TWI751193B - 於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法 - Google Patents

於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法 Download PDF

Info

Publication number
TWI751193B
TWI751193B TW106130765A TW106130765A TWI751193B TW I751193 B TWI751193 B TW I751193B TW 106130765 A TW106130765 A TW 106130765A TW 106130765 A TW106130765 A TW 106130765A TW I751193 B TWI751193 B TW I751193B
Authority
TW
Taiwan
Prior art keywords
electron
electron beam
apertures
common voltage
primary
Prior art date
Application number
TW106130765A
Other languages
English (en)
Other versions
TW201820375A (zh
Inventor
艾倫 D 布魯迪
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201820375A publication Critical patent/TW201820375A/zh
Application granted granted Critical
Publication of TWI751193B publication Critical patent/TWI751193B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1532Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Beam Exposure (AREA)

Abstract

本發明揭示一種多電子束掃描電子顯微鏡(SEM)系統。該系統包含經組態以產生一源電子束之一電子束源。該系統包含經組態以自該源電子束產生一泛射電子束之一組電子光學元件。該系統包含一多電子束透鏡陣列,其具有:複數個電子光學路徑,其等經組態以將該泛射電子束分裂成複數個一次電子束;及複數個帶電陣列層,其等經組態以調整該複數個一次電子束中之至少若干者。該系統包含經組態以將該複數個一次電子束之至少若干者導引至由一載物台固定之一樣本之一表面上的一組電子光學元件。該系統包含經組態以偵測回應於該複數個一次電子束而自該樣本之該表面發出之複數個電子之一偵測器陣列。

