TWI752314B - 能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構 - Google Patents

能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構 Download PDF

Info

Publication number
TWI752314B
TWI752314B TW108114927A TW108114927A TWI752314B TW I752314 B TWI752314 B TW I752314B TW 108114927 A TW108114927 A TW 108114927A TW 108114927 A TW108114927 A TW 108114927A TW I752314 B TWI752314 B TW I752314B
Authority
TW
Taiwan
Prior art keywords
piston
reciprocating
plunger
space
cylinder
Prior art date
Application number
TW108114927A
Other languages
English (en)
Other versions
TW202040001A (zh
Inventor
陳紀綸
Original Assignee
泓偊科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泓偊科技股份有限公司 filed Critical 泓偊科技股份有限公司
Priority to TW108114927A priority Critical patent/TWI752314B/zh
Publication of TW202040001A publication Critical patent/TW202040001A/zh
Application granted granted Critical
Publication of TWI752314B publication Critical patent/TWI752314B/zh

Links

Images

Landscapes

  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

本發明係一種能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構,其中,一活塞氣缸筒係呈中空狀,其內開設有一活塞往復空間,以使一活塞能在其內往復移動,該活塞氣缸筒的兩端分別依序組裝有一缸座與一柱塞缸筒,且二心軸之一端會分別被固定至該活塞之兩相對側面的軸心位置,以令各該心軸鄰近另一端之部位能分別成為柱塞,並能氣密但可往復移動地被定位在對應之柱塞缸筒的柱塞往復空間內,二電磁閥能啟閉切換加壓空氣進出該活塞往復空間,以驅動該活塞執行往復運動,並使各該柱塞將柱塞往復空間內的清洗液輸出至一加壓清洗液儲存槽內,二衝程感測器能裝設在活塞氣缸筒上,以感測出該活塞執行往復運動時之精準衝程位置,以切換對應之該等電磁閥穩定且精準地執行啟閉動作,從而令該活塞及各該柱塞能精準且穩定地執行往復運動,為清洗液正確地施加壓力。

