TWI754355B - 量子線共振穿隧電晶體 - Google Patents

量子線共振穿隧電晶體 Download PDF

Info

Publication number
TWI754355B
TWI754355B TW109128049A TW109128049A TWI754355B TW I754355 B TWI754355 B TW I754355B TW 109128049 A TW109128049 A TW 109128049A TW 109128049 A TW109128049 A TW 109128049A TW I754355 B TWI754355 B TW I754355B
Authority
TW
Taiwan
Prior art keywords
region
collector
emitter
base
metal quantum
Prior art date
Application number
TW109128049A
Other languages
English (en)
Inventor
吳國成
Original Assignee
吳國成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吳國成 filed Critical 吳國成
Application granted granted Critical
Publication of TWI754355B publication Critical patent/TWI754355B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66931BJT-like unipolar transistors, e.g. hot electron transistors [HET], metal base transistors [MBT], resonant tunneling transistor [RTT], bulk barrier transistor [BBT], planar doped barrier transistor [PDBT], charge injection transistor [CHINT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7376Resonant tunnelling transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0817Emitter regions of bipolar transistors of heterojunction bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7606Transistor-like structures, e.g. hot electron transistor [HET]; metal base transistor [MBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本發明有關於一種半導體電晶體元件,其包括:射極區,其包括多條金屬量子線,並且連接到射極端;基極區,其包括多條金屬量子線,並且連接到基極端;集極區,其包括多條金屬量子線,並且連接到集極端;射極勢障區,其位於射極區和基極區之間;以及集極勢障區,其位於集極區和基極區之間。

