TWI749955B - Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro led - Google Patents

Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro led Download PDF

Info

Publication number
TWI749955B
TWI749955B TW109145096A TW109145096A TWI749955B TW I749955 B TWI749955 B TW I749955B TW 109145096 A TW109145096 A TW 109145096A TW 109145096 A TW109145096 A TW 109145096A TW I749955 B TWI749955 B TW I749955B
Authority
TW
Taiwan
Prior art keywords
emitting diode
light
etched
atomic layer
type semiconductor
Prior art date
Application number
TW109145096A
Other languages
Chinese (zh)
Other versions
TW202213812A (en
Inventor
林俊成
Original Assignee
天虹科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天虹科技股份有限公司 filed Critical 天虹科技股份有限公司
Application granted granted Critical
Publication of TWI749955B publication Critical patent/TWI749955B/en
Publication of TW202213812A publication Critical patent/TW202213812A/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

The invention is a manufacturing method for reducing non-radiative recombination of micro LED. At least one etched LED epitaxial waferincludes a plurality of etching grooves and a plurality of mesas, an etched sidewall of the mesa includes a stack of a first type semiconductor layer, an active layer and a second type semiconductor layer. Twostage ALDsare performed on the etched LED epitaxial wafer, and the temperature ranges of the twostage ALDs are different. The first ALD can be used to repair danglingbonds and defects on the etched side walls of the mesa, and the second ALD can be used to form a passivation layer on the etched side walls of the mesa. Through the manufacturing method of the present invention, the non-radiative recombination of the micro LED can be reduced, and the luminous brightness and luminous efficiency of the micro LED can be improved.

Description

減少非輻射復合的微發光二極體的製作方法及製作機台 Manufacturing method and manufacturing machine for reducing non-radiation composite micro-luminescent diode

本發明有關於一種減少非輻射復合的微發光二極體的製作方法及製作機台,可減少微發光二極體產生非輻射復合,並可有效提高微發光二極體的發光亮度及發光效率。 The invention relates to a manufacturing method and a manufacturing machine of a micro-luminescence diode that reduces non-radiation recombination, which can reduce the non-radiation recombination of the micro-luminescence diode, and can effectively improve the luminous brightness and luminous efficiency of the micro-luminescence diode .

發光二極體具有轉換效率高、使用壽命長、體積小及安全性高等優點,已經成為新一代的照明光源。此外發光二極體亦取代傳統的冷陰極管成為顯示面板的背光源,特別適用於體積較小的可攜式電子裝置,例如筆記型電腦、手機及平板電腦等。 Light-emitting diodes have the advantages of high conversion efficiency, long service life, small size and high safety, and have become a new generation of lighting sources. In addition, light-emitting diodes have replaced traditional cold cathode tubes as the backlight of display panels, and are particularly suitable for small portable electronic devices, such as notebook computers, mobile phones, and tablet computers.

液晶顯示器並非自發光,並存在效率不佳的問題,即使液晶顯示器顯示白色,背光源發射的光通常只有不到10%會穿過面板,增加可攜式電子裝置的耗電量。液晶顯示器除了背光源之外,還需要搭配偏光器、液晶及彩色濾光片等裝置,造成液晶顯示器的尺寸無法進一步縮小。 Liquid crystal displays are not self-luminous and suffer from poor efficiency. Even if the liquid crystal displays display white, less than 10% of the light emitted by the backlight will usually pass through the panel, increasing the power consumption of portable electronic devices. In addition to the backlight, the liquid crystal display also needs to be equipped with polarizers, liquid crystals, and color filters, so that the size of the liquid crystal display cannot be further reduced.

相較之下,有機發光二極體具有自發光、廣視角、高對比、低耗電、高反應速率及具可繞性等優點,已逐漸取代液晶顯示器成為新一代可攜式電子裝置的顯示器。但有機發光二極體仍存在烙印、壽命較短、色衰退及PWM調光等問題,而各大廠商亦開始發展下一代的顯示面板。 In contrast, organic light-emitting diodes have the advantages of self-luminescence, wide viewing angle, high contrast, low power consumption, high response rate, and flexibility, etc., and have gradually replaced liquid crystal displays as the display of a new generation of portable electronic devices. . However, organic light-emitting diodes still have problems such as branding, short life, color degradation and PWM dimming, and major manufacturers have begun to develop next-generation display panels.

目前來說,微發光二極體顯示器(Micro LED Display)很可能成為下一代的顯示面板。微發光二極體顯示器與有機發光二極體顯示器一樣是自發光,還具有高色彩飽和度、反應時間短及使用壽命長等優點。 At present, Micro LED Display is likely to become the next-generation display panel. Micro-light-emitting diode displays are self-luminous like organic light-emitting diode displays, and they also have the advantages of high color saturation, short response time, and long service life.

目前微發光二極體在商業化上,仍存在許多成本與技術瓶頸需要克服。在發光二極體的製程中,主要是透過有機金屬化學氣相沉積(MOCVD)在藍寶石基板上成長磊晶材料以形成發光二極體磊晶片。蝕刻發光二極磊晶片,並在發光二極體磊晶片的表面形成複數個蝕刻溝槽及複數個平台構造(MESA)。而後沿著蝕刻溝槽切割發光二極體磊晶片,以完成發光二極體晶粒的製作。 At present, there are still many cost and technical bottlenecks that need to be overcome in the commercialization of micro-luminescence diodes. In the manufacturing process of light-emitting diodes, an epitaxial material is mainly grown on a sapphire substrate through metal organic chemical vapor deposition (MOCVD) to form light-emitting diode epitaxial wafers. Etching the light emitting diode epitaxial wafer, and forming a plurality of etching grooves and a plurality of mesa structures (MESA) on the surface of the light emitting diode epitaxial wafer. Then, the light-emitting diode epitaxial wafer is cut along the etching groove to complete the production of the light-emitting diode crystal grains.

在蝕刻發光二極體磊晶片的過程中,會在平台構造的蝕刻側牆(sidewall)形成缺陷及懸空鍵(dangling bond),導致發光二極體的蝕刻側牆產生非輻射復合(non-radiative recombination),進而影響發光二極體的發光亮度。 In the process of etching the light-emitting diode epitaxial wafer, defects and dangling bonds will be formed on the etched sidewalls of the platform structure, causing the etched sidewalls of the light-emitting diodes to produce non-radiative recombination (non-radiative). recombination), which in turn affects the luminous brightness of the light-emitting diode.

傳統的發光二極體及平台構造的尺寸遠大於蝕刻側牆,因此非輻射復合對整體的發光亮度影響很小,通常可以被忽略。但微發光二極體及平台構造的尺寸很小,使得發生在蝕刻側牆的非輻射復合會對微發光二極體的發光亮度造成相當大的影響。為此如何減少微發光二極體的蝕刻側牆產生非輻射復合,已然成為微發光二極體商業化的過程中必須面對的主要問題之一。 The size of the traditional light-emitting diode and platform structure is much larger than the etched side wall, so the non-radiative recombination has little effect on the overall luminous brightness and can usually be ignored. However, the size of the micro-light-emitting diode and the platform structure is small, so that the non-radiative recombination that occurs on the etched side wall will have a considerable impact on the luminous brightness of the micro-light-emitting diode. Therefore, how to reduce the non-radiative recombination of the etched side walls of the micro-light-emitting diode has become one of the main problems that must be faced during the commercialization of the micro-light-emitting diode.

為了解決上述先前技術的問題,本發明提出一種減少非輻射復合的微發光二極體的製作方法,可有效修補微發光二極體及平台構造(MESA)的蝕刻側牆上的缺陷及懸空鍵(dangling bond),並在微發光二極體及平台構造上形成鈍化層(passivation layer),以減少在微發光二極體的蝕刻側牆上產生非輻射復合(non-radiative recombination)。 In order to solve the above-mentioned problems of the prior art, the present invention proposes a method for reducing non-radiative composite micro-light-emitting diodes, which can effectively repair the defects and dangling bonds on the etching side walls of the micro-light-emitting diodes and the platform structure (MESA) (dangling bond) and forming a passivation layer on the micro-light-emitting diode and platform structure to reduce non-radiative recombination on the etched side walls of the micro-light-emitting diode.

本發明的一目的,在於提供一種減少非輻射復合的微發光二極體的製作方法,主要用以處理經過蝕刻的發光二極體磊晶片。發光二極體磊晶片包括一基板、一第一型半導體層、一活性層及一第二型半導體層,其中第一型半導體層、活性層及第二型半導體層以層疊方式設置在基板上。經過蝕刻的發光二極體磊晶片的表面會形成複數個蝕刻溝槽及複數個平台構造,其中平台構造的蝕刻側牆包括裸露的第一型半導體層、活性層及第二型半導體層。而後可沿著蝕刻溝槽切割發光二極體磊晶片,以產生複數個微發光二極體。 One objective of the present invention is to provide a method for manufacturing a micro-light-emitting diode that reduces non-radiative recombination, