TWI752601B - 離子源、在離子源中使用的隔熱斥拒極以及電極 - Google Patents
離子源、在離子源中使用的隔熱斥拒極以及電極 Download PDFInfo
- Publication number
- TWI752601B TWI752601B TW109128855A TW109128855A TWI752601B TW I752601 B TWI752601 B TW I752601B TW 109128855 A TW109128855 A TW 109128855A TW 109128855 A TW109128855 A TW 109128855A TW I752601 B TWI752601 B TW I752601B
- Authority
- TW
- Taiwan
- Prior art keywords
- repeller
- post
- spokes
- ion source
- electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/022—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/20—Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
- H01J27/205—Ion sources; Ion guns using particle beam bombardment, e.g. ionisers with electrons, e.g. electron impact ionisation, electron attachment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
本發明是關於一種具有隔熱斥拒極的離子源、在離子源
中使用的隔熱斥拒極以及電極。斥拒極包括斥拒極盤及多個輪輻,所述多個輪輻起始於斥拒極盤的後表面且終止於柱。在某些實施例中,柱在其長度的至少一部分上可為中空的。使用輪輻而非中心桿可減少從斥拒極盤到柱的熱傳導。通過併入中空柱,熱傳導被進一步降低。此種配置可將斥拒極盤的溫度增加多於100℃。在某些實施例中,在斥拒極盤的後表面上設置有輻射屏蔽體,以減少從斥拒極盤的側面發射的輻射量。此也可有助於增加斥拒極的溫度。類似的設計可用於離子源中的其他電極。
Description
本發明是有關於一種離子源、在離子源中使用的隔熱斥拒極以及電極,且特別是有關於一種在使用間熱式陰極(IHC)離子源的高溫應用中使用的斥拒極以及電極。
可使用各種類型的離子源來形成在半導體加工設備中所使用的離子。例如,弗里曼離子源(Freeman ion source)通過向絲極(filament)供應電流來工作,所述電流從腔室的一個端部流到相對的端部。伯納式離子源(Bernas ion source)及卡魯特龍離子源(Calutron ion source)通過向設置在腔室的一個端部附近的絲極供應電流來工作。在這些源中的每一者中,絲極發射熱電子,所述熱電子被發射到腔室中。這些電子與原料氣體碰撞產生電漿。
另一種類型的離子源是間熱式陰極(indirectly heated cathode,IHC)離子源。IHC離子源通過向設置在陰極後面的絲極供應電流來工作。絲極發射熱電子,所述熱電子被朝向陰極加
速且對陰極進行加熱,此又使陰極向離子源的腔室中發射電子。由於絲極受陰極保護,因此相對於伯納式離子源,絲極的壽命可延長。陰極設置在腔室的一個端部處。斥拒極(repeller)通常設置在腔室的與陰極相對的端部上。陰極及斥拒極可被施加偏壓,以斥拒電子,從而將電子朝向腔室的中心往回引導。在一些實施例中,使用磁場來進一步將電子局限在腔室內。
在這些離子源的某些實施例中,在腔室的一個或多個壁上也設置有側電極。這些側電極可被施加偏壓,以控制離子及電子的位置,從而增大腔室的中心附近的離子密度。提取開孔沿著另一側、鄰近腔室的中心設置,可經由所述抽取開孔提取離子。
當產生離子時,期望離子的種類可影響最佳溫度。例如,對於某些種類,可能優選將離子源保持在相對低的溫度下。在其他實施例中,例如碳系種類的電離,可能期望較高的溫度,以將腔室內的沉積最小化。
在腔室內保持高的溫度可能會有問題。儘管電弧腔室內的組件的溫度常常由絲極消耗的功率量來控制,但每個組件的溫度受所發射的熱輻射量及通過配合組件從這些組件帶走熱量的傳導量限制。例如,斥拒極及電極可實體附接到位於離子源外部的夾具,所述夾具用於將其保持在適當的位置。這些夾具可由金屬製成,且可固定到冷卻器組件,例如電弧腔室基底。此熱路徑產生離開斥拒極及電極的熱量,從而使其在低於期望的溫度下工作。
因此,具有隔熱斥拒極的離子源可能是有益的。此外,
如果離子源也包括隔熱電極將是有利的。通過對這些組件進行隔熱,斥拒極的溫度可保持在比原本可能的溫度更高的溫度下。
本發明提供一種具有隔熱斥拒極的離子源。所述斥拒極包括斥拒極盤及多個輪輻,所述多個輪輻起始於斥拒極盤的後表面且終止於柱。在某些實施例中,柱在其長度的至少一部分上可為中空的。使用輪輻而非中心桿可減少從斥拒極盤到柱的熱傳導。通過併入中空柱,熱傳導被進一步降低。此種配置可將斥拒極盤的溫度增加多於100℃。在某些實施例中,在斥拒極盤的後表面上設置有輻射屏蔽體,以減少從斥拒極盤的側面發射的輻射量。此也可有助於增加斥拒極的溫度。類似的設計可用於離子源中的其他電極。
根據一個實施例,提供一種在離子源中使用的斥拒極。所述斥拒極包括:斥拒極盤,適於設置在所述離子源內,具有厚度、前表面、後表面、外邊緣、及中心軸線;柱,用於附接到夾具;及多個輪輻,從所述柱向外延伸到所述斥拒極盤,且在與所述斥拒極盤的所述中心軸線不同的位置處接觸所述斥拒極盤的所述後表面。在某些實施例中,所述斥拒極包括整體式組件(unitary component)。在某些實施例中,所述斥拒極盤的所述後表面包括一個或多個輻射屏蔽體。在某些進一步的實施例中,所述輻射屏蔽體包括一個或多個靠近所述斥拒極盤的外邊緣設置的同心溝
槽。在某些進一步的實施例中,所述輻射屏蔽體包括一個或多個靠近所述斥拒極盤的外邊緣設置的空腔。在一些進一步的實施例中,所述空腔佈置成一個或多個同心環。在一些實施例中,所述空腔將斥拒極盤的厚度延伸至少50%。在一些實施例中,所述柱的至少一部分是中空的。在某些進一步的實施例中,中空部分的橫截面包括環形環。在其他進一步的實施例中,中空部分包括輪輻延伸部,所述輪輻延伸部中的每一者對應於相應的輪輻,所述輪輻延伸部設置在所述柱的實心部分與所述輪輻之間,且平行於所述柱的中心軸線延伸。