Description

量子線共振穿隧電晶體
本發明有關於半導體元件,尤指適用於數位電路之半導體電晶體。
MOSFET乃是構成當今半導體技術的基本組成要件,其成功可歸因於以下事實:其尺寸(dimensions)可以不斷的被縮小,同時提高電路性能和降低製造成本。經過50多年的小型化,縮小元件尺寸(device scaling)帶來的好處正在逐漸減少。傳統上,縮小元件尺寸的做法可能已經不再合乎經濟性。根據2015年國際半導體技術路線圖(International Technology Roadmap for Semiconductors,ITRS,網址:http://www.itrs2.net/),MOS元件的縮小可能在不久的將來會停止(R.Courtland,「電晶體可能在2021年停止元件縮小」,IEEE Spectrum,第53卷,第9期,第9-11頁,2016年9月,doi:10.1109/MSPEC.2016.7551335)。本發明提出新型電晶體,其動機是希望提供一種低成本和高性能的電晶體,以滿足信息化時代對於計算能力不斷增長的需求。
接下來配合圖式及圖號,同時舉一較佳實施例做進一步的說明,期能使 貴審查委員對本創作有更詳細的瞭解,惟以下所述者僅為用來解釋本創作之較佳實施例,並非企圖據以對本創作做任何形式上之限制,因此凡是在本創作之創作精神下,所為任何型式的修飾或變更,皆仍應屬於本創作意圖保護之範疇。
以下的附圖和描述將會闡述一個或多個實施例的細節。根據本說明書、附圖和申請專利範圍,本發明的特徵、目的和優點將會顯而易見。
總體上,本發明有關於一種半導體電晶體元件(semiconductor transistor device),包括:射極區(emitter region),其包括多條金屬量子線(metal quantum wires);基極區(base region),其包括多條金屬量子線;集極區(collector region),其包括多條金屬量子線;射極勢障區(emitter barrier region),其位於射極區和基極區之間;以及集極勢障區(collector barrier region),其位於集極區和基極區之間。
本系統的實現可以包括以下的一個或多個專利範圍。射極區、基極區和集極區可以包括晶體半導體(crystalline semiconductor),該晶體半導體包括在晶格中的開口通道(open channels),其中金屬量子線沿著晶體半導體的開口通道形成。對於具有鑽石立方(diamond cubic)晶格結構(lattice structure)的半導體,開口通道方向可以是<110>方向。可以通過離子植入(ion implantation),分別將金屬離子植入到射極區、基極區和集極區來形成射極區、基極區和集極區的金屬量子線。晶體半導體可以是半導體層(semiconductor layer)的形式,其中金屬量子線從半導體層的底面到半導體層的頂面配置。該半導體電晶體元件可以進一步包括:連接到射極區的射極端;連接到基極區的基極端;和連接到集極區的集極端,其中射極區、基極區和集極區的金屬量子線可以分別連接至半導體層頂面上的射極端、基極端和集極端。金屬量子線的長度可以小於500Å。射極區、基極區和集極區均可以包括其中嵌有多條金屬量子線的半導體。該半導體可以包括矽、鍺、矽鍺合金(silicon germanium alloys,SiGe)、 鑽石和III-V族化合物半導體(III-V compound semiconductors)。基本上,射極區、基極區或集極區的多條金屬量子線彼此平行。射極區、基極區或集極區的多條金屬量子線可以是周期性地分佈。射極勢障區或集極勢障區的寬度可以小於100Å。基極區可以回應施加到基極區的電壓,從而產生通過射極勢障區和集極勢障區的穿隧電流(tunneling current)。對於射極勢障區或集極勢障區的至少其中之一,金屬量子線的費米能階(Fermi level,E F )可以比價帶邊緣(valence band edge,E V )更靠近導帶邊緣(conduction band edge,E C ),其中射極區和集極區之間的穿隧電流是以電子作為多數載子(majority carriers)。對於射極勢障區或集極勢障區的至少其中之一,金屬量子線的費米能階可以比導帶邊緣更靠近價帶邊緣,其中射極區和集極區之間的穿隧電流是以電洞(holes)作為多數載子。射極區、基極區和集極區的金屬量子線可以由相同的金屬製成。射極區、基極區和集極區的金屬量子線可以由不同的金屬製成。射極區、基極區和集極區的金屬量子線的基態能量(ground state energy,E 1 )可以具有基本相同的值。射極區、基極區和集極區的金屬量子線中的基態能量可以具有不同的值。
另一方面,本發明涉及一種半導體電晶體元件,包括:射極區,其包括多條金屬量子線;第一基極區,其包括多條金屬量子線;第二基極區,其包括多條金屬量子線;集極區,其包括多條金屬量子線;射極勢障區,其位於射極區和第一基極區之間;基極間勢障區(inter-base barrier region),其位於第一基極區和第二基極區之間;和集極勢障區,其位於集極區和第二基極區之間。
100:QWRTT
101:射極端
102:基極端
103:集極端
111:射極區
112:射極勢障區
113:基極區
114:集極勢障區
115:集極區
200:n型QWRTT
201:射極區
202:射極勢障區
203:基極區
204:集極勢障區
205:集極區
206:電子蕭特基勢障高度
207:電洞蕭特基勢障高度
210:p型QWRTT
301:矽原子
302:六邊形空心單元
303:開口通道
304:金屬原子
401:SOI晶圓
402:矽層
403:氧化物層
404:矽基層
405:二氧化矽層
406:量子線
407:金屬層
411:射極區
412:基極區
413:集極區
414:射極勢障區
415:集極勢障區
1001:2輸入AND閘
1002:2輸入OR閘
1003:n型常開QWRTT
1004:p型常開QWRTT
1005:下拉網絡
1006:上拉網絡
1007:下拉網絡
1008:上拉網絡
1100:堆疊式結構
1101:射極區
1102:第一基極區
