TWI756067B - 用於高頻cml到cmos轉換的頻寬增強的放大器 - Google Patents

用於高頻cml到cmos轉換的頻寬增強的放大器 Download PDF

Info

Publication number
TWI756067B
TWI756067B TW110106967A TW110106967A TWI756067B TW I756067 B TWI756067 B TW I756067B TW 110106967 A TW110106967 A TW 110106967A TW 110106967 A TW110106967 A TW 110106967A TW I756067 B TWI756067 B TW I756067B
Authority
TW
Taiwan
Prior art keywords
transistor
coupled
gate
cml
load
Prior art date
Application number
TW110106967A
Other languages
English (en)
Other versions
TW202143649A (zh
Inventor
蘇雷士奈都 里凱拉
薩金 穆罕默德
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202143649A publication Critical patent/TW202143649A/zh
Application granted granted Critical
Publication of TWI756067B publication Critical patent/TWI756067B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/3022CMOS common source output SEPP amplifiers
    • H03F3/3028CMOS common source output SEPP amplifiers with symmetrical driving of the end stage
    • H03F3/303CMOS common source output SEPP amplifiers with symmetrical driving of the end stage using opamps as driving stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45192Folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • H03K19/018528Interface arrangements of complementary type, e.g. CMOS with at least one differential stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30006Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor the push and the pull stages of the SEPP amplifier are both current mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30009Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor the push and pull stages of the SEPP amplifier are both cascode current mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30042Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor the SEPP bias voltage being controlled by a control signal from a feedforward circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30063A differential amplifier being used in the bias circuit or in the control circuit of the SEPP-amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30078A resistor being added in the pull stage of the SEPP amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30111A resistor being added in the push stage of the SEPP amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45478Indexing scheme relating to differential amplifiers the CSC comprising a cascode mirror circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45546Indexing scheme relating to differential amplifiers the IC comprising one or more capacitors feedback coupled to the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45651Indexing scheme relating to differential amplifiers the LC comprising two cascode current sources
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0029Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier using FETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Amplifiers (AREA)

Abstract

揭示一種用於高頻CML到CMOS轉換的頻寬增強的放大器。在一些實現方案中,一種經改進的CML到CMOS轉換器包括具有第一和第二輸入電晶體以及第一和第二負載電晶體的差分放大器。第一輸入電晶體與第一負載電晶體被串聯地耦合,第二輸入電晶體與第二負載電晶體被串聯地耦合。經改進的CML-CMOS轉換器亦包括第一電容器和第二電容器。第一電容器被直接地耦合在第一輸入電晶體的閘極和第一負載電晶體的閘極之間。

Description

用於高頻CML到CMOS轉換的頻寬增強的放大器
本專利申請案主張享受於2020年2月27日提出申請的第16/802,684號的題為「BANDWIDTH ENHANCED AMPLIFIER FOR HIGH FREQUENCY CML TO CMOS CONVERSION」的非臨時申請案的優先權,該申請案被轉讓給本專利的受讓人,並在此經由引用明確併入本文。
本案內容的各態樣一般係關於半導體晶片輸入/輸出設計,具體地係關於用於高頻電流模式邏輯(CML)到互補金屬氧化物半導體(CMOS)轉換的頻寬增強的放大器。
在半導體輸入/輸出(I/O)設計中,通常採用電流模式邏輯(CML)電路,特別是用於處理用於高速應用的時鐘訊號。儘管CML電路即使在高速執行時亦提供低功耗的好處,但並非I/O介面中的所有電路塊皆可以使用CML電路來實現。因此,需要CML轉換器以轉換去往/來自CML電路的訊號。
以下提供了一或多個實現方案的簡化的發明內容,以便提供對該等實現方案的基本理解。該發明內容不是所有預期的實現方案的詳盡概述,並且既不意欲標識所有實現方案的關鍵或重要元素,亦不意欲圖示任何或所有實現方案的範疇。其唯一目的是以簡化形式呈現一或多個實現方案的一些概念,作為稍後呈現的更詳細描述的序言。
在一些實現方案中,一種經改進的CML到CMOS轉換器包括具有第一和第二輸入電晶體以及第一和第二負載電晶體的差分放大器。第一輸入電晶體與第一負載電晶體被串聯地耦合,第二輸入電晶體與第二負載電晶體被串聯地耦合。經改進的CML到CMOS轉換器亦包括第一電容器和第二電容器。第一電容器被直接地耦合在第一輸入電晶體的閘極和第一負載電晶體的閘極之間。
為了實現前述和相關目的,一或多個實現方案包括下文中充分描述並且在申請專利範圍中特別指出的特徵。以下描述和附圖詳細闡述了一或多個實現方案的特定圖示性特徵。然而,這些態樣僅指示可以用於採用各個實現方案的原理的各種方式中的幾種,並且該描述的實現方案意欲包括所有這些態樣及其均等物。
以下結合附圖闡述的具體實施方式意欲作為對各種配置的描述,而不意欲表示可以實踐本文所描述的概念的唯一配置。具體實施方式包括為了提供對各種概念的透徹理解的具體細節。然而,對於本發明所屬領域中具有通常知識來說顯而易見的是,可以在沒有這些具體細節的情況下實踐這些概念。在一些情況下,為了避免模糊這些概念,以方塊圖形式圖示眾所周知的結構和部件。
在典型的輸入/輸出(I/O)介面中,相位內插器被用於調整時鐘訊號,隨後將其提供給取樣器。取樣器可以使用經調整的時鐘訊號對輸入資料進行取樣。由於相位內插器通常是在電流模式邏輯(CML)中實現的,而取樣器通常是使用互補金屬氧化物半導體(CMOS)邏輯來實現的,因此需要將來自相位元內插器的CML訊號轉換為由基於CMOS的電路可使用的訊號。
一種習知方法是單單使用差分放大器將CML訊號轉換為由基於CMOS的電路可使用的訊號。圖1圖示適用於此目的的習知差分放大器100。差分放大器100包括一對輸入電晶體110和112、一對負載電晶體120和122、一對p型金屬氧化物半導體(pMOS)電晶體130和132、一對n型金屬氧化物半導體(nMOS)電晶體140和142以及偏置電晶體150。該對輸入電晶體110和112是nMOS電晶體,該對負載電晶體120和122是pMOS電晶體。
輸入電晶體110和112被配置作為差分放大器100的輸入級。具體地,輸入電晶體110和112的閘極被配置為接收一對差分訊號Inp 101和Inn 102。該對差分訊號Inp 101和Inn 102是CML訊號。輸入電晶體110和112的源極被耦合到為nMOS電晶體的偏置電晶體150的汲極。偏置電晶體150的源極被耦合到地。輸入電晶體110和112的汲極被相應地耦合到負載電晶體120和122的汲極和閘極。負載電晶體120和122的源極被耦合到電壓源VCCA。該對pMOS電晶體130和132的源極亦被耦合到電壓源VCCA。pMOS電晶體130和132的閘極被相應地耦合到負載電晶體120和122的閘極和汲極。pMOS電晶體130和132的汲極被相應地耦合到nMOS 140和142的汲極。pMOS 132的汲極和nMOS 142的汲極被耦合在一起的節點被配置作為輸出節點190。輸出節點190可以進一步被耦合到一對反相器192和194。該對反相器192和194被串聯地耦合,以向差分放大器100的輸出提供緩衝器。nMOS 140和142的源極被耦合到地面。nMOS 140的汲極和閘極以二極體配置被耦合在一起。nMOS 140和142的閘極被耦合在一起。
利用足夠的增益,差分放大器100可以如下將CML訊號轉換為由CMOS電路可使用的訊號。輸入電晶體110和112接收一對差分訊號Inp 101和Inn 102,其是CML訊號。當Inp 101較高而Inn 102較低時,輸入電晶體110將被導通,而輸入電晶體112將被關斷。這樣,有電流流過負載電晶體120、輸入電晶體110和偏置電晶體150,但沒有電流流過負載電晶體122和輸入電晶體112。由於pMOS電晶體130和負載電晶體120被配置作為電流鏡,因此,與流過負載電晶體120的電流基本相似的電流流過pMOS電晶體130,隨後流過nMOS電晶體140。這在連接到nMOS電晶體142的閘極的nMOS電晶體140的汲極和閘極處產生高電壓。因此,nMOS電晶體142被導通,並且由於電流流過nMOS電晶體142到地而下拉了輸出節點190處的電壓。當Inp 101較低而Inn 102較高時,輸入電晶體112將被導通,而輸入電晶體110將被關斷。這樣,有電流流過負載電晶體122、輸入電晶體112和偏置電晶體150,但沒有電流流過負載電晶體120和輸入電晶體110。這導致負載電晶體122的閘極處的低電壓,其中負載電晶體122的閘極亦被連接到pMOS電晶體132的閘極。這樣,pMOS電晶體132被導通,並且輸出節點190將被拉高。然而,差分放大器100的頻寬有點受限。為了改善或增強頻寬,如圖2所示,修改了差分放大器100。
圖2是利用頻寬增強的習知電流模式邏輯(CML)到互補金屬氧化物半導體(CMOS)轉換器200。CML到CMOS轉換器200基本上類似於圖1中的差分放大器100,並且類似的部件在圖2中用類似的元件符號來標示。轉換器200和差分放大器100之間的關鍵區別是:在轉換器200的每一側上添加電阻器和電容器以增強頻寬。具體地,在負載電晶體120的閘極和源極之間添加電容器210,並且在負載電晶體120的閘極和汲極之間添加電阻器220。同樣,在負載電晶體122的閘極和源極之間添加電容器212,並且在負載電晶體122的閘極和汲極之間添加電阻器222。
在高頻操作期間,電容器210被短路。換句話說,負載電晶體120的閘極和源極在高頻處被短路。同樣,電容器212在高頻處被短路,使得負載電晶體122的閘極和源極也在高頻處被短路。在高頻處相應地將負載電晶體120和122的閘極和源極短路導致了轉換器200的頻寬曲線中的峰值。可以使用在輸入級的輸出節點219處觀測到的負載電容Cl來決定訊號增益: Gain = gmn * (1/(sCl ))  [1] 其中gmn 是輸入電晶體110的跨導,s是傅裡葉域中的頻率。
