is not preferable to actively use Ta 5+ . In addition, when the content of Ta 5+ is large, the raw material tends to be melted and remain when the glass is melted. In addition, the specific gravity of glass increases. In conclusion, Ta 5+ is the component whose content should be reduced. Therefore, Ta 5+ is not preferably used actively. In order to improve the thermal stability of the glass, achieve high refractive index and low dispersion, and reduce the amount of Ta used, for Ta 5+ , the content of Ta 5+ is preferably relative to Nb 5+ , Ti 4+ , Ta 5+ and W 6 . The cation ratio {Ta 5+ /(Nb 5+ +Ti 4+ +Ta 5+ + W 6+ )} of the total content of + is set to 0.2 or less. The preferable lower limit and the more preferable upper limit of the cation ratio {Ta 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 19 below.

Figure 105135659-A0305-02-0024-15
Figure 105135659-A0305-02-0024-15

此外,對於Nb5+,為了提供為了能夠穩定供給玻璃而降低Gd3+、Ta5+的含量、較佳與Gd3+、Ta5+一同降低Yb3+的含量並且熱穩定性優異的高折射率低色散玻璃,在考慮Nb5+、Ti4+、Ta5+、W6+的上述作用的基礎上,較佳將Nb5+的含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}設為0.2以上。此外,與Ta5+、W6+相比,Nb5+是具有能夠在不使比重增大的情況下提高折射率的傾向的成分。因此,為了抑制比重的增大,較佳陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}增大。陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和較佳的上限如下表20所示。 In addition, for Nb 5+ , in order to supply glass stably, the contents of Gd 3+ and Ta 5+ are reduced, and it is preferable to reduce the content of Yb 3+ together with Gd 3+ and Ta 5+ , and it is excellent in thermal stability. For low-dispersion glass with refractive index, considering the above-mentioned effects of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ , it is preferable to set the content of Nb 5+ relative to that of Nb 5+ , Ti 4+ , Ta 5 The cation ratio {Nb 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} of the total content of + and W 6+ is set to 0.2 or more. In addition, Nb 5+ is a component that tends to increase the refractive index without increasing the specific gravity compared to Ta 5+ and W 6+ . Therefore, in order to suppress the increase in specific gravity, the preferable cation ratio {Nb 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is increased. The preferable lower limit and preferable upper limit of the cation ratio {Nb 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 20 below.

Figure 105135659-A0305-02-0025-16
Figure 105135659-A0305-02-0025-16

進而,從防止高色散化的觀點和著色的觀點出發,較佳將Ti4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ti4+/(Nb5++Ti4++Ta5++W6+)}設為0.6以下。陽離 子比{{Ti4+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限如下表21所示。 Furthermore, from the viewpoint of preventing high dispersion and coloring, the cation ratio of the Ti 4+ content to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is preferably {Ti 4+ / (Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is set to 0.6 or less. A preferable lower limit and a better upper limit of the cation ratio {{Ti 4+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 21 below.

Figure 105135659-A0202-12-0023-35
Figure 105135659-A0202-12-0023-35

為了維持玻璃的熱穩定性並且抑制阿貝數(νd)的降低,較佳使La3+、Y3+、Gd3+和Yb3+的合計含量(La3++Y3++Gd3++Yb3+)相對於Nb5+、Ti4+、Ta5+和W6+的合計含量(Nb5++Ti4++Ta5++W6+)的陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的下限為下表所示的較佳的下限的值。 In order to maintain the thermal stability of the glass and suppress the decrease in the Abbe number (νd), it is preferable to make the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ (La 3+ +Y 3+ +Gd 3 ) . + +Yb 3+ ) relative to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ (Nb 5+ +Ti 4+ +Ta 5+ +W 6+ ) cation ratio {(La 3 The lower limit of + +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is a preferable lower limit value shown in the following table.

另一方面,為了抑制折射率的降低並且維持玻璃的熱穩定性,較佳使陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的上限為下表22所示的較佳的上限的值。 On the other hand, in order to suppress the decrease in the refractive index and maintain the thermal stability of the glass, it is preferable to make the cation ratio {(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti 4+ The upper limit of +Ta 5+ +W 6+ )} is a preferable upper limit value shown in Table 22 below.

Figure 105135659-A0202-12-0023-36
Figure 105135659-A0202-12-0023-36

對於上述玻璃的玻璃組成,以下進一步進行說明。 The glass composition of the above-mentioned glass will be further described below.

對於作為玻璃的網絡形成成分的B3+和Si4+的合計含量等,如上所述。對於B3+和Si4+,B3+比Si4+改善熔融性的作用優異,但熔融時易發揮。另一方面,Si4+具有改善玻璃的化學耐久性、耐候性、機械加工性或者提高熔融時的玻璃的黏性的作用。 The total content and the like of B 3+ and Si 4+ which are network-forming components of glass are as described above. Regarding B 3+ and Si 4+ , B 3+ is superior to Si 4+ in improving the meltability, but it tends to be exhibited during melting. On the other hand, Si 4+ has the effect of improving the chemical durability, weather resistance, and machinability of the glass, or improving the viscosity of the glass at the time of melting.

一般地,在含B3+和La3+等稀土元素的高折射率低分散玻璃中,熔融時的玻璃的黏性低。但是,當熔融時的玻璃的黏性低時就會變得容易晶化。對於玻璃製造時的晶化,相比於無定形狀態(非晶質狀態),晶化的狀態更穩定,其是藉由構成玻璃的離子在玻璃中移動而以具有晶體結構的方式進行排列從而產生。因此,藉由以熔融時的黏性增加的方式調節B3+和Si4的各成分的含量的比率,從而使上述離子難以以具有晶體結構的方式進行配列,能夠進一步抑制玻璃的晶化,進一步改善玻璃的耐失透性。 Generally, in the high refractive index and low dispersion glass containing rare earth elements such as B 3+ and La 3+ , the viscosity of the glass at the time of melting is low. However, when the viscosity of the molten glass is low, it becomes easy to crystallize. For crystallization during glass production, the crystallization state is more stable than the amorphous state (amorphous state), and the ions constituting the glass move in the glass and are arranged to have a crystalline structure. produce. Therefore, by adjusting the content ratio of each component of B 3+ and Si 4 so that the viscosity during melting increases, it becomes difficult for the above-mentioned ions to arrange so as to have a crystal structure, and the crystallization of the glass can be further suppressed, Further improve the devitrification resistance of glass.

從以上的觀點出發,B3+的含量相對於B3+和Si4+的合計含量的陽離子比{B3+/(B3++Si4+)}的較佳的下限和較佳的上限如下表23所示。設為下表所示的下限以上從改善玻璃的熔融性的觀點出發亦較佳。此外,設為下表23所示的上限以下從提高熔融時的玻璃的黏性考慮亦較佳。進而,為了降低因熔融時的揮發引起的玻璃組成的變動和由此引起的光學特性的變動,此外從改善玻璃的化學耐久性、耐候性和機械加工性的一個以上的觀點出發,設為下表23所示的上限以下亦較佳。 From the above viewpoints, the preferable lower limit and preferable cation ratio {B 3+ /(B 3+ +Si 4+ )} of the content of B 3+ to the total content of B 3+ and Si 4+ The upper limit is shown in Table 23 below. It is also preferable to make it more than the lower limit shown in the following table from a viewpoint of improving the meltability of glass. Moreover, it is also preferable to make it below the upper limit shown in Table 23 below from the viewpoint of improving the viscosity of the glass at the time of melting. Furthermore, in order to reduce the fluctuation of glass composition due to volatilization during melting and the fluctuation of optical properties caused by it, and from the viewpoint of improving one or more of the chemical durability, weather resistance, and machinability of the glass, the following It is also preferable that it is below the upper limit shown in Table 23.

Figure 105135659-A0202-12-0025-37
Figure 105135659-A0202-12-0025-37

從改善玻璃的耐失透性、熔融性、成型性、化學耐久性、耐候性、機械加工性等觀點出發,對於B3+含量、Si4+含量,各自較佳的下限和較佳的上限如下表24~25所示。 From the viewpoints of improving the devitrification resistance, meltability, formability, chemical durability, weather resistance, machinability, etc. of the glass, the B 3+ content and the Si 4+ content each have a preferable lower limit and a preferable upper limit. As shown in Tables 24~25 below.

Figure 105135659-A0202-12-0025-38
Figure 105135659-A0202-12-0025-38

Figure 105135659-A0202-12-0025-39
Figure 105135659-A0202-12-0025-39

Zn2+具有在熔融玻璃時促進玻璃原料的熔融的作用、即改善熔融性的作用。此外,也具有對折射率(nd)、阿貝數(νd)進行調整、降低玻璃化轉變溫度的作用。從抑制阿貝數(νd)的降 低、改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)、玻璃的低比重化的觀點出發,較佳將Zn2+的含量除以B3+和Si4+的合計含量的值即陽離子比{Zn2+/(B3++Si4+)}設為0.15以下。另外,因為上述玻璃中Zn是可以含有也可以不含有的任選成分,所以較佳陽離子比{Zn2+/(B3++Si4+)}為0以上,但為了提高熔融性、容易地製作均質的玻璃,更佳含有Zn來使陽離子比{Zn2+/(B3++Si4+)}大於0。陽離子比{Zn2+/(B3++Si4+)}的更佳的下限和更佳的上限如下表26所示。 Zn 2+ has the effect of promoting the melting of the glass raw material when the glass is melted, that is, the effect of improving the meltability. In addition, it also has the effect of adjusting the refractive index (nd) and the Abbe number (νd) and lowering the glass transition temperature. From the viewpoints of suppressing the decrease in Abbe's number (νd), improving the thermal stability of the glass, suppressing the decrease in the glass transition temperature (thereby improving the machinability), and reducing the specific gravity of the glass, the Zn 2+ The cation ratio {Zn 2+ /(B 3+ +Si 4+ )}, which is a value obtained by dividing the content by the total content of B 3+ and Si 4+ , is set to 0.15 or less. In addition, since Zn is an optional component which may or may not be contained in the above-mentioned glass, it is preferable that the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is 0 or more, but in order to improve the meltability and ease the In order to produce a homogeneous glass, it is more preferable to contain Zn so that the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is greater than 0. A better lower limit and a better upper limit of the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} are shown in Table 26 below.