根據另一實施例,提供一種離子源。所述離子源包括:腔室,包括多個壁以及第一端部及第二端部,其中所述第二端部包括孔;陰極,設置在所述腔室的所述第一端部上;以及斥拒極,設置在所述腔室的所述第二端部上;其中所述斥拒極包括:斥拒極盤,設置在所述腔室內,具有厚度、前表面、後表面、外邊緣、及中心軸線;柱;以及多個輪輻,從所述柱向外延伸到所述斥拒極盤,所述多個輪輻在與所述斥拒極盤的中心軸線不同的位置處接觸所述斥拒極盤的後表面。在某些實施例中,所述輪輻設置在所述腔室內。在某些實施例中,所述離子源還包括位於所述腔室外部、附接到所述柱且用於支撐所述斥拒極的夾具,其中所述柱的位於所述夾具與所述斥拒極盤之間的一部分是中空的。在某些實施例中,輪輻延伸部從所述柱的靠近所述夾具設置的實心部分延伸到所述輪輻,且平行於所述柱的中心軸線延伸。在一些實施
例中,所述離子源還包括設置在所述腔室的壁上的電極,所述電極包括:電極板,設置在所述腔室內,具有厚度、前表面、後表面、外邊緣及中心軸線;電極柱,用於附接到夾具;以及多個輪輻,從所述電極柱向外延伸到所述電極板,所述多個輪輻在與所述電極板的所述中心軸線不同的位置處接觸所述電極板的所述後表面。
根據另一實施例,提供一種在離子源內使用的電極。所述電極包括:電極板,適於設置在所述離子源內,具有厚度、前表面、後表面、外邊緣、及中心軸線;柱,用於附接到夾具;及多個輪輻,從所述柱向外延伸到所述電極板,且在與所述電極板的所述中心軸線不同的位置處接觸所述電極板的所述後表面。在某些實施例中,所述電極包括整體式組件。在某些實施例中,所述電極板的所述後表面包括一個或多個輻射屏蔽體。在某些實施例中,所述輻射屏蔽體包括一個或多個靠近所述電極板的外邊緣設置的溝槽或空腔。在某些實施例中,所述柱的至少一部分是中空的,且其中中空部分包括輪輻延伸部,所述輪輻延伸部中的每一者對應於相應的輪輻,所述輪輻延伸部設置在所述柱的實心部分與所述輪輻之間,且平行於所述柱的中心軸線延伸。
10:離子源
100:腔室
101:壁
102:提取板
103:底壁
104:側壁
105:第一端部
106:第二端部
107:孔
110:陰極
115:絲極偏壓電源
120、250:斥拒極
125:陰極偏壓供應器
130a:第一電極
130b:第二電極
135:斥拒極電源
140:提取開孔
150:電漿
160:絲極
165:絲極電源
175:電極電源
180:控制器
181:處理單元
190:磁場
195:外部夾具
198:腔室基底
200:輪輻
201:輪輻延伸部
210:柱
211:中心軸線
212:中空部分
220:斥拒極盤
221、230:輻射屏蔽體
222、231:溝槽
223:空腔
224:曲線空腔
235:電極板
237:線性空腔
238:圓形空腔
239:中心軸線
260:實心張開端部
270:實心柱
θ、φ:角度
X、Y、Z:方向
為更好地理解本發明,參考併入本文中供參考的附圖,且在附圖中:
圖1是根據一個實施例的離子源,所述離子源可利用本文闡述的斥拒極及電極設計。
圖2是圖1的離子源的剖視圖。
圖3A是根據實施例的斥拒極的剖視圖。
圖3B是根據實施例的斥拒極的等距視圖。
圖4是圖3A到圖3B的斥拒極的後視圖。
圖5示出根據一個實施例的具有輻射屏蔽體的斥拒極盤。
圖6示出根據另一實施例的具有輻射屏蔽體的斥拒極盤。
圖7A到圖7C示出用於電極板的輻射屏蔽體的若干實施例。
圖8是根據另一實施例的斥拒極的剖視圖。
如上所述,在某些情況下,在升高的溫度下操作離子源,且特別是間熱式陰極(IHC)離子源可能是有益的。然而,斥拒極及電極將大量熱量從腔室傳導出去。本發明闡述一種將此種熱損失最小化的新的斥拒極及電極設計。還闡述一種在斥拒極盤或電極板的表面上產生熱不均勻性的新的斥拒極及電極設計。
圖1示出離子源10,離子源10包括減少熱損失的斥拒極120及電極130a、130b。圖2示出圖1的離子源的橫截面。離子源10可為間熱式陰極(IHC)離子源。離子源10包括腔室100,腔室100包括兩個相對的端部及連接到這些端部的壁101。這些壁101包括側壁104、提取板102及與提取板102相對的底壁103。
腔室100的壁101可由導電材料構成,且可彼此電連通。陰極110在腔室100的第一端部105處設置在腔室100中。絲極160設置在陰極110的後面。絲極160與絲極電源165連通。絲極電源165被配置成使電流通過絲極160,使得絲極160發射熱電子。絲極偏壓電源115相對於陰極110對絲極160施加負的偏壓,因此這些熱電子從絲極160被朝向陰極110加速且在其撞擊陰極110的後表面時對陰極110進行加熱。絲極偏壓電源115可對絲極160施加偏壓,以使得絲極160的電壓比陰極110的電壓負例如200V到1500V之間。接著,陰極110在其前表面上向腔室100中發射熱電子。
因此,絲極電源165向絲極160供應電流。絲極偏壓電源115對絲極160施加偏壓,以使得絲極160比陰極110更負,從而使電子從絲極160被朝向陰極110吸引。在某些實施例中,陰極110還與陰極偏壓供應器125連通。在其他實施例中,陰極110可被接地。在某些實施例中,腔室100連接到電接地。在某些實施例中,壁101為其他電源提供接地參考。
在此實施例中,斥拒極120在腔室100的與陰極110相對的第二端部106上設置在腔室100中。顧名思義,斥拒極120用於將從陰極110發射的電子斥拒回腔室100的中心。例如,在某些實施例中,斥拒極120可使用斥拒極電源135相對於腔室100被施加為負電壓的偏壓以斥拒電子。例如,在某些實施例中,斥拒極電源135供應介於0V到-150V範圍內的電壓,但也可使用
其他電壓。在這些實施例中,斥拒極120相對於腔室100被施加處於0V與-150V之間的偏壓。在某些實施例中,斥拒極120可相對於腔室100浮動。換句話說,當浮動時,斥拒極120不電連接到斥拒極電源135或腔室100。在此實施例中,斥拒極120的電壓傾向於漂移到與陰極110的電壓接近的電壓。在其他實施例中,斥拒極120可電連接到陰極偏壓供應器125或接地。
在某些實施例中,在腔室100中產生磁場190。此磁場旨在沿著一個方向來局限電子。磁場190通常平行於側壁104從第一端部105延伸到第二端部106。舉例來說,電子可被局限在與從陰極110到斥拒極120的方向(即,Y方向)平行的柱中。因此,電子在Y方向上移動不會經受任何電磁力。然而,電子在其他方向上的移動可經受電磁力。