Description

能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構
本發明係關於一種氣動式雙心軸泵浦結構,尤指一種配備有對稱雙心軸及特殊軸封結構設計,而能被水平設置,且安裝及配管均極為容易的氣動式泵浦。
按,半導體工業的製造方法係在矽半導體上製造電子元件(其產品包括:動態記憶體、靜態記億體、微虛理器...等),各該電子元件均係由精密且複雜的積體電路(Integrated Circuit,簡稱IC)所組成,而在IC製作過程中尚必需應用到晶片氧化層成長、微影技術、蝕刻、清洗、雜質擴散、離子植入及薄膜沉積...等諸多精密製程技術,始能共同完成整個製程,製作出所期望之各該電子元件。一般言,許多電子元件的製程均包括多達二百至三百個步驟,近二十年來,隨著電子資訊產品突飛猛進地朝著輕薄短小化及多功能化的方向發展,半導體製程亦朝著高密度及自動化生產的方向前進,而IC製造技術的發展趨勢,大致仍朝著努力克服晶圓直徑變大,元件線幅縮小,製造步驟增加,製程技術特殊化的方向發展,以期能在提供產品更好特性的前提下,有效控制製程上的因難度,從而大幅提升製程上的產品良率。
查,半導體業主要區分為材料(矽晶棒)製造、積體電路晶圓 製造及積體電路構裝等三大類,目前國內半導體業主要係偏重在後兩類,至於矽晶棒材料仍係仰賴自國外進口;國內積體電路晶圓製造業者共計約有11家,其中,聯華、台積及華邦各有2個工廠,總計約有14個工廠,然而,目前仍有業者在繼續擴廠中,其工廠主要係分佈在新竹科學園區,年產量逾400萬片;而積體電路構裝業者共計約有20家工廠,遍佈於台北縣、新竹縣、台中縣及高雄市等地區,尤其以個該地區之加工出口區為早期半導體業者在台灣設廠開發時之主要據點,年產量逾20億個。
一般言,固體材料依其導電特性的良窳可被區分成導體、半導體及絕緣體等三大類,材料元件內自由電子濃度(n值)係與其傳導率成正比,良好導體之自由電子濃度相當大(約1028個e-/m3),絕緣體之自由電子濃度非常小(約107個e-/m3左右),半導體之自由電子濃度則係介於前二數值間;按,目前的半導體材料均係採用矽當導體,此乃因矽晶體內每個原子貢獻四個價電子,矽原子內部的原子核帶有四個正電荷,而相鄰原子間的電子對,構成了原子間的束縛力,因此,電子被緊緊地束縛在原子核附近,而相對地降低了其傳導率,僅當溫度升高時,晶體的熱能會使某些共價鍵失去價電子鍵,而造成傳導,這種不完全的共價鍵稱為電洞,它亦成為電荷的載子。據此,在純半導體中,電洞數目係等於自由電子數,當將少量的三價或五價原子加入純矽中,乃形成有外質的(extrinsic)或摻有雜質的(doped)半導體。並可分為施體及受體,茲扼要說明如下:1、施體(N型):請參閱第1圖所示,當摻入具五價電子的雜質(如:砷),則所添入的原子將取代矽原子,且第五個價電子將成為不受束縛的電子,即成為電流載子,因而貢獻了一個額外的電子載子,稱為施體(donor); 2、受體(P型):請參閱第2圖所示,當將具三價電子的雜質(如:硼)摻入純矽中,僅可填滿三個共價鍵,第四個空缺將形成一個電洞,因而稱這類雜質被稱為受體(acceptor)。
半導體所製成之各種電子產品即係依上述基本原理,就不同工業需求,使用不同的矽晶圓、光阻劑、顯影液、酸蝕刻液及多種特殊氣體...等原料作為製程原料或添加物,據以共同完成精密且複雜的積體電路製程。茲為彰顯本發明在積體電路製程中的重要意義及價值,謹先特別針對積體電路的製造流程扼要說明如下,以資瞭解:按,半導體工業所使用之材料一般均包含單一成分組成的半導體(如:矽(Si)、鍺(Ge)等半導體係由化學週期表上第四族的元素矽(Si)或鍺(Ge)組成)及多成分組成的半導體(含二至三種元素,如:鎵砷(GaAs)半導體係由化學週期表上第三族的鎵元素及第五族的砷元素所組成);其中,在1950年代早期,鍺雖曾被視為主要的半導體材料,但是,由於鍺製品在不甚高溫的狀態下,常會有高漏失電流的現象,因此,自1960年代起,矽晶製品乃取代了鍺製品,而成為積體電路製造上所使用的主要半導體材料。
誠如前述,請參閱第3圖所示,半導體及積體電路產業依其製造內容及製造流程的不同,可概分為半導體材料(矽晶圓)之加工製造(上游)、晶圓之積體電路製造(wafer fabrication)(中游)及晶圓切割、構裝(wafer package)(下游)等三大類型;其中,復請參閱第3圖所示,上游矽晶圓的製程係指自矽晶石原料中提煉出矽多晶體(polycrystalline silicon)到生產出矽晶片(wafer),俟此類矽晶片再經過研磨加工及多次磊晶爐(Epitaxial reactor)處理後,即能被製成研磨晶圓且成長成磊晶晶圓的製程,而令其用途更為 特殊,且具備極高的附加價值;嗣,中游晶圓之積體電路製程則係針對上述各種規格之晶圓,根據不同需求,利用各式不同的電路設計、光罩設計、氧化、擴散、離子植入、蝕刻及清洗...等諸多繁複且精密的製程技術,據以生產出各種不同用途之晶圓成品;最後,在下游晶圓切割及構裝製程中,則係對中游製程完成之晶圓成品,進行晶圓切割,以將該晶圓成品切割成片狀的晶粒(dice),再經晶片黏著、打線焊接、封膠、去筋打彎、接腳電鍍、成品測試及包裝後,始能生產出所需之各式半導體電子元件。查,在前述中游晶圓之積體電路製程中,主要係以矽晶圓成品為基本材料,經表面氧化膜成形及感光劑塗佈處理後,結合所需之光罩,進行曝光及顯像等處理,即能在該矽晶圓成品上形成所需的各式電路;嗣,再經蝕刻、去除光阻液的及添加不純物等處理後,即能進行金屬蒸鍍處理,以使所需之電路、元件接點及電極...等得以形成在該矽晶圓成品上;然後,以晶圓探針對該矽晶圓成品進行檢測後,即能進入下游晶圓切割及構裝製程,將該矽晶圓成品切割成晶片後,再依序執行晶片粘著、打線焊接、封裝、電鍍、測試及包裝...等處理步驟,即能製作出所期望之各式電子產品。茲謹就前述製程中各重要製程環節,概述如下,以資瞭解:(一)氧化與膜附著:一般言,在原料晶圓投入前述製程前,其表面均會塗佈有一層由Al2O3與甘油混合溶液所形成且厚約2μm之保護膜,該保護膜與晶圓表面及角落之污損區域係藉化學蝕刻,予以去除;嗣,為了在晶圓上製作出不同的元件及積體電路,尚必需先在晶圓上長出下列之不同薄層:(1-1)熱氧化層:熱氧化層中包括閘極氧化層(gate oxide)與 場氧化層(field oxide)等二重要之薄層,此二薄層均係以熱氧化處理程序依下列化學反應式製成:Si(固體)+O2(氣體)→SiO2(固體) Si(固體)+2H2O(氣體)→SiO2(固體)+2H2(氣體)在現代積體電路製程中,係以氯介入氧化劑來改善氧化層的品質、Si-SiO2及接合面的性質,氯包含在氯氣、氯化氫HCl或二氯乙烷中,其能將Si-SiO2,接合面的雜質反應成揮發性氯化物,多餘的氯會增加介質的崩潰強度,減低接合面缺陷密度;(1-2)介電質層:主要係以化學蒸氣附著法(CVD)、化學蒸氣附著法(LPCVD)或電漿化學蒸氣附著法(PCVD,或電漿附著法),令介電質層能穩固地附著至晶圓表面,從而能用以隔離及保護不同種類的元件及積體電路;其中,化學蒸氣附著法所生成的二氧化矽並不取代熱生長的氧化層,因為後者具有較佳的電子性質;二氧化矽層可使用不同的附著法,其中低溫附著(300~500℃)之氧化層可由矽烷、雜質(如:磷)及氧氣依下列化學反應式所形成:SiH4+O2→SiO2+2H2 4PH3+5O2→2P2O5+6H2在中等溫度(500~800℃)的附著過程中,二氧化矽可由四乙經基矽Si(OC2H5)4依下列化學反應式,在LPCVD反應器中分解形成:Si(OC2H5)4→SiO2+副產物在高溫(900℃)的附著過程中,二氧化矽則可由二氯矽烷(SiCl2H2)與笑氣(N2O)依下列反應式,在低壓下形成: SiCl2H2+2N2O→SiO+2N2+2HCI,其中,氮化矽層係用作保護元件,能作為矽氧化作用時的遮蔽層,用以覆蓋不欲氧化的矽晶部分,氮化矽的附著是在中等溫度(750℃)的LPCVD程序或低溫(300℃)的電漿CVD程序中形成。在LPCVD程序中,二氯矽烷與氨在減壓下,能於700~800℃間,依下列反應式,反應生成氮化矽層:SiCl2H2+4NH3→Si3N4+6HCl+6H2