Figure 105135659-A0202-12-0026-40
Figure 105135659-A0202-12-0026-40

從改善玻璃的熔融性、熱穩定性、成型性、機械加工性等,實現上述的光學特性的觀點出發,Zn2+含量的較佳的下限和較佳的上限如下表27所示。 From the viewpoint of improving the meltability, thermal stability, formability, machinability, etc. of the glass and realizing the above-mentioned optical properties, the preferable lower limit and preferable upper limit of the Zn 2+ content are shown in Table 27 below.

Figure 105135659-A0202-12-0026-41
Figure 105135659-A0202-12-0026-41

從進一步改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)、改善化學耐久性的觀點出發,較佳Zn2+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}為1.0以下。另一方面,由於Zn是任選成分,因此較佳陽離子比{Zn2+/(Nb5++Ti4++Ta5++W6+)}的下限為0,但是從提高熔融性的觀點出發,更佳大於0。考慮到以上的方面,陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}的更佳的下限和更佳的上限如下表28所示。 From the viewpoints of further improving the thermal stability of the glass, suppressing the decrease in glass transition temperature (thereby improving the machinability), and improving the chemical durability, the content of Zn 2+ is preferable relative to Nb 5+ , Ti 4+ , Ta The cation ratio {Zn 2+ /(Ti 4+ +Nb 5+ +Ta 5+ +W 6+ )} of the total content of 5+ and W 6+ is 1.0 or less. On the other hand, since Zn is an optional component, the lower limit of the preferable cation ratio {Zn 2+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0, but it is not possible to improve the meltability. From a viewpoint, it is better to be greater than 0. Taking the above aspects into consideration, a better lower limit and a better upper limit of the cation ratio {Zn 2+ /(Ti 4+ +Nb 5+ +Ta 5+ +W 6+ )} are shown in Table 28 below.

Figure 105135659-A0202-12-0027-42
Figure 105135659-A0202-12-0027-42

在考慮到上述作用、效果的基礎上,對於Nb5+、Ti4+、Ta5+、W6+,Nb5+、Ti4+、Ta5+、W6+的各成分的含量的較佳的範圍如下表29~32所示。 On the basis of considering the above functions and effects, for Nb 5+ , Ti 4+ , Ta 5+ , W 6+ , the content of each component of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ is compared The optimum range is shown in Tables 29 to 32 below.

Figure 105135659-A0202-12-0027-43
Figure 105135659-A0202-12-0027-43

Figure 105135659-A0202-12-0028-44
Figure 105135659-A0202-12-0028-44

Figure 105135659-A0202-12-0028-45
Figure 105135659-A0202-12-0028-45

Figure 105135659-A0202-12-0028-46
Figure 105135659-A0202-12-0028-46

接著,對以上說明了的成分以外的任選成分進行說明。 Next, optional components other than the components described above will be described.

Li+因為使玻璃化轉變溫度降低的作用很強,所以當其含量變多時,示出機械加工性降低的傾向。此外,化學耐久性、耐候性也顯示出降低的傾向。因此,較佳將Li+含量設為5%以下。Li+的含量的較佳的下限和更佳的上限如下表33 所示。Li+的含量也可以為0%。 Since Li + has a strong effect of lowering the glass transition temperature, when the content thereof increases, the machinability tends to decrease. In addition, chemical durability and weather resistance also showed a tendency to decrease. Therefore, the Li + content is preferably 5% or less. A preferable lower limit and a more preferable upper limit of the content of Li + are shown in Table 33 below. The content of Li + may also be 0%.

Figure 105135659-A0202-12-0029-47
Figure 105135659-A0202-12-0029-47

Na+、K+、Rb+、Cs+均具有改善玻璃的熔融性的作用,但當這些含量增加時,顯示出玻璃的熱穩定性、化學耐久性、耐候性、機械加工性降低的傾向。因此,較佳Na+、K+、Rb+、Cs+的各含量的下限和上限分別如下表34~37所示。 Na + , K + , Rb + , and Cs + all have the effect of improving the meltability of glass, but when these contents increase, the thermal stability, chemical durability, weather resistance, and machinability of the glass tend to decrease. Therefore, the preferred lower and upper limits of the respective contents of Na + , K + , Rb + , and Cs + are shown in Tables 34 to 37 below, respectively.

Figure 105135659-A0202-12-0029-48
Figure 105135659-A0202-12-0029-48

Figure 105135659-A0202-12-0029-50
Figure 105135659-A0202-12-0029-50

Figure 105135659-A0202-12-0030-51
Figure 105135659-A0202-12-0030-51

Figure 105135659-A0202-12-0030-52
Figure 105135659-A0202-12-0030-52

從維持玻璃的熱穩定性、化學耐久性、耐候性、機械加工性並且改善玻璃的熔融性的觀點出發,Li+、Na+和K+的合計含量(Li++Na++K+)的較佳的下限和較佳的上限如下表38所示。 From the viewpoint of maintaining the thermal stability, chemical durability, weather resistance, and machinability of the glass and improving the meltability of the glass, the total content of Li + , Na + and K + (Li + +Na + +K + ) is The preferred lower limit and the preferred upper limit are shown in Table 38 below.

Figure 105135659-A0202-12-0030-53
Figure 105135659-A0202-12-0030-53

Mg2+、Ca2+、Sr2+、Ba2+均是具有改善玻璃的熔融性的作用的成分。但是,當這些成分的含量增加時,玻璃的熱穩定性降低,顯示出失透傾向。因此,這些成分的各自的含量分 別較佳設為下表39~42所示的下限以上,較佳設為上限以下。 Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ are all components having an effect of improving the meltability of glass. However, when the content of these components increases, the thermal stability of the glass decreases, and the devitrification tends to be exhibited. Therefore, the content of each of these components is preferably equal to or more than the lower limit shown in Tables 39 to 42 below, and preferably equal to or less than the upper limit.

Figure 105135659-A0202-12-0031-54
Figure 105135659-A0202-12-0031-54

Figure 105135659-A0202-12-0031-55
Figure 105135659-A0202-12-0031-55

Figure 105135659-A0202-12-0031-56
Figure 105135659-A0202-12-0031-56

Figure 105135659-A0202-12-0031-57
Figure 105135659-A0202-12-0031-57

此外,從維持玻璃的熱穩定性的觀點出發,較佳Mg2+、Ca2+、Sr2+和Ba2+的合計含量(Mg2++Ca2++Sr2++Ba2+)設為下表43所示的下限以上,較佳設為上限以下。 In addition, from the viewpoint of maintaining the thermal stability of the glass, the total content of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ (Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ ) is preferable It is set to be more than the lower limit shown in Table 43 below, and it is preferable to set it as below the upper limit.

Figure 105135659-A0202-12-0032-58
Figure 105135659-A0202-12-0032-58

Al3+是具有改善玻璃的化學耐久性、耐候性的作用的成分。但是,當Al3+的含量增加時,有時顯示出折射率(nd)的降低傾向、玻璃的熱穩定性的降低傾向,熔融性的降低傾向。考慮以上的方面,較佳Al3+的含量為下表44所示的下限以上,較佳為上限以下。 Al 3+ is a component having the effect of improving chemical durability and weather resistance of glass. However, when the content of Al 3+ increases, the refractive index (nd) tends to decrease, the thermal stability of the glass tends to decrease, and the meltability tends to decrease. Considering the above aspects, the content of Al 3+ is preferably equal to or more than the lower limit shown in Table 44 below, and preferably equal to or less than the upper limit.

Figure 105135659-A0202-12-0032-59
Figure 105135659-A0202-12-0032-59

Ga3+、In3+、Sc3+、Hf4+均具有提高折射率(nd)的作用。但是,這些成分價格昂貴,從得到上述光學玻璃的角度考慮不是必需的成分。因此,Ga3+、In3+、Sc3+、Hf4+的各含量較佳設為下表45~48所示的下限以上,較佳設為上限以下。 Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ all have the effect of increasing the refractive index (nd). However, these components are expensive, and are not essential components from the viewpoint of obtaining the above-mentioned optical glass. Therefore, the respective contents of Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ are preferably set to be equal to or more than the lower limit shown in Tables 45 to 48 below, and preferably equal to or less than the upper limit.

Figure 105135659-A0202-12-0033-60
Figure 105135659-A0202-12-0033-60

Figure 105135659-A0202-12-0033-61
Figure 105135659-A0202-12-0033-61

Figure 105135659-A0202-12-0033-62
Figure 105135659-A0202-12-0033-62

Figure 105135659-A0202-12-0033-63
Figure 105135659-A0202-12-0033-63

Lu3+具有提高折射率(nd)的作用,但也是會使玻璃 的比重增加的成分。此外,Lu與Gd、Yb同樣,是重稀土元素,因此較佳降低Lu的含量。從以上的方面出發,Lu3+的含量的較佳的下限和較佳的上限如下表49所示。 Lu 3+ has the effect of increasing the refractive index (nd), but is also a component that increases the specific gravity of the glass. In addition, since Lu is a heavy rare-earth element like Gd and Yb, it is preferable to reduce the content of Lu. From the above aspects, the preferable lower limit and preferable upper limit of the content of Lu 3+ are shown in Table 49 below.

Figure 105135659-A0202-12-0034-64
Figure 105135659-A0202-12-0034-64

Ge4+是具有提高折射率(nd)的作用,但在通常使用的玻璃成分中是極其昂貴的成分。從降低玻璃的製造成本的觀點出發,Ge4+的含量的較佳的下限和較佳的上限如下表50所示。 Ge 4+ has the effect of increasing the refractive index (nd), but is an extremely expensive component among commonly used glass components. From the viewpoint of reducing the manufacturing cost of glass, the preferable lower limit and preferable upper limit of the content of Ge 4+ are shown in Table 50 below.

Figure 105135659-A0202-12-0034-65
Figure 105135659-A0202-12-0034-65

Bi3+是提高折射率(nd)並且使阿貝數(νd)降低的成分。此外,也是易於使比重、著色增大的成分。為了製作具有上述的光學特性、且著色少、比重低的玻璃,Bi3+含量的較佳的下限和較佳的上限如下表51所示。 Bi 3+ is a component that increases the refractive index (nd) and lowers the Abbe number (νd). In addition, it is also a component that tends to increase specific gravity and coloration. In order to produce glass with the above-mentioned optical properties, less coloration, and low specific gravity, the preferable lower limit and preferable upper limit of the Bi 3+ content are shown in Table 51 below.