在圖1所示實施例中,第一電極130a及第二電極130b可設置在腔室100的側壁104上,使得電極130a、130b位於腔室100內。電極可各自與電源(例如電極電源175)電連通。圖2示出圖1的離子源10的剖視圖。在此圖中,陰極110被示出為與離子源10的第一端部105相對。第一電極130a及第二電極130b被示出位於腔室100的相對的側壁104上。磁場190被示出為在Y方向上被引導到頁面之外。在某些實施例中,電極130a、130b可通過使用絕緣體與腔室100的側壁104分離。從電極電源175到第一電極130a及第二電極130b的電連接可通過將導電材料從腔室100的外部傳遞到相應的電極來實現。
陰極110、斥拒極120、第一電極130a及第二電極130b中的每一者均由導電材料(例如金屬)製成。這些組件中的每一者均可與壁101實體分離,從而可對每個組件施加不同於接地的電壓。
設置在提取板102上的可為提取開孔140。在圖1中,提取開孔140設置在平行於X-Y平面(平行於頁面)的一側上。此外,儘管未示出,但離子源10還包括氣體入口,待電離的氣體通過所述氣體入口被引入腔室100。
控制器180可與所述電源中的一者或多者連通,以使得由這些電源供應的電壓或電流可被修改。控制器180可包括處理單元181,例如微控制器、個人計算機、專用控制器或另一合適的處理單元。控制器180還可包括非暫時性存儲元件,例如半導體存儲器、磁性存儲器或另一合適的存儲器。此種非暫時性存儲元件可包含使得控制器180能夠執行本文所述功能的指令及其他數據。
在操作時,陰極110發射電子。這些電子可能受腔室100內的磁場及電場的約束,從而與原料氣體碰撞以產生電漿150。可使用腔室100外部的電極來通過提取開孔140從電漿150提取離子。
如上所述,在某些實施例中,在升高的溫度下操作離子源是有利的。這些升高的溫度可有助於防止材料沉積在腔室100內的組件上。例如,當電離碳系種類時,碳傾向於積聚在內表面、
斥拒極120及電極130a、130b上。使這種沉積最小化的一種方式是增加腔室100內的溫度,且特別是增加斥拒極120及電極130a、130b的溫度。
如上所述,斥拒極120及電極130a、130b可附接到由腔室基底198支撐的外部夾具195(參見圖2),外部夾具195可處於較低的溫度(例如低於400℃)下。然而,可能期望將斥拒極120及電極130a、130b保持在與腔室100內的溫度更接近的溫度下,所述溫度可為600℃或大於600℃。
為實現此目標,可對斥拒極120及電極130a、130b的設計進行若干修改。圖3A示出具有這些修改的斥拒極120的剖視圖。圖3B示出斥拒極120的等距視圖。首先,與具有壓配合到圓盤後部的中心桿的傳統斥拒極相比,本發明斥拒極120利用輪輻結構。具體來說,多個輪輻200從柱210向外突出。柱210可與斥拒極盤220同心,斥拒極盤220可為圓形或圓柱形的。儘管柱210被示出為直圓柱形組件,但應理解,柱210可折曲或彎曲以與外部夾具195附接。此外,在一些實施例中,柱210的橫截面可不是圓形的。
此外,儘管使用術語「盤(disk)」,但應理解,斥拒極盤可採用其他形狀,例如正方形、矩形、D形或其他形狀。
這些輪輻200可相對於柱210的中心軸線211以角度φ從柱210朝向斥拒極盤220的外邊緣向外突出。通過使輪輻以角度φ突出,輪輻的長度從柱210到斥拒極盤220增加。例如,如
果每個輪輻200相對於柱210的中心軸線211以φ=45°的角度延伸,則輪輻200比其原本將具有的長度長41%。輪輻200的長度的此種增加會降低傳導性。當然,也可使用其他φ值。此外,每個輪輻200可從中心軸線211以不同的角度突出。換句話說,輪輻200從柱210延伸到斥拒極盤的後表面,且在與斥拒極盤220的中心軸線不同的位置處連接到後表面。
輪輻200的配置可能受腔室100限制。例如,通常,孔107可設置在腔室100的第二端部106中,以允許斥拒極的桿從中穿過。此孔107的直徑可被優化為盡可能小,以將通過孔107洩漏的氣體量最小化,同時防止電弧放電。因此,在某些實施例中,輪輻200的向外延伸發生在孔107之前的腔室100內。
在其他實施例中,孔107的直徑可更大,使得輪輻200的向外延伸開始於腔室100的外部。
輪輻200可具有任何合適形狀的橫截面,例如但不限於圓形、矩形、六邊形、蜂窩狀、卵形及三角形。
由於斥拒極120被施加電偏壓,因此輪輻200由例如金屬等導電材料構成。
在某些實施例中,輪輻200彼此等距。換句話說,相鄰輪輻200之間的角距離可為相同的角度θ。例如,如圖4所示,如果存在三個輪輻200,則這些輪輻200可分離θ=120°。如果使用四個輪輻,則輪輻200可分離θ=90°。換句話說,對於N個輪輻,角度間隔可為θ=360°/N。通過使輪輻等距,可最佳地支撐斥拒極
盤220。此外,可改善熱均勻性。
在某些實施例中,外部夾具的熱傳導性進一步降低。如圖3A所示,柱210的最靠近斥拒極盤220的一部分可為中空的。換句話說,柱210的遠側端部可為實心的。中空部分212可設置在輪輻200與實心部分之間。在一個實施例中,柱210的中空部分212是環形環。以此種方式,導電材料的量可顯著減少。例如,假設柱的外半徑為R。柱的橫截面積簡單地為πR2。如果柱現在被製作成中空的且內半徑為r,則中空柱的橫截面積現在是π(R2-r2)。如果內半徑是外半徑的70%(即r=0.7*R),則橫截面積減少一半。此進一步減少傳遞到外部夾具195的熱量。
然而,中空部分212可不是環形環。例如,在一個實施例中,輪輻延伸部201在向外延伸之前從柱210的實心部分延伸一段距離。這些輪輻延伸部201平行於中心軸線延伸。例如,圖3A到圖3B及圖4示出僅沿著柱210的圓周的一部分的輪輻延伸部201。輪輻延伸部201對應於相應的輪輻200,且平行於柱從柱210的實心端部延伸到輪輻200。
儘管此部分被稱為中空的,但應理解,可在此區中設置不同於柱210的其餘部分的材料。例如,柱210的實心部分可由實心金屬構成,而中空部分212可包含粉末或黏合劑,如下面更詳細闡述的。因此,術語「中空部分」表示此部分不是由實心金屬製成的。
輪輻200及可選的柱210的中空部分212的使用可減少
從斥拒極盤220傳遞到外部夾具195的熱量。因此,這兩個修改解決了從斥拒極盤220到外部夾具195的熱傳導問題。
可結合額外的修改來減少來自斥拒極盤220的側面的熱輻射。具體來說,當斥拒極120被加熱時,一些熱量從斥拒極盤220的側面朝向離子源10的壁101輻射。此種輻射會降低斥拒極盤220的溫度。此外,此種輻射也有助於斥拒極盤220的溫度不均勻性。由於熱量從斥拒極盤220的側面輻射,且熱量通過柱210傳導,因此斥拒極盤220的前表面的中心通常處於與斥拒極盤220的前表面的外邊緣不同的溫度下。
為減少從斥拒極盤220的側面發射的輻射量,可使用輻射屏蔽體221。這些輻射屏蔽體221會減少到斥拒極盤220的側面的傳導路徑。例如,圖3A及圖3B示出呈溝槽222形式的輻射屏蔽體221,溝槽222可為同心的。這些溝槽222可具有不同的深度範圍。在一個實施例中,如圖3A所示,所有溝槽222均具有相同的深度。在其他實施例中,一些溝槽可比其他溝槽222更深或更淺。在某些實施例中,溝槽222的寬度對其深度的比率可處於0.25:1與3:1之間,但也可使用其他比率。在某些實施例中,溝槽222的深度可為斥拒極盤220的總厚度的至少25%,但也可使用其他深度,例如50%、75%或大於75%。溝槽222從斥拒極盤220的後表面向內延伸,使得斥拒極盤220的前表面不受輻射屏蔽體221影響。
圖3A示出用作輻射屏蔽體221的兩個同心溝槽222。然
而,溝槽222的數目不受本發明限制。此外,每個溝槽222的深度及寬度可與其他溝槽相同或不同。另外,在多於兩個溝槽的情況下,相鄰溝槽之間的間隔可相同或可不同。
如圖3A所示,通過使用溝槽222,從斥拒極盤220的中心到邊緣的傳導路徑顯著縮短。這是因為輻射屏蔽體221顯著減小了到斥拒極盤220的側面的路徑的厚度。
當然,輻射屏蔽體221也可採取其他形式。例如,圖5示出其中在靠近斥拒極盤220的外邊緣的後表面上形成多個空腔223而非溝槽的實施例。這些空腔223可為圓形的,或者可為任何其他形狀。這些空腔223會縮短從斥拒極盤220的中心到外邊緣的熱路徑。儘管圖5示出空腔223的兩個環,但應理解,可採用更多或更少的環。此外,如圖5所示,一個環中的空腔223可相對於相鄰環中的空腔偏移。在其他實施例中,相鄰環中的空腔223可對準。另外,在不同的環中,空腔223的大小可相同或可不同。在某些實施例中,空腔223的深度可為斥拒極盤220的厚度的至少50%,但可使用其他厚度。
儘管圖5示出圓形空腔,但其他形狀也是可能的。例如,圖6示出環形狀的曲線空腔224。同樣,可使用多個環來進一步縮短到外邊緣的傳導路徑。
在所有這些實施例中,輻射屏蔽體221包括一個或多個從後表面延伸到斥拒極盤220中的空腔或溝槽。這些空腔或溝槽可靠近斥拒極盤220的外邊緣設置。在其他實施例中,空腔或溝
槽可設置成更靠近斥拒極的中心。這些特徵會減少朝向斥拒極盤220的邊緣的熱傳導,從而允許更多的熱量保持集中在斥拒極盤220的中心。
本文闡述的斥拒極120的形狀可使得其難以使用鑄造或傳統的減材製造技術(subtractive manufacturing technique)來製造。
增材製造技術(additive manufacturing technique)允許以不同方式來製造組件。增材製造技術不像傳統技術那樣移除材料,而是以逐層方式來形成組件。一種此種增材製造技術被稱為直接金屬激光燒結(Direct Metal Laser Sintering,DMLS),其使用粉末床(powder bed)及激光。將一薄層粉末施加到工件空間。僅在要形成組件的區域中使用激光來燒結粉末。金屬粉末的剩餘部分保留下來並形成粉末床。激光製程完成後,在現有的粉末床的頂部上施加另一薄層金屬粉末。再次使用激光來燒結特定位置。此過程可重複任意次數。
儘管DMLS是一種技術,但存在許多其他技術。例如,除了不是使用激光來燒結粉末,而是將液體黏合劑施加到要形成組件的區域之外,金屬黏合劑噴射類似於DMLS。增材製造的另一實例是電子束印刷。在此實施例中,從噴嘴擠出金屬細絲,且在擠出金屬時使用激光或電子束來熔融所述金屬。在此實施例中,金屬僅被施加到將成為組件的一部分的那些區域。當然,也可採用其他類型的增材製造,例如熔融絲製作定向能量沉積(fused
filament fabrication directed energy deposition)或片材疊層。
由於用於構造組件的逐層方式,可產生傳統減材製造技術不可能產生的形狀及其他方面。
圖2所示的斥拒極120可使用這些增材製造技術中的一者或多者來製造。例如,逐層製程可從斥拒極120的前表面開始,且從所述表面生長斥拒極。
在DMLS製造技術中,粉末可被設置或捕獲在柱210的中空部分212內。注意,此種粉末的熱導率低於用於形成斥拒極120的其餘部分的金屬。因此,儘管在中空部分212中設置有材料,但所述材料不同於柱210的其餘部分,且與實心柱相比,熱導率降低。
在某些實施例中,斥拒極120形成為單個整體式組件。換句話說,斥拒極盤220、柱210及輪輻200均為單個組件。此斥拒極120可由鎢構成,但也可使用其他金屬。
儘管以上公開內容闡述了斥拒極120,但應理解,本文闡述的修改中的一者或多者也可應用於電極130a、130b。在某些實施例中,電極130a、130b可為矩形或不同的形狀。此外,在某些實施例中,電極130a、130b的前表面可為凹的或凸的。在這種情境下,中心軸線被定義為電極板的中心。例如,中心軸線可被定義為穿過所述板的線,所述線與板的每個隅角等距。在此實施例中,輻射屏蔽體可與外邊緣同心,且具有與外邊緣相同的形狀。在此上下文中,「同心(concentric)」意味著輻射屏蔽體與外邊緣
共享共同的中心軸線及共同的形狀。例如,電極130a、130b可為矩形的。在此實施例中,輻射屏蔽體可為同心矩形溝槽,或者為佈置成一個或多個同心矩形的多個空腔。圖7A到圖7C示出可與矩形電極一起使用的輻射屏蔽體的各種實施例。在圖7A中,在電極板235的後表面上使用若干溝槽231作為輻射屏蔽體230。這些溝槽231圍繞中心軸線239同心。在圖7B中,使用矩形形狀的多個線性空腔237作為輻射屏蔽體230。同樣,可使用多個矩形來進一步縮短到電極板235的外邊緣的傳導路徑。在圖7C中,使用多個圓形空腔238作為輻射屏蔽體230。同樣,可使用多個空腔來進一步縮短到電極板235的外邊緣的傳導路徑。
儘管圖7A到圖7C示出矩形的電極板235,但應理解,也可使用其他形狀。例如,電極板235可為卵形、橢圓形、圓形及任何合適的形狀。在這些實施例中,輻射屏蔽體230可具有與電極板相同的形狀。
儘管以上公開內容闡述了對斥拒極120的結構修改,以增加其溫度並改善其熱均勻性,但本文闡述的修改可用於提供其他特性。例如,可能期望斥拒極盤220的一部分具有與斥拒極盤220的其餘部分不同的溫度。
例如,假設期望斥拒極盤220的第一部分比斥拒極盤220的其他部分更熱。已知熱能由輪輻200及柱210傳導,可對輪輻200及輪輻延伸部201進行重新配置,使得:o存在更少的終止於此第一部分中的輪輻;
o終止於第一部分附近的輪輻的橫截面積小於其他輪輻的橫截面積;或者o與終止於第一部分附近的任何輪輻相關聯的輪輻延伸部201的橫截面積小於其他輪輻延伸部的橫截面積。