1103:第二基極區
1104:集極區
1105:射極勢障區
1106:基極間勢障區
1107:集極勢障區
1108:金屬量子
〔圖1〕係本發明量子線共振穿隧電晶體(QWRTT)的示意圖。
〔圖2a〕係n型QWRTT的能帶圖。
〔圖2b〕係p型QWRTT的能帶圖。
〔圖3a〕係沿<110>方向觀察到的矽晶格結構。
〔圖3b〕係離子植入之後的上述矽晶格結構。
〔圖4a〕係在示範例之製程,離子植入步驟時的層狀結構。
〔圖4b〕係在示範例之製程,圖案化金屬層之後的層狀結構。
〔圖5〕係在超晶格結構,基態能量E 1 與量子線數目N的關係。
〔圖6〕係n型QWRTT穿透係數T與能量的關係。
〔圖7〕係n型QWRTT電子和電洞之穿隧電流與V B 的關係。
〔圖8〕係n型QWRTT電子穿隧電流與V C 的關係。
〔圖9〕係p型QWRTT電洞和電子之穿隧電流與V B 的關係。
〔圖10a〕係2輸入AND閘的電路圖。
〔圖10b〕係2輸入OR閘的電路圖。
〔圖11〕係兩個堆疊元件的簡化結構。
〔圖12〕係對於不同的N E N C ,n型QWRTT電子穿隧電流與V B 的關係。
〔圖13〕係對於不同的
Figure 109128049-A0101-12-0004-37
,n型QWRTT電子穿隧電流與V B 的關係。
本發明將提供詳細的參考資料來說明較佳的實施例,並提供圖示作為範例。雖然藉著這些實施例來說明本發明,但並非意圖限制本發明於這些實施例。相反地,本申請書的專利範圍將定義本發明的精髓及範圍,依此原則,本發明應當涵蓋其它各種替代方案、修改及等效方法。 此外,在本發明以下的敘述中,闡述了許多具體細節,為使能徹底了解本發明之內容。然而,在此領域裡具有普通技術的人士皆明瞭,欲實踐本發明,並無需這些具體細節。另一方面,一般習知的方法、程序、元件與電路,在此未加詳細敘述,並非意圖隱藏本發明之內容。
量子線共振穿隧電晶體(Quantum Wire Resonant Tunneling Transistor,QWRTT)是三端元件(3-terminal device)。圖1顯示QWRTT 100的示意圖。該三端包括射極端(emitter terminal)101、基極端(base terminal)102和集極端(collector terminal)103。QWRTT 100的元件結構(device structure)包括射極區111、射極勢障區112、基極區113、集極勢障區114和集極區115。射極區111、基極區113和集極區115均包括嵌入有兩條或更多條金屬量子線的半導體。射極區111、基極區113和集極區115的半導體可以是例如:矽、鍺或矽鍺合金。射極勢障區112和集極勢障區114是由一種或多種半導體材料製成,例如:矽、鍺、矽鍺合金、鑽石或III-V族化合物半導體。該半導體可以不摻雜或輕摻雜(lightly doped)。W EB 是射極勢障區112的寬度,W CB 是集極勢障區114的寬度。
該QWRTT有兩種互補式元件型(complementary device types),亦即n型和p型。在n型QWRTT,其主要載子是電子。在p型QWRTT,其主要載子是電洞。圖2a顯示n型QWRTT 200的能帶圖(band diagram),圖2b顯示p型QWRTT 210的能帶圖。n型QWRTT 200和p型QWRTT 210分別包括射極區201、射極勢障區202、基極區203、集極勢障區204和集極區205。E C 是該半導體的導帶邊緣,E V 是該半導體的價帶邊緣。E F 是形成量子線之金屬的費米能階。對於圖2a所示之n型元件,E F E V 更接近E C ,電子的蕭特基勢障高度(Schottky barrier height)
Figure 109128049-A0101-12-0005-35
206小於電洞的蕭特基勢障高度
Figure 109128049-A0101-12-0005-36
207,其主要載子是電子。對於圖2b 所示之p型元件,E F E C 更接近E V
Figure 109128049-A0101-12-0006-47
207小於
Figure 109128049-A0101-12-0006-48
206,其主要載子是電洞。
矽具有鑽石立方的晶格結構,這是一種非常開放的結構,其原子堆積係數(atomic packing factor)為0.34。圖3a顯示在<110>方向上觀察到的矽晶格結構,可以看到由矽原子301形成的蜂窩狀結構(honeycomb structure),此蜂窩狀結構是由具有六邊形的空心單元(hexagonal hollow cells)302所組成的陣列,每個單元在其中心具有大的開口(opening)。在離子植入的過程,此開口形成開口通道303。在矽的範例中,此開口通道沿<110>方向,並且基本上彼此平行。如果沿著開口通道的方向,植入輕元素的離子,則這些離子將會沿此類開口通道前進,而不會撞擊到任何目標原子核。植入範圍(implant range)可能比其他方向長得多,此效應稱為離子通道(ion channeling)。對於大多數的半導體製程而言,此效應會帶來不良的影響。但是,這種不利的離子通道效應卻可以用來產生原子尺寸(atomic size)的量子線。圖3b顯示離子植入之後,在<110>方向上觀察到的矽晶格結構。如圖3b所示,金屬原子304嵌入在開口通道303中。當開口通道303中的金屬原子304呈現連續分佈並且電連接(electrically connected),就形成量子線。
下面將說明製造QWRTT的示範性製造過程。圖4a顯示離子植入步驟時的層狀結構(layer structure),圖4b顯示在圖案化(pattern)金屬層之後的層狀結構。起始材料是矽晶絕緣體(silicon-on-insulator,SOI)(110)晶圓401。該晶圓包括厚度約為100Å的頂部矽層402,中間氧化物層403和底部矽基層(silicon substrate)404。頂部矽層402的晶格包括如圖3a所示之開口通道303。矽層402的厚度通常小於500Å。沉積(deposit)並圖案化二氧化矽(SiO2)層405。此二氧化矽層用作離子植 入的遮罩(mask)。將具有合適功函數(work function)的金屬離子,沿<110>方向垂直植入到矽晶圓。如果使用其它晶體方向(crystal orientation)的晶圓,例如:(100)和(111),則需要將植入角度相應地傾斜到<110>方向。植入的離子沿著如圖3b所示之開口通道303前進。此開口通道終止於矽和二氧化矽的界面,因為二氧化矽是非晶質(amorphous)。植入之後,金屬原子填充如圖3a所示之開口通道303,並形成量子線406。通過化學蝕刻(chemical etch),去除矽晶格表面上的植入損害(implantation damage)。沉積並圖案化金屬層407,以用於互連(interconnection)。