Figure 105135659-A0202-12-0035-66
Figure 105135659-A0202-12-0035-66

為了良好地得到以上說明的各種作用、效果,以上記載的陽離子成分的各含量的合計(合計含量)較佳大於95%,更佳大於98%,進一步較佳大於99%,更進一步較佳大於99.5%。 In order to obtain the various actions and effects described above well, the total (total content) of the respective contents of the cationic components described above is preferably more than 95%, more preferably more than 98%, more preferably more than 99%, still more preferably more than 99.5%.

在以上記載的陽離子成分以外的陽離子成分中,P5+是使折射率(nd)降低的成分,也是使玻璃的熱穩定性降低的成分,但是如果極少量的導入時,有時使玻璃的熱穩定性提高。為了製作具有上述的光學特性並且熱穩定性優異的玻璃,P5+含量的較佳的下限和較佳的上限如下表52所示。 Among the cationic components other than the cationic components described above, P 5+ is a component that lowers the refractive index (nd) and is also a component that lowers the thermal stability of the glass. Thermal stability is improved. In order to produce glass having the above-mentioned optical properties and excellent thermal stability, the preferable lower limit and preferable upper limit of the P 5+ content are shown in Table 52 below.

Figure 105135659-A0202-12-0035-67
Figure 105135659-A0202-12-0035-67

Te4+是提高折射率(nd)的成分,但是因為是具有毒性的成分,所以較佳減少Te4+的含量。Te4+的含量的較佳的下限和較佳的上限如下表53所示。 Te 4+ is a component that increases the refractive index (nd), but since it is a toxic component, it is preferable to reduce the content of Te 4+ . The preferable lower limit and preferable upper limit of the content of Te 4+ are shown in Table 53 below.

Figure 105135659-A0202-12-0036-68
Figure 105135659-A0202-12-0036-68

應予說明的是,上述的各表中記載為(更佳)較佳的下限或0%的成分亦較佳含量是0%。對於多種成分的合計含量也是同樣。 It should be noted that the content of the components described as (more preferable) as the lower limit or 0% in each of the above-mentioned tables is also preferably 0%. The same applies to the total content of a plurality of components.

對於以上記載的各種陽離子成分,本發明者經過反復研究,著眼於考慮各陽離子成分給予玻璃的色散(阿貝數)的影響各自不同。而且,本發明人進一步反復研究,結果認為,對於各陽離子成分規定考慮給予玻璃的色散的影響的係數以由下述(A)式算出的值A成為8.5000~11.000的範圍的方式進行組成調整,為了實現阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性而較佳。 Regarding the various cationic components described above, the inventors of the present invention have studied repeatedly, and have paid attention to considering that each cationic component has a different influence on the dispersion (Abbé number) of the glass. Furthermore, the inventors of the present invention have conducted further studies and, as a result, considered that the composition is adjusted so that the value A calculated from the following formula (A) falls within the range of 8.5000 to 11.000, for each cationic component, the coefficient that takes into account the influence of dispersion on the glass is defined, It is preferable to realize optical properties in which the Abbe number (νd) is 39.5 to 41.5, and the refractive index (nd) and the Abbe number (νd) satisfy the relationship of the above formula (1).

(A)式A=0.01×Si4+含量+0.01×B3+含量+0.05×La3+含量+0.07×Y3+含量+0.07×Yb3+含量+0.085×Zn2+含量+0.3×Zr4+含量 +0.5×Ta5+含量+0.8×Nb5+含量+0.9×W5+含量+0.95×Ti4+含量 (A) Formula A=0.01×Si 4+ content+0.01×B 3+ content+0.05×La 3+ content+0.07×Y 3+ content+0.07×Yb 3+ content+0.085×Zn 2+ content+0.3× Zr 4+ content+0.5×Ta 5+ content+0.8×Nb 5+ content+0.9×W 5+ content+0.95×Ti 4+ content

由上述(A)式算出的值A的更佳的下限和更佳的上限如下表54所示。 A more preferable lower limit and a more preferable upper limit of the value A calculated from the above formula (A) are shown in Table 54 below.

Figure 105135659-A0305-02-0040-17
Figure 105135659-A0305-02-0040-17

此外,在以上記載的各種陽離子成分中,對於Nb5+、Ti4+和Gd3+,Nb5+和Ti4+是具有提高折射率的作用的成分,並且與Gd3+相比是使比重增加的作用小的成分。因此,為了抑制比重的增大並且提高折射率,較佳使Nb5+和Ti4+的合計含量與Gd3+的含量平衡。從該方面出發,對於上述玻璃,在以陽離子%表示的玻璃組成中,較佳由下述(C)式算出的值C為-1.000以上。此外,從高折射率低分散化的觀點出發,由下述(C)式算出的值C較佳為6.720以下。 In addition, among the various cationic components described above, among Nb 5+ , Ti 4+ and Gd 3+ , Nb 5+ and Ti 4+ are components that have the effect of increasing the refractive index, and are more effective than Gd 3+ . A component with a small effect of increasing the specific gravity. Therefore, in order to suppress the increase in specific gravity and increase the refractive index, it is preferable to balance the total content of Nb 5+ and Ti 4+ with the content of Gd 3+ . From this point of view, it is preferable that the value C calculated by the following formula (C) is -1.000 or more in the glass composition represented by the cation %. In addition, from the viewpoint of high refractive index and low dispersion, the value C calculated from the following formula (C) is preferably 6.720 or less.

(C)式C=0.567×(Nb5+含量+Ti4+含量)-1.000×Gd3+含量 (C) Formula C=0.567×(Nb 5+ content+Ti 4+ content)-1.000×Gd 3+ content

由(C)式算出的值C的更佳的下限和更佳的上限如下表55所示。 A more preferable lower limit and a more preferable upper limit of the value C calculated from the formula (C) are shown in Table 55 below.

Figure 105135659-A0305-02-0041-18
Figure 105135659-A0305-02-0041-18

Pb、As、Cd、Tl、Be、Se各自具有毒性。因此,較佳不含這些元素,亦即,不將這些元素導入玻璃中作為玻璃成分。 Pb, As, Cd, Tl, Be, and Se each have toxicity. Therefore, it is preferable not to contain these elements, that is, not to introduce these elements into the glass as glass components.

U、Th、Ra均是放射性元素。因此,較佳不含這些元素,亦即,不將這些元素成分導入玻璃中作為玻璃。 U, Th, and Ra are all radioactive elements. Therefore, it is preferable not to contain these elements, that is, not to introduce these elemental components into glass as glass.

V、Cr、Mn、Fe、Co、Ni、Cu、Pr,Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ce或使玻璃的著色增大,或成為螢光的產生源,不是較佳作為含在光學元件用的玻璃中的元素。因此,較佳不含這些元素,亦即,不將這些元素導入玻璃中作為玻璃成分。 V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Ce can increase the coloring of glass or become a source of fluorescence , which is not preferable as an element contained in glass for optical elements. Therefore, it is preferable not to contain these elements, that is, not to introduce these elements into the glass as glass components.

Sb、Sn是作為澄清劑發揮功能的能夠任意地添加的元素。 Sb and Sn are elements that can be arbitrarily added and function as clarifying agents.

對於Sb的添加量,換算成Sb2O3,在將Sb2O3以外的玻璃成分的含量的合計設為100質量%時,較佳的範圍為0~0.11質量%,更佳的範圍為0.01~0.08質量%,進一步較佳的範圍為0.02~0.05質量%。 The addition amount of Sb is converted into Sb 2 O 3 , and when the total content of the glass components other than Sb 2 O 3 is 100 mass %, the preferable range is 0 to 0.11 mass %, and the more preferable range is 0.01-0.08 mass %, and a more preferable range is 0.02-0.05 mass %.

對於Sn的添加量,換算成SnO2,在將SnO2以外的玻璃成分的含量的合計設為100質量%時,較佳的範圍為0~0.5質量%,更佳的範圍為0~0.2質量%,進一步較佳的範圍為0質量%。 The amount of Sn added is converted into SnO 2 , and when the total content of the glass components other than SnO 2 is 100 mass %, the preferred range is 0 to 0.5 mass %, and the more preferred range is 0 to 0.2 mass % %, and a more preferable range is 0 mass %.

以上,對陽離子成分進行了說明。接下來,對陰離子成分進行說明。 The cationic component has been described above. Next, the anion component is demonstrated.

上述玻璃因為是氧化物玻璃,所以含有O2-作為陰離子成分。O2-的含量的較佳的下限如下表56所示。 Since the said glass is an oxide glass, it contains O2- as an anion component. The preferable lower limit of the content of O 2- is shown in Table 56 below.

Figure 105135659-A0202-12-0039-71
Figure 105135659-A0202-12-0039-71

作為O2-以外的陰離子成分,可以例示F-、Cl-、Br-、I-。但是,F-、Cl-、Br-、I-在玻璃的熔融中均容易發揮。由於這些成分的揮發,有玻璃的特性變動而玻璃的均質性降低、熔融設備的消耗變得顯著的傾向。因此,較佳將F-、Cl-、Br-和I-的合計含量控制在從100陰離子%中減去O2-的含量的量。 F - , Cl - , Br - , and I - can be exemplified as anion components other than O 2- . However, F - , Cl - , Br - , and I - are all easily exerted in the melting of glass. Due to the volatilization of these components, there is a tendency that the characteristics of the glass fluctuate, the homogeneity of the glass decreases, and the consumption of the melting equipment becomes significant. Therefore, it is preferable to control the total content of F - , Cl - , Br - and I - to an amount that subtracts the content of O 2- from 100 anion %.

應予說明的是,陰離子%眾所周知是指將含在玻璃中的全部的陰離子成分的合計含量設為100%時的百分率。 In addition, it is well known that the anion % means the percentage when the total content of all the anion components contained in glass is 100%.

<玻璃特性> <Glass Properties>

(玻璃的光學特性) (optical properties of glass)

上述玻璃是阿貝數(νd)的範圍為39.5~41.5、且相對於阿貝數(νd),折射率(nd)滿足下述(1)式的玻璃。 The above-mentioned glass is a glass whose Abbe number (νd) is in the range of 39.5 to 41.5, and whose refractive index (nd) satisfies the following formula (1) with respect to the Abbe number (νd).