相反,如果期望斥拒極盤220的第二部分比斥拒極盤220的其他部分更冷,則可採取相反的動作。換句話說,可對輪輻200及輪輻延伸部201進行重新配置,使得:o存在更多的終止於此第二部分中的輪輻;o終止於第二部分附近的輪輻的橫截面積大於其他輪輻的橫截面積;或者o與終止於第二部分附近的任何輪輻相關聯的輪輻延伸部201的橫截面積大於其他輪輻延伸部的橫截面積。
換句話說,輪輻200可彼此不等距,如圖4所示。為產生熱部分,熱部分中的輪輻的角密度小於其他部分中的角密度。類似地,為產生冷部分,冷部分中的輪輻的角密度大於其他部分中的角密度。
另外,已知熱能從斥拒極盤220的邊緣輻射,可對輻射屏蔽體221進行修改以影響斥拒極盤220的部分的溫度。再次假設期望斥拒極盤220的第一部分比斥拒極盤220的其他部分更熱。已知熱能由斥拒極盤220的邊緣輻射,可對輻射屏蔽體進行重新配置,使得:o在此第一部分中存在更多輻射屏蔽體;
o第一部分中的輻射屏蔽體的深度大於其他部分中的深度;或者o第一部分中的輻射屏蔽體的寬度大於其他部分中的寬度。
相反,如果期望第二部分比其他部分更冷,則可對輻射屏蔽體進行重新配置,使得:o在此第二部分中存在更少輻射屏蔽體或沒有輻射屏蔽體;o第二部分中的輻射屏蔽體的深度小於其他部分中的深度;或者o第二部分中的輻射屏蔽體的寬度小於其他部分中的寬度。
換句話說,在這些實施例中,輻射屏蔽體221可為不對稱的。例如,如果使用溝槽作為輻射屏蔽體,則溝槽可不為同心圓。相反,溝槽中的一者或多者可為C形的。類似地,如果使用空腔,如圖5或圖6所示,則空腔的數目在斥拒極盤220的不同部分中可不同。
如果需要,則這些技術也可應用於電極板235。
作為實例,將提取板102保持在盡可能高的溫度下可能是有利的。這可將提取板102上的沉積最小化。通過修改輪輻200及輪輻延伸部201,斥拒極盤220的上半部分可為斥拒極盤220的最熱部分。如果從斥拒極盤220的上半部分減少或消除輻射屏蔽體221,則此種多餘的熱量可能從斥拒極盤220朝向提取板102輻射,從而進一步對其進行加熱。類似的技術也可應用於電極板235。
在又一實施例中,盡可能降低斥拒極的溫度可能是有利的。圖8示出一個此種實施例的斥拒極250。在此實施例中,柱可不具有中空部分。相反,實心柱270可更好地將熱能從斥拒極盤220傳導出去。此外,實心柱270可使用實心張開端部260而非各別輪輻200附接到斥拒極盤220。在一個實施例中,實心柱270的在腔室100內的部分以角度φ向外張開。這會在斥拒極盤220與實心柱270之間形成更大的接觸面積,從而允許更多的熱能從斥拒極盤220傳導出去。此斥拒極250可為整體式組件,使得實心柱270、實心張開端部260及斥拒極盤220均為一個組件。為了進一步降低斥拒極盤220的溫度,斥拒極盤220可不具有任何輻射屏蔽體,從而允許熱量從斥拒極盤220的邊緣輻射。類似的技術也可應用於電極板235。
本申請中的上述實施例可具有許多優點。如上所述,輪輻200、輪輻延伸部201及輻射屏蔽體221可用於增加斥拒極的溫度。在一個測試中,斥拒極120被構造成如圖3A所示。在第二測試中,使用了具有帶有壓配合桿的實心圓盤的傳統斥拒極。在兩次測試中,假設對斥拒極盤的前表面施加了100W/m2。假設附接在柱或桿的遠側端部處的外部夾具195處於400℃下。假設腔室的內部溫度為600℃。測試表明,與傳統斥拒極相比,新設計的斥拒極中的斥拒極盤的前表面的溫度增加了100℃以上。換句話說,新的斥拒極設計顯著減少了到外部夾具195的熱傳導。此種溫度的增加可減少斥拒極上的沉積,特別是碳在斥拒極上的沉積。此外,
沒有使用外部加熱元件或加熱反射器來保持腔室內的溫度。此會簡化離子源的設計及操作。
在其他實施例中,輪輻200、輪輻延伸部201及輻射屏蔽體221可被設計成在斥拒極盤220的表面上產生熱量熱點或冷點。
本發明的範圍不受本文所述的具體實施例限制。實際上,通過閱讀以上說明及附圖,對所屬領域中的一般技術人員來說,除本文所述實施例及修改以外,本發明的其他各種實施例及對本發明的各種修改也將顯而易見。因此,這些其他實施例及修改都旨在落在本發明的範圍內。此外,儘管本文中已針對特定目的而在特定環境中在特定實施方案的上下文中闡述了本發明,然而所屬領域中的一般技術人員將認識到,本發明的效用並非僅限於此且可針對任何數目的目的在任何數目的環境中有益地實施本發明。因此,應考慮到本文所述本發明的全部範圍及精神來理解以上提出的權利要求書。
100:腔室
106:第二端部
107:孔
120:斥拒極
200:輪輻
201:輪輻延伸部
210:柱
211:中心軸線
212:中空部分
220:斥拒極盤
221:輻射屏蔽體
222:溝槽
φ:角度
Claims (14)
- 一種在離子源中使用的斥拒極,包括:斥拒極盤,適於設置在所述離子源內,具有厚度、前表面、後表面、外邊緣、及中心軸線;柱,用於附接到夾具;及多個輪輻,從所述柱向外延伸到所述斥拒極盤,且在與所述斥拒極盤的所述中心軸線不同的位置處接觸所述斥拒極盤的所述後表面,其中所述斥拒極盤、所述柱及所述多個輪輻為整體式組件。
- 如請求項1所述的斥拒極,其中所述斥拒極盤的所述後表面包括一個或多個輻射屏蔽體。
- 如請求項2所述的斥拒極,其中所述輻射屏蔽體包括一個或多個靠近所述斥拒極盤的所述外邊緣設置的同心溝槽。
- 如請求項1所述的斥拒極,其中所述柱的至少一部分是中空的。
- 如請求項4所述的斥拒極,其中中空的所述部分包括輪輻延伸部,所述輪輻延伸部中的每一者對應於相應的輪輻,所述輪輻延伸部設置在所述柱的實心部分與所述輪輻之間,且平行於所述柱的中心軸線延伸。
- 一種離子源,包括:腔室,包括多個壁以及第一端部及第二端部,其中所述第二端部包括孔; 陰極,設置在所述腔室的所述第一端部上;以及斥拒極,設置在所述腔室的所述第二端部上;其中所述斥拒極包括:斥拒極盤,設置在所述腔室內,具有厚度、前表面、後表面、外邊緣、及中心軸線;柱;以及多個輪輻,從所述柱向外延伸到所述斥拒極盤,所述多個輪輻在與所述斥拒極盤的所述中心軸線不同的位置處接觸所述斥拒極盤的所述後表面,其中所述斥拒極盤、所述柱及所述多個輪輻為整體式組件。
- 如請求項6所述的離子源,其中所述輪輻設置在所述腔室內。
- 如請求項6所述的離子源,更包括位於所述腔室外部、附接到所述柱且用於支撐所述斥拒極的夾具,其中所述柱的位於所述夾具與所述斥拒極盤之間的一部分是中空的。
- 如請求項8所述的離子源,其中輪輻延伸部從所述柱的靠近所述夾具設置的實心部分延伸到所述輪輻,且平行於所述柱的中心軸線延伸。