如圖4b所示,射極區411、基極區412和集極區413具有嵌入在半導體矽層402的金屬量子線406。射極區411和基極區412被射極勢障區414所隔開。集極區413和基極區412被集極勢障區415所隔開。在一些實施例,金屬量子線406可以近似垂直於矽層402。因此,金屬量子線406的長度通常短於500Å。在沿射極-基極-集極(E-B-C)的方向,射極區411、基極區412和集極區413可以具有相同或不同數目的金屬量子線406。此外,射極區411、基極區412和集極區413的金屬量子線406可以由相同或不同的材料所構成。
射極區/基極區/集極區411-413可以視為超晶格(superlattice),因為它們是金屬和半導體的周期性結構。金屬量子線的電子被限制在二維(2-D)勢井(potential well)。在勢井內,電子只能有不連續的能階值。如圖2a和2b所示之基態能量E 1 是勢障高度(potential barrier height)和超晶格尺寸(superlattice size)的函數。圖5顯示在超晶格結構,沿電流流動的方向(亦即,射極-基極-集極的方向),假設勢障高度
Figure 109128049-A0101-12-0007-32
為0.4eV時,電子的基態能量E 1 與量子線數目N的關係。超晶格的尺寸與量子線的數目直接相關。當超晶格的尺寸較大,量子線的數目較 多時,則E 1 會較小。
QWRTT的元件特性(device characteristics)可以通過求解一維(1-D)與時間無關(time-independent)的薛丁格方程式(Schrodinger equation)獲得
Figure 109128049-A0101-12-0008-1
其中ψ(x)是波函數(wave function),U(x)是勢能(potential energy),E是總能量。通用的解具有如下的形式
ψ(x)=Ae iκx +Be -iκx (數學式2)其中κ是波數(wave number),如下式
Figure 109128049-A0101-12-0008-3
穿隧概率(tunneling probability)或穿透係數(transmission coefficient)T如下式
Figure 109128049-A0101-12-0008-2
其中A C A E 分別是集極和射極的係數A。根據費米的黃金法則(Fermi’s golden rule),從射極到集極的穿隧電流與穿透係數乘以射極中的已佔用態(occupied states)和集極中的未佔用態(unoccupied states)成正比。反之,從集極到射極的穿隧電流也可以相應地得到。
Figure 109128049-A0101-12-0008-4
Figure 109128049-A0101-12-0008-5
其中F E F C 分別是射極和集極的費米-狄拉克分佈函數(Fermi-Dirac distribution functions)。ρ E ρ C 分別是射極和集極的態密度(density of states)。在勢井中,一維金屬量子線的態密度ρ如下式
Figure 109128049-A0101-12-0009-6
淨穿隧電流I可以寫成
Figure 109128049-A0101-12-0009-7
如果射極區/基極區/集極區具有相同的超晶格結構(亦即,其量子線數目N是相同的,其金屬功函數也是相同的),則它們的E 1 值是相同的。因此可以說,E 1 在射極區/基極區/集極區是「對齊」(in alignment)的。在射極區/基極區/集極區,量子線的數量N可以分別表示為N E N B N C ,基態能量E 1 可以分別表示為E 1,E E 1,B E 1,C ,電子的蕭特基勢障高度
Figure 109128049-A0101-12-0009-38
可以分別表示為
Figure 109128049-A0101-12-0009-39
Figure 109128049-A0101-12-0009-40
Figure 109128049-A0101-12-0009-41
,電洞的蕭特基勢障高度
Figure 109128049-A0101-12-0009-42
可以分別表示為
Figure 109128049-A0101-12-0009-43
Figure 109128049-A0101-12-0009-44
Figure 109128049-A0101-12-0009-45
在一些實施例,沿E-B-C方向,射極區111、基極區113和集極區115均包括三條嵌入半導體的金屬量子線。圖6顯示n型QWRTT電子穿透係數T與能量的關係,當N E =N B =N C =3,
Figure 109128049-A0101-12-0009-8
=0.4eV,W EB =W CB =40Å,及V E =V B =V C =0V。當注入的電子具有能量E 1 時,T達到其最大值100%。如果射極和集極之間存在有電壓差,則最大的電流可以流經該結構,此時該元件被稱為「處於共振狀態」(in resonance)。隨著能量偏離E 1 T則迅速減小。
在一些實施例,圖7顯示n型QWRTT,射極端101和集極端103之間,電子和電洞之穿隧電流與V B 的函數,當N E =N B =N C =3,
Figure 109128049-A0101-12-0009-9