(1-3)矽晶聚合層:或稱聚合矽,在Metal Oxide Semiconductor(MOS)元件中係作為閘極接線材料;在多層金屬處理中係作為導電材料;在低能階接面元件中則係作為接觸材料,亦可作為擴散來源,用以生成低能階接面及矽晶體的歐姆接觸。其他用途包括電容及高電阻的製作。低壓反應器操作在600~650℃間,能依下列反應式,將矽烷熱解生成矽聚合體:SiH4→Si+2H2
(1-4)金屬層:係以鋁及矽化物來形成低電阻連接N+、P+及矽聚合物層的金屬接觸,及具整流作用之金屬-半導體能障;針對金屬層的處理包含內部聯線、歐姆接觸及整流金屬半導體接觸等金屬層的形成;金屬層雖可使用不同方法予以鍍上,但目前仍以物理蒸鍍法及化學蒸鍍法最為重要,且鋁及矽化金屬則是最常使用到兩種重要金屬。在金屬層處理中,化學蒸鍍法(CVD)提供了相當優良的同型階梯涵蓋層,且可一次性地製成大量晶圓。最新積體電路的CVD金屬附著甚至能應用至難熔金屬(如:鎢)的附著,令其能依下列化學反應式熱解及還原:WF6→W+3F2
WF6+3H2→W+6HF
(二)擴散與離子植入:擴散及離子植入是用來控制半導體中雜質量的關鍵製程;其中,擴散程序係使用植入雜質或雜質的氧化物作氣相附著,將雜質原子植入鄰近半導體晶圓表面的區域。雜質濃度由表面成單調遞減,雜質的分佈固形係取決於擴散溫度及時間;在離子植入程序中,雜質係以高能呈離子束植入半導體中;植入雜質的濃度在半導體內存在一高峰,雜質的分佈圖形係取決於植入離子的質量及能量;離子植入程序的優點係在於雜質量的精確控制,雜質分佈的再重整及能在低溫下操作。雜質的擴散基本上是將半導體晶圓置於熔爐中;然後,以帶雜質原子的惰性氣體通過;一般言,在矽擴散作用中,最常使用的雜質為硼、砷及磷等三元素,這三種元素在矽中的溶解度相當高。雜質的來源包含數種,有固體來源(BN,AS2O3及P2O3)、液體來源(BBr3、AsCl3及POCl3)或氣體來源(B2H6、AsH3、及PH3);通常,氣體來源的雜質均可由惰性氣體(如:氮氣N)輸送至半導體表面,進而發生還原反應;固體來源的雜質則係依下列化學反應式,往矽表面形成氧化層:2As2O3+3Si→4As+3SiO2
(三)印刻與蝕刻:印刻係指在半導體晶片表面所覆蓋之光敏感材料薄層(亦稱為光阻)上印刻出幾何鑄型;一般言,不同的光阻鑄型係不止一次地被印刻在晶片表面上,以形成所需之電路及元件圖樣;嗣,再經蝕刻程序獲得各不同的待處理區,以便後續在各該待處理區進行前述植入、擴散等處理;茲僅將業界慣用的各式IC印刻法及對應使用之光阻成份,列表說明如下,以資瞭解:
Figure 108114927-A0101-12-0008-1
按,光阻化合物尚依其對輻射之敏感度,而被區分為正光阻及負光阻兩種類型;其中,正光阻在經過光照後,其曝光區可藉化學物質(去光阻劑或顯影液)溶解去除;負光阻則正好相反。查,正光阻的組成有三種主要成份:其一為對光敏感的化合物、其二為樹脂及其三為有機溶劑。負光阻則是含光敏感組成的高分子。印刻處理係在晶圓表面均勻塗佈光阻,且經曝光處理後,需先使用顯影液將曝光區的正光阻溶解、洗淨、涼乾;嗣,經蝕刻處理,去除曝光區的絕緣層,而未曝光區的光阻則不受蝕刻影嚮;最後,可使用溶液(如:在H2SO4+H2O2槽)或電漿氧化,去除剩餘的光阻,即完成此一製程環節,製作出所需之一絕緣層鑄型影像,而該絕緣層鑄型影像即能被據以作為後續製程所需之一遮蔽保護層,如:令離子能被植入至未被該遮蔽保護層保護之半導體基質區域,在整個積體電路的電路系統製程中,通常須多次地在晶圓表面上執行前述繁複的印刻及蝕刻處裡 程序,始能完成。
綜上所述,無論是製作何種IC晶片產品,其產品品質的良窳完全係取決於在前述三大重要製程環節中,其清潔處理是否徹底且確實?尤其是,誠如前述,積體電路的製程不僅十分複雜,且尚會隨著IC晶片產品的不同而改變,無論是從以往所採用之濕式製程、現在採用減壓後之氣體乾式製程,到目前新興之化合物半導體製程言之,雖然這些製程技術不斷地革新,但是半導體及積體電路製造時所使用之酸鹼溶液、有機溶劑、特殊氣體材料...等製程原料之種類及數量卻有增無減,而這些製程原料又大都具有強烈的毒性,所以,業者及管理單位自然應特別予以注意,且據以作到完善的防範與控制,以確保人員及周遭環境的安全。
此外,由於無論是在矽晶圓或積體電路的前述製程環節中,其程序均相當繁複且精準,且各該製程環節中所使用到之製程原料亦相當眾多,而這些在前一製程環節中所使用到之化學物質,通常在半成品進入至下一製程環節前,均必需予以徹底清除,以確保個各該化學物質不會殘留在各該半成品上,而對最終成品的產品品質、特性及良率造成負面影響。有鑑於此,矽晶圓或積體電路業者在前述三大重要製程環節中,均會分別裝設至少一台清潔設備,以在各該半成品進入下一製程環節前,均能獲得確實且徹底的清潔,令其上絕不存在下一製程環節所不需要之化學物質及雜質;其作法,主要係利用個各該清潔設備上所設之一高壓泵浦,對各式清洗液(如:純水、各式酸鹼溶液及有機溶劑....等)進行加壓後,再將已加壓之各該清洗液逐一噴射至待清洗的半成品上,以確保各該半成品在進入下一製程環節時,其上絕不存在前一製程環節所殘留之任何化學物質及雜 質,從而能確保最終之IC晶片產品均具備預期的優異特性及品質,且令最終之IC晶片產品始終能維持在最佳的產品良率。惟,由於各該高壓泵浦所加壓推送之清洗液大多為具高腐蝕性、高揮發性及高易燃性之各式酸鹼溶液及有機溶劑,因此,基於安全上的考量,各該清潔設備上所設之高壓泵浦均係採用一種以壓縮空氣為動力之氣動式活塞或柱塞泵,以利用其內所設活塞或柱塞的往復運動造成容積變化,且利用各該氣動式活塞或柱塞泵之下列優點,穩定地加壓推送各該清洗液:(1)不會發生過熱的問題:由於氣動式泵係以壓縮空氣作為動力,因此,在排氣時是一個膨脹吸熱的過程,故,氣動式泵運作時本身的溫度會逐漸降低,不僅不易發熱,無發生過熱的問題,亦不會排放出有害的氣體;(2)不會產生電火花:氣動式泵並非使用電力作為動力,因此,不僅完全不會產生電氣火花,且只需在安裝氣動式泵時令其接地,亦能完全避免因靜電所產生的火花;(3)對各式溶劑的剪切力極低:氣動式泵運作時是怎麼吸進溶劑,就怎麼吐出溶劑,所以對各式溶劑的攪動最小,極適合應用於對不穩定溶劑的加壓及輸送;(4)可對溶劑的流量進行調節:僅需在氣動式泵的溶劑出口處,加裝節流閥,即能輕易地據以調節溶劑的流量;(5)具有自吸的功能:氣動式泵運作時所產生的負壓,對溶劑具有自吸的功能,從而能降低動力的消耗;(6)可以空運行:意即,氣動式泵在無溶劑的狀態下繼續運作,亦不會發 生任何危險;(7)可用以加壓及輸送的液體種類範圍極為廣泛:從低粘度的到高粘度的溶劑,或從具高腐蝕性的到高揮發性的溶劑;(8)無複雜的控制系統:故無需電纜、保險絲...等電氣元件;(9)體積小、重量輕,故便於移動:(10)無需潤滑所以維修簡便,且不會因滴漏而污染工作環境;及(11)氣動式泵始終能維持高效運轉,而不會因磨損而降低工作效率。