Description

於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法
本發明大體上係關於晶圓檢測及檢視,且更特定言之,本發明係關於用於晶圓及光罩/倍縮光罩檢測及檢視期間之一掃描電子顯微鏡系統中之陣列散光之校正。
諸如邏輯及記憶體器件之半導體器件之製造通常包含:使用大量半導體製程來處理一半導體器件以形成半導體器件之各種特徵及多個階層。一些製程利用光罩/倍縮光罩來將特徵印刷於諸如一晶圓之一半導體器件上。隨著半導體器件變得越來越小,開發增強型檢測及檢視器件及程序來提高晶圓及光罩/倍縮光罩檢測程序之解析度、速度及生產率變得至關重要。 一檢測技術包含諸如掃描電子顯微術(SEM)之基於電子束之檢測。在一些例項中,經由包含越來越多電子光學柱之一SEM系統(例如多行SEM系統)來執行掃描電子顯微術。在其他例項中,經由二次電子束收集(例如二次電子(SE)成像系統)來執行掃描電子顯微術。在其他例項中,藉由將一單一電子束分裂成諸多電子束且利用一單一電子光學柱個別調諧及掃描諸多電子束(例如一多電子束SEM系統)來執行掃描電子顯微術。 針對一多電子束SEM系統,將單一電子束分裂成諸多電子束歷來需要一孔隙透鏡及/或微透鏡陣列。將孔隙透鏡及/或微透鏡陣列設定於實質上呈圓形設計以產生透鏡場之帶電小孔隙(例如,直徑小於100 μm)中。若孔隙不圓,則會將散光引入至透鏡場中以導致一失真影像平面。 因此,有利地提供克服上述缺點之一系統。
根據本發明之一或多個實施例,揭示一種多電子束掃描電子顯微鏡(SEM)系統。在一實施例中,該系統包含經組態以產生一源電子束之一電子束源。在另一實施例中,該系統包含經組態以自該源電子束產生一泛射電子束之一第一組電子光學元件。在另一實施例中,該系統包含一多電子束透鏡陣列。在另一實施例中,該多電子束透鏡陣列包含經組態以將該泛射電子束分裂成複數個一次電子束之複數個電子光學路徑。在另一實施例中,該多電子束透鏡陣列包含經組態以調整該複數個一次電子束中之至少若干者之複數個帶電陣列層。在另一實施例中,該系統包含經組態以將該複數個一次電子束之至少若干者導引至一樣本之一表面上之一第二組電子光學元件。在另一實施例中,該系統包含經組態以固定該樣本之一載物台。在另一實施例中,該系統包含經組態以偵測回應於該複數個一次電子束而自該樣本之該表面發出之複數個電子之一偵測器陣列。 根據本發明之一或多個實施例,揭示一種用於校正一多電子束掃描電子顯微鏡(SEM)系統中之陣列散光的裝置。在一實施例中,該裝置包含經組態以分裂一泛射電子束以產生複數個一次電子束之複數個電子光學路徑。在另一實施例中,經由一第一組電子光學元件,自一源電子束產生該泛射電子束。在另一實施例中,經由一電子束源來產生該源電子束。在另一實施例中,該裝置包含經組態以調整該複數個一次電子束中之至少若干者之複數個帶電陣列層。在另一實施例中,經由一第二組電子光學元件來將該複數個一次電子束中之至少若干者導引至一樣本之一表面上。在另一實施例中,回應於該複數個一次電子束,而自該樣本之該表面發出複數個電子。在另一實施例中,由一偵測器陣列偵測該複數個電子。 根據本發明之一或多個實施例,揭示一種方法。在一實施例中,該方法可包含(但不限於):產生一源電子束。在另一實施例中,該方法可包含(但不限於):經由一第一組電子光學元件,自該源電子束產生一泛射電子束。在另一實施例中,該方法可包含(但不限於):分裂該泛射電子束以經由該多電子束透鏡陣列來產生複數個一次電子束。在另一實施例中,該方法可包含(但不限於):經由該多電子束透鏡陣列來調整該複數個一次電子束中之至少若干者。在另一實施例中,該方法可包含(但不限於):透過一第二組電子光學元件,將該複數個一次電子束中之至少若干者導引至一樣本之一表面上。在另一實施例中,該方法可包含(但不限於):偵測回應於該複數個一次電子束而自該樣本之該表面發出之複數個電子。 應瞭解,以上一般描述及以下詳細描述兩者僅供例示及說明且未必限制本發明。併入本說明書中且構成本說明書之一部分之附圖繪示本發明之標的。[實施方式]及圖式一起用於解釋本發明之原理。
相關申請案之交叉参考 本申請案根據35 U.S.C. § 119(e)主張名叫Alan Brodie之發明者於2016年9月8日申請、名稱為「ARRAYED ASTIGMATISM CORRECTION」之美國臨時專利申請案第62/385,084號之優先權,該臨時專利申請案之全文係以引用的方式併入本文中。 現將詳細參考附圖中所繪示之揭示標的。 大體上參考圖1至圖5,揭示根據本發明之用於校正一多行掃描電子顯微鏡(SEM)系統中之陣列散光之一裝置及方法。 本發明之實施例係針對包含一多電子束透鏡陣列之一掃描電子顯微鏡(SEM)系統。本發明之額外實施例係針對經由一多電子束透鏡陣列內之一或多個多極電子束偏轉器來校正歸因於該多電子束透鏡陣列中之孔隙形狀變動之SEM系統中之散光。本發明之額外實施例係針對經由一多電子束透鏡陣列內之一或多組帶縫電子束像散校正裝置來校正歸因於該多電子束透鏡陣列中之孔隙形狀變動之SEM系統中之散光。 圖1繪示根據本發明之一或多個實施例之一掃描電子顯微鏡(SEM)系統100。在一實施例中,系統100係一多電子束SEM系統。儘管本發明主要關注與一多電子束SEM系統相關聯之一電子光學配置,但本文中應注意,此不應被解譯為對本發明之範疇的一限制,而是僅為一說明。另外,本文中應注意,可將本發明中所描述之實施例擴展至任何電子光學系統組態。 在一實施例中,系統100包含一電子束源102。在另一實施例中,電子束源102產生一源電子束104且導引源電子束104通過一組電子光學元件106。 在另一實施例中,電子光學元件組106拓寬源電子束104以產生一泛射電子束108,且導引泛射電子束108通過一多電子束透鏡陣列110。在另一實施例中,多電子束透鏡陣列110包含用於產生及調整一或多個一次電子束112之一或多個電子光學路徑110a。 在另一實施例中,系統100包含一中間影像平面114。在另一實施例中,系統100包含一組電子光學元件116。 電子光學元件組116可包含適合用於聚焦、抑制、提取及/或導引一或多個一次電子束112之任何電子光學元件。例如,電子光學元件組116可包含(但不限於)一物鏡。例如,物鏡可將一或多個一次電子束112聚焦及/或導引至樣本120之一表面上。在另一實施例中,多電子束透鏡陣列110導引一或多個一次電子束112通過中間影像平面114且經由物鏡116而至樣本120之表面上。 在另一實施例中,系統100包含經組態以固定一樣本120之一樣本台118。樣本台118可包含電子束顯微鏡技術中已知之任何樣本台。在一實施例中,樣本台118係一可致動台。例如,樣本台118可包含(但不限於)適合用於沿一或多個線性方向(例如x方向、y方向及/或z方向)可選地平移樣本120之一或多個平移台。舉另一例而言,樣本台118可包含(但不限於)適合用於沿一旋轉方向選擇性地旋轉樣本120之一或多個旋轉台。舉另一例而言,樣本台118可包含(但不限於)適合用於沿一線性方向可選地平移樣本及/或沿一旋轉方向旋轉樣本120的一旋轉台及一平移台。 樣本120包含適合用於使用電子束顯微鏡之檢測/檢視之任何樣本。在一實施例中,樣本包含一晶圓。例如,樣本可包含(但不限於)一半導體晶圓。如本發明中所使用,術語「晶圓」係指由一半導體及/或非半導體材料形成之一基板。例如,就一半導體材料而言,晶圓可由(但不限於)單晶矽、砷化鎵及/或磷化銦形成。在另一實施例中,樣本包含一光罩/倍縮光罩。 