圖3是對圖1中的習知差分放大器100的頻寬和圖2中的利用頻寬增強的習知CML到CMOS轉換器200的頻寬進行比較的繪圖。曲線310是習知差分放大器100的頻寬曲線,曲線320是習知CML到CMOS轉換器200的頻寬曲線。如圖3所示,與習知差分放大器100相比,轉換器200在較高頻率(從約108赫茲開始)處的頻寬被增強。但是在頻寬曲線320中存在峰值322,這是由如前述的電容器210和212引起的。因為在高頻處存在峰值,所以使用習知CML到CMOS轉換器200在高頻處的操作的功耗較高。因此,期望提供利用增強頻寬的CML到CMOS轉換器,同時保持在高頻處的功耗得到控制。下文詳細論述提供這種優點的經改進的CML到CMOS轉換器的實現方案。
在一些實現方案中,經改進的CML到CMOS轉換器包括具有第一和第二輸入電晶體以及第一和第二負載電晶體的差分放大器。第一輸入電晶體與第一負載電晶體被串聯地耦合,第二輸入電晶體與第二負載電晶體被串聯地耦合。經改進的CML到CMOS轉換器亦包括第一電容器和第二電容器。第一電容器被直接地耦合在第一輸入電晶體的閘極和第一負載電晶體的閘極之間。同樣,第二電容器被耦合在第二輸入電晶體的閘極和第二負載電晶體的閘極之間。第一和第二電容器各自提供經由相應的負載電晶體的前饋路徑。由於負載電晶體亦放大訊號,額外的高頻增益可以得以實現。這種經改進的CML到CMOS轉換器因此特別適合於高頻應用,這是因為與圖2中的習知轉換器200相比,幾乎沒有額外的電流消耗。下文將參照圖4論述更多細節。
圖4是用於高頻設計的經改進的CML到CMOS轉換器400的一個實現方案。經改進的轉換器400是基於差分放大器的轉換器,並且包括類似於上面論述的差分放大器100的部件。具體地,經改進的轉換器包括一對輸入電晶體110和112、一對負載電晶體120和122、一對pMOS電晶體130和132、一對nMOS電晶體140和142以及偏置電晶體150。該對輸入電晶體110和112是nMOS電晶體,該對負載電晶體120和122是pMOS電晶體。偏置電晶體150是nMOS電晶體。
輸入電晶體110和112被配置作為經改進的轉換器400的輸入級。具體地,輸入電晶體110和112的閘極被配置為接收一對差分訊號Inp 101和Inn 102。該對差分訊號Inp 101和Inn 102是CML訊號。輸入電晶體110和112的源極被耦合到為nMOS電晶體的偏置電晶體150的汲極。偏置電晶體150的源極被耦合到地。輸入電晶體110和112的汲極被相應地耦合到負載電晶體120和122的汲極和閘極。負載電晶體120和122的源極被耦合到電壓源VCCA。該對pMOS電晶體130和132的源極亦被耦合到電壓源VCCA。pMOS電晶體130和132的閘極被相應地耦合到負載電晶體120和122的閘極和汲極。換句話說,電晶體130被並聯地耦合到負載電晶體120,電晶體132被並聯地耦合到負載電晶體122。pMOS電晶體130和132的汲極被相應地耦合到nMOS 140和142的汲極。換句話說,pMOS電晶體130和nMOS電晶體140彼此被串聯地耦合,並且pMOS電晶體132和nMOS電晶體142亦彼此被串聯地耦合。pMOS 132的汲極和nMOS 142的汲極被耦合在一起的節點被配置作為輸出節點190。輸出節點190可以進一步被耦合到一對反相器192和194。nMOS 140和142的源極被耦合到地。
除了上述部件之外,經改進的轉換器400亦包括三個電阻器220、222和224、三個電容器410、412和420。電阻器220被耦合在負載電晶體120的閘極和電晶體130的閘極之間。同樣,電阻器222被耦合在負載電晶體122的閘極和電晶體132的閘極之間。電阻器224被耦合在電晶體140的閘極和電晶體142的閘極之間。電晶體140的汲極亦被耦合到電阻器224和電晶體142的閘極被耦合在一起的節點。電容器410被直接地耦合在輸入電晶體110的閘極和負載電晶體120的閘極之間。同樣,電容器412被直接地耦合在輸入電晶體112的閘極和負載電晶體122的閘極之間。電容器420亦被直接地耦合在電晶體140的閘極和電晶體130的閘極之間。在一些實現方案中,電容器410、412和422中的每一個具有約50 fF的電容。
在一些實現方案中,在輸入電晶體110的閘極和負載電晶體120之間的電容器410提供經由負載電晶體120的前饋路徑,以提高效能。具體地,負載電晶體120亦可以放大輸入訊號Inp 101。輸入級的內部輸出節點419處的增益可以經由以下方式決定: Gain = (gmn + gmp ) * (1/(sCl )) [2] 其中gmn 是輸入電晶體110的跨導,gmp 是負載電晶體120的跨導,Cl是向電阻器220和負載電晶體120的汲極被耦合在一起的節點中觀測進去的負載電容,s是傅裡葉域中的頻率。如上文公式[2]所示,由經改進的轉換器400獲得的增益比習知轉換器200增益大gmp /(sCl)。其他電容器412和420可以提供類似的好處,這是因為這些電容器412和420亦提供了相應的前饋路徑以增加增益。經由圖5中的經改進的轉換器400和習知CML-CMOS轉換器200的一個實現方案的頻寬曲線,進一步圖示這種較大的增益。
圖5是對圖4中的用於高頻設計的經改進的CML到CMOS轉換器400的頻寬和圖2中的利用頻寬增強的習知CML-CMOS轉換器200的頻寬進行比較的繪圖。曲線510表示由習知轉換器200在不同的頻率處實現的增益。曲線520表示由經改進的轉換器400的一個實現方案在不同的頻率處實現的增益。如圖5所示,經改進的轉換器400在大約109至1010赫茲的高頻範圍內獲得的增益較高。在相同功率下,此增益總計約50%的效能改進。或者,對於同一PPA,功率可以降低約30%。由於改進的效能和降低的功耗,經改進的CML-CMOS轉換器400特別適於高速應用,例如用於資料及/或時鐘訊號兩者的高速序列化器/解序列化器(SerDes)輸入/輸出(I/O)設計。例如,在電壓控制振盪器(VCO)時鐘的一個實現方案中,相位內插器(PI)以非常高的頻率向取樣器輸出時鐘訊號。這要求在具有低擺幅的CML到CMOS轉換時的電流巨大,這可以經由經改進的變換器400來滿足。下文參照圖6詳細論述了包括經改進的CML到CMOS轉換器400的示例性片上系統(SoC)。
圖6是SoC 600中的輸入/輸出I/O介面的一種實現方案的方塊圖。SoC 600包括I/O 605。為了避免模糊圖示,圖6中未顯示SoC 600內的其他部件。但本發明所屬領域中具有通常知識應瞭解,SoC 600可以包括其他部件,例如,記憶裝置(例如,靜態隨機存取記憶體)、處理裝置(例如,通用處理器、圖形處理器等)、感測器(例如,電壓感測器、熱感測器等)。I/O 605可以為串列I/O,如SerDes I/O。I/O 605包括預處理電路610、相位內插器620、CML到CMOS轉換器630和時鐘處理電路640。
在一些實現方案中,預處理電路610接收輸入時鐘訊號601。預處理電路610可以包括多工器、延遲部件等。在對輸入時鐘訊號601進行預處理之後,預處理電路610向相位內插器620輸出時鐘訊號。注意,相位內插器620通常在電流模式邏輯(CML)中執行相位內插。在對經預處理的時鐘訊號的相位進行內插之後,相位內插器620將其CML輸出發送給CML到CMOS轉換器630。CML到CMOS轉換器630的一個實例是圖4所示的經改進的轉換器400。轉換器630將來自相位內插器620的CML輸出轉換為CMOS訊號,隨後將CMOS訊號轉發給時鐘處理電路640。時鐘處理電路640可以在將CMOS訊號發送給I/O 605的其餘部分之前進一步處理CMOS訊號。時鐘處理電路640可以包括延遲鎖定迴路(DLL)、鎖相迴路(PLL)等。