Figure 105135659-A0202-12-0040-74
Figure 105135659-A0202-12-0040-74

阿貝數(νd)為39.5以上的玻璃作為光學元件的材料在校正色像差方面是有效的。另一方面,當阿貝數(νd)大於41.5時,如果不使折射率降低的話,則玻璃的熱穩定性會顯著降低,製造玻璃的過程中變得容易失透。阿貝數(νd)的較佳的下限和較佳的上限如下表57所示。 Glass having an Abbe number (νd) of 39.5 or more is effective in correcting chromatic aberration as a material for an optical element. On the other hand, when the Abbe number (νd) is larger than 41.5, unless the refractive index is lowered, the thermal stability of the glass is remarkably lowered, and devitrification tends to be easy in the process of producing the glass. The preferable lower limit and preferable upper limit of Abbe number (νd) are shown in Table 57 below.

Figure 105135659-A0202-12-0040-72
Figure 105135659-A0202-12-0040-72

在上述玻璃中,相對於阿貝數(νd),折射率(nd)滿足(1)式。阿貝數(νd)的範圍為39.5~41.5、且折射率(nd)滿足(1)式的玻璃是在光學系統的設計中利用價值高的玻璃。 In the above glass, the refractive index (nd) with respect to the Abbe number (νd) satisfies the formula (1). The glass whose Abbe number (νd) is in the range of 39.5 to 41.5 and whose refractive index (nd) satisfies the formula (1) is a glass with high utility value in designing an optical system.

折射率(nd)的上限由玻璃組成自然而然地確定。為了得到改善熱穩定性、難以失透的玻璃,較佳折射率(nd)滿足下述(2)式。 The upper limit of the refractive index (nd) is naturally determined by the glass composition. In order to obtain a glass with improved thermal stability and less devitrification, it is preferable that the refractive index (nd) satisfies the following formula (2).

Figure 105135659-A0202-12-0040-73
Figure 105135659-A0202-12-0040-73

相對於阿貝數(νd)的折射率(nd)的較佳的下限和更佳的上 限如下表58所示。 Preferred lower limit and better upper limit of refractive index (nd) relative to Abbe number (νd) The limits are shown in Table 58 below.

Figure 105135659-A0305-02-0044-19
Figure 105135659-A0305-02-0044-19

此外,折射率(nd)亦較佳為下表59所示的下限以上,亦較佳為上限以下。 In addition, the refractive index (nd) is preferably equal to or more than the lower limit shown in Table 59 below, and is also preferably equal to or less than the upper limit.

Figure 105135659-A0305-02-0044-20
Figure 105135659-A0305-02-0044-20

(部分色散特性) (Partial Dispersion Characteristics)

從校正色像差的觀點出發,較佳上述玻璃是在將阿貝數(νd)固定時相對部分色散小的玻璃。 From the viewpoint of correcting chromatic aberration, it is preferable that the above-mentioned glass is a glass having a small relative partial dispersion when the Abbe number (νd) is fixed.

在此,部分分散比(Pg,F)使用在g線、F線、c線中的各折射率(ng)、折射率(nF)、折射率(nc),表示為(ng-nF)/(nF-nc)。 Here, the partial dispersion ratio (Pg, F) is expressed as (ng-nF)/ (nF-nc).

為了提供適合於高階的色像差校正的玻璃,上述玻璃的相對部分色散(Pg,F)的較佳的下限和較佳的上限如下表60所示。 In order to provide glasses suitable for high-order chromatic aberration correction, the preferred lower limit and preferred upper limit of the relative partial dispersion (Pg, F) of the above-mentioned glasses are shown in Table 60 below.

Figure 105135659-A0305-02-0045-21
Figure 105135659-A0305-02-0045-21

(玻璃化轉變溫度) (glass transition temperature)

上述玻璃的玻璃化轉變溫度沒有特別的限定,較佳為640℃以上。藉由將玻璃化轉變溫度(glass transition temperature,Tg)設為640℃以上,從而在對玻璃進行切斷、切削、研磨、拋光等機械加工時,能夠使玻璃難以破損。此外,因為也可以不大量含有使玻璃化轉變溫度降低的作用強的Li、Zn等成分,所以即使較少的含有Gd、Ta,進一步較少的含有Yb,也容易提高熱穩定性。 Although the glass transition temperature of the said glass is not specifically limited, It is preferable that it is 640 degreeC or more. By making glass transition temperature (glass transition temperature, Tg) 640 degreeC or more, when glass is subjected to mechanical processing such as cutting, cutting, grinding, and polishing, glass can be made difficult to break. In addition, since components such as Li and Zn, which have a strong effect of lowering the glass transition temperature, need not be contained in large amounts, even if Gd and Ta are contained in a small amount, and Yb is contained in a further small amount, thermal stability can be easily improved.

另一方面,當玻璃化轉變溫度過高時,必須在高溫下對玻璃進行退火,會顯著地消耗退火爐。此外,在對玻璃進行成型時,必須以高的溫度進行成型,成型所使用的模具的消耗會變得顯著。 On the other hand, when the glass transition temperature is too high, the glass must be annealed at a high temperature, which consumes the annealing furnace significantly. Moreover, when shaping|molding glass, it is necessary to shape|mold at a high temperature, and consumption of the mold used for shaping|molding becomes remarkable.

從改善機械加工性、減輕退火爐、成型模的負擔的觀點出發,玻璃化轉變溫度的較佳的下限和較佳的上限如下表61所示。 From the viewpoint of improving the machinability and reducing the burden on the annealing furnace and the molding die, the preferable lower limit and preferable upper limit of the glass transition temperature are shown in Table 61 below.

Figure 105135659-A0202-12-0043-78
Figure 105135659-A0202-12-0043-78

(玻璃的比重) (Specific gravity of glass)

在構成光學系統的光學元件(透鏡)中,根據構成透鏡的玻璃的折射率和透鏡的光學功能面(要控制的光線入射、出射面)的曲率決定屈光力。當要使光學功能面的曲率增大時,透鏡的厚度也會增加。結果是透鏡會變重。與此相對,如果使用折射率高的玻璃,則即使光學功能面的曲率不增大,也能夠得到大的屈光力。 In the optical element (lens) constituting the optical system, the refractive power is determined according to the refractive index of the glass constituting the lens and the curvature of the optical function surface of the lens (light incident and exit surfaces to be controlled). When the curvature of the optical functional surface is to be increased, the thickness of the lens is also increased. The result is that the lens becomes heavier. On the other hand, if glass with a high refractive index is used, a large refractive power can be obtained without increasing the curvature of the optical function surface.

由此,只要能抑制玻璃的比重的增加並且提高折射率,就能夠使具有固定的屈光力的光學元件輕量化。 Accordingly, as long as the refractive index can be increased while suppressing an increase in the specific gravity of the glass, the optical element having a fixed refractive power can be reduced in weight.

關於賦予折射率(nd)的屈光力,藉由取玻璃的比重(d)相對於從玻璃的折射率(nd)中減去真空中的折射率(1)的值(nd-1)的比,能夠作為謀求光學元件的輕量化時的指標。亦即,將d/(nd-1)作為謀求將光學元件輕量化時的指標,藉由降低該值,從而能夠謀求透鏡的輕量化。 Regarding the refractive power imparted to the refractive index (nd), by taking the ratio of the specific gravity (d) of the glass to the value (nd-1) that subtracts the refractive index (1) in vacuum from the refractive index (nd) of the glass, It can be used as an indicator for reducing the weight of optical elements. That is, d/(nd-1) is used as an index for reducing the weight of the optical element, and by reducing this value, the weight of the lens can be reduced.

上述玻璃藉由將上述的合計D相對於折射率(nd)滿足上述(B)式從而能夠一邊成為高折射率低分散玻璃一邊低比重化。因此,上述玻璃的d/(nd-1)能夠例如為5.70以下。但是,當使d/(nd-1)過度減少時,顯示玻璃的熱穩定性降低的傾向。因此, 較佳d/(nd-1)設為5.00以上。d/(nd-1)的更佳的下限和更佳的上限如下表62所示。 The above-mentioned glass can have a low specific gravity while being a high-refractive-index, low-dispersion glass by satisfying the above-mentioned total D with respect to the refractive index (nd) of the above-mentioned formula (B). Therefore, d/(nd-1) of the said glass can be 5.70 or less, for example. However, when d/(nd-1) is excessively reduced, the thermal stability of the glass tends to decrease. therefore, Preferably, d/(nd-1) is set to 5.00 or more. A better lower limit and a better upper limit of d/(nd-1) are shown in Table 62 below.

Figure 105135659-A0202-12-0044-79
Figure 105135659-A0202-12-0044-79

而且,上述玻璃的比重(d)的較佳的下限和較佳的上限如下表63所示。從由該玻璃形成的光學元件的輕量化的觀點出發,較佳將比重(d)設為下表63所示的上限以下。此外,為了進一步改善玻璃的熱穩定性,較佳將比重設為下表63所示的下限以上。 Moreover, the preferable lower limit and preferable upper limit of the specific gravity (d) of the said glass are shown in Table 63 below. From the viewpoint of weight reduction of the optical element formed of this glass, the specific gravity (d) is preferably equal to or less than the upper limit shown in Table 63 below. Moreover, in order to further improve the thermal stability of glass, it is preferable to make specific gravity more than the lower limit shown in Table 63 below.

Figure 105135659-A0202-12-0044-80
Figure 105135659-A0202-12-0044-80

(液相線溫度) (liquidus temperature)

液相線溫度是玻璃的熱穩定性的指標之一。為了抑制玻璃製造時的晶化、抑制失透,較佳液相線溫度(LT)為1350℃以下,更佳為1330℃以下,進一步較佳為1300℃以下,更進一步較佳為1250℃以下。液相線溫度(LT)的下限作為一個例子是1100℃以上,但是較佳液相線溫度(LT)的下限低,並沒有特別 的限定。 The liquidus temperature is one of the indicators of the thermal stability of glass. In order to suppress crystallization and devitrification during glass production, the liquidus temperature (LT) is preferably 1350°C or lower, more preferably 1330°C or lower, still more preferably 1300°C or lower, still more preferably 1250°C or lower . As an example, the lower limit of the liquidus temperature (LT) is 1100° C. or higher, but the lower limit of the liquidus temperature (LT) is preferably low, and there is no particular limit.