W EB =W CB =40Å,V E =0V,及V C =1mV。I e 是從射極到集極的電子穿隧電流,而I h 是從集極到射極的電洞穿隧電流。由於I e I h V B 的變化有不同的反應,因此在設計n型元件時,電子是多數載子,並且在工作範圍內I h 始終小於I e 。在一些實施例,當 E 1 在射極區201、基極區203和集極區205具有大約相同的值,亦即E 1,E =E 1,B =E 1,C ,此時E 1 是對齊的,則本發明所揭露的QWRTT是常開電晶體(normally ON transistor)。當V B =0V,電子流(electron current)最大,並且元件處於共振狀態。峰谷電流比(peak-to-valley current ratio),亦即開關電流比(ON/OFF current ratio),約為四個數量級。當V B 離開0V,電流則迅速下降。擺動(swing)S定義為將元件電流改變一個數量級所需的V B 變化。當V B 從0V變為5mV,S小於2mV/dec。圖7的y軸為穿隧電流,其單位為任意單位(arbitrary unit,a.u.),因為數學式5和6為比例關係,而非等式。依此類推,穿隧電流在以下的圖示,其單位皆為任意單位。
擺動必須要小,以使得在微小電壓變化的情況下,電晶體便可以在導通(ON)和關閉(OFF)之間做切換。因此,電源電壓(power supply voltage)和功率消耗(power consumption)才可以被降低。常規MOSFET在室溫下的最小次臨限擺動(subthreshold swing)為60mV/dec(由K.P.Cheung進行了討論:「關於MOSFET次臨限擺動的極限為60mV/dec @ 300 °K」,2010年國際VLSI技術、系統和應用研討會論文集,台灣新竹,第72-73頁,doi:10.1109/VTSA.2010.5488941)。QWRTT的擺動非常小,因為(a)電流的傳導機制(current conduction mechanism)是共振穿隧,並且(b)射極區和集極區是一維的量子線結構。如數學式7所示之一維態密度在降低擺動,起了重要的作用。
圖8顯示n型QWRTT電子穿隧電流與V C 的函數,當N E =N B =N C =3,
Figure 109128049-A0101-12-0010-10
W EB =W CB =40Å,及V E =V B =0V。當V B =0V時,元件導通,其輸出特性(output characteristics)顯示負微分電阻(negative differential resistance,NDR)。此NDR效應是因 為以下的原因:(a)共振穿隧和(b)射極區和集極區的一維態密度。
圖9顯示p型QWRTT電洞和電子穿隧電流與V B 的函數,當N E =N B =N C =3,
Figure 109128049-A0101-12-0011-11
W EB =W CB =40Å,V E =0V,及V C =-1mV。當E 1 是對齊時,p型QWRTT也是一個常開電晶體。對於p型QWRTT,其金屬的費米能階E F 比導帶邊緣E C 更靠近價帶邊緣E V ,並且其主要載子是電洞。p型元件的峰谷電流比小於n型元件,因為矽的電洞有效質量(hole effective mass)大於電子有效質量。p型元件的擺動S小於2mV/dec,大約與n型元件的擺動相同。因此,n型和p型QWRTT都具有通過控制電壓(control voltage)的微小變化,來達到切換電晶體狀態的能力,這可以有利地降低電源電壓和功率消耗。
改善p通道(p-channel)MOSFET電洞遷移率(hole mobility)的慣用方法,例如壓應力(compressive stress)和矽鍺合金,也可以應用於p型QWRTT。模擬結果表明,如果減小電洞的有效質量,則可以提高p型QWRTT的峰谷電流比,因為有效質量是在模擬計算中n型和p型元件之間的主要差異。與矽相比,鍺具有較高的電洞遷移率和較高的導帶邊緣。對於p型QWRTT,矽鍺合金中的鍺可以有效地提高峰谷電流比,並降低電子穿隧電流。此外,模擬結果表明,隨著矽鍺合金中鍺含量的增加,n型元件的電流增益(current gain)h FE 將會提高,並且NDR效應將會降低,因為鍺的電子有效質量比矽小。因此,鍺對於n型和p型元件都是有益的。矽和鍺都具有鑽石立方的晶格結構,因此單晶矽鍺合金也具有相同的晶格結構。通過離子植入產生量子線的方法,也可以應用於單晶矽鍺合金和其他具有開口通道的晶格結構。
在一些實施例,通過使E 1 對齊,QWRTT元件可以是常開電晶體。圖10a顯示2輸入AND閘(2-input AND gate)1001的電路圖,圖 10b顯示2輸入OR閘(2-input OR gate)1002的電路圖。此兩閘可以使用本申請書揭露的n型和p型常開QWRTT來建構。假設高電壓(例如:電源電壓V CC )表示邏輯1,而低電壓(例如:接地電壓0V)表示邏輯0。每個閘包括上拉網絡(pull-up network)(例如:圖10a的1006和圖10b的1008)和下拉網絡(pull-down network)(例如:圖10a的1005和圖10b的1007)。上拉網絡的功能是當輸出為邏輯1時,提供輸出和V CC 之間的連接。類似地,下拉網絡的功能是當輸出為邏輯0時,將輸出接地。上拉網絡是使用p型常開QWRTT 1004來建構,下拉網絡是使用n型常開QWRTT 1003來建構。p型QWRTT 1004在圖10a所示之AND閘的上拉網絡1006是串聯連接,在圖10b所示之OR閘的上拉網絡1008是並聯連接。n型QWRTT 1003在圖10a所示之AND閘的下拉網絡1005是並聯連接,在圖10b所示之OR閘的下拉網絡1007是串聯連接。圖10a所示之AND閘的電路型態類似於CMOS NOR閘,而圖10b所示之OR閘的電路型態類似於CMOS NAND閘。
具有小擺動的常開電晶體非常適合於數位電路(digital circuits)。使用於數位電路的MOSFET通常是增強型電晶體(enhancement-mode transistors)。其電源電壓V DD 和臨界電壓(threshold voltage)V T 是由關閉狀態時的漏電流(leakage current)、次臨限擺動和開關電流比來決定。由於次臨限擺動的理論最小值為60mV/dec,因此在每個技術節點(technology node)能夠降低V DD V T 的空間很小。數位電路的動態功率消耗(dynamic power consumption)與fV DD 2 成正比,其中f是時鐘頻率(clock frequency)。功率消耗隨著時鐘頻率的增加而增加。電路性能和時鐘頻率最終被功率消耗所限制。改善電路性能的最有效方法就是降低電源電壓,如此時鐘頻率就有更大的上升空間。由於QWRTT的擺 動較小,因此與MOSFET所構成的電路相比,QWRTT所構成的電路可以在較小的電源電壓和較高的時鐘頻率工作。
此外,與增強型MOSFET相比,常開電晶體更適合於堆疊式元件(stacked devices)。對於MOSFET,如果源極(source)和基體(body)反向偏壓(reverse biased),則臨界電壓會增加,這就是所謂的基體效應(body effect)。因此,電源電壓V DD 就需要足夠大,以驅動堆疊式元件。然而,當V B =0V時,常開電晶體完全導通。常開電晶體沒有臨界電壓。電源電壓因此可以較小,因為無需考慮基體效應。此外,堆疊式元件的結構可以簡化,以節省元件面積,並增加驅動電流(driving current)。例如,圖11顯示包括兩個堆疊式QWRTT的半導體元件1100的簡化結構。與其每個電晶體都具有射極區/基極區/集極區,堆疊的兩個電晶體可以具有一個射極區1101、一個集極區1104以及介於前兩者之間的兩個基極區1102-1103。射極區1101和第一基極區1102由射極勢障區1105所隔開。集極區1104和第二基極區1103由集極勢障區1107所隔開。兩個基極區1102-1103由基極間勢障區1106所隔開。射極區1101、集極區1104和兩個基極區1102-1103均包括多條金屬量子線1108。
常開電晶體可以用來構建AND和OR閘。但是,{AND,OR}並不是功能完整的邏輯算子(logic operators)。QWRTT必須包含增強型電晶體才能構建反相器(inverters),因為{AND,NOT}、{OR,NOT}和{AND,OR,NOT}在功能上才是完整的。
在一些實施例,通過在射極區/基極區/集極區具有不同的E 1 值(亦即E 1 未對齊),可以將QWRTT配置為增強型電晶體。由於E 1 取決於超晶格大小和勢障高度,因此如果射極區/基極區/集極區的超晶格結構有所不同,則E 1 不會對齊。圖12顯示對於不同的N E N C ,n型 QWRTT的電子穿隧電流與V B 的函數,其中N B =3。當(N E N B N C )=(2,3,2),E 1 不對齊。當V B =0V,電晶體關閉;當V B =-0.05V,電晶體導通。圖13顯示對於不同的
Figure 109128049-A0101-12-0014-46
,n型QWRTT的電子穿隧電流與V B 的函數,其中
Figure 109128049-A0101-12-0014-12
。當
Figure 109128049-A0101-12-0014-13
0.3,0.4)eV,E 1 不對齊。當V B =0V,電晶體關閉;當V B 為負,電晶體導通。n型增強型QWRTT與p通道MOSFET相似,其中當V B V G 為負,元件導通。類似地,如果E 1 不對齊,p型QWRTT也可以配置為增強型電晶體。因此,QWRTT包括常開電晶體家族和增強型電晶體家族。人們可以使用增強型QWRTT來構建類似CMOS的邏輯電路,例如NAND閘和NOR閘。
與傳統的電晶體相比,例如:MOSFET、雙極性電晶體(bipolar junction transistor,BJT)、共振穿隧電晶體(resonant tunneling transistor,RTT)和金屬基極電晶體(metal base transistor,MBT),本發明所揭露的QWRTT具有獨特而有益的特性。QWRTT在射極區/基極區/集極區具有一維金屬量子線。QWRTT具有非常獨特的元件特性,例如很小的擺動。主要的電流傳導機制是共振穿隧。射極區/基極區/集極區的勢井是由金屬-半導體蕭特基勢障所形成。通常,在射極區/基極區/集極區的勢井中,只有一個能量狀態。QWRTT包括常開電晶體家族和增強型電晶體家族。
在數位電路的應用,QWRTT具有優於MOSFET的以下潛在優點。(1)功率消耗較低-由於QWRTT的擺動較小,因此它可以在較低的電源電壓下工作,並消耗較少的能量。(2)較快的速度-由於較大的驅動電流和較小的寄生電阻(parasitic resistance),使得元件的速度更快。穿隧元件的固有速度(intrinsic speed)比依靠漂移(drift)或擴散(diffusion) 來運作的元件,諸如:FET或BJT,快得多。電流流過整個勢障區,而MOSFET則在半導體表面的通道傳導電流。射極區/基極區/集極區是由具有低電阻的金屬量子線所製成。(3)較低的製造成本-由於元件結構較簡單,因此製造成本較低。與MOSFET不同,QWRTT不需要閘極結構(gate structure),淺接面(shallow junction),淡摻雜汲極(lightly doped drain),矽化物接點(silicide contact)等。製程步驟的數目比先進的CMOS製程要少得多。(4)較高的密度-因為元件結構較簡單,QWRTT具有較小的元件尺寸(device size)和較高的填充密度(packing density)。由於電源電壓較低,因此用於元件隔離(device isolation)的面積也較小。(5)較高的可靠性(reliability)-QWRTT沒有與閘極絕緣體(gate insulator)相關的元件可靠性問題。(6)較好的均勻性(uniformity)-QWRTT沒有統計摻雜濃度變動(statistical dopant fluctuation)和線邊緣粗糙度(line edge roughness)的問題,那是MOSFET元件變異性(device variation)的兩個主要來源。
402:矽層
403:氧化物層
404:矽基層
405:二氧化矽層
406:量子線
407:金屬層
411:射極區
412:基極區
413:集極區
414:射極勢障區
415:集極勢障區