在一實施例中,樣本120回應於一或多個一次電子束112而發出電子124。例如,電子124可包含自樣本120之表面發射之二次電子。舉另一例而言,電子124可包含由樣本120之表面散射之反向散射電子。 在另一實施例中,經由一偏轉器總成122來沿自一或多個一次電子束112之電子光學路徑偏移之一電子光學路徑導引二次電子。例如,偏轉器總成122可包含(但不限於)一維恩(Wien)濾波器、一磁稜鏡或其類似者。 在另一實施例中,經由電子光學元件組126來將二次電子導引至偵測器陣列128。電子光學元件組126可包含適合用於聚焦、抑制、提取及/或導引二次電子之此項技術中已知之任何電子光學元件。偵測器陣列128可包含此項技術中已知之任何類型之二次電子偵測器總成。例如,可使用一埃弗哈特-索恩利(Everhart-Thornley)偵測器(或其他類型之基於閃爍器之偵測器)來收集二次電子且使其成像。在另一實施例中,可使用一微通道板(MCP)來收集二次電子且使其成像。在另一實施例中,可使用一PIN或p-n接面偵測器(諸如二極體或二極體陣列)來收集電子且使其成像。在另一實施例中,可使用一或多個突崩光二極體(APD)來收集電子且使其成像。 在另一實施例中,未由偏轉器總成122 (例如一維恩濾波器、一磁稜鏡或其類似者)導引反向散射電子。例如,由一偵測器陣列128收集反向散射電子且使其成像,偵測器陣列128包含一或多個一次電子束112之電子光學路徑中之一或多個反向散射電子偵測器總成。一或多個反向散射電子偵測器總成可包含此項技術中已知之任何類型之反向散射電子偵測器總成。 在一實施例中,SEM系統100包含一控制器。在另一實施例中,控制器經通信地耦合至SEM系統100之一或多個組件。例如,控制器可經通信地耦合至電子束源102、多電子束透鏡陣列110、樣本台118,及/或偵測器陣列128。就此而言,控制器可指導SEM系統100之任何組件實施本發明中所描述之各種功能中之任何一或多者。在另一實施例中,控制器包含一或多個處理器及記憶體。記憶體可儲存一或多組程式指令。一或多個處理器可經組態以執行一或多組程式指令,以實施本發明中所描述之各種步驟中之一或多者。 控制器可經組態以藉由可包含有線及/或無線部分之一傳輸介質而自SEM系統100之其他系統或子系統接收及/或獲取資料或資訊(例如來自電子束源102、多電子束透鏡陣列110、樣本台118及/或偵測器陣列128之一或多組資訊)。另外,控制器可經組態以藉由可包含有線及/或無線部分之一傳輸介質而將資料或資訊(例如本文中所揭示之發明概念之一或多個程序之輸出)傳輸至SEM系統100之一或多個系統或子系統(例如來自電子束源102、多電子束透鏡陣列110、樣本台118及/或偵測器陣列128之一或多組資訊)。就此而言,傳輸介質可充當控制器與SEM系統100之其他子系統之間之一資料鏈路。另外,控制器可經組態以經由一傳輸介質(例如網路連接)來將資料發送至外部系統。 一或多個處理器可包含此項技術中已知之任何一或多個處理元件。就此而言,一或多個處理器可包含經組態以執行演算法及/或程式指令之任何微處理器器件。例如,一或多個處理器可由以下各者組成:一桌上型電腦、大型主機電腦系統、工作站、影像電腦、並行處理器、手持電腦(例如平板電腦、智慧型電話或平板手機),或經組態以引起SEM系統100執行本發明中所描述之各種步驟中之一或多者的其他電腦系統(例如網路電腦)。應認知,本發明中所描述之步驟可係由一單一電腦系統或(替代地)多個電腦系統實施。一般而言,術語「處理器」可經廣義定義以涵蓋具有一或多個處理元件之任何器件,該一或多個處理元件執行來自一非暫時性記憶體媒體(例如記憶體)之一或多組程式指令。再者,SEM系統100之不同子系統(例如來自電子束源102、多電子束透鏡陣列110、樣本台118及/或偵測器陣列128之一或多組資訊)可包含適合用於實施本發明中所描述之步驟之至少一部分的處理器或邏輯元件。因此,以上描述不應被解譯為對本發明之一限制,而是僅為一說明。 記憶體可包含此項技術中已知之任何儲存媒體,其適合用於儲存可由相關聯之一或多個處理器執行以實施本發明中所描述之各種步驟之一或多組程式指令。例如,記憶體可包含一非暫時性記憶體媒體。例如,記憶體可包含(但不限於)一唯讀記憶體、一隨機存取記憶體、一磁性或光學記憶體器件(例如磁碟)、一磁帶、一固態磁碟機及其類似者。記憶體可經組態以將顯示資訊提供至一使用者介面之一顯示器件及/或本發明中所描述之各種步驟之輸出件。另外,記憶體可經組態以儲存來自使用者介面之一使用者輸入器件之使用者輸入資訊及/或來自本發明中所描述之各種步驟之輸入。記憶體可與一或多個處理器收容於一共同控制器外殼中。替代地或另外,記憶體可相對於處理器及/或控制器之實體位置而遠端定位。例如,一或多個處理器及/或控制器可存取可透過一網路(例如網際網路、內部網路及其類似者)存取之一遠端記憶體(例如伺服器)。 在一實施例中,電子束源102可耦合至經組態以沿一或多個方向致動電子束源102之一組定位器。例如,控制器可指導定位器組沿x方向、y方向及/或z方向之一或多者平移電子束源102以校正由SEM系統100之任何組件產生之電子束未對準。 圖2繪示根據本發明之一或多個實施例之SEM系統100之電子束源102及多電子束透鏡陣列110。 電子束源102可包含適合用於產生源電子束104之此項技術中已知之任何電子束源。在另一實施例中,電子束源102包含一電子發射器200。電子發射器200可在一選定電壓處操作。例如,電子發射器200可在自0伏特(V)至-45 kV之範圍內之一電壓處操作。例如,電子發射器200可在-30 kV之一電壓處操作。電子發射器200可包含此項技術中已知之任何電子發射器。例如,電子發射器200可包含(但不限於)一場發射槍(FEG)。例如,FEG可包含(但不限於)一肖特基(Schottky)型發射器、一碳奈米管(CNT)發射器、一奈米結構碳膜發射器或一繆勒(Muller)型發射器。舉另一例而言,電子發射器200可包含(但不限於)一光陰極發射器或一矽發射器。 在另一實施例中,電子束源102包含一提取器202 (或一提取器電極)。提取器202可在一選定電壓處操作。例如,提取器202可在自0 V至‑15 kV之範圍內之一電壓處操作。例如,提取器202可在自-3 kV至-10 kV之範圍內之一電壓處操作。提取器202可包含此項技術者已知之任何電子束提取器組態。例如,提取器202可包含(但不限於)一平面提取器或一非平面提取器。 在另一實施例中,電子束源102包含一陽極204。陽極204可在一選定電壓處操作。例如,陽極204可在0 V處操作。 儘管本發明之實施例係針對一單一電子束源102,但本文中應注意,SEM系統100可包含用於產生多個源電子束104之多個電子束源102,其中多個電子束源102產生一單獨源電子束104。因此,以上描述不應被解譯為對本發明之範疇的一限制,而是僅為一說明。 電子光學元件組106可包含適合用於聚焦、抑制、提取及/或導引源電子束104之此項技術中已知之任何電子光學元件。例如,電子光學元件組106可包含(但不限於)一或多個靜電透鏡及/或一或多個磁透鏡。在另一實施例中,電子光學元件組106自源電子束104產生泛射電子束108且導引泛射電子束108,使其照射多電子束透鏡陣列110之一頂面。 在另一實施例中,多電子束透鏡陣列110包含一或多個帶電層。在另一實施例中,一或多個帶電層包含形成一或多個電子光學路徑110a之一或多組對準孔隙。在另一實施例中,將一或多個孔隙透鏡或微透鏡嵌入形成一或多個電子光學路徑110a之一或多組對準孔隙內。