- 如請求項6所述的離子源,更包括設置在所述腔室的壁上的電極,所述電極包括:電極板,設置在所述腔室內,具有厚度、前表面、後表面、外邊緣及中心軸線; 電極柱,用於附接到夾具;及多個輪輻,從所述電極柱向外延伸到所述電極板,所述多個輪輻在與所述電極板的所述中心軸線不同的位置處接觸所述電極板的所述後表面。
- 一種在離子源內使用的電極,包括:電極板,適於設置在所述離子源內,具有厚度、前表面、後表面、外邊緣、及中心軸線;柱,用於附接到夾具;及多個輪輻,從所述柱向外延伸到所述電極板,且在與所述電極板的所述中心軸線不同的位置處接觸所述電極板的所述後表面,其中所述電極板、所述柱及所述多個輪輻為整體式組件。
- 如請求項11所述的電極,其中所述電極板的所述後表面包括一個或多個輻射屏蔽體。
- 如請求項12所述的電極,其中所述輻射屏蔽體包括一個或多個靠近所述電極板的外邊緣設置的溝槽或空腔。
- 如請求項11所述的電極,其中所述柱的至少一部分是中空的,且其中中空的所述部分包括輪輻延伸部,所述輪輻延伸部中的每一者對應於相應的輪輻,所述輪輻延伸部設置在所述柱的實心部分與所述輪輻之間,且平行於所述柱的中心軸線延伸。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/565,805 | 2019-09-10 | ||
US16/565,805 US10854416B1 (en) | 2019-09-10 | 2019-09-10 | Thermally isolated repeller and electrodes |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202125557A TW202125557A (zh) | 2021-07-01 |
TWI752601B true TWI752601B (zh) | 2022-01-11 |
Family
ID=73554680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109128855A TWI752601B (zh) | 2019-09-10 | 2020-08-25 | 離子源、在離子源中使用的隔熱斥拒極以及電極 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10854416B1 (zh) |
JP (1) | JP7314408B2 (zh) |
KR (1) | KR20220054678A (zh) |
CN (1) | CN114375484B (zh) |
TW (1) | TWI752601B (zh) |
WO (1) | WO2021050206A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10854416B1 (en) | 2019-09-10 | 2020-12-01 | Applied Materials, Inc. | Thermally isolated repeller and electrodes |
US11127558B1 (en) | 2020-03-23 | 2021-09-21 | Applied Materials, Inc. | Thermally isolated captive features for ion implantation systems |
US11664183B2 (en) | 2021-05-05 | 2023-05-30 | Applied Materials, Inc. | Extended cathode and repeller life by active management of halogen cycle |
US11251010B1 (en) * | 2021-07-27 | 2022-02-15 | Applied Materials, Inc. | Shaped repeller for an indirectly heated cathode ion source |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201435955A (zh) * | 2013-03-15 | 2014-09-16 | Nissin Ion Equipment Co Ltd | 用於離子源之磁場源 |
TW201526067A (zh) * | 2013-12-25 | 2015-07-01 | Sen Corp | 支撐結構及使用該支撐結構之離子產生裝置 |
US9312113B1 (en) * | 2014-12-09 | 2016-04-12 | Bruker Daltonics, Inc. | Contamination-proof ion guide for mass spectrometry |
US20170213684A1 (en) * | 2016-01-27 | 2017-07-27 | Varian Semiconductor Equipment Associates, Inc. | Dual Material Repeller |
US20170287579A1 (en) * | 2016-04-04 | 2017-10-05 | Axcelis Technologies, Inc. | Ion source repeller shield |
CN108140524A (zh) * | 2015-10-23 | 2018-06-08 | 瓦里安半导体设备公司 | 多种带电物质用的离子源 |
US20180226218A1 (en) * | 2015-07-07 | 2018-08-09 | Value Engineering, Ltd. | Repeller, cathode, chamber wall and slit member for ion implanter and ion generating devices including the same |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1238667A (zh) * | 1968-01-29 | 1971-07-07 | ||
JP2760088B2 (ja) * | 1989-10-09 | 1998-05-28 | 日新電機株式会社 | イオン源 |
JP2700280B2 (ja) * | 1991-03-28 | 1998-01-19 | 理化学研究所 | イオンビーム発生装置および成膜装置および成膜方法 |