圖7顯示了用於將來自CML電路的訊號轉換為由基於CMOS的電路可使用的訊號的方法的一個實現方案的流程圖。在一些實現方案中,圖7所示的程序可以由圖4中所示的經改進的CML到CMOS轉換器400來執行。
該程序從方塊710開始,其中提供第一輸入電晶體和第二輸入電晶體,以在第一輸入電晶體的閘極和第二輸入電晶體的閘極處從CML電路(例如,圖6中的相位內插器620)接收一對差分訊號。隨後,程序轉換到方塊720,其中第一負載電晶體與第一輸入電晶體被串聯地耦合,並且第二負載電晶體與第二輸入電晶體被串聯地耦合。隨後,程序轉換到方塊730,其中提供從第一輸入電晶體經由第一負載電晶體的第一前饋路徑,並且提供從第二輸入電晶體經由第二負載電晶體的第二前饋路徑。例如,可以使用被耦合在相應的輸入電晶體和負載電晶體的閘極之間的電容器(例如,圖4中的輸入電晶體110和負載電晶體120的閘極之間的電容器410)來提供前饋路徑。前饋路徑亦允許負載電晶體放大輸入訊號,從而在較高頻率處工作時實現較高的增益。
提供本案內容的先前描述是為了使本發明所屬領域中具有通常知識能夠製作或使用本案內容。對本案內容的各種修改對於本發明所屬領域中具有通常知識來說是顯而易見的,並且本文中定義的一般原則可以應用於其他變體而不脫離本案內容的精神或範疇。因此,本案內容並不意欲局限於本文所描述的實例,而是要符合與本文所揭示的原理和新穎特徵一致的最寬範疇。
100:差分放大器 101:差分訊號 102:差分訊號 110:輸入電晶體 112:輸入電晶體 120:負載電晶體 122:負載電晶體 130:pMOS電晶體 132:pMOS電晶體 140:nMOS 142:nMOS 150:偏置電晶體 190:輸出節點 192:反相器 194:反相器 200:轉換器 210:電容器 212:電容器 219:輸出節點 220:電阻器 222:電阻器 224:電阻器 310:曲線 320:曲線 322:峰值 400:轉換器 410:電容器 412:電容器 420:電容器 510:曲線 520:曲線 600:SoC 601:輸入時鐘訊號 605:I/O 609:輸出時鐘訊號 610:預處理電路 620:相位內插器 630:CMOS轉換器 640:時鐘處理電路 710:方塊 720:方塊 730:方塊 VCCA:電壓源 Inp:差分訊號 Inn:差分訊號
圖1是習知的差分放大器。
圖2是利用頻寬增強的習知電流模式邏輯(CML)到互補金屬氧化物半導體(CMOS)轉換器。
圖3是對圖1中的習知差分放大器的頻寬和圖2中的利用頻寬增強的習知CML到CMOS轉換器的頻寬進行比較的繪圖。
圖4是用於高頻設計的CML到CMOS轉換器的一個實現方案。
圖5是對圖4中用於高頻設計的經改進的CML到CMOS轉換器的頻寬和圖2中的利用頻寬增強的習知CML到CMOS轉換器的頻寬進行比較的繪圖。
圖6是片上系統(SoC)中的輸入/輸出I/O介面的一種實現方案的方塊圖。
圖7顯示了用以將來自電流模式邏輯(CML)電路的訊號轉換為由基於互補金屬氧化物半導體(CMOS)的電路可使用的訊號的方法的一個實現方案的流程圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
101:差分訊號
102:差分訊號
110:輸入電晶體
112:輸入電晶體
120:負載電晶體
122:負載電晶體
130:pMOS電晶體
132:pMOS電晶體
140:nMOS
142:nMOS
150:偏置電晶體
190:輸出節點
192:反相器
194:反相器
220:電阻器
222:電阻器
224:電阻器
400:轉換器
410:電容器
412:電容器
420:電容器