例如,可個別地調整一或多個孔隙透鏡或微透鏡。舉另一例而言,可整體調整(例如,可整組調整)一或多個孔隙透鏡或微透鏡。在另一實施例中,照射多電子束透鏡陣列110之頂面之泛射電子束108進入一或多個電子光學路徑110a。就此而言,多電子束透鏡陣列110將泛射電子束108分裂成一或多個一次電子束112。 在另一實施例中,一或多個陣列層係帶電的。在另一實施例中,一或多個陣列層包含一或多個帶電板。在另一實施例中,一或多個帶電板包含一或多個共同電壓板206。例如,一或多個帶電板可包含兩個共同電壓板206。在另一實施例中,將一或多個共同電壓板206一起分組成共同電壓板組。例如,一組共同電壓板可包含(但不限於)兩個共同電壓板206。在另一實施例中,共同電壓板組共用一共同電壓板206。在另一實施例中,共同電壓板組與其他共同電壓板組分離。 一或多個共同電壓板206可在一選定電壓處操作。例如,共同電壓板206可在自0 V至-10 kV之範圍內之一電壓處操作。例如,共同電壓板206可在-3.5 kV之一電壓處操作。在另一實施例中,一或多個共同電壓板206包含一或多個孔隙。 在另一實施例中,一或多個帶電板包含一或多個增大電壓板208。例如,一或多個帶電板可包含由一組共同電壓板包圍之一增大電壓板208。舉另一例而言,增大電壓板208可具有相對於共同電壓板包圍組之一增大電壓。例如,增大電壓板208可具有大於共同電壓板包圍組之一負電壓,其中負離子由多電子束透鏡陣列110聚焦。替代地,增大電壓板可具有大於共同電壓板包圍組之一正電壓,其中正離子由多電子束透鏡陣列110聚焦。增大電壓板208可在一選定電壓處操作。例如,增大電壓板208可在自0 V至-10 kV之範圍內之一電壓處操作。例如,增大電壓板208可在-4 kV之一電壓處操作。在另一實施例中,增大電壓板208包含一或多個孔隙。 在一實施例中,一或多個一次電子束112在離開/退出一組共同電壓板之一第一共同電壓板206時被軸向減速且被徑向向外推動。在另一實施例中,一或多個一次電子束112在進入/接近由共同電壓板組包圍之一增大電壓板208時(例如,在增大電壓板208之一上坡電位側上)被軸向減速且被徑向向內拉動。在另一實施例中,一或多個一次電子束112在離開/退出增大電壓板208時(例如,在增大電壓板208之一下坡電位側上)被軸向加速且被徑向向內拉動。在另一實施例中,一或多個一次電子束112在進入/接近共同電壓板組之一第二共同電壓板206時被軸向加速且被徑向向外推動。就此而言,增大電壓板208聚焦一或多個一次電子束112,聚焦程度與增大電壓板組208之電壓相關。 儘管本發明之實施例係針對具有形成一或多個電子光學路徑110a之一或多個孔隙之呈板狀結構的一或多個共同電壓板206及增大電壓板208,但本文中應注意,一或多個共同電壓板206及增大電壓板208可為用於多電子束透鏡陣列110之一特定電子光學路徑110a之單獨圓柱形結構。因此,以上描述不應被解譯為對本發明之範疇的一限制,而是僅為一說明。 在另一實施例中,一或多個陣列層包含介於一組共同電壓板之間的一或多個電子束像散校正裝置210,其中一或多個電子束像散校正裝置210經組態以減少SEM系統100內所觀察到之散光。例如,一或多個電子束像散校正裝置210可包含(但不限於)用於一或多個電子光學路徑110a之一或多個多極電子束偏轉器300。舉另一例而言,一或多個電子束像散校正裝置210可包含(但不限於)用於一或多個電子光學路徑110a之一或多個帶縫電子束像散校正裝置400、410。在另一實施例中,一或多個電子束像散校正裝置210調整一或多個一次電子束112之一或多個特性(例如樣本120上之電子束112位置、觀察到之散光量或其類似者)。應注意,本文中將進一步詳細描述多極電子束偏轉器300及一或多個帶縫電子束像散校正裝置400、410。 在另一實施例中,多電子束透鏡陣列110之頂面具有藉由使泛射電子束108在照射多電子束透鏡陣列110之頂面之前減速所產生之一電場。在另一實施例中,多電子束透鏡陣列110之一底面具有藉由使一或多個一次電子束112在離開多電子束透鏡陣列110之底面之後加速所產生之一電場。本文中應注意,所產生之電場允許分別聚焦泛射電子束108及一或多個一次電子束112。 在另一實施例中,中間影像平面114係多電子束透鏡陣列110之聚焦平面。在另一實施例中,一或多個一次電子束112在中間影像平面114上之聚焦量取決於增大電壓板208相對於共同電壓板包圍組之電壓。 儘管本發明之實施例係針對包含一增大電壓板208及一或多個電子束像散校正裝置210兩者之多電子束透鏡陣列110,但本文中應注意,多電子束透鏡陣列110可在包含一或多個電子束像散校正裝置210時不包含增大電壓板208。因此,以上描述不應被解譯為對本發明之範疇的一限制,而是僅為一說明。 圖3A至圖3C大體上繪示根據本發明之一或多個實施例之多電子束透鏡陣列110之一電子光學路徑110a之一簡化示意圖。 在一實施例中,多電子束透鏡陣列110包含一組共同電壓板,其包含一或多個共同電壓板206。例如,共同電壓板組可包含(但不限於)兩個共同電壓板206。在另一實施例中,一或多個共同電壓板206具有一孔隙206a,其具有一選定半徑Ra 及半徑Rb 。在另一實施例中,孔隙206a呈圓形,使得半徑Ra 等於半徑Rb 。例如,半徑Ra 及半徑Rb 可在自5微米至50微米之範圍內。例如,半徑Ra 及半徑Rb 可為25微米。在另一實施例中,孔隙206a不圓(具有偏移量207),使得半徑Ra 不等於半徑Rb 。本文中應注意,當孔隙206a不圓時,散光被引入至系統中。 在另一實施例中,共同電壓板組包圍一增大電壓板208。在另一實施例中,共同電壓板組206包圍一多極電子束偏轉器300。多極電子束偏轉器300可為此項技術中已知之任何多極電子束偏轉器。例如,多極電子束偏轉器300可包含(但不限於)四極電子束偏轉器或八極電子束偏轉器。在另一實施例中,多極電子束偏轉器300具有一孔隙300a,其具有一選定半徑Ro 。例如,半徑Ro 可在自5微米至50微米之範圍內。例如,半徑Ro 可為25微米。本文中應注意,多極電子束偏轉器300可允許調整通過多極電子束偏轉器300之一次電子束112以減少SEM系統100中之散光量。 本文中應注意,增大電壓板208及多極電子束偏轉器300之堆疊順序可不同於圖3A中所繪示之堆疊順序。因此,以上描述不應被解譯為對本發明之範疇的一限制,而是僅為一說明。 在另一實施例中,多極電子束偏轉器300之一極之形狀係由一角度302及一角度304界定,其中角度302及角度304係相對於一相同平面。在另一實施例中,多極電子束偏轉器300之極係正電壓極306。在另一實施例中,多極電子束偏轉器300之極係負極308。本文中應注意,多極電子束偏轉器300之極可代以為一共同接地電壓(例如0 V)。另外,本文中應注意,正電壓極306及負電壓極308之配置可不同於圖3C中所繪示之配置。 可藉由此項技術中已知之任何製造方法來製造多極電子束偏轉器300。例如,可藉由此項技術中已知之任何矽基微製造技術或微機電系統(MEMS)處理技術來製造多極電子束偏轉器300。在另一實施例中,多極電子束偏轉器300專用於多電子束透鏡陣列110之一特定電子光學路徑110a,而非耦合至一板狀結構(或製造為板狀結構之部分)。就此而言,減小製造多極電子束偏轉器300及隨後製造多電子束透鏡陣列110之複雜性,此係因為無需橫跨一板狀結構保持容限。 本文中應注意,可個別地控制多極電子束偏轉器300。 圖4A至圖4C大體上繪示根據本發明之一或多個實施例之多電子束透鏡陣列110之一電子光學路徑110a之一簡化示意圖。 在一實施例中,多電子束透鏡陣列110包含兩組或兩組以上共同電壓板,其中各組共同電壓板包含一或多個共同電壓板206。例如,兩組或兩組以上共同電壓板可各包含(但不限於)兩個共同電壓板206。例如,如圖4A中所繪示,兩組或兩組以上共同電壓板可共用一共同電壓板206 (例如,兩組共同電壓板具有總共三個共同電壓板206)。替代地,兩組或兩組以上共同電壓板可為單獨共同電壓板組206 (例如,各組共同電壓板具有兩個共同電壓板206)。 在另一實施例中,兩組或兩組以上共同電壓板各包圍一增大電壓板208。在另一實施例中,兩組或兩組以上共同電壓板206各包圍一組帶縫電子束像散校正裝置400、410。例如,如圖4A中所繪示,一第一組共同電壓板206可包含一第一增大電壓板208及一帶縫電子束像散校正裝置400,且一第二組共同電壓板206可包含一第二增大電壓板208及一帶縫電子束像散校正裝置410。 本文中應注意,分別由共同電壓板組包圍之增大電壓板208及帶縫電子束像散校正裝置400或410之堆疊順序可不同於圖4A中所繪示之堆疊順序。因此,以上描述不應被解譯為對本發明之範疇的一限制,而是僅為一說明。 在另一實施例中,帶縫電子束像散校正裝置400及410分別具有一孔隙400a及一孔隙410a。例如,孔隙400a及410a可呈橢圓形,其具有一選定半徑Rc 及半徑Rd 。在另一實施例中,帶縫電子束像散校正裝置410之孔隙410a依相對於帶縫電子束像散校正裝置400之孔隙400a之一選定偏移角412定向。例如,偏移角412可在自0°至90°之範圍內。例如,偏移角412可為45°。本文中應注意,使孔隙410a依相對於孔隙400a之偏移角412定向可減少SEM系統100中之散光量。 在另一實施例中,帶縫電子束像散校正裝置400及帶縫電子束像散校正裝置410形成一組帶縫電子束像散校正裝置。本文中應注意,電子光學路徑110a可包含具有介於孔隙400a、410a之間的一偏移角412的一組帶縫電子束像散校正裝置,偏移角412不同於其他電子光學路徑110a中之其他帶縫電子束像散校正裝置組中之孔隙400a、410a之間的一偏移角412。 在另一實施例中,一單組帶縫電子束像散校正裝置沿一光軸減少SEM系統100中之散光。就此而言,沿多個軸校正散光將需要多組帶縫電子束像散校正裝置(及共同接地電壓板206及增大電壓板208之額外對應層)。 可藉由此項技術中已知之任何製造方法來製造帶縫電子束像散校正裝置400、410。例如,可藉由此項技術中已知之任何矽基微製造技術或微機電系統(MEMS)處理技術來製造帶縫電子束像散校正裝置400、410。在另一實施例中,一組帶縫電子束像散校正裝置400、410專用於多電子束透鏡陣列110之一特定電子光學路徑110a,而非耦合至一板狀結構(或製造為板狀結構之部分)。就此而言,減小製造帶縫電子束像散校正裝置400、410及隨後製造多電子束透鏡陣列110之複雜性,此係因為無需橫跨一板狀結構保持容限。 圖5繪示根據本發明之一或多個實施例之一流程圖,其描繪經由一多電子束掃描電子顯微鏡(SEM)系統100來掃描樣本120之一表面的一方法500。本文中應注意,方法500之步驟可由系統100全部或部分實施。然而,應認知,方法500不受限於系統100,因為額外或替代系統級實施例可實施方法500之全部或部分步驟。 在一步驟502中,產生源電子束104。在一實施例中,源電子束104由電子束源102產生。在另一實施例中,電子束源102包含電子發射器200。在另一實施例中,電子束源102包含提取器202。在另一實施例中,電子束源102包含陽極204。在另一實施例中,電子束源102將源電子束104導引至電子光學元件組106。 在一步驟504中,經由電子光學元件組106來自源電子束104產生泛射電子束108。在一實施例中,電子光學元件組106拓寬源電子束104以產生泛射電子束108。在另一實施例中,電子光學元件組106將泛射電子束108導引至多電子束透鏡陣列110。在另一實施例中,泛射電子束108照射多電子束透鏡陣列110之頂面。 在一步驟506中,經由多電子束透鏡陣列110來將泛射電子束108分裂成一或多個一次電子束112。在一實施例中,多電子束透鏡陣列包含一或多個陣列層。在另一實施例中,一或多個陣列層包含一或多組孔隙。在另一實施例中,藉由使一或多組孔隙對準來形成一或多個電子光學路徑110a。在另一實施例中,導引泛射電子束108通過一或多個電子光學路徑110a。就此而言,多電子束透鏡陣列110將泛射電子束108分裂成一或多個一次電子束112。在另一實施例中,將一或多組孔隙透鏡及/或微透鏡嵌入一或多組孔隙內。 在一步驟508中,經由多電子束透鏡陣列110來調整一或多個一次電子束112。在一實施例中,一或多個陣列層包含一或多個帶電板。例如,一或多個帶電板可包含(但不限於)一或多個共同電壓板206。例如,可將一或多個共同電壓板分組成共同電壓板組。舉另一例而言,一或多個帶電板可包含(但不限於)由一組共同電壓板包圍之增大電壓板208。在另一實施例中,增大電壓板208將一或多個一次電子束112聚焦至中間影像平面114上,其中聚焦量取決於與共同電壓板包圍組之電壓相關之增大電壓板208之電壓。 在另一實施例中,一或多個陣列層包含一或多個單獨電子束像散校正裝置210。例如,一或多個電子束像散校正裝置210可包含(但不限於)一或多個多極電子束偏轉器300。例如,一或多個多極電子束偏轉器300可包含(但不限於)一或多個四極電子束偏轉器及/或一或多個八極電子束偏轉器。舉另一例而言,一或多個電子束像散校正裝置210可包含(但不限於)一或多組帶縫電子束像散校正裝置400、410。例如,一或多組帶縫電子束像散校正裝置400、410可分別包含孔隙400a、410a,其中孔隙410a依相對於孔隙400a之一選定偏移角412定向。在另一實施例中,一或多個電子束像散校正裝置210調整一或多個一次電子束112之一或多個特性(例如樣本120上之一次電子束112位置、透鏡場之散光量或其類似者)。 在一步驟510中,將一或多個一次電子束112導引至樣本120之一表面上。在一實施例中,一或多個一次電子束112在撞擊樣本120之表面之前被導引通過中間影像平面114及電子光學元件組116。 在一步驟512中,偵測自樣本120之表面發出之電子124以使樣本120成像。例如,電子124可包含(但不限於)二次電子及/或反向散射電子。在一實施例中,經由包含一或多個二次電子偵測器總成之偵測器陣列128來使二次電子成像。在另一實施例中,經由偏轉器總成122及電子光學元件組126來導引二次電子朝向偵測器陣列128。 在另一實施例中,經由包含一或多個反向散射電子偵測器總成之一偵測器陣列128來偵測反向散射電子以使樣本成像。在另一實施例中,偵測器陣列128定位於一或多個一次電子束112之電子光學路徑內,使得偏轉器總成122不導引反向散射電子。 本發明之優點包含:校正一多電子束透鏡陣列中之陣列散光。本發明之優點亦包含:減小製造多電子束透鏡陣列之複雜性。 熟習技術者應認知,為使概念清楚,將本文中所描述之組件(例如操作)、器件、物件及其隨附討論用作實例,且可考量各種組態修改。因此,如本文中所使用,所闡述之特定範例及隨附討論意欲表示其更一般類別。一般而言,使用任何特定範例意欲表示其類別,且不包含特定組件(例如操作)、器件及物件不應被視為限制。 關於本文中所使用之實質上任何複數及/或單數術語,熟習技術者可根據內文及/或應用來將複數轉化成單數及/或將單數轉化成複數。為清楚起見,本文中未明確闡述各種單數/複數排列。 本文中所描述之標的有時繪示含於不同其他組件內或與不同其他組件連接之不同組件。應瞭解,此等描繪架構僅供例示,且事實上可實施達成相同功能之諸多其他架構。就概念而言,用於達成相同功能性之任何組件配置經有效「相關聯」以達成所要功能性。因此,本文中經組合以達成一特定功能性之任何兩個組件可被視為彼此「相關聯」以達成所要功能性,不論架構或中間組件如何。同樣地,如此相關聯之任何兩個組件亦可被視為彼此「可操作連接」或「可操作耦合」以達成所要功能性,且能夠如此相關聯之任何兩個組件亦可被視為彼此「可操作耦合」以達成所要功能性。「可操作耦合」之特定實例包含(但不限於)可實體配合及/或實體互動組件、及/或可無線互動及/或無線互動組件、及/或邏輯互動及/或可邏輯互動組件。 在一些例項中,一或多個組件在本文中可指稱「經組態以」、「可經組態以」、「可經操作/經操作以」、「經調適/可經調適」、「能夠」、「可符合/符合」等等。熟習技術者應認知,除非內文另有要求,否則此等術語(例如「經組態以」)一般可涵蓋主動狀態組件及/或非主動狀態組件及/或備用狀態組件。 儘管已展示及描述本文中所描述之本發明標的之特定態樣,但熟習技術者應明白,基於本文中之教示,可在不背離本文中所描述之標的及其更廣態樣的情況下作出改變及修改,且隨附申請專利範圍因此將落於本文中所描述之標的之真實精神及範疇內之全部此等改變及修改涵蓋於其範疇內。熟習技術者應瞭解,一般而言,本文中且尤其是隨附申請專利範圍(例如隨附申請專利範圍之主體)中所使用之術語一般意欲為「開放式」術語(例如,術語「包含」應被解譯為「包含(但不限於)」,術語「具有」應被解譯為「至少具有」,等等)。熟習技術者應進一步瞭解,若想要一引入請求項敘述之一特定數目,則此一意圖將被明確敘述於請求項中,且若缺乏此敘述,則不存在此意圖。例如,作為理解之一輔助,以下隨附申請專利範圍可含有使用引導性片語「至少一」及「一或多個」來引入請求項敘述。然而,此等片語之使用不應被解釋為隱含:由不定冠詞「一」引入之一請求項敘述將含有此引入請求項敘述之任何特定請求項限制為僅含有此一敘述之請求項,即使相同請求項包含引導性片語「一或多個」或「至少一」及諸如「一」之不定冠詞(例如,「一」通常應被解譯為意指「至少一」或「一或多個」);上述內容對用於引入請求項敘述之定冠詞之使用同樣適用。另外,即使明確敘述一引入請求項敘述之一特定數目,但熟習技術者亦應認知,此敘述通常應被解譯為意指至少該敘述數目(例如,「兩條敘述」之基本敘述(無其他修飾語)通常意指至少兩條敘述或兩條或兩條以上敘述)。此外,在其中使用類似於「A、B及C之至少一者等等」之一慣用表述的例項中,此一結構一般意指熟習技術者將理解之慣用表述意義(例如,「具有A、B及C之至少一者的一系統」將包含(但不限於)僅具有A、僅具有B、僅具有C、同時具有A及B、同時具有A及C、同時具有B及C及/或同時具有A、B及C之系統,等等)。在其中使用類似於「A、B或C之至少一者等等」之一慣用表述的例項中,此一結構一般意指熟習技術者將理解之慣用表述意義(例如,「具有A、B或C之至少一者的一系統」將包含(但不限於)僅具有A、僅具有B、僅具有C、同時具有A及B、同時具有A及C、同時具有B及C及/或同時具有A、B及C之系統,等等)。熟習技術者應進一步瞭解,除非內文另有指示,否則無論在[實施方式]、申請專利範圍或圖式中,呈現兩個或兩個以上替代項之一轉折連詞及/或片語通常應被理解為涵蓋以下可能性:包含該等項之一者、該等項之任一者或兩項。例如,片語「A或B」通常將被理解為包含「A」或「B」或「A及B」之可能性。 關於隨附申請專利範圍,熟習技術者應瞭解,一般可依任何順序執行其內所敘述之操作。此外,儘管依一(或若干)序列呈現各種操作流程,但應瞭解,可依除繪示順序之外的順序執行各種操作或可同時執行各種操作。除非內文另有指示,否則此等替代排序之實例可包含重疊、交錯、間斷、重新排序、漸進、預備、補充、同時、逆轉或其他變化排序。此外,除非內文另有指示,否則如「回應於」、「相關於」或其他過去時形容詞一般不意欲排除此等變型。 據信,將藉由以上描述來理解本發明及其諸多伴隨優點,且應明白,可在不背離揭示標的或不犧牲其全部材料優點的情況下對組件之形式、構造及配置作出各種改變。所描述之形式僅供說明,且以下申請專利範圍意欲涵蓋及包含此等改變。相應地,本發明之範疇應僅受限於其隨附申請專利範圍。 儘管已繪示本發明之特定實施例,但應明白,熟習技術者可在不背離本發明之範疇及精神的情況下想到本發明之各種修改及實施例。相應地,本發明之範疇應僅受限於其隨附申請專利範圍。
100‧‧‧掃描電子顯微鏡(SEM)系統102‧‧‧電子束源104‧‧‧源電子束106‧‧‧電子光學元件108‧‧‧泛射電子束110‧‧‧多電子束透鏡陣列110a‧‧‧電子光學路徑112‧‧‧一次電子束114‧‧‧中間影像平面116‧‧‧電子光學元件/物鏡118‧‧‧樣本台120‧‧‧樣本122‧‧‧偏轉器總成124‧‧‧電子126‧‧‧電子光學元件128‧‧‧偵測器陣列200‧‧‧電子發射器202‧‧‧提取器204‧‧‧陽極206‧‧‧共同電壓板206a‧‧‧孔隙207‧‧‧偏移量208‧‧‧增大電壓板210‧‧‧電子束像散校正裝置300‧‧‧多極電子束偏轉器300a‧‧‧孔隙302‧‧‧角度304‧‧‧角度306‧‧‧正電壓極308‧‧‧負電壓極400‧‧‧帶縫電子束像散校正裝置400a‧‧‧孔隙410‧‧‧帶縫電子束像散校正裝置410a‧‧‧孔隙412‧‧‧偏移角500‧‧‧方法502‧‧‧步驟504‧‧‧步驟506‧‧‧步驟508‧‧‧步驟510‧‧‧步驟512‧‧‧步驟Ra‧‧‧選定半徑Rb‧‧‧半徑Rc‧‧‧選定半徑Rd‧‧‧半徑Ro‧‧‧選定半徑
熟習技術者可參考附圖來較佳瞭解本發明之諸多優點,其中: 圖1繪示根據本發明之一或多個實施例之配備有一多電子束透鏡陣列之一掃描電子顯微鏡(SEM)系統之一簡化示意圖。 圖2繪示根據本發明之一或多個實施例之配備有一多電子束透鏡陣列之一掃描電子顯微鏡(SEM)系統之一電子束源及一多電子束透鏡陣列之一簡化示意圖。 圖3A繪示根據本發明之一或多個實施例之一多電子束透鏡陣列之一電子光學路徑之一簡化示意圖。 圖3B繪示根據本發明之一或多個實施例之一多電子束透鏡陣列中之孔隙形狀變動之一簡化示意圖。 圖3C繪示根據本發明之一或多個實施例之一多極電子束偏轉器之一簡化示意圖。 圖4A繪示根據本發明之一或多個實施例之一多電子束透鏡陣列之一電子光學路徑之一簡化示意圖。 圖4B繪示根據本發明之一或多個實施例之一多電子束透鏡陣列之一帶縫電子束像散校正裝置。 圖4C繪示根據本發明之一或多個實施例之一多電子束透鏡陣列之一帶縫電子束像散校正裝置。 圖5係繪示根據本發明之一或多個實施例之用於經由一多電子束掃描電子顯微鏡(SEM)系統來掃描一樣本之一表面之一方法的一流程圖。
100‧‧‧掃描電子顯微鏡(SEM)系統
102‧‧‧電子束源
104‧‧‧源電子束
106‧‧‧電子光學元件
108‧‧‧泛射電子束
110‧‧‧多電子束透鏡陣列
110a‧‧‧電子光學路徑
112‧‧‧一次電子束
114‧‧‧中間影像平面
116‧‧‧電子光學元件/物鏡
118‧‧‧樣本台
120‧‧‧樣本
122‧‧‧偏轉器總成
124‧‧‧電子
126‧‧‧電子光學元件
128‧‧‧偵測器陣列

Claims (12)

  1. 一種多電子束掃描電子顯微鏡(SEM)系統,其包括:一電子束源,其經組態以產生一源電子束;一第一組電子光學元件,其經組態以自該源電子束產生一泛射電子束;一多電子束透鏡陣列(multi-beam lens array),其包括:複數個電子光學路徑,其等經組態以將該泛射電子束分裂成複數個一次電子束;及複數個帶電層,其等經組態以調整該複數個一次電子束中之至少若干者,其中該複數個帶電層包括:一組共同電壓板,其包含具有一第一組孔隙之一第一共同電壓板及具有一第二組孔隙之一第二共同電壓板,其中該第一組孔隙之一孔隙或該第二組孔隙之一孔隙之至少一者包含一第一半徑及一第二半徑,其中該第一半徑與該第二半徑不相同;一聚焦電壓板,其包含一第三組孔隙;及一或多個多極電子束偏轉器(multi-pole beam deflector),其經組態以調整在該多電子束透鏡陣列內之散光,其中該聚焦電壓板之一電壓或該一或多個多極電子束偏轉器之一電壓之至少一者相對於該組共同電壓板之一電壓係獨立地可調整;一第二組電子光學元件,其經組態以將該複數個一次電子束中之至少若干者導引至一樣本之一表面上; 一載物台,其經組態以固定該樣本;及一偵測器陣列,其經組態以偵測回應於該複數個一次電子束而自該樣本之該表面發出的複數個電子。
  2. 如請求項1之系統,其中該電子束源包括:一電子發射器、一提取器及一陽極。
  3. 如請求項1之系統,其中該第一組電子光學元件經組態以將該泛射電子束導引至該多電子束透鏡陣列。
  4. 如請求項1之系統,其中該複數個電子光學路徑之一電子光學路徑包含該第一組孔隙之一孔隙、該第二組孔隙之一孔隙、該一或多個多極電子束偏轉器之一多極電子束偏轉器及該第三組孔隙之一孔隙。
  5. 如請求項1之系統,其中該第一半徑與該第二半徑之間的一差將該散光引入至該電子光學路徑。
  6. 如請求項5之系統,其中該多極電子束偏轉器藉由調整該一次電子束而減少引入至該電子光學路徑之該散光。
  7. 如請求項1之系統,其中該一或多個多極電子束偏轉器係定位於該聚焦電壓板與該第二共同電壓板之間。
  8. 如請求項1之系統,其中該一或多個多極電子束偏轉器包含一或多個四極電子束偏轉器或一或多個八極電子束偏轉器之至少一者。
  9. 如請求項1之系統,其中該一或多個發出電子包含一或多個二次電子,其中該偵測器陣列包含一或多個二次電子偵測器總成。
  10. 如請求項9之系統,進一步包括:一偏轉器總成,其經組態以經由一第三組電子光學元件,將該一或多個二次電子偏轉至該偵測器陣列。
  11. 一種用於校正一多電子束掃描電子顯微鏡(SEM)系統中之陣列散光的裝置,其包括:複數個電子光學路徑,其等經組態以分裂一泛射電子束而產生複數個一次電子束,其中經由一第一組電子光學元件,自一源電子束產生該泛射電子束,其中經由一電子束源來產生該源電子束;及複數個帶電層,其等經組態以調整該複數個一次電子束中之至少若干者,其中該複數個帶電層包括:一組共同電壓板,其包含具有一第一組孔隙之一第一共同電壓板及具有一第二組孔隙之一第二共同電壓板,其中該第一組孔隙之一孔隙或該第二組孔隙之一孔隙之至少一者包含一第一半徑及一第二半徑,其中該第一半徑與該第二半徑不相同;一聚焦電壓板,其包含一第三組孔隙;及一或多個多極電子束偏轉器,其經組態以調整在該多電子束透 鏡陣列內之散光,其中該聚焦電壓板之一電壓或該一或多個多極電子束偏轉器之一電壓之至少一者相對於該組共同電壓板之一電壓係獨立地可調整;其中經由一第二組電子光學元件,將該複數個一次電子束之至少若干者導引至一樣本之一表面上,其中複數個電子回應於該複數個一次電子束而自該樣本之該表面發出,其中由一偵測器陣列偵測該複數個電子。
  12. 一種用於校正一多電子束掃描電子顯微鏡(SEM)系統中之陣列散光之方法,其包括:產生一源電子束;經由一第一組電子光學元件,自該源電子束產生一泛射電子束;經由一多電子束透鏡陣列來分裂該泛射電子束以產生複數個一次電子束;經由該多電子束透鏡陣列來調整該複數個一次電子束之至少若干者,其中該多電子束透鏡陣列包含經組態以調整該複數個一次電子束之至少若干者之複數個帶電層,其中該複數個帶電層包括:一組共同電壓板,其包含具有一第一組孔隙之一第一共同電壓板及具有一第二組孔隙之一第二共同電壓板;一聚焦電壓板,其包含一第三組孔隙;及一或多個多極電子束偏轉器,其經組態以調整在該多電子束透鏡陣列內之散光,其中該聚焦電壓板之一電壓或該一或多個多極電子束偏轉器之一 電壓之至少一者相對於該組共同電壓板之一電壓係獨立地可調整;透過一第二組電子光學元件,將該複數個一次電子束之至少若干者導引至一樣本之一表面上;及偵測回應於該複數個一次電子束,而自該樣本之該表面發出之複數個電子。
TW106130765A 2016-09-08 2017-09-08 於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法 TWI751193B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662385084P 2016-09-08 2016-09-08
US62/385,084 2016-09-08
US15/645,863 2017-07-10
US15/645,863 US10497536B2 (en) 2016-09-08 2017-07-10 Apparatus and method for correcting arrayed astigmatism in a multi-column scanning electron microscopy system

Publications (2)

Publication Number Publication Date
TW201820375A TW201820375A (zh) 2018-06-01
TWI751193B true TWI751193B (zh) 2022-01-01

Family

ID=61281484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130765A TWI751193B (zh) 2016-09-08 2017-09-08 於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法

Country Status (7)

Country Link
US (1) US10497536B2 (zh)
EP (1) EP3510623A4 (zh)
JP (1) JP6986555B2 (zh)
KR (1) KR102515235B1 (zh)
CN (1) CN109690726B (zh)
TW (1) TWI751193B (zh)
WO (1) WO2018048949A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3703648A4 (en) 2017-11-03 2021-09-29 Emerald Kalama Chemical, LLC ANTIMICROBIAL COMPOSITIONS
US10338013B1 (en) * 2018-01-25 2019-07-02 Kla-Tencor Corporation Position feedback for multi-beam particle detector
DE102018202421B3 (de) 2018-02-16 2019-07-11 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem
US10840055B2 (en) 2018-03-20 2020-11-17 Kla Corporation System and method for photocathode illumination inspection
US10438769B1 (en) * 2018-05-02 2019-10-08 Kla-Tencor Corporation Array-based characterization tool
US10748739B2 (en) * 2018-10-12 2020-08-18 Kla-Tencor Corporation Deflection array apparatus for multi-electron beam system
US11373838B2 (en) * 2018-10-17 2022-06-28 Kla Corporation Multi-beam electron characterization tool with telecentric illumination
US20200194223A1 (en) * 2018-12-14 2020-06-18 Kla Corporation Joint Electron-Optical Columns for Flood-Charging and Image-Forming in Voltage Contrast Wafer Inspections
US10854424B2 (en) * 2019-02-28 2020-12-01 Kabushiki Kaisha Toshiba Multi-electron beam device
JP7241570B2 (ja) * 2019-03-06 2023-03-17 株式会社ニューフレアテクノロジー マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
US11056312B1 (en) 2020-02-05 2021-07-06 Kla Corporation Micro stigmator array for multi electron beam system
US11239048B2 (en) * 2020-03-09 2022-02-01 Kla Corporation Arrayed column detector
EP4136436A1 (en) * 2020-04-17 2023-02-22 Applied Materials, Inc. Method of inspecting a sample, and multi-electron beam inspection system
US11651934B2 (en) 2021-09-30 2023-05-16 Kla Corporation Systems and methods of creating multiple electron beams
JP7105022B1 (ja) 2022-03-31 2022-07-22 株式会社Photo electron Soul 電子銃、電子線適用装置およびマルチ電子ビームの形成方法
US20240014000A1 (en) * 2022-07-11 2024-01-11 Kla Corporation Miniature electron optical column with a large field of view

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100320382A1 (en) * 2007-02-22 2010-12-23 Applied Materials Israel, Ltd. High throughput sem tool
US20110068276A1 (en) * 2009-09-18 2011-03-24 Pieter Kruit Multiple beam charged particle optical system
US20120061565A1 (en) * 2009-05-27 2012-03-15 Hitachi High-Technologies Corporation Charged particle beam device and sample observation method
US20120241606A1 (en) * 2011-03-23 2012-09-27 Liqun Han Multiple-beam system for high-speed electron-beam inspection
US20120298864A1 (en) * 2010-01-20 2012-11-29 Hideo Morishita Charged Particle Beam Apparatus
TW201250757A (en) * 2011-05-30 2012-12-16 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus
US20130248731A1 (en) * 2012-03-21 2013-09-26 Hitachi High-Technologies Corporation Electron beam apparatus and lens array
TW201527745A (zh) * 2013-12-02 2015-07-16 Ict積體電路測試股份有限公司 用於高產量電子束檢測(ebi)的多射束系統
US20160284505A1 (en) * 2015-03-25 2016-09-29 Hermes Microvision Inc. Apparatus of Plural Charged-Particle Beams

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225335B1 (ko) * 1996-03-04 1999-10-15 미따라이 하지메 전자빔노광장치와 그 방법 및 디바이스제조방법
JP2001284230A (ja) * 2000-03-31 2001-10-12 Canon Inc 電子光学系アレイ、これを用いた荷電粒子線露光装置ならびにデバイス製造方法
US6977386B2 (en) 2001-01-19 2005-12-20 Fei Company Angular aperture shaped beam system and method
US7947951B2 (en) 2006-07-21 2011-05-24 National University Of Singapore Multi-beam ion/electron spectra-microscope
EP2050118A1 (en) * 2006-07-25 2009-04-22 Mapper Lithography IP B.V. A multiple beam charged particle optical system
CN102047375A (zh) * 2008-05-27 2011-05-04 电子线技术院株式会社 用于电子柱的多极透镜
EP2629317B1 (en) 2012-02-20 2015-01-28 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device with dynamic focus and method of operating thereof
JP2014229481A (ja) * 2013-05-22 2014-12-08 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
US9353571B2 (en) * 2014-07-24 2016-05-31 James Coe Paint can securing apparatus for use with a ladder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100320382A1 (en) * 2007-02-22 2010-12-23 Applied Materials Israel, Ltd. High throughput sem tool
US20120061565A1 (en) * 2009-05-27 2012-03-15 Hitachi High-Technologies Corporation Charged particle beam device and sample observation method
US20110068276A1 (en) * 2009-09-18 2011-03-24 Pieter Kruit Multiple beam charged particle optical system
US20120298864A1 (en) * 2010-01-20 2012-11-29 Hideo Morishita Charged Particle Beam Apparatus
US20120241606A1 (en) * 2011-03-23 2012-09-27 Liqun Han Multiple-beam system for high-speed electron-beam inspection
TW201250757A (en) * 2011-05-30 2012-12-16 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus
US20130248731A1 (en) * 2012-03-21 2013-09-26 Hitachi High-Technologies Corporation Electron beam apparatus and lens array
TW201527745A (zh) * 2013-12-02 2015-07-16 Ict積體電路測試股份有限公司 用於高產量電子束檢測(ebi)的多射束系統
US20160284505A1 (en) * 2015-03-25 2016-09-29 Hermes Microvision Inc. Apparatus of Plural Charged-Particle Beams

Also Published As

Publication number Publication date
TW201820375A (zh) 2018-06-01
JP2019526912A (ja) 2019-09-19
US20180068825A1 (en) 2018-03-08
JP6986555B2 (ja) 2021-12-22
CN109690726A (zh) 2019-04-26
KR20190041016A (ko) 2019-04-19
KR102515235B1 (ko) 2023-03-28
CN109690726B (zh) 2021-05-07
EP3510623A4 (en) 2020-08-19
WO2018048949A1 (en) 2018-03-15
EP3510623A1 (en) 2019-07-17
US10497536B2 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
TWI751193B (zh) 於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法
CN109427524B (zh) 带电粒子束装置、用于带电粒子束装置的孔布置和用于操作带电粒子束装置的方法
TWI650550B (zh) 用於高產量電子束檢測(ebi)的多射束裝置
TWI758628B (zh) 用於多帶電粒子束的設備
US11984295B2 (en) Charged particle assessment tool, inspection method
TWI488211B (zh) 帶電粒子偵測裝置、帶電粒子束裝置及其操作方法
JP2017107849A (ja) 静電多極デバイス、静電多極配置、および静電多極デバイスを製造する方法
JP5805831B2 (ja) 切り換え型マルチパースペクティブ検出器、切り換え型マルチパースペクティブ検出器用光学系、及び切り換え型マルチパースペクティブ検出器の動作方法
JP2020528197A (ja) マルチビーム装置におけるビームセパレータの分散を補償するためのシステム及び方法
TW202226313A (zh) 物鏡陣列總成、電子光學系統、電子光學系統陣列、聚焦方法;物鏡配置
US11056312B1 (en) Micro stigmator array for multi electron beam system
KR102325235B1 (ko) 전자 빔 시스템에서의 수차 정정을 위한 방법 및 시스템
US20230178328A1 (en) An apparatus using enhanced deflectors to manipulate charged particle beams
KR20220130196A (ko) 하전 입자 검사 툴, 검사 방법
KR20220103765A (ko) 낮은 누화를 갖는 다중 하전 입자 빔 장치
EP3975222A1 (en) Charged particle assessment tool, inspection method
US20240029995A1 (en) Electron-optical system and method of operating an electron-optical system
TW202312211A (zh) 帶電粒子裝置及方法
TW202303658A (zh) 補償電極變形之影響的方法、評估系統