US5262652A (en) * | 1991-05-14 | 1993-11-16 | Applied Materials, Inc. | Ion implantation apparatus having increased source lifetime |
JPH05114366A (ja) * | 1991-10-21 | 1993-05-07 | Nissin Electric Co Ltd | イオン源 |
EP0637052B1 (en) * | 1993-07-29 | 1997-05-07 | Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno | Method for producing a stream of ionic aluminum |
JP3528305B2 (ja) * | 1995-03-08 | 2004-05-17 | 石川島播磨重工業株式会社 | イオン源 |
US7838850B2 (en) * | 1999-12-13 | 2010-11-23 | Semequip, Inc. | External cathode ion source |
US6777686B2 (en) * | 2000-05-17 | 2004-08-17 | Varian Semiconductor Equipment Associates, Inc. | Control system for indirectly heated cathode ion source |
JP2004165034A (ja) * | 2002-11-14 | 2004-06-10 | Nissin Electric Co Ltd | イオン源のフィラメント寿命予測方法およびイオン源装置 |
US7102139B2 (en) * | 2005-01-27 | 2006-09-05 | Varian Semiconductor Equipment Associates, Inc. | Source arc chamber for ion implanter having repeller electrode mounted to external insulator |
JP4093254B2 (ja) * | 2005-05-20 | 2008-06-04 | 日新イオン機器株式会社 | イオン照射装置 |
US7655930B2 (en) * | 2007-03-22 | 2010-02-02 | Axcelis Technologies, Inc. | Ion source arc chamber seal |
US8330127B2 (en) * | 2008-03-31 | 2012-12-11 | Varian Semiconductor Equipment Associates, Inc. | Flexible ion source |
US8089052B2 (en) * | 2008-04-24 | 2012-01-03 | Axcelis Technologies, Inc. | Ion source with adjustable aperture |
JP4428467B1 (ja) * | 2008-08-27 | 2010-03-10 | 日新イオン機器株式会社 | イオン源 |
JP5343835B2 (ja) * | 2009-12-10 | 2013-11-13 | 日新イオン機器株式会社 | 反射電極構造体及びイオン源 |
WO2011081188A1 (ja) * | 2009-12-28 | 2011-07-07 | キヤノンアネルバ株式会社 | 四重極型質量分析装置 |
DE112011102643B4 (de) * | 2010-08-06 | 2023-05-17 | Hitachi High-Tech Corporation | Gasfeld-Ionenquelle, Ionenstrahl-Vorrichtung und Emitterspitze sowie Verfahren zur Herstellung derselben |
JP5317038B2 (ja) * | 2011-04-05 | 2013-10-16 | 日新イオン機器株式会社 | イオン源及び反射電極構造体 |
US9530615B2 (en) * | 2012-08-07 | 2016-12-27 | Varian Semiconductor Equipment Associates, Inc. | Techniques for improving the performance and extending the lifetime of an ion source |
US9633824B2 (en) * | 2013-03-05 | 2017-04-25 | Applied Materials, Inc. | Target for PVD sputtering system |
US20150034837A1 (en) * | 2013-08-01 | 2015-02-05 | Varian Semiconductor Equipment Associates, Inc. | Lifetime ion source |
US9711316B2 (en) * | 2013-10-10 | 2017-07-18 | Varian Semiconductor Equipment Associates, Inc. | Method of cleaning an extraction electrode assembly using pulsed biasing |
US9978555B2 (en) * | 2015-11-05 | 2018-05-22 | Axcelis Technologies, Inc. | Ion source liner having a lip for ion implantation systems |
KR101726189B1 (ko) * | 2015-11-12 | 2017-04-12 | 주식회사 밸류엔지니어링 | 이온주입기용 리펠러 |
US9741522B1 (en) * | 2016-01-29 | 2017-08-22 | Varian Semiconductor Equipment Associates, Inc. | Ceramic ion source chamber |