惟,為便 貴審查委員能輕易瞭解半導體業界使用之各該清潔設備上之氣動式泵所存在的缺陷及問題,茲謹以目前半導體業界所慣用之一習知氣動式泵系統1為例,詳細說明如下:請參閱第4圖所示,該氣動式泵系統1包括一活塞氣缸筒10、二柱塞缸筒11、12、一心軸20、一中央活塞30、至少二加壓氣體輸送管路40、複數個逆止閥S、至少二清洗液輸送管路50、一氣動切換閥60及一加壓清洗液儲存槽70;其中,該活塞氣缸筒10內開設有一活塞往復空間100,各該柱塞缸筒11、12內則分別開設有一柱塞往復空間110、120,各該柱塞缸筒11、12係分別沿軸向連接固定至該活塞氣缸筒10之兩端,以令各該柱塞往復空間110、120能分別與該活塞往復空間100彼此相互連通;該心軸20係可軸向往復移動地定位在各該柱塞往復空間110、120及該活塞往復空間100中,該中央活塞30係套設固定至該心軸20沿軸向之中央部位,以令該心軸20鄰近兩端之部位能分別成為柱塞21、22,且令各該柱塞21、22及該中央活塞30能分別氣密地定位在對應之各該柱塞往復空間110、120及該活塞往復空間100內,而能分別在各該柱塞活往復空間110、120及該活塞活往復空 間100內執行往復運動;該加壓氣體輸送管路40係透過該氣動切換閥60連接至該活塞往復空間100,以藉該氣動切換閥60將加壓氣體輸入至該活塞往復空間100(或自該活塞往復空間100輸出),從而使該加壓氣體能對該中央活塞30之兩相對側壁施加不同的壓力,令該中央活塞30能因壓差而在該活塞往復空間100內執行往復運動,進而帶動各該柱塞21、22分別在對應之各該柱塞活往復空間110、120內執行往復運動;該清洗液輸送管路50係透過該逆止閥S連接至各該柱塞活往復空間110、120,以將清洗液輸入至各該柱塞活往復空間110、120,且藉各該柱塞21、22之往復運動對輸入各該柱塞活往復空間110、120內之清洗液施壓後,再通過該逆止閥S,將已加壓之清洗液輸送至該加壓清洗液儲存槽70內,以備各該清潔設備(圖中未示)對晶圓執行清潔處理時使用。
雖然,該習知氣動式泵系統1具備前述之諸多優點,但是,由於半導體業界在製作半導體積體電路的前述三大重要製程環節中,不僅使用各該清潔設備的時機眾多,且使用各該清潔設備的次數,亦極為龐大。因此,復請參閱第4圖所示,各該清潔設備上之該習知氣動式泵系統1在反覆且大量被使用的狀況下,經常會因過度使用,而導致該氣動切換閥60發生異常損耗,無法正常運作,進而造成各該清潔設備的故障,甚至導致製作半導體及積體電路的整個自動化製程環節必需因此停擺,而在生產及業務上對業者造成極大的損失。
有鑒於此,如何設計出一種氣動式雙心軸泵浦系統,以透過對稱的雙心軸及特殊設計的軸封結構,使活塞及柱塞能更穩定且不易晃動地執行往復運動,從而令軸封不易遭磨損,甚至在磨損後,仍能維持該泵 浦系統之正常運作,以有效增進該泵浦系統之使用壽命及加壓品質,另,該泵浦系統尚能在完全無需使用該氣動切換閥60之情形下,僅透過活塞或柱塞執行往復運動之衝程(stroke),即能有效驅動該泵浦系統上所設之對應感測器(sensor),切換該泵浦系統上所設對應電磁閥(Magnetic valve)之啟閉,精準且穩定地控制該泵浦系統內相關氣體及液體之進出,令二者不會相互干擾及交互影響,從而使該泵浦系統始終能維持穩定且正常的運轉,不致輕易故障,以有效避免積體電路的自動化製程因該泵浦系統故障而必需停擺之問題,從而有效防止業者因此在生產及業務上所遭受的損失,即成為目前各大半導體及積體電路設計及製造業者亟思改進之一重要議題,亦為本發明在後續欲深入探討及解決之一重要課題。
為了能在競爭激烈的半導體及積體電路設計及製造市場中,脫穎而出,發明人憑藉著多年來專業從事各式氣動式泵浦設計、加工及製造之豐富實務經驗,且秉持著精益求精的研究精神,在經過長久的努力研究與實驗後,終於研發出本發明之一種能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構,期藉由本發明之問世,有效增進氣動式雙心軸泵浦之使用壽命及及加壓品質,並能為半導體及積體電路設計及製造業者提供更佳的使用經驗。
本發明之一目的,係提供一種能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構,該氣動式雙心軸泵浦包括一活塞氣缸筒、二缸座、二柱塞缸筒、一活塞、二心軸、至少二方向控制閥、至少二加壓氣體輸送管路、至少二清洗液輸送管路及至少二衝程感測器;其中,該活塞 氣缸筒,係呈中空狀,其內開設有一活塞往復空間;該等缸座之一側係被氣密地安裝固定至該活塞氣缸筒之兩端,且各該缸座上分別開設有一加壓空氣出入通道及一加壓空氣出入孔,各該加壓空氣出入孔能通過對應之各該加壓空氣出入通道,分別與該活塞往復空間相連通,且各該缸座上沿軸向分別開設有一貫穿孔;各該柱塞缸筒亦係分別呈中空狀,其內分別開設有一柱塞往復空間,且其一端係沿軸向分別被氣密地安裝固定至各該缸座之另一側,以令各該柱塞往復空間能通過對應之各該貫穿孔,分別與該活塞往復空間相連通;該活塞係氣密但可往復移動地被定位在該活塞往復空間內;各該心軸之一端係分別被固定至該活塞之兩相對側面的軸心位置,以令各該心軸鄰近另一端之部位能分別成為柱塞,且令各該柱塞能分別通過對應之各該貫穿孔,而氣密但可往復移動地被定位在對應之各該柱塞往復空間內,從而令該活塞及各該柱塞能分別在對應之該活塞往復空間及各該柱塞往復空間內執行往復運動;該等方向控制閥係分別安裝至各該加壓空氣出入孔,用以啟閉切換加壓空氣進出該活塞往復空間,以使該等加壓空氣能在該活塞之兩相對側面產生不同的壓力差,從而令該活塞能在該活塞往復空間持續不斷地執行往復運動;各該加壓氣體輸送管路之一端係連接至一加壓氣體產生裝置,其另一端則係連接至各該方向控制閥,以通過各該方向控制閥之切換啟閉,而將該加壓氣體產生裝置所提供之該加壓氣體提供予該氣動式雙心軸泵浦,作為驅動該活塞在該活塞往復空間內執行往復運動之動力;各該清洗液輸送管路係用以將清洗液輸送至各該柱塞往復空間,以令各該柱塞能在該活塞之帶動下分別對各該柱塞往復空間內之各該清洗液施加壓力,並在對各該清洗液完成施壓後,將已加壓之各該清 洗液輸出至一加壓清洗液儲存槽內,以備後續對晶圓執行清潔處理時使用;該等衝程感測器係裝設在該活塞氣缸筒上,能用以準確地感測出該活塞執行往復運動時之精準衝程位置,且據以產生一切換訊號,用以切換對應之該等方向控制閥正確且準確地執行啟閉動作,從而令該活塞能精準且穩定地執行往復運動,為各該清洗液正確地施加壓力。
如此,由於在本發明之氣動式雙心軸泵浦結構上,該等心軸係沿軸向對稱地固設在該活塞之兩相對側面的軸心位置,令各該心軸鄰近另一端之部位在分別成為柱塞後,能隨著該活塞,分別精準且穩定地在對應之該活塞往復空間及各該柱塞往復空間內執行往復運動,而不易發生晃動及偏移,故能有效確保該氣動式雙心軸泵浦內之相關構件不致發生不當磨損,而造成該氣動式雙心軸泵浦的故障;此外,由於本發明之各該衝程感測器係能被輕易地裝設在該活塞氣缸筒之外側,不僅令業者對各該衝程感測器之維修保養變得更為快捷便利,更因各該衝程感測器能在完全無需接觸該活塞的狀態下,準確地感測出該活塞執行往復運動時精準的衝程位置,並據以產生一切換訊號,用以切換對應之該等方向控制閥執行啟閉動作,從而能在完全無元件磨耗的前提下,令該活塞及各該柱塞能精準且穩定地執行往復運動,為清洗液正確地施加壓力,從而具體實現大幅增加該氣動式雙心軸泵浦使用壽命及加壓品質之發明目的。