Claims (15)

  1. 一種半導體電晶體元件,包括:
    射極區,包括多條金屬量子線;
    基極區,包括多條金屬量子線;
    集極區,包括多條金屬量子線;
    射極勢障區,位於該射極區和該基極區之間;和
    集極勢障區,位於該集極區和該基極區之間。
  2. 如申請專利範圍第1項所述之半導體電晶體元件,其中該射極區、該基極區和該集極區包括晶體半導體,該晶體半導體包括在晶格中的開口通道,其中該金屬量子線沿著該晶體半導體的該開口通道形成。
  3. 如申請專利範圍第2項所述之半導體電晶體元件,其中對於具有鑽石立方晶格結構的半導體,該開口通道的方向是<110>方向。
  4. 如申請專利範圍第2項所述之半導體電晶體元件,其中通過離子植入,分別將金屬離子植入到該射極區、該基極區和該集極區,來形成該射極區、該基極區和該集極區的該金屬量子線。
  5. 如申請專利範圍第2項所述之半導體電晶體元件,其中該晶體半導體為半導體層的形式,其中該金屬量子線是從該半導體層的底面到該半導體層的頂面配置。
  6. 如申請專利範圍第5項所述之半導體電晶體元件,還包括:
    射極端,連接到該射極區;
    基極端,連接到該基極區;和
    集極端,連接到該集極區,
    其中該射極區、該基極區和該集極區的該金屬量子線分別連接至該半導體層頂面上的該射極端、該基極端和該集極端。
  7. 如申請專利範圍第1項所述之半導體電晶體元件,其中該金屬量子線的長度短於500Å。
  8. 如申請專利範圍第1項所述之半導體電晶體元件,其中該射極區、該基極區和該集極區均包括其中嵌有該多條金屬量子線的半導體。
  9. 如申請專利範圍第8項所述之半導體電晶體元件,其中該半導體包括矽、鍺、矽鍺合金、鑽石和III-V族化合物半導體。
  10. 如申請專利範圍第1項所述之半導體電晶體元件,其中該射極區、該基極區或該集極區的該多條金屬量子線基本上彼此平行。
  11. 如申請專利範圍第1項所述之半導體電晶體元件,其中該射極勢障區或該集極勢障區的寬度小於100Å。
  12. 如申請專利範圍第1項所述之半導體電晶體元件,其中該基極區會回應施加到該基極區的電壓,從而產生通過該射極勢障區和該集極勢障區的穿隧電流。
  13. 如申請專利範圍第1項所述之半導體電晶體元件,其中,對於該射極勢障區或該集極勢障區的至少其中之一, 該金屬量子線的費米能階比該價帶邊緣更靠近該導帶邊緣,其中該射極區和該集極區之間的穿隧電流是以電子作為多數載子。
  14. 如申請專利範圍第1項所述之半導體電晶體元件,其中,對於該射極勢障區或該集極勢障區的至少其中之一,該金屬量子線的費米能階比該導帶邊緣更靠近該價帶邊緣,其中該射極區和該集極區之間的穿隧電流是以電洞作為多數載子。
  15. 一種半導體電晶體元件,包括:
    射極區,其包括多條金屬量子線;
    第一基極區,其包括多條金屬量子線;
    第二基極區,其包括多條金屬量子線;
    集極區,其包括多條金屬量子線;
    射極勢障區,其位於該射極區和該第一基極區之間;
    基極間勢障區,其位於該第一基極區和該第二基極區之間;和
    集極勢障區,其位於該集極區和該第二基極區之間。
TW109128049A 2020-04-19 2020-08-18 量子線共振穿隧電晶體 TWI754355B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/852,493 US11133384B1 (en) 2020-04-19 2020-04-19 Quantum wire resonant tunneling transistor
US16/852,493 2020-04-19

Publications (1)

Publication Number Publication Date
TWI754355B true TWI754355B (zh) 2022-02-01

Family

ID=77887613

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109128049A TWI754355B (zh) 2020-04-19 2020-08-18 量子線共振穿隧電晶體

Country Status (3)

Country Link
US (1) US11133384B1 (zh)
KR (1) KR102353506B1 (zh)
TW (1) TWI754355B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849799A (en) * 1986-07-31 1989-07-18 American Telephone And Telegraph Company At&T Bell Laboratories Resonant tunneling transistor
US5606178A (en) * 1995-06-07 1997-02-25 Hughes Electronics Bipolar resonant tunneling transistor
US5705825A (en) * 1994-08-30 1998-01-06 Nec Corporation Resonant tunneling bipolar transistor
US5710058A (en) * 1994-04-15 1998-01-20 Trw Inc. Method of making multi-terminal resonant tunneling transistor
US5767526A (en) * 1997-01-07 1998-06-16 Texas Instruments Incorporated Bipolar resonant tunneling transistor frequency multiplier
US5796119A (en) * 1993-10-29 1998-08-18 Texas Instruments Incorporated Silicon resonant tunneling
TWI452693B (zh) * 2008-10-26 2014-09-11 Koucheng Wu Semiconductor transistor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100216545B1 (ko) * 1996-11-22 1999-08-16 정선종 고속 반도체 장치
US6744111B1 (en) * 2003-05-15 2004-06-01 Koucheng Wu Schottky-barrier tunneling transistor
US7709923B2 (en) * 2005-11-18 2010-05-04 Nxp B.V. Metal-base nanowire transistor
US7608854B2 (en) * 2007-01-29 2009-10-27 Hewlett-Packard Development Company, L.P. Electronic device and method of making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849799A (en) * 1986-07-31 1989-07-18 American Telephone And Telegraph Company At&T Bell Laboratories Resonant tunneling transistor
US5796119A (en) * 1993-10-29 1998-08-18 Texas Instruments Incorporated Silicon resonant tunneling
US5710058A (en) * 1994-04-15 1998-01-20 Trw Inc. Method of making multi-terminal resonant tunneling transistor
US5705825A (en) * 1994-08-30 1998-01-06 Nec Corporation Resonant tunneling bipolar transistor
US5606178A (en) * 1995-06-07 1997-02-25 Hughes Electronics Bipolar resonant tunneling transistor
US5767526A (en) * 1997-01-07 1998-06-16 Texas Instruments Incorporated Bipolar resonant tunneling transistor frequency multiplier
TWI452693B (zh) * 2008-10-26 2014-09-11 Koucheng Wu Semiconductor transistor

Also Published As

Publication number Publication date
US11133384B1 (en) 2021-09-28
KR20210129567A (ko) 2021-10-28
US20210328015A1 (en) 2021-10-21
KR102353506B1 (ko) 2022-01-19

Similar Documents

Publication Publication Date Title
US7804134B2 (en) MOSFET on SOI device
US6509586B2 (en) Semiconductor device, method for fabricating the semiconductor device and semiconductor integrated circuit
JP4493343B2 (ja) 歪みフィンfet構造および方法
US7235822B2 (en) Transistor with silicon and carbon layer in the channel region
JP5204121B2 (ja) 半導体構造及び当該半導体構造の製造方法
TWI452693B (zh) Semiconductor transistor
US7915107B2 (en) Integrated circuit using complementary junction field effect transistor and MOS transistor in silicon and silicon alloys
Maly et al. Twin gate, vertical slit FET (VeSFET) for highly periodic layout and 3D integration
US20110254102A1 (en) Hybrid orientation inversion mode gaa cmosfet
US20110254013A1 (en) Hybrid orientation accumulation mode gaa cmosfet
JP2000286418A (ja) 半導体装置および半導体基板
WO2011066726A1 (zh) 混合材料积累型圆柱体全包围栅cmos场效应晶体管
US20110254100A1 (en) Hybrid material accumulation mode gaa cmosfet
CN107492552B (zh) 具有堆叠布局的半导体器件
WO2011066729A1 (zh) 混合材料反型模式圆柱体全包围栅cmos场效应晶体管
US20070262377A1 (en) Transistor Structure and Method of Manufacturing Thereof
JP2000031491A (ja) 半導体装置,半導体装置の製造方法,半導体基板および半導体基板の製造方法
WO2013040833A1 (zh) Sram单元及其制作方法
JP2005079277A (ja) 電界効果トランジスタ
TWI754355B (zh) 量子線共振穿隧電晶體
CN102723341B (zh) 一种混合晶面应变Si垂直沟道BiCMOS集成器件及制备方法
JPS6238864B2 (zh)
TW202406095A (zh) 具有碳摻雜釋放層的單體互補場效電晶體
US20080290414A1 (en) Integrating strain engineering to maximize system-on-a-chip performance
CN102738175B (zh) 一种基于SOI衬底的BiCMOS集成器件及制备方法