US10535499B2 (en) | 2017-11-03 | 2020-01-14 | Varian Semiconductor Equipment Associates, Inc. | Varied component density for thermal isolation |
US10854416B1 (en) | 2019-09-10 | 2020-12-01 | Applied Materials, Inc. | Thermally isolated repeller and electrodes |
-
2019
- 2019-09-10 US US16/565,805 patent/US10854416B1/en active Active
-
2020
- 2020-08-17 JP JP2022514525A patent/JP7314408B2/ja active Active
- 2020-08-17 CN CN202080061716.6A patent/CN114375484B/zh active Active
- 2020-08-17 WO PCT/US2020/046625 patent/WO2021050206A1/en active Application Filing
- 2020-08-17 KR KR1020227011283A patent/KR20220054678A/ko not_active Application Discontinuation
- 2020-08-25 TW TW109128855A patent/TWI752601B/zh active
- 2020-10-23 US US17/078,262 patent/US11239040B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201435955A (zh) * | 2013-03-15 | 2014-09-16 | Nissin Ion Equipment Co Ltd | 用於離子源之磁場源 |
TW201526067A (zh) * | 2013-12-25 | 2015-07-01 | Sen Corp | 支撐結構及使用該支撐結構之離子產生裝置 |
US9312113B1 (en) * | 2014-12-09 | 2016-04-12 | Bruker Daltonics, Inc. | Contamination-proof ion guide for mass spectrometry |
US20180226218A1 (en) * | 2015-07-07 | 2018-08-09 | Value Engineering, Ltd. | Repeller, cathode, chamber wall and slit member for ion implanter and ion generating devices including the same |
CN108140524A (zh) * | 2015-10-23 | 2018-06-08 | 瓦里安半导体设备公司 | 多种带电物质用的离子源 |
US20170213684A1 (en) * | 2016-01-27 | 2017-07-27 | Varian Semiconductor Equipment Associates, Inc. | Dual Material Repeller |
US20170287579A1 (en) * | 2016-04-04 | 2017-10-05 | Axcelis Technologies, Inc. | Ion source repeller shield |
Also Published As
Publication number | Publication date |
---|---|
JP7314408B2 (ja) | 2023-07-25 |
TW202125557A (zh) | 2021-07-01 |
CN114375484B (zh) | 2024-08-20 |
JP2022546579A (ja) | 2022-11-04 |
US20210074503A1 (en) | 2021-03-11 |
KR20220054678A (ko) | 2022-05-03 |
WO2021050206A1 (en) | 2021-03-18 |
US10854416B1 (en) | 2020-12-01 |
US11239040B2 (en) | 2022-02-01 |
CN114375484A (zh) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI752601B (zh) | 離子源、在離子源中使用的隔熱斥拒極以及電極 | |
JP5808417B2 (ja) | 電子ビームを形成するための装置 | |
JP7046175B2 (ja) | イオン注入システム、イオン注入装置及び抽出プレート | |
CN109065428B (zh) | 一种双栅控制式冷阴极电子枪及其制备方法 | |
JP7473672B2 (ja) | イオン注入システムのための熱的に絶縁された捕捉フィーチャ | |
WO2017131895A1 (en) | Dual material repeller | |
WO2020123071A1 (en) | Cylindrical shaped arc chamber for indirectly heated cathode ion source | |
CN105280461A (zh) | 一种辐射电子加热式电子枪 | |
KR102513986B1 (ko) | 이온 소스 및 호일 라이너 | |
US4156159A (en) | Self crossed field type ion source | |
WO2020118938A1 (zh) | 多悬浮栅阴极结构、电子枪、电子加速器及辐照装置 | |
JP2010153095A (ja) | イオンガン | |
TWI850898B (zh) | 環狀運動加強型離子源 | |
JP3166878U (ja) | イオンガン | |
JPH04286837A (ja) | マイクロ波管用の改良された陰極 | |
KR20230126097A (ko) | 엑스레이 장치 | |
TW202338884A (zh) | 環狀運動加強型離子源 | |
JP6489998B2 (ja) | プラズマ発生部およびプラズマスパッタ装置 |