本發明之另一目的,係為該氣動式雙心軸泵浦提供至少二柱塞軸封組,各該柱塞軸封組係套設在各該心軸對應於各該柱塞之部位上,以在各該柱塞外壁及對應之各該柱塞往復空間內壁間,形成軸封,以確保各該柱塞在執行往復運動為各該柱塞往復空間內之清洗液施加壓力時,清 洗液不會因所施加之壓力而由各該柱塞外壁及對應之各該柱塞往復空間內壁間之縫隙滲漏出,而污染或危及到周遭人員及環境,各該柱塞軸封組係分別包括至少一前迫緊軸封、至少一中間調變軸封及至少一後迫緊軸封;其中,該前迫緊軸封、該中間調變軸封及該後迫緊軸封分別係沿軸向依序套設在各該心軸外緣對應於各該柱塞之部位上,以在各該柱塞執行往復運動時,令該前迫緊軸封及該後迫緊軸封能分別抵靠且迫緊至該中間調變軸封之前後端,從而對該中間調變軸封施加一軸向應力,令該中間調變軸封能因該軸向應力,而隨著往復運動之衝程沿徑向動態地調整軸封之變形量及鬆緊度,以使各該柱塞軸封組在無論執行往復運動多久或多少次,均不易發生磨損,或即使在各該柱塞軸封組外壁已發生若干耗損之狀態下,仍能因該中間調變軸封能隨著往復運動之衝程不斷沿徑向動態地調整其軸封變形量及鬆緊度之特性,而為各該柱塞外壁及對應之各該柱塞往復空間內壁間之縫隙提供最佳之軸封效果,不僅能確保該活塞及各該柱塞始終能保持在正確的軸向設計位置,不致發生軸偏移或軸晃動的情事之外,尚能確保該活塞及各該柱塞始終能分別精準地在對應之該活塞往復空間及各該柱塞往復空間內執行往復運動,且令各該柱塞往復空間內之清洗液始終不會由該縫隙滲漏而出。
為便 貴審查委員能對本發明目的、技術特徵及其功效,做更進一步之認識與瞭解,茲舉實施例配合圖式,詳細說明如下:
〔習知〕
1‧‧‧氣動式泵系統
10‧‧‧活塞氣缸筒
11、12‧‧‧柱塞缸筒
20‧‧‧心軸
21、22‧‧‧柱塞
30‧‧‧中央活塞
40‧‧‧加壓氣體輸送管路
50‧‧‧清洗液輸送管路
60‧‧‧氣動切換閥
70‧‧‧加壓清洗液儲存槽
100‧‧‧活塞往復空間
110、120‧‧‧柱塞往復空間
S‧‧‧逆止閥
〔本發明〕
8‧‧‧氣動式雙心軸泵浦
50‧‧‧清洗液輸送管路
80‧‧‧活塞氣缸筒
800‧‧‧活塞往復空間
81、82‧‧‧缸座
810、820‧‧‧加壓空氣出入通道
811、821‧‧‧加壓空氣出入孔
812、822‧‧‧貫穿孔
90‧‧‧活塞
91、92‧‧‧柱塞缸筒
91A、91B、92A、92B‧‧‧筒體
910、920‧‧‧柱塞往復空間
93‧‧‧柱塞軸封組
93F‧‧‧前迫緊軸封
93M‧‧‧中間調變軸封
93R‧‧‧後迫緊軸封
101、102‧‧‧心軸
101A、102A‧‧‧柱塞
W1、W2‧‧‧開孔
F1、F2‧‧‧角鋼支撐架
FH‧‧‧水平板體
FP‧‧‧垂直板體
D‧‧‧預定間距
G1、G2‧‧‧方向控制閥
第1圖係習知被一個五價雜質原子取代後之晶格結構示意圖; 第2圖係習知被一個三價雜質原子取代後之晶格結構示意圖;第3圖係半導體及積體電路製造工業上游、中游及下游重要製程環節之流程示意圖;第4圖係目前半導體業界所慣用之習知氣動式泵系統之剖面結構示意圖;第5圖係本發明氣動式雙心軸泵浦之前透視分解示意圖;第6圖係本發明氣動式雙心軸泵浦之縱剖面示意圖;第7圖係本發明氣動式雙心軸泵浦在另一角度之縱剖面示意圖;第8圖係本發明氣動式雙心軸泵浦之前透視組立示意圖;第9圖係本發明柱塞軸封組之前透視分解示意圖;及第10圖係本發明柱塞軸封組之縱剖面示意圖。
本發明係一種能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構,請參閱第5及6圖所示本發明之一較佳實施例,該較佳實施例乃是在現有氣動式泵浦之基礎架構下,僅針對與其上活塞及柱塞之相關機構設計、感測設計及軸封設計等進行調整,即能在不影響現有氣動式泵浦尺寸規格的情況下,大幅增加該氣動式雙心軸泵浦8之使用壽命及加壓品質,且有效提高其對清洗液精準施壓及穩定傳輸之特性,從而為相關業者提供更佳之使用經驗。
為方便說明本發明之該氣動式雙心軸泵浦8中各元件之形狀構造、組裝關係及運作原理,茲係以第5及6圖所示該氣動式雙心軸泵浦8之上方作為其上各元件之頂側,第5及6圖所示該氣動式雙心軸泵浦8之下方作為其上各元件之底側,且以第5及6圖所示該氣動式雙心軸泵浦8之左下方作 為其上各元件之前側,第5及6圖所示該氣動式雙心軸泵浦8之右上方則作為其上各元件之後側。此外,本發明之該氣動式雙心軸泵浦8及其上各元件的構形態樣,並不限於本發明第5~10圖所繪製者,業者亦能夠根據實際需求,調整該氣動式雙心軸泵浦8及其上各元件的構形,只要該氣動式雙心軸泵浦8具備後續實施例所述及之相關基本結構,且能產生相同的具體功效,均應可謂係本發明在此欲保護之該氣動式雙心軸泵浦8,合先陳明。
復請參閱第5及6圖所示,在該較佳實施例中,該氣動式雙心軸泵浦8包括一活塞氣缸筒80、二缸座81、82、二柱塞缸筒91、92、一活塞90、二心軸101、102、至少二方向控制閥G1、G2(如:電磁閥、氣動閥、手動閥...等,為避免圖式過於複雜,第5圖僅以虛框表示,但本領域之技藝人士當能瞭解其特徵)、至少二加壓氣體輸送管路(圖中未示)、至少二清洗液輸送管路50及至少二衝程感測器(stroke sensor,圖中未示);其中,復請參閱第6圖所示,該活塞氣缸筒80係呈中空狀,其內開設有一活塞往復空間800;復請參閱第6圖所示,該等缸座81、82之一側係沿軸向被氣密地安裝固定至該活塞氣缸筒80之兩端,且請參閱第7圖所示,各該缸座81、82上分別開設有一加壓空氣出入通道810、820及一加壓空氣出入孔811、821;其中,各該加壓空氣出入孔811、821能通過對應之各該加壓空氣出入通道810、820,而分別與該活塞往復空間800相連通,且各該缸座81、82上沿軸向分別開設有一貫穿孔812、822;復請參閱第6及7圖所示,各該柱塞缸筒91、92亦係分別呈中空狀,且其內分別開設有一柱塞往復空間910、920,各該柱塞缸筒91、92之一端係沿軸向分別被氣密地安裝固定至各該缸座81、82之另一側,以令各該柱塞往復空間910、920能通過對應之各該貫穿 孔812、822,分別與該活塞往復空間800相連通;復請參閱第6及7圖所示,該活塞90係氣密但可往復移動地被定位在該活塞往復空間800內;各該心軸101、102之一端係分別被固定至該活塞90之兩相對側面的軸心位置,以令各該心軸101、102鄰近另一端之部位能分別成為柱塞101A、102A,且令各該柱塞101A、102A能分別通過對應之各該貫穿孔812、822,氣密但可往復移動地被定位在對應之各該柱塞往復空間910、920內,從而令該活塞90及各該柱塞101A、102A能分別在對應之該活塞往復空間800及各該柱塞往復空間910、920內執行往復運動;各該方向控制閥G1、G2係分別被安裝至各該加壓空氣出入孔811、821,用以切換加壓空氣進出該活塞往復空間800之啟閉動作,即,令外界之加壓空氣能經由各該加壓空氣出入孔811、821,通過對應之各該加壓空氣出入通道810、820,進入至該活塞往復空間800內,或令該活塞往復空間800內之加壓空氣,能通過對應之各該加壓空氣出入通道810、820,經由各該加壓空氣出入孔811、821,排出至該活塞往復空間800外,從而使該等加壓空氣能在該活塞90之兩相對側面產生不同的壓力,且令該活塞90能因該壓力差而在該活塞往復空間800持續不斷地執行往復運動;復請參閱第6及7圖所示,各該加壓氣體輸送管路(圖中未示)之一端係連接至一加壓氣體產生裝置(圖中未示),其另一端則係連接至各該方向控制閥G1、G2,以通過各該方向控制閥G1、G2之啟閉切換,將該加壓氣體產生裝置所產生之加壓氣體提供予該活塞往復空間800,作為驅動該活塞90在該活塞往復空間800內持續不斷執行往復運動之動力;請參閱第7及8圖所示,該等清洗液輸送管路50係用以將清洗液輸送至各該柱塞往復空間910、920,以令各該柱塞101A、102A能在該活塞90之帶動下,分別對各該柱塞 往復空間910、920內之各該清洗液施加壓力,且在對各該清洗液完成加壓後,透過該等清洗液輸送管路50將已加壓之各該清洗液自各該柱塞往復空間910、920輸出至一加壓清洗液儲存槽(圖中未示)內,以備後續對晶圓執行清潔處理時使用;復請參閱第7及8圖所示,各該衝程感測器(圖中未示)係被裝設在該活塞氣缸筒80上,能用以準確地感測出該活塞90執行往復運動時之精準衝程(stroke)位置,且據以產生一切換訊號,用以切換對應之各該方向控制閥G1、G2正確地執行啟閉動作,以令該活塞90及各該柱塞101A、102A能精準且穩定地執行往復運動,從而為各該柱塞往復空間910、920內之清洗液正確地施加壓力。