對於以上說明的本發明的一個方式的玻璃,折射率(nd)和阿貝數(νd)大,作為光學元件用的玻璃材料是有用的。進而,藉由進行在先記載的組成調整,從而還能夠使玻璃均質化和低比重化。因此,上述玻璃作為賦予更輕量的光學元件的光學玻璃是合適的。 The glass of one embodiment of the present invention described above has a large refractive index (nd) and an Abbe number (νd), and is useful as a glass material for optical elements. Furthermore, by performing the composition adjustment described previously, it is also possible to homogenize and lower the specific gravity of the glass. Therefore, the above-mentioned glass is suitable as an optical glass for imparting a lighter-weight optical element.

<玻璃的製造方法> <Manufacturing method of glass>

上述玻璃能夠藉由以下方式得到,亦即,以能夠得到目標的玻璃組成的方式,稱量、調配作為原料的氧化物、碳酸鹽、硫酸鹽、硝酸鹽、氫氧化物等,充分混合製成混合批料,在熔融容器內進行加熱、熔融,進行脫泡、攪拌,製造均質且不含泡沫的熔融玻璃,將其成型。具體地能夠使用公知的熔融法來製作。上述玻璃具有上述的光學特性的高折射率低色散玻璃並且熱穩定性優異,因此能夠使用公知的熔融法、成型法穩定地製造。 The above-mentioned glass can be obtained by weighing and mixing oxides, carbonates, sulfates, nitrates, hydroxides, etc. as raw materials so that the target glass composition can be obtained, and mixing them sufficiently The batches are mixed, heated and melted in a melting vessel, defoamed and stirred to produce a homogeneous and foam-free molten glass, which is then shaped. Specifically, it can be produced using a known melting method. Since the above-mentioned glass has the above-mentioned high-refractive-index and low-dispersion glass with the above-mentioned optical properties and is excellent in thermal stability, it can be stably produced by a known melting method or molding method.

[壓製成型用玻璃材料、光學元件坯件、及它們的製造方法] [Glass material for press molding, optical element blank, and their manufacturing method]

本發明的另一個方式關於一種由上述的玻璃形成的壓製成型用的玻璃材料。 Another aspect of this invention relates to the glass material for press molding which consists of the above-mentioned glass.

一種由上述的玻璃形成的光學元件坯件。 An optical element blank formed from the above glass.

根據本發明的另一個方式,還可提供下述者。 According to another aspect of the present invention, the following can be provided.

一種具有將上述的玻璃成型為壓製成型用玻璃材料的步驟的壓製成型用玻璃材料的製造方法。 A method for producing a press-molding glass material having the step of molding the above-mentioned glass into a press-molding glass material.

一種具有藉由將上述的壓製成型用玻璃材料使用壓製成 型模進行壓製成型而製作光學元件坯件的步驟的光學元件坯件的製造方法。 A kind of glass material with the above-mentioned press-molding glass material is pressed into A method of manufacturing an optical element blank in which a mold is press-molded to produce an optical element blank.

一種具有將上述的玻璃成型為光學元件坯件的步驟的光學元件坯件的製造方法。 A method of manufacturing an optical element blank having the step of molding the above-mentioned glass into an optical element blank.

光學元件坯件是與設為目標的光學元件的形狀近似、在光學元件形狀上增加了拋光餘量(藉由拋光而會除去的表面層)、根據需要增加了研磨餘量(藉由研磨而會除去的表面層)的光學元件母材。藉由將光學元件坯件的表面研磨、拋光,從而製作完成了光學元件。在一個方式中,能夠藉由對將上述玻璃進行適量熔融而得到的熔融玻璃壓製成型的方法(被稱為直接壓製法),從而製作光學元件坯件。在另一個方式中,也能夠藉由對將上述玻璃適量熔融而得到的熔融玻璃進行固化而製作光學元件坯件。 The optical element blank is similar to the shape of the optical element set as the target, and the polishing allowance (surface layer to be removed by polishing) is added to the optical element shape, and the grinding allowance (the surface layer that is removed by polishing) is added as required. the surface layer that will be removed) of the optical element base material. The optical element is completed by grinding and polishing the surface of the optical element blank. In one form, an optical element blank can be produced by a method of press-molding a molten glass obtained by melting an appropriate amount of the above-mentioned glass (referred to as a direct pressing method). In another form, an optical element blank can also be produced by solidifying a molten glass obtained by melting a suitable amount of the above-mentioned glass.

此外,在另一個方式中,能夠藉由製作壓製成型用玻璃材料,將製作的壓製成型用玻璃材料進行壓製成型而製作光學元件坯件。 Moreover, in another form, the optical element blank can be produced by producing the glass material for press molding, and press-molding the produced glass material for press molding.

壓製成型用玻璃材料的壓製成型能夠藉由將加熱後呈軟化狀態的壓製成型用玻璃材料用壓製成型模進行壓製的公知的方法進行。加熱、壓製成型均能夠在大氣中進行。能夠藉由壓製成型後進行退火來降低玻璃內部的應力,從而得到均質的光學元件坯件。 The press-molding of the glass material for press-molding can be performed by the well-known method of press-molding the glass material for press-molding in a softened state after heating with a press-molding die. Both heating and press molding can be performed in the atmosphere. The stress inside the glass can be reduced by annealing after press molding, thereby obtaining a homogeneous optical element blank.

壓製成型用玻璃材料除了以原本的狀態提供給用於光學元件坯件製作的壓製成型的被稱為壓製成型用玻璃料滴的壓製成型用玻璃材料以外,還包含施加切斷、研磨、拋光 等機械加工,經過壓製成型用玻璃料滴而供給到壓製成型的壓製成型用玻璃材料。作為切斷方法,具有:在玻璃板的表面的想要切斷的部分使用被稱為刻劃的方法形成槽,從形成的槽的面的背面對槽的部分施加局部壓力,在槽的部分切斷玻璃板的方法;用切斷刃切斷玻璃板的方法等。此外,作為研磨、拋光方法可列舉為滾筒拋光等。 The glass material for press molding is supplied in its original state to the glass material for press molding called a glass gob for press molding, which is used for press molding of optical element blanks, and also includes cutting, grinding, and polishing. The glass material for press-molding is supplied to the press-molding glass material through press-molding glass gobs, such as mechanical processing. As a cutting method, a groove is formed on a portion of the surface of the glass plate to be cut by a method called scribing, and local pressure is applied to the groove portion from the back surface of the formed groove surface, and the groove portion is A method of cutting a glass plate; a method of cutting a glass plate with a cutting blade, etc. Moreover, barrel polishing etc. are mentioned as a grinding|polishing and a polishing method.

壓製成型用玻璃材料能夠藉由例如將熔融玻璃澆鑄入鑄模中,成型成玻璃板,將該玻璃板切斷成多個玻璃片從而製作。或者,也能夠將適量的熔融玻璃進行成型,製作壓製成型用玻璃料滴。還能夠藉由將壓製成型用玻璃料滴進行再加熱、軟化,進行壓製成型從而製作光學元件坯件。將玻璃再加熱,軟化,進行壓製成型而製作光學元件坯件的方法相對於直接壓製法被稱為再加熱壓製法。 The glass material for press molding can be produced by, for example, casting molten glass in a mold, molding it into a glass plate, and cutting the glass plate into a plurality of glass pieces. Alternatively, an appropriate amount of molten glass can be molded to produce a glass gob for press molding. An optical element blank can also be produced by reheating and softening the glass gob for press molding and press molding. The method of reheating glass, softening it, and press-molding it to produce an optical element blank is called a reheat pressing method as compared with the direct pressing method.

[光學元件及其製造方法] [Optical element and its manufacturing method]

本發明的另一個方式關於一種由上述的玻璃形成的光學元件。 Another aspect of the present invention relates to an optical element formed of the above-described glass.

上述光學元件使用上述的玻璃製作。在上述光學元件中,也可以在玻璃表面形成例如防反射膜等多層膜等一層以上的塗層膜。 The above-mentioned optical element is produced using the above-mentioned glass. In the above-mentioned optical element, for example, one or more coating films such as multilayer films such as antireflection films may be formed on the glass surface.

此外,根據本發明的一個方式還可提供具有藉由將上述的光學元件坯件進行研磨及/或拋光而製作光學元件的步驟的光學元件的製造方法。 Furthermore, according to one aspect of the present invention, there can be provided a method for manufacturing an optical element including a step of producing an optical element by grinding and/or polishing the above-mentioned optical element blank.

在上述光學元件的製造方法中,研磨、拋光只要應用公知的方法即可,能夠藉由在加工後對光學元件表面充分 洗淨、使其乾燥等來得到內部質量和表面質量高的光學元件。這樣,能夠得到由上述玻璃形成的光學元件。作為光學元件,能夠例示球面透鏡、非球面透鏡、微透鏡等各種的透鏡、棱鏡等。 In the above-mentioned manufacturing method of an optical element, a known method may be used for grinding and polishing, and the surface of the optical element can be sufficiently polished after the processing. Cleaning, drying, etc. to obtain an optical element with high internal quality and surface quality. In this way, an optical element formed of the above-mentioned glass can be obtained. As the optical element, various lenses such as spherical lenses, aspherical lenses, and microlenses, prisms, and the like can be exemplified.

此外,由上述玻璃形成的光學元件作為構成膠合光學元件的透鏡而較佳。作為膠合光學元件,能夠例示將透鏡彼此進行膠合的膠合光學元件(膠合透鏡)、將透鏡和棱鏡膠合的膠合光學元件等。例如,膠合光學元件可以藉由以下方式製作,亦即,將膠合的2個光學元件的膠合面以形狀成為反轉形狀的方式進行精密地加工(例如球面拋光加工),塗布膠合透鏡的黏接所使用的紫外線固化型黏接劑,使其貼合後,藉由透鏡照射紫外線,使黏接劑硬化。為了製作這樣的膠合光學元件,較佳上述玻璃。藉由使用阿貝數(νd)不同的多種玻璃分別製作膠合的多個光學元件、進行膠合,從而能成為適合於色像差校正的元件。 Further, an optical element formed of the above-mentioned glass is preferable as a lens constituting a cemented optical element. As the cemented optical element, a cemented optical element (cemented lens) in which lenses are cemented together, a cemented optical element in which a lens and a prism are cemented, and the like can be exemplified. For example, a cemented optical element can be produced by performing precise processing (such as spherical polishing) on the cemented surfaces of the two optical elements to be cemented so that the shape is reversed, and applying a cemented lens for bonding The UV-curable adhesive used, after bonding, is irradiated with ultraviolet rays through the lens to harden the adhesive. In order to manufacture such a cemented optical element, the above-mentioned glass is preferable. By using a plurality of types of glass having different Abbe numbers (νd), a plurality of optical elements to be glued are respectively produced and glued, so that an element suitable for chromatic aberration correction can be obtained.

對於玻璃組成的定量分析,結果有時玻璃成分以氧化物基準表示、玻璃成分的含量以質量%表示。這樣用氧化物基準以質量%表示的組成能夠按照例如下列的方法換算成以陽離子%、陰離子%表示的組成。 In the quantitative analysis of the glass composition, the glass component may be represented by an oxide basis, and the content of the glass component may be represented by mass %. Thus, the composition represented by mass % on the basis of oxide can be converted into the composition represented by cation % and anion % by the following method, for example.

玻璃中含有N種玻璃成分的情況下,將第k種的玻璃組成用A(k)mOn表示。但是,k為1以上、N以下的任意整數。 When the glass contains N types of glass components, the k- th glass composition is represented by A(k) m On. However, k is an arbitrary integer of 1 or more and N or less.

A(k)是陽離子、O是氧、m和n是化學計量法所確定的整數。例如,基於氧化物基準表示為B2O3的情況下,m=2、n=3;表示為SiO2的情況下,m=1、n=2。 A(k) is a cation, O is oxygen, m and n are stoichiometrically determined integers. For example, when expressed as B 2 O 3 on the basis of oxide, m=2 and n=3; when expressed as SiO 2 , m=1 and n=2.

接著,將A(k)mOn的含量用X(k)[質量%]表示。在此,將A(k)的原子量設為P(k)、將氧O的原子序數設為Q時,A(k)mOn的形式上的分子量R(k)為R(k)=P(k)×m+Q×n。 Next, the content of A(k) m On is represented by X(k) [mass %]. Here, when the atomic weight of A(k) is P(k) and the atomic number of oxygen O is Q, the formal molecular weight R(k) of A(k) m On is R(k)= P(k)×m+Q×n.

進而,當B=100/{Σ[m×X(k)/R(k)]}時,陽離子成分A(k)s+的含量(陽離子%)為(X(k)/R(k))×m×B(陽離子%)。在此,Σ是指從k=1至N的m×X(k)/R(K)的合計。m根據k變化。s是2n/m。 Furthermore, when B=100/{Σ[m×X(k)/R(k)]}, the content (cation %) of the cationic component A(k) s+ is (X(k)/R(k)) ×m×B (cation %). Here, Σ means the sum of m×X(k)/R(K) from k=1 to N. m varies according to k. s is 2n/m.

此外,分子量R(k)只要使用將小數點後第4位進行四捨五入、小數點後3位表示的值計算即可。應予說明的是,對於若干個玻璃成分、添加劑,依據氧化物基準表示的分子量如下表64表示。 In addition, the molecular weight R(k) may be calculated using a value that is rounded off to the fourth decimal place and represented to three decimal places. In addition, about some glass components and additives, the molecular weights based on oxide standards are shown in Table 64 below.

Figure 105135659-A0202-12-0049-81
Figure 105135659-A0202-12-0049-81

[實施例] [Example]

以下,基於實施例對本發明進行進一步說明。但是,本發明並不限定於實施例所示的方式。 Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the modes shown in the examples.

(實施例1) (Example 1)

以可得到具有下述的表所示的組成的玻璃的方式,稱量作為原料的氧化物、硼酸等化合物,充分混合,製作批量原料。 Compounds such as oxides and boric acid as raw materials are weighed so that glass having the composition shown in the following table can be obtained, and they are sufficiently mixed to prepare batch raw materials.

將該批量原料放入鉑坩堝中,連同坩堝一起加熱到1350~1450℃,歷經2~3小時,將玻璃熔融、澄清。將熔融玻璃進行攪拌而均質化後,將熔融玻璃澆鑄到經預熱的成型模中,放置冷卻至玻璃化轉變溫度附近,然後立刻將玻璃連同成型模一起放入退火爐內。然後,在玻璃化轉變溫度附近進行約1小時的退火處理。退火處理之後,在退火爐內放置冷卻至室溫。 The batch of raw materials is put into a platinum crucible, and the crucible is heated to 1350-1450° C. for 2-3 hours to melt and clarify the glass. After stirring and homogenizing the molten glass, the molten glass is cast into a preheated molding die, left to cool to the vicinity of the glass transition temperature, and immediately placed into the annealing furnace together with the molding die. Then, annealing treatment is performed for about 1 hour in the vicinity of the glass transition temperature. After the annealing treatment, it was left to cool to room temperature in an annealing furnace.

觀察這樣製作的玻璃,結果沒有發現晶體的析出、氣泡、紋理、原料的熔融殘留。由此,能夠製作均質性高的玻璃。 As a result of observing the glass produced in this way, precipitation of crystals, bubbles, texture, and melting residue of raw materials were not found. Thereby, glass with high homogeneity can be produced.

(比較例1~4) (Comparative Examples 1 to 4)

以可得到具有下述的表所示的比較例1~4的各組成的玻璃的方式,稱量作為原料的氧化物、硼酸等化合物,充分混合,製作批量原料,除此之外,用與實施例1同樣的方法得到玻璃。 Compounds such as oxides and boric acid as raw materials were weighed so as to obtain glasses having the respective compositions of Comparative Examples 1 to 4 shown in the following table, and compounds such as boric acid were sufficiently mixed to prepare batch raw materials. Glass was obtained in the same manner as in Example 1.

比較例1的組成是將專利文獻20的玻璃No.11的組成換算成以陽離子%表示的玻璃組成的組成。 The composition of Comparative Example 1 is a composition obtained by converting the composition of Glass No. 11 of Patent Document 20 into a glass composition expressed by cation %.

比較例2是將專利文獻20的玻璃No.25的組成換算成以陽離子%表示的玻璃組成的組成。 Comparative Example 2 is a composition obtained by converting the composition of Glass No. 25 of Patent Document 20 into a glass composition expressed by cation %.

比較例3是將專利文獻20的玻璃No.45的組成換算成以陽離子%表示的玻璃組成的組成。 Comparative Example 3 is a composition obtained by converting the composition of glass No. 45 of Patent Document 20 into a glass composition expressed by cation %.

比較例4是將專利文獻20的玻璃No.49的組成換算成以陽離子%表示的玻璃組成的組成。 Comparative Example 4 is a composition obtained by converting the composition of glass No. 49 of Patent Document 20 into a glass composition expressed in cation %.

將得到的玻璃的玻璃特性,用以下所示的方法進 行了測定。測定結果如下表所示。 The glass properties of the obtained glass were determined by the method shown below. Measured. The measurement results are shown in the table below.

(1)折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)、阿貝數(νd) (1) Refractive index (nd), Refractive index (nF), Refractive index (nc), Refractive index (ng), Abbe number (νd)

對於以-30℃/小時的降溫速度進行降溫而得到的玻璃,根據日本光學玻璃工業會標準的折射率測定法,對折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)進行測定。使用折射率(nd)、折射率(nF)、折射率(nc)的各測定值算出阿貝數(νd)。 For the glass obtained by cooling at a cooling rate of -30°C/hour, the refractive index (nd), the refractive index (nF), the refractive index (nc), the refractive index (nc), the refractive index (nc), and the rate (ng) was measured. The Abbe number (νd) was calculated using each measured value of the refractive index (nd), the refractive index (nF), and the refractive index (nc).

(2)玻璃化轉變溫度(Tg) (2) Glass transition temperature (Tg)

使用差示掃描熱量分析裝置(DSC),以10℃/分鐘的升溫速度進行測定。 The measurement was performed at a temperature increase rate of 10°C/min using a differential scanning calorimeter (DSC).

(3)比重 (3) Specific gravity

根據阿基米德法進行測定。 Determined according to Archimedes' method.

(4)相對部分色散(Pg,F) (4) Relative partial dispersion (Pg, F)

根據由上述(1)測定的nF、nc、ng的值算出。 Calculated from the values of nF, nc, and ng measured in the above (1).

(5)液相線溫度 (5) Liquidus temperature

將玻璃放入已加熱到規定溫度的爐內,保持2小時,冷卻後,用100倍的光學顯微鏡觀察玻璃內部,根據有無結晶來決定液相線溫度。 The glass was placed in a furnace heated to a predetermined temperature, kept for 2 hours, and after cooling, the inside of the glass was observed with an optical microscope at a magnification of 100 times, and the liquidus temperature was determined based on the presence or absence of crystals.

Figure 105135659-A0202-12-0052-82
Figure 105135659-A0202-12-0052-82
Figure 105135659-A0202-12-0053-83
Figure 105135659-A0202-12-0053-83
Figure 105135659-A0202-12-0054-85
Figure 105135659-A0202-12-0054-85
Figure 105135659-A0202-12-0055-86
Figure 105135659-A0202-12-0055-86

圖1是將實施例1的各玻璃和比較例1~4的各玻璃的比重取在橫軸、將各陽離子成分的含量乘以表1記載的係數的值的合計D取在縱軸的圖表。 1 is a graph in which the specific gravity of each glass of Example 1 and each glass of Comparative Examples 1 to 4 is taken on the horizontal axis, and the total D of the values obtained by multiplying the content of each cationic component by the coefficient described in Table 1 is taken on the vertical axis. .

如圖1所示,顯示出各陽離子成分的含量乘以表1記載的係數的值的合計D與比重有良好的相關關係。從該結果能夠確認,藉由以滿足基於合計D的(B)式的方式進行組成調整從而可得到低比重的玻璃。 As shown in FIG. 1 , it was shown that the total D of the values obtained by multiplying the content of each cationic component by the coefficient described in Table 1 has a good correlation with the specific gravity. From this result, it can be confirmed that glass with a low specific gravity can be obtained by adjusting the composition so as to satisfy the formula (B) based on the total D.

圖2是將實施例1的各玻璃和比較例1~4的各玻璃的阿貝數(νd)取在橫軸、將由上述(A)式算出的值A取在縱軸的圖表。 2 is a graph in which the Abbe number (νd) of each glass of Example 1 and each of the glasses of Comparative Examples 1 to 4 is plotted on the horizontal axis, and the value A calculated from the above formula (A) is plotted on the vertical axis.

如圖2所示,由上述(A)式算出的值A顯示出與阿貝數良好的相關關係。從該結果能夠確認,進行基於值A的組成調整從對阿貝數進行調整的方面考慮較佳。 As shown in FIG. 2 , the value A calculated from the above formula (A) shows a good correlation with the Abbe number. From this result, it can be confirmed that the composition adjustment based on the value A is preferable from the viewpoint of adjusting the Abbe number.

(實施例2) (Example 2)

使用實施例1中得到的各種玻璃,製作壓製成型用玻璃塊(玻璃料滴)。將該玻璃塊在大氣中加熱、軟化、用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模中取出,進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 Using the various glasses obtained in Example 1, glass blocks (glass gobs) for press molding were produced. The glass block was heated in the atmosphere, softened, and press-molded with a press-molding die to produce a lens blank (optical element blank). The produced lens blanks were taken out from the press molding die, annealed, and subjected to machining including polishing to produce spherical lenses made of various glasses produced in Example 1.

(實施例3) (Example 3)

將所需量的在實施例1中製作的熔融玻璃用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模中取出,進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 A desired amount of the molten glass produced in Example 1 was press-molded with a press-molding die to produce a lens blank (optical element blank). The produced lens blanks were taken out from the press molding die, annealed, and subjected to machining including polishing to produce spherical lenses made of various glasses produced in Example 1.

(實施例4) (Example 4)

對將在實施例1中製作的熔融玻璃進行固化而製成的玻璃塊(光學元件坯件)進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 The glass block (optical element blank) produced by solidifying the molten glass produced in Example 1 was annealed, and machining including polishing was performed to produce spherical lenses made of various glasses produced in Example 1.

(實施例5) (Example 5)

將在實施例2~4中製作的球面透鏡與由其它種類的玻璃形成的球面透鏡貼合,製作膠合透鏡。在實施例2~4中製作的球面透鏡的膠合面是凸面,由其它種類的玻璃形成的球面透鏡的膠合面是凹面。上述2個膠合面以相互曲率半徑的絕對值成為相等的方式而製作。在膠合面塗布光學元件膠合用的紫外線固化型黏接劑,使2個透鏡在膠合面之間黏合。之後,藉由在實施例2~4中製作的球面透鏡,對在膠合面塗布的黏接劑照射紫外線,使黏接劑固化。 The spherical lenses produced in Examples 2 to 4 were bonded to spherical lenses formed of other types of glass to produce a cemented lens. The cemented surfaces of the spherical lenses produced in Examples 2 to 4 were convex surfaces, and the cemented surfaces of spherical lenses formed of other types of glass were concave surfaces. The above-mentioned two glued surfaces are produced so that the absolute values of the mutual radii of curvature are equal. Apply UV-curable adhesive for optical element bonding on the glued surface to bond the two lenses between the glued surfaces. Then, the adhesive agent coated on the bonding surface was irradiated with ultraviolet rays through the spherical lenses produced in Examples 2 to 4 to cure the adhesive agent.

按照上述這樣製作膠合透鏡。膠合透鏡的膠合強度足夠高,是光學性能也足夠高的膠合透鏡。 A cemented lens was produced as described above. The cemented lens has a sufficiently high cement strength, and is a cemented lens with sufficiently high optical performance.

最後,對上述的各方式進行總結。 Finally, the above methods are summarized.

根據一個方式,能夠提供一種玻璃,其為氧化物玻璃,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+、和Bi3+的合計含量為90%以上,阿貝數(νd)的範圍為39.5~41.5,相對於阿貝數(νd),折射率(nd)滿足上述(1)式,且對於上述表1中記載的陽離子成分,相對於折射率(nd),各陽離子成分的含量乘以表1記載的係數的值的合計D滿足上述(B)式。 According to one embodiment, a glass can be provided, which is an oxide glass, expressed in % of cations, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4 . + , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ , and Bi 3 The total content of + is 90% or more, the Abbe number (νd) is in the range of 39.5 to 41.5, the refractive index (nd) with respect to the Abbe number (νd) satisfies the above formula (1), and for the above-mentioned Table 1 The cationic components of , the total D of the values obtained by multiplying the content of each cationic component by the coefficient described in Table 1 with respect to the refractive index (nd) satisfies the above formula (B).

上述玻璃是阿貝數(νd)的範圍為39.5~41.5、且滿足(1)式的玻璃,是在光學系統中有用的高折射率低色散玻璃。進而,上述玻璃能夠有助於光學元件的輕量化。 The above-mentioned glass is a glass whose Abbe number (νd) is in the range of 39.5 to 41.5, and satisfies the formula (1), and is a high-refractive-index, low-dispersion glass useful in optical systems. Furthermore, the said glass can contribute to weight reduction of an optical element.

在一個方式中,上述玻璃較佳B3+和Si4+的合計含量的範圍為43~65陽離子%。 In one embodiment, the glass preferably has a total content of B 3+ and Si 4+ in the range of 43 to 65 cation %.

在一個方式中,上述玻璃較佳La3+、Y3+、Gd3+和Yb3+的合計含量的範圍為25~45%。 In one embodiment, the glass preferably has a total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ in the range of 25 to 45%.

在一個方式中,上述玻璃較佳Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%。 In one embodiment, the glass preferably has a total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ in the range of 3 to 12%.

在一個方式中,上述玻璃較佳在以陽離子%表示的玻璃組成中由上述(C)式算出的值C的範圍為-1.000~6.720。 In one form, it is preferable that the range of the value C calculated by the said (C) formula in the glass composition represented by the cation % is -1.000-6.720.

根據以上說明的玻璃能夠製作壓製成型用玻璃元件、光學元件坯件和光學元件。亦即,根據另一個方式,還可提供一種由上述玻璃形成的壓製成型用玻璃材料、光學元件坯件和光學元件。 A glass element for press molding, an optical element blank, and an optical element can be produced from the glass described above. That is, according to another aspect, there can also be provided a glass material for press molding, an optical element blank, and an optical element formed of the above-mentioned glass.

此外,根據另一個方式,還可提供一種具有將上述玻璃成型為壓製成型用玻璃材料的步驟的壓製成型用玻璃材料的製造方法。 Moreover, according to another aspect, the manufacturing method of the glass material for press molding which has the process of shaping|molding the said glass into the glass material for press molding can also be provided.

進而,根據另一個方式,還可提供一種具有藉由將上述壓製成型用玻璃材料使用壓製成型模進行壓製成型而製作光學元件坯件的步驟的光學元件坯件的製造方法。 Furthermore, according to another aspect, it is also possible to provide a method for producing an optical element blank including a step of producing an optical element blank by press-molding the above-mentioned glass material for press-molding using a press-molding die.

進而,根據另一個方式,還可提供一種具有將上述玻璃成型為光學元件坯件的步驟的光學元件坯件的製造方法。 Furthermore, according to another aspect, the manufacturing method of the optical element blank which has the process of shaping|molding the said glass into an optical element blank can also be provided.

進而,根據另一個方式,還可提供一種具有藉由將上述光學元件坯件進行研磨及/或拋光從而製作光學元件的步驟的光學元件的製造方法。 Furthermore, according to another aspect, it is also possible to provide a method of manufacturing an optical element including a step of grinding and/or polishing the above-mentioned optical element blank to produce an optical element.

應該認為,這次公開的實施形態在全部的方面是例示,並不是限制。本發明的範圍不是藉由上述的說明而是藉由申請專利範圍的範圍來表示,意圖包含與申請專利範圍的範圍同等的意思和範圍內的全部的變更。 It should be understood that the embodiments disclosed this time are illustrative and not restrictive in all respects. The scope of the present invention is indicated not by the above description but by the scope of the claims, and is intended to include the meaning equivalent to the scope of the claims and all modifications within the scope.

例如,藉由對於上述的例示的玻璃組成進行說明書中記載的組成調整,從而能夠得到本發明的一個方式的玻璃。 For example, the glass of one embodiment of the present invention can be obtained by adjusting the composition described in the specification with respect to the glass composition exemplified above.

此外,當然能夠使說明書中例示或者作為較佳的範圍記載的事項的2個以上進行任意地組合。 In addition, it is needless to say that two or more of the matters exemplified in the specification or described as preferable ranges can be arbitrarily combined.

(產業利用性) (industrial applicability)

本發明在各種光學元件的製造領域中是有用的。 The present invention is useful in the field of manufacture of various optical elements.

Claims (8)