Claims (20)

  1. 一種電流模式邏輯(CML)到互補金屬氧化物半導體(CMOS)轉換器,包括:一差分放大器,其具有一第一輸入電晶體和一第二輸入電晶體,一第一負載電晶體和一第二負載電晶體,其中該第一輸入電晶體與該第一負載電晶體被串聯地耦合,以及該第二輸入電晶體與該第二負載電晶體被串聯地耦合;一第一電晶體,其與該第一負載電晶體並聯地耦合;及一電阻器,其具有一第一端子和一第二端子;及一第一電容器,其被直接地耦合在該第一輸入電晶體的一閘極和該第一負載電晶體的一閘極之間,該電阻器的該第一端子被耦合到該第一電晶體的一閘極,以及該電阻器的該第二端子被耦合到該第一負載電晶體的該閘極和該第一電容器。
  2. 根據請求項1之CML到CMOS轉換器,亦包括:一第二電容器,其被耦合在該第二輸入電晶體的一閘極和該第二負載電晶體的一閘極之間。
  3. 根據請求項1之CML到CMOS轉換器,其中該第一電容器被配置為提供經由該第一負載電晶體的一前饋路徑。
  4. 根據請求項1之CML到CMOS轉換器,其中該第一電容器具有約50fF的一電容。
  5. 根據請求項1之CML到CMOS轉換器,其中該差分放大器亦包括:一第二電晶體,其與該第一電晶體串聯地耦合,使得該第二電晶體的一汲極被耦合到該第一電晶體的一汲極。
  6. 根據請求項1之CML到CMOS轉換器,亦包括:一第三電容器,其被耦合在該第二電晶體的一閘極和該第一電晶體的一閘極之間,其中該第一電晶體的該閘極進一步被耦合到該第一負載電晶體的一汲極和該第一輸入電晶體的一汲極。
  7. 根據請求項1之CML到CMOS轉換器,其中該第一輸入電晶體和該第二輸入電晶體是n型金屬氧化物半導體(nMOS)電晶體,以及該第一負載電晶體和該第二負載電晶體是p型金屬氧化物半導體(pMOS)電晶體。
  8. 根據請求項7之CML到CMOS轉換器,其中該差分放大器亦包括:一偏置電晶體,其被耦合在該第一輸入電晶體的源極和該第二輸入電晶體的源極與地之間,且該偏置電晶體是一nMOS電晶體。
  9. 根據請求項1之CML到CMOS轉換器,其中該第一輸入電晶體和該第二輸入電晶體被配置為在其閘極 處從一CML電路接收一對差分訊號。
  10. 根據請求項9之CML到CMOS轉換器,其中該CML電路包括一相位內插器。
  11. 一種片上系統(SoC),包括:一相位內插器,其用於調整一輸入時鐘的一相位;及一電流模式邏輯(CML)到互補金屬氧化物半導體(CMOS)轉換器,其被耦合到該相位內插器以接收來自該相位內插器的輸出訊號,一差分放大器,其具有一第一輸入電晶體和一第二輸入電晶體,一第一負載電晶體和一第二負載電晶體,其中該第一輸入電晶體與該第一負載電晶體被串聯地耦合,以及該第二輸入電晶體與該第二負載電晶體被串聯地耦合;一第一電晶體,其與該第一負載電晶體並聯地耦合;一電阻器,其具有一第一端子和一第二端子;及一第一電容器,其被直接地耦合在該第一輸入電晶體的一閘極和該第一負載電晶體的一閘極之間,該電阻器的該第一端子被耦合到該第一電晶體的一閘極,以及該電阻器的該第二端子被耦合到該第一負載電晶體的該閘極和該第一電容器。
  12. 根據請求項11之SoC,其中該CML到CMOS轉換器亦包括: 一第二電容器,其被耦合在該第二輸入電晶體的一閘極和該第二負載電晶體的一閘極之間。
  13. 根據請求項11之SoC,其中該第一電容器被配置為提供經由該第一負載電晶體的一前饋路徑。
  14. 根據請求項11之SoC,其中該第一電容器具有約50fF的一電容。
  15. 根據請求項11之SoC,其中該差分放大器亦包括:一第二電晶體,其與該第一電晶體串聯地耦合,使得該第二電晶體的一汲極被耦合到該第一電晶體的一汲極。
  16. 根據請求項11之SoC,其中該CML至CMOS轉換器亦包括:一第三電容器,其被耦合在該第二電晶體的一閘極和該第一電晶體的一閘極之間,其中該第一電晶體的該閘極進一步被耦合到該第一負載電晶體的一汲極和該第一輸入電晶體的一汲極。
  17. 根據請求項11之SoC,亦包括:一延遲鎖定迴路(DLL),其被耦合到該CML到CMOS轉換器,以接收來自該CML到CMOS轉換器的一時鐘訊號。
  18. 根據請求項10之SoC,亦包括:一序列化器-解序列化器(SerDes)輸入/輸出(I/O)介面,其中該相位內插器和該CML到CMOS轉換器是該SerDes I/O介面的部分。
  19. 一種用於將來自一電流模式邏輯(CML)電路的訊號轉換為由基於互補金屬氧化物半導體(CMOS)的電路可使用的訊號的方法,該方法包括以下步驟:提供一第一輸入電晶體和一第二輸入電晶體,以在該第一輸入電晶體的閘極和該第二輸入電晶體的閘極處接收來自該CML電路的一對差分訊號,以及將一第一負載電晶體與該第一輸入電晶體串聯地耦合;將一第二負載電晶體與該第二輸入電晶體串聯地耦合;將一第一電晶體與該第一負載電晶體並聯地耦合;及在高頻處,提供從該第一輸入電晶體經由該第一負載電晶體的一第一前饋路徑、以及從該第二輸入電晶體經由該第二負載電晶體的一第二前饋路徑,其中提供該第一前饋路徑包括以下步驟:將一第一電容器直接地耦合在該第一輸入電晶體的該閘極與該第一負載電晶體的一閘極之間,及將一電阻器耦合在該第一負載電晶體的該閘極與該第一電晶體的一閘極之間。
  20. 根據請求項19之方法,其中提供該第二前饋路徑包括以下步驟:將一第二電容器直接地耦合在該第二輸入電晶體的該閘極與該第二負載電晶體的一閘極之間。
TW110106967A 2020-02-27 2021-02-26 用於高頻cml到cmos轉換的頻寬增強的放大器 TWI756067B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/802,684 US11043948B1 (en) 2020-02-27 2020-02-27 Bandwidth enhanced amplifier for high frequency CML to CMOS conversion
US16/802,684 2020-02-27