如此,復請參閱第7及8圖所示,由於在本發明之氣動式雙心軸泵浦8結構上,該等心軸101、102係沿軸向對稱地固設在該活塞90之兩相對側面的軸心位置,而令各該心軸101、102鄰近另一端之部位在分別成為柱塞101A、102A後,能隨著該活塞90,分別精準且穩定地在對應之該活塞往復空間800及各該柱塞往復空間910、920內執行往復運動,不易發生晃動及偏移,故能有效確保該氣動式雙心軸泵浦8內之相關構件不致發生不當磨損,從而能有效避免該氣動式雙心軸泵浦8發生故障;此外,由於本發明之各該衝程感測器係能被輕易地裝設在該活塞氣缸筒80之外側,不僅令業者對各該衝程感測器的維修及保養變得更為快速容易外,更因各該衝程感測器能在完全未接觸該活塞90的狀態下,準確地感測出該活塞90執行往復運動時之精準衝程位置,並據以產生一切換訊號,用以切換對應之該等方向控制閥G1、G2準確地執行啟閉動作,從而能在完全無元件磨耗的前提下,令該活塞90始終能精準且穩定地執行往復運動,從而帶動各該柱塞101A、 102A為流入至各該柱塞往復空間910、920內之清洗液正確地施加壓力,以具體實現有效增加該氣動式雙心軸泵浦8使用壽命及加壓品質之發明目的。
另,復請參閱第5、6、7及8圖所示,各該柱塞缸筒91、92鄰近缸座81、82之頂側尚分別開設有一開孔W1、W2,各該開孔W1、W2能夠在該氣動式雙心軸泵浦8之運作過程中,使不慎隨著對應之心軸101、102被帶動至此處位置的清洗液,能分別經由對應的開孔W1、W2排出,以避免污染了鄰近缸座81、82區域的其它元件。
此外,為令業者在製造、運送及組裝該氣動式雙心軸泵浦8之整體過程中,更具機動性及適配性,在本發明之前述較佳實施例中,各該柱塞缸筒91、92亦可視實際的需要,被製作成單一筒體,或被製作成能由複數段筒體組合而成者(如第5圖所示,該柱塞缸筒91係由筒體91A及91B所組合而成,該柱塞缸筒92則係由筒體92A及92B所組合而成),以令該氣動式雙心軸泵浦8對安裝空間具備更佳之適配性。
又,復請參閱第5及8圖所示,為了令本發明之該氣動式雙心軸泵浦8能被水平且輕易地組裝至地面,在本發明之前述較佳實施例中,該氣動式雙心軸泵浦8尚包括至少二角鋼支撐架F1及F2;其中,該等角鋼支撐架F1及F2上之水平板體FH係被鎖固至地面,以令其上之垂直板體FP間能保持一預定的間距D;如此,俟該等缸座81、82被垂直地組裝至該等角鋼支撐架F1及F2之垂直板體FP上後,裝配人員即能輕易且便利地將其它構成元件及管路依序且逐一地組裝至該等缸座81、82,而快速地完成本發明氣動式雙心軸泵浦8之整體組裝;惟,在發明之其它實施例中,業者能夠根據產品需求,而僅採用一個或三個以上的角鋼支撐架,合先陳明。
按,以上所示,僅係本發明之若干較佳實施例中,惟,本發明在實際施作時,並不侷限於此,亦能針對實際的需要,適當調整其上各該構成元件及管路的形狀、構造及彼此間之組裝及連接關係,只要其具備前述軸向對稱的雙心軸101、102設計,且各該衝程感測器能在完全未接觸該活塞90的狀態下,準確地感測出該活塞90執行往復運動時之精準衝程位置,並據以產生一切換訊號,用以切換對應之該等方向控制閥G1、G2準確地執行啟閉動作,從而能在完全無元件磨耗的前提下,令該活塞90始終能精準且穩定地執行往復運動,且帶動各該柱塞101A、102A為流入至各該柱塞往復空間910、920內之清洗液正確地施加壓力,具體實現有效增加該氣動式雙心軸泵浦8使用壽命及加壓品質之發明目的者,均應屬不脫離本發明之保護範疇。
另外,本發明在實際施作時,業者亦能針對實際需要,復請參閱第5、6及7圖所示,為該氣動式雙心軸泵浦8裝設至少二柱塞軸封組93,各該柱塞軸封組93係套設在各該心軸101、102外緣對應於各該柱塞101A、102A之部位,以在各該柱塞101A、102A外壁及對應之各該柱塞往復空間910、920內壁間,形成軸封,以確保各該柱塞101A、102A在執行往復運動,為各該柱塞往復空間910、920內之清洗液施加壓力時,清洗液不會因所施加之壓力,而由各該柱塞101A、102A外壁及對應之各該柱塞往復空間910、920內壁間之縫隙滲漏至該氣動式雙心軸泵浦8之外,而污染或危及到周遭人員及環境,請參閱第9圖所示,各該柱塞軸封組93係分別包括一前迫緊軸封93F、一中間調變軸封93M及一後迫緊軸封93R;其中,該前迫緊軸封93F、該中間調變軸封93M及該後迫緊軸封93R分別係由超高分子的 PE(Polyethylene,聚乙烯)材料(如:600萬以上分子量)製成,且係分別沿軸向依序套設在各該心軸101、102外緣對應於各該柱塞101A、102A之部位,以在各該柱塞101A、102A執行往復運動時,令該前迫緊軸封93F及該後迫緊軸封93R能分別抵靠且迫緊至該中間調變軸封93M之前端及後端,從而對該中間調變軸封93M施加一軸向應力,令該中間調變軸封93M能因該軸向應力,而隨著各該柱塞101A、102A往復運動之衝程,沿徑向動態地調整該中間調變軸封93M之變形量,並據以產生相對應之最佳軸封鬆緊度,從而使各該柱塞軸封組93無論在執行往復運動多久或多少次後均不易發生磨損,或即使在各該柱塞軸封組93之外壁已發生若干磨損之狀態下,仍能因該中間調變軸封93M會隨著往復運動之衝程沿徑向動態地調整其軸封變形量及鬆緊度,而為各該柱塞101A、102A外壁及對應之各該柱塞往復空間910、920內壁間之縫隙提供最佳之軸封效果,不僅能確保各該柱塞往復空間910、920內之清洗液始終不會由該縫隙滲漏而出,尚能確保各該柱塞101A、102A及該活塞90不會因軸封的磨損,偏離軸心的設計位置,而始終能分別精準且穩定地在對應之該活塞往復空間800及各該柱塞往復空間910、920內執行往復運動,不易發生晃動及偏移,故能有效確保該氣動式雙心軸泵浦8內相關構件不致發生不當磨損,從而能有效防止該氣動式雙心軸泵浦8發生故障。
承上,在本發明之其它實施例中,前迫緊軸封93F、中間調變軸封93M與後迫緊軸封93R的數量,能夠依實際產品需求而定,而為一個以上,且彼此間的數量可為相同或不相同,例如,一個前迫緊軸封93F搭配兩個中間調變軸封93M與一個後迫緊軸封93R,以使本發明能具有更高的產業應用性。按,以上所述,僅係本發明之較佳實施例,惟,本發明所主張 之權利範圍,並不侷限於此,按凡熟悉該項技藝人士,依據本發明所揭露之技術內容,可輕易思及之等效變化,均應屬不脫離本發明之保護範疇。
8‧‧‧氣動式雙心軸泵浦
50‧‧‧清洗液輸送管路
80‧‧‧活塞氣缸筒
81、82‧‧‧缸座
810、820‧‧‧加壓空氣出入通道
811、821‧‧‧加壓空氣出入孔
91、92‧‧‧柱塞缸筒
91A、91B、92A、92B‧‧‧筒體
F1、F2‧‧‧角鋼支撐架
FH‧‧‧水平板體
FP‧‧‧垂直板體

Claims (6)

  1. 一種能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構,包括:一活塞氣缸筒,係呈中空狀,其內開設有一活塞往復空間;二缸座,該等缸座之一側係被氣密地安裝固定至該活塞氣缸筒之兩端,且各該缸座上分別開設有一加壓空氣出入通道及一加壓空氣出入孔,各該加壓空氣出入孔能通過對應之各該加壓空氣出入通道,而分別與該活塞往復空間相連通,且各該缸座上沿軸向分別開設有一貫穿孔;二柱塞缸筒,各該柱塞缸筒係分別呈中空狀,且其內分別開設有一柱塞往復空間,各該柱塞缸筒之一端係沿軸向分別被氣密地安裝固定至各該缸座之另一側,以令各該柱塞往復空間能通過對應之各該貫穿孔,分別與該活塞往復空間相連通;一活塞,係氣密但可往復移動地被定位在該活塞往復空間內;二心軸,其一端係分別被固定至該活塞之兩相對側面的軸心位置,以令各該心軸鄰近另一端之部位能分別成為柱塞,且令各該柱塞能分別通過對應之各該貫穿孔,氣密但可往復移動地被定位在對應之各該柱塞往復空間內,從而令該活塞及各該柱塞能分別在對應之該活塞往復空間及各該柱塞往復空間內執行往復運動;至少二方向控制閥,係分別安裝至各該加壓空氣出入孔,用以切換加壓空氣進出該活塞往復空間之啟閉,即,令外界之加壓空氣能經由各該加壓空氣出入孔,通過對應之各該加壓空氣出入通道,進入至該活塞往復空間內,或令該活塞往復空間內之加壓空氣,能經由各該加壓空氣出入通道,通過對應之各該加壓空氣出入孔,排出至該活塞往復空間外,從而使該等加壓空氣能在該活塞之兩相對側面產生不同的壓力,令該活塞能因該壓力差而據以在該活塞往復空間內持續不斷地執行往復運動; 至少二加壓氣體輸送管路,其一端係連接至一加壓氣體產生裝置,其另一端則係連接至各該方向控制閥,以通過各該方向控制閥之啟閉切換,將該加壓氣體產生裝置所提供之加壓氣體輸入至該活塞往復空間,作為驅動該活塞在該活塞往復空間內持續不斷執行往復運動之動力;至少二清洗液輸送管路,係用以將清洗液輸送至各該柱塞往復空間,以令各該柱塞能在該活塞之帶動下,分別對各該柱塞往復空間內之各該清洗液加壓,並在對各該清洗液完成加壓後,將已加壓之各該清洗液輸入至一加壓清洗液儲存槽內,以備後續對晶圓執行清潔處理時使用;至少二衝程感測器,各該衝程感測器係裝設在該活塞氣缸筒上,能準確地感測出該活塞執行往復運動時之精準衝程位置,且據以產生一切換訊號,切換對應之各該方向控制閥的啟閉動作,從而令該活塞能精準且穩定地執行往復運動,為各該清洗液正確地施加壓力;及至少二柱塞軸封組,各該柱塞軸封組係套設在各該心軸外緣對應於各該柱塞之部位,以在各該柱塞外壁及對應之各該柱塞往復空間內壁間,形成軸封,據以確保各該柱塞在執行往復運動為各該柱塞往復空間內之清洗液施加壓力時,清洗液不會因所施加之壓力由各該柱塞外壁及對應之各該柱塞往復空間內壁間之縫隙滲漏而出;各該柱塞軸封組係分別包括至少一前迫緊軸封、至少一中間調變軸封及至少一後迫緊軸封;其中,各該前迫緊軸封、各該中間調變軸封及各該後迫緊軸封係沿軸向依序套設在各該心軸外緣對應於各該柱塞之部位,以在各該柱塞執行往復運動時,各該前迫緊軸封及各該後迫緊軸封能分別抵靠且迫緊之至各該中間調變軸封之前後端,從而對各該中間調變軸封施加一軸向應力,令各該中間調變軸封能因該軸向應力,而隨著往復運動之衝程沿徑向動態地調整軸封之變形量及鬆緊度。
  2. 如請求項1所述之氣動式雙心軸泵浦結構,其中,各該柱塞缸筒鄰近缸座之頂側尚分別開設有一開孔。
  3. 如請求項2所述之氣動式雙心軸泵浦結構,其中,各該柱塞缸筒能被製作成單一筒體,或被製作成能由複數段筒體組合而成者,以令該氣動式雙心軸泵浦對安裝空間具備更佳之適配性。
  4. 如請求項3所述之氣動式雙心軸泵浦結構,尚包括至少一角鋼支撐架;其中,各該角鋼支撐架上之水平板體係被鎖固至地面,以令其上之垂直板體間能保持一預定間距。
  5. 如請求項4所述之氣動式雙心軸泵浦結構,其中,各該前迫緊軸封、各該中間調變軸封及各該後迫緊軸封分別係由高分子材料製成。
  6. 如請求項5所述之氣動式雙心軸泵浦結構,其中,各該前迫緊軸封、各該中間調變軸封及各該後迫緊軸封分別係由600萬以上分子量的聚乙烯材料製成。
TW108114927A 2019-04-29 2019-04-29 能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構 TWI752314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108114927A TWI752314B (zh) 2019-04-29 2019-04-29 能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108114927A TWI752314B (zh) 2019-04-29 2019-04-29 能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構

Publications (2)

Publication Number Publication Date
TW202040001A TW202040001A (zh) 2020-11-01
TWI752314B true TWI752314B (zh) 2022-01-11

Family

ID=74201146

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108114927A TWI752314B (zh) 2019-04-29 2019-04-29 能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構

Country Status (1)

Country Link
TW (1) TWI752314B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094596A (en) * 1990-06-01 1992-03-10 Binks Manufacturing Company High pressure piston pump for fluent materials
US6305265B1 (en) * 1999-06-03 2001-10-23 Bechtel Bwxt Idaho Llc Method and apparatus for pressurizing vaporous fluids
CN102057160A (zh) * 2009-06-10 2011-05-11 株式会社易威奇 双联往复运动泵
CN203441688U (zh) * 2013-09-04 2014-02-19 匡信机械(昆山)有限公司 一种可快速维修的电磁式增压器
CN106988978A (zh) * 2015-09-25 2017-07-28 杉野机械股份有限公司 流体压力发生方法以及流体压力发生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094596A (en) * 1990-06-01 1992-03-10 Binks Manufacturing Company High pressure piston pump for fluent materials
US6305265B1 (en) * 1999-06-03 2001-10-23 Bechtel Bwxt Idaho Llc Method and apparatus for pressurizing vaporous fluids
CN102057160A (zh) * 2009-06-10 2011-05-11 株式会社易威奇 双联往复运动泵
CN203441688U (zh) * 2013-09-04 2014-02-19 匡信机械(昆山)有限公司 一种可快速维修的电磁式增压器
CN106988978A (zh) * 2015-09-25 2017-07-28 杉野机械股份有限公司 流体压力发生方法以及流体压力发生装置

Also Published As

Publication number Publication date
TW202040001A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
TWI813647B (zh) 用於整合型頭尾相接式完全自對準內連線製程之操作站台及方法
KR102528076B1 (ko) 반도체 응용들을 위한 구조를 식각하기 위한 방법들
US5981399A (en) Method and apparatus for fabricating semiconductor devices
KR100330130B1 (ko) 열처리 방법 및 그 장치
US8927435B2 (en) Load lock having secondary isolation chamber
US20150030766A1 (en) Pedestal bottom clean for improved fluorine utilization and integrated symmetric foreline
KR20020061523A (ko) 기판 처리장치 및 반도체 장치의 제조방법
CN102074459A (zh) 半导体装置的制造方法
JP7492554B2 (ja) 雰囲気が制御された移送モジュール及び処理システム
US20110076789A1 (en) Manufacturing method of semiconductor device and substrate processing apparatus
TW201517122A (zh) 將用於離子植入製程之硬光罩層圖案化的方法
US12014922B2 (en) Apparatus for manufacturing a thin film and a method therefor
US20180182652A1 (en) Substrate processing apparatus, substrate processing method, and substrate processing system
KR20200055663A (ko) 통합 반도체 처리
TWI752314B (zh) 能有效增進使用壽命及加壓品質之氣動式雙心軸泵浦結構
TWI587369B (zh) 用於磊晶成長的裝置與半導體加工工具
US20190085440A1 (en) Apparatus and method for in situ steam generation
US10217627B2 (en) Methods of non-destructive post tungsten etch residue removal
KR970003413A (ko) 반도체 소자의 미세패턴 형성방법
US11282696B2 (en) Method and device for wet processing integrated circuit substrates using a mixture of chemical steam vapors and chemical gases
JP2022548648A (ja) デッドボリュームの低減のための清浄なアイソレーションバルブ
TW201916265A (zh) 製程設備及其組裝方法
CN113365747A (zh) 用于清洁真空系统的方法、用于真空处理基板的方法以及用于真空处理基板的设备
TW201339356A (zh) Pecvd系統的熱傳控制
KR101615140B1 (ko) 오염원 차단가이드를 구비하는 기판처리장치