一種玻璃,是氧化物玻璃,其中,以陽離子莫耳%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上;B3+和Si4+的合計含量的範圍為43~57%;La3+、Y3+、Gd3+和Yb3+的合計含量的範圍為25~50%;Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%;Zr4+的含量的範圍為2~8%;Zn2+的含量的範圍為0~10.00%;Zn2+的含量相對於B3+和Si4+的合計含量的陽離子比{Zn2+/(B3++Si4+)}的範圍為0.073以下;阿貝數(νd)的範圍為39.5~41.5;折射率(nd)相對於阿貝數(νd)滿足下述(1)式:
Figure 105135659-A0305-02-0063-32
比重(d)相對於[折射率(nd)-1]的值(d/(nd-1))為5.7以下;及對於表1中記載的陽離子成分,各陽離子成分的含量乘以表1中記載的係數的值的合計D相對於折射率(nd)滿足下述(B)式:
Figure 105135659-A0305-02-0063-22
[表1]
Figure 105135659-A0305-02-0064-23
A glass, which is an oxide glass, wherein, expressed in cation molar %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta Total content of 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ 90% or more; the total content of B 3+ and Si 4+ ranges from 43 to 57%; the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ ranges from 25 to 50%; Nb The range of the total content of 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; the range of the content of Zr 4+ is 2~8%; the range of the content of Zn 2+ is 0~10.00% ; The range of the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} of the Zn 2+ content to the total content of B 3+ and Si 4+ is 0.073 or less; the range of the Abbe number (νd) is 39.5~41.5; the refractive index (nd) satisfies the following formula (1) relative to the Abbe number (νd):
Figure 105135659-A0305-02-0063-32
The specific gravity (d) relative to the value of [refractive index (nd)-1] (d/(nd-1)) is 5.7 or less; and for the cationic components described in Table 1, the content of each cationic component is multiplied by the value in Table 1 The total D of the values of the stated coefficients satisfies the following formula (B) with respect to the refractive index (nd):
Figure 105135659-A0305-02-0063-22
[Table 1]
Figure 105135659-A0305-02-0064-23
.
一種玻璃,是氧化物玻璃,其中,以陽離子莫耳%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上;B3+和Si4+的合計含量的範圍為43~57%;La3+、Y3+、Gd3+和Yb3+的合計含量的範圍為25~50%;Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%;Zr4+的含量的範圍為2~8%;Zn2+的含量的範圍為0~10.00%;阿貝數(νd)的範圍為39.5~41.5; 折射率(nd)相對於阿貝數(νd)滿足下述(1)式:
Figure 105135659-A0305-02-0065-33
比重(d)相對於[折射率(nd)-1]的值(d/(nd-1))為5.7以下;及對於表1中記載的陽離子成分,各陽離子成分的含量乘以表1中記載的係數的值的合計D相對於折射率(nd)滿足下述(B)式:
Figure 105135659-A0305-02-0065-24
Figure 105135659-A0305-02-0065-25
; 由下述(C)式算出的值C為-1.000以上:(C)式C=0.567×(Nb5+的含量+Ti4+的含量)-1.000×Gd3+的含量。
A glass, which is an oxide glass, wherein, expressed in cation molar %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta Total content of 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ 90% or more; the total content of B 3+ and Si 4+ ranges from 43 to 57%; the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ ranges from 25 to 50%; Nb The range of the total content of 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; the range of the content of Zr 4+ is 2~8%; the range of the content of Zn 2+ is 0~10.00% ; Abbe's number (νd) ranges from 39.5 to 41.5; Refractive index (nd) satisfies the following formula (1) relative to Abbe's number (νd):
Figure 105135659-A0305-02-0065-33
The specific gravity (d) relative to the value of [refractive index (nd)-1] (d/(nd-1)) is 5.7 or less; and for the cationic components described in Table 1, the content of each cationic component is multiplied by the The total D of the values of the stated coefficients satisfies the following formula (B) with respect to the refractive index (nd):
Figure 105135659-A0305-02-0065-24
Figure 105135659-A0305-02-0065-25
; The value C calculated from the following formula (C) is −1.000 or more: (C) formula C=0.567×(content of Nb 5+ + content of Ti 4+ )−1.000×content of Gd 3+ .
一種玻璃,是氧化物玻璃,其中,以陽離子莫耳%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上;B3+和Si4+的合計含量的範圍為43~57%;La3+、Y3+、Gd3+和Yb3+的合計含量的範圍為25~50%;Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%;Zr4+的含量的範圍為2~8%;Zn2+的含量的範圍為0~10.00%;Gd3+的含量的範圍為3%以下;阿貝數(νd)的範圍為39.5~41.5;折射率(nd)相對於阿貝數(νd)滿足下述(1)式:
Figure 105135659-A0305-02-0066-26
比重(d)相對於[折射率(nd)-1]的值(d/(nd-1))為5.7以下;及對於表1中記載的陽離子成分,各陽離子成分的含量乘以表1中記載的係數的值的合計D相對於折射率(nd)滿足下述(B)式:
Figure 105135659-A0305-02-0066-27
[表1]
Figure 105135659-A0305-02-0067-28
A glass, which is an oxide glass, wherein, expressed in cation molar %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta Total content of 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ 90% or more; the total content of B 3+ and Si 4+ ranges from 43 to 57%; the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ ranges from 25 to 50%; Nb The range of the total content of 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; the range of the content of Zr 4+ is 2~8%; the range of the content of Zn 2+ is 0~10.00% The range of the content of Gd 3+ is below 3%; the range of Abbe number (νd) is 39.5~41.5; the refractive index (nd) satisfies the following formula (1) relative to the Abbe number (νd):
Figure 105135659-A0305-02-0066-26
The specific gravity (d) relative to the value of [refractive index (nd)-1] (d/(nd-1)) is 5.7 or less; and for the cationic components described in Table 1, the content of each cationic component is multiplied by the value in Table 1 The total D of the values of the stated coefficients satisfies the following formula (B) with respect to the refractive index (nd):
Figure 105135659-A0305-02-0066-27
[Table 1]
Figure 105135659-A0305-02-0067-28
.
一種玻璃,是氧化物玻璃,其中,以陽離子莫耳%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上;B3+和Si4+的合計含量的範圍為43~57%;La3+、Y3+、Gd3+和Yb3+的合計含量的範圍為25~50%;Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%;Zr4+的含量的範圍為2~8%;Zn2+的含量的範圍為0~10.00%;Gd3+的含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量之陽 離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}的範圍為0.10以下;阿貝數(νd)的範圍為39.5~41.5;折射率(nd)相對於阿貝數(νd)滿足下述(1)式:
Figure 105135659-A0305-02-0068-29
比重(d)相對於[折射率(nd)-1]的值(d/(nd-1))為5.7以下;及對於表1中記載的陽離子成分,各陽離子成分的含量乘以表1中記載的係數的值的合計D相對於折射率(nd)滿足下述(B)式:
Figure 105135659-A0305-02-0068-30
Figure 105135659-A0305-02-0068-31
A glass, which is an oxide glass, wherein, expressed in cation molar %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta Total content of 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ 90% or more; the total content of B 3+ and Si 4+ ranges from 43 to 57%; the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ ranges from 25 to 50%; Nb The range of the total content of 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; the range of the content of Zr 4+ is 2~8%; the range of the content of Zn 2+ is 0~10.00% ; Cation ratio of Gd 3+ content to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} in the range of 0.10 or less; the Abbe number (νd) in the range of 39.5 to 41.5; the refractive index (nd) relative to the Abbe number (νd) satisfies the following formula (1):
Figure 105135659-A0305-02-0068-29
The specific gravity (d) relative to the value of [refractive index (nd)-1] (d/(nd-1)) is 5.7 or less; and for the cationic components described in Table 1, the content of each cationic component is multiplied by the The total D of the values of the stated coefficients satisfies the following formula (B) with respect to the refractive index (nd):
Figure 105135659-A0305-02-0068-30
Figure 105135659-A0305-02-0068-31
.
如申請專利範圍第1至4項中任一項所述之玻璃,其中玻璃轉移溫度Tg為702℃以上。 The glass according to any one of Claims 1 to 4, wherein the glass transition temperature Tg is 702°C or higher. 一種壓製成型用玻璃材料,由申請專利範圍第1至5項中任一項所述之玻璃形成。 A glass material for press molding, which is formed from the glass described in any one of claims 1 to 5 of the patent application scope. 一種光學元件坯件,由申請專利範圍第1至5項中任一項所述之玻璃形成。 An optical element blank formed of the glass described in any one of claims 1 to 5 of the patent application scope. 一種光學元件,由申請專利範圍第1至5項中任一項所述之玻璃形成。 An optical element formed of the glass described in any one of claims 1 to 5 of the application scope.
TW105135659A 2015-11-06 2016-11-03 Glass, glass materials for press molding, optical element blanks and optical elements TWI756192B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015218953 2015-11-06
JP2015-218953 2015-11-06
JP2016-073348 2016-03-31
JP2016073348A JP6121020B1 (en) 2015-11-06 2016-03-31 Glass, glass material for press molding, optical element blank, and optical element

Publications (2)

Publication Number Publication Date
TW201733942A TW201733942A (en) 2017-10-01
TWI756192B true TWI756192B (en) 2022-03-01

Family

ID=58666598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135659A TWI756192B (en) 2015-11-06 2016-11-03 Glass, glass materials for press molding, optical element blanks and optical elements

Country Status (2)

Country Link
JP (2) JP6121020B1 (en)
TW (1) TWI756192B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956548A (en) * 2018-09-27 2022-08-30 成都光明光电股份有限公司 Optical glass, and glass preform, optical element and optical instrument made of the same
JP7009345B2 (en) * 2018-11-01 2022-01-25 ユニ・チャーム株式会社 Absorbent article
CN115385569A (en) * 2022-08-26 2022-11-25 成都光明光电股份有限公司 Optical glass and optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241941A (en) * 2013-05-22 2013-08-14 成都赛林斯科技实业有限公司 Optical glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750984B2 (en) * 2000-05-31 2006-03-01 Hoya株式会社 Optical glass and optical product manufacturing method
JP4017832B2 (en) * 2001-03-27 2007-12-05 Hoya株式会社 Optical glass and optical components
JP3943348B2 (en) * 2001-06-06 2007-07-11 株式会社オハラ Optical glass
JP5427460B2 (en) * 2009-04-14 2014-02-26 富士フイルム株式会社 Optical glass
JP5874558B2 (en) * 2012-07-23 2016-03-02 旭硝子株式会社 Preforms for press molding and optical elements made from preforms
US9040439B2 (en) * 2013-03-08 2015-05-26 Canon Kabushiki Kaisha Optical glass, optical element, and method for manufacturing optical glass
JP5979723B2 (en) * 2013-07-31 2016-08-31 株式会社オハラ Optical glass and optical element
JP6292877B2 (en) * 2013-12-27 2018-03-14 株式会社オハラ Optical glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241941A (en) * 2013-05-22 2013-08-14 成都赛林斯科技实业有限公司 Optical glass

Also Published As

Publication number Publication date
JP6808555B2 (en) 2021-01-06
JP2017160118A (en) 2017-09-14
JP2017088477A (en) 2017-05-25
JP6121020B1 (en) 2017-04-26
TW201733942A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
TWI765868B (en) Glass, glass materials for press molding, optical element blanks and optical elements
CN108529871B (en) Glass, glass material for press molding, optical element blank, and optical element
JP6738243B2 (en) Glass, glass material for press molding, optical element blank and optical element
JP6587286B2 (en) Glass, glass material for press molding, optical element blank, and optical element
TWI756192B (en) Glass, glass materials for press molding, optical element blanks and optical elements
JP2018172282A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP6693726B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2018104283A (en) Glass, glass material for press molding, optical element blank and optical element
JP2018039729A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP7194551B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP6678008B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP7194861B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7450105B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7394523B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7170488B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP6626907B2 (en) Glass, glass material for press molding, optical element blank, and optical element