Publications (2)

Publication Number Publication Date
TW202143649A TW202143649A (zh) 2021-11-16
TWI756067B true TWI756067B (zh) 2022-02-21

Family

ID=74885102

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106967A TWI756067B (zh) 2020-02-27 2021-02-26 用於高頻cml到cmos轉換的頻寬增強的放大器

Country Status (3)

Country Link
US (1) US11043948B1 (zh)
TW (1) TWI756067B (zh)
WO (1) WO2021173855A2 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417505B2 (en) * 2004-09-01 2008-08-26 Micron Technology, Inc. CMOS amplifiers with frequency compensating capacitors
US7692471B2 (en) * 2008-01-22 2010-04-06 Linear Cell Design Co., Ltd. Switched-capacitor circuit having two feedback capacitors
US9225324B2 (en) * 2014-04-21 2015-12-29 Qualcomm Incorporated Circuit for generating accurate clock phase signals for high-speed SERDES
US10205445B1 (en) * 2017-09-25 2019-02-12 Synopsys, Inc. Clock duty cycle correction circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396329B1 (en) * 1999-10-19 2002-05-28 Rambus, Inc Method and apparatus for receiving high speed signals with low latency
GB0413152D0 (en) * 2004-06-14 2004-07-14 Texas Instruments Ltd Duty cycle controlled CML-CMOS converter
US8903010B2 (en) * 2012-05-10 2014-12-02 North Carolina State University Methods, systems, and computer program products for low power multimode interconnect for lossy and tightly coupled multi-channel
US9425797B2 (en) * 2014-04-25 2016-08-23 Analog Devices, Inc. High performance reconfigurable voltage buffers
CN205566238U (zh) * 2016-04-06 2016-09-07 江苏星宇芯联电子科技有限公司 一种高增益自偏置无电感的低噪声放大器
US10742227B1 (en) * 2019-02-25 2020-08-11 Intel Corporation Differential source follower with current steering devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417505B2 (en) * 2004-09-01 2008-08-26 Micron Technology, Inc. CMOS amplifiers with frequency compensating capacitors
US7692471B2 (en) * 2008-01-22 2010-04-06 Linear Cell Design Co., Ltd. Switched-capacitor circuit having two feedback capacitors
US9225324B2 (en) * 2014-04-21 2015-12-29 Qualcomm Incorporated Circuit for generating accurate clock phase signals for high-speed SERDES
US10205445B1 (en) * 2017-09-25 2019-02-12 Synopsys, Inc. Clock duty cycle correction circuit

Also Published As

Publication number Publication date
US11043948B1 (en) 2021-06-22
WO2021173855A2 (en) 2021-09-02
TW202143649A (zh) 2021-11-16
WO2021173855A3 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US5621340A (en) Differential comparator for amplifying small swing signals to a full swing output
US6084452A (en) Clock duty cycle control technique
EP1266453B1 (en) High noise rejection voltage-controlled ring oscillator architecture
US20060066377A1 (en) Low-skew single-ended to differential converter
US10574221B2 (en) Comparator, integrated circuit, and method
US5491455A (en) Differential-to-single ended translator that generates an output signal with very small signal distortion
US7508270B2 (en) Differential-to-single-ended converter and phase-locked loop circuit having the same
JP2004172980A (ja) バッファ回路装置
US10447251B2 (en) Power efficient high speed latch circuits and systems
US11855628B2 (en) Power domain change circuit and operating method thereof
TWI756067B (zh) 用於高頻cml到cmos轉換的頻寬增強的放大器
EP1536561A1 (en) Current controlled oscillator
US20100123506A1 (en) Multistage level translator
US6828832B2 (en) Voltage to current converter circuit
US20090231040A1 (en) Output driver having pre-emphasis capability
KR20110130941A (ko) 듀티 보정 회로, 이를 포함하는 지연동기루프 회로 및 듀티 보정 방법
KR101762363B1 (ko) 셀프-바이어싱된 수신기
US20070257712A1 (en) Low Current, High Gain, Single to Differential Buffer
US11329639B1 (en) Delay cell for quadrature clock generation with insensitivity to PVT variation and equal rising/falling edges
US20060267659A1 (en) High-speed, low-noise voltage-controlled delay cell
US6134284A (en) Circuit and method for receiving system clock signals
CN113541619B (zh) 差分放大器
US10999055B2 (en) SerDes systems and differential comparators
US10637521B1 (en) 25% duty cycle clock generator having a divider with an inverter ring arrangement
JP2010193104A (ja) クロック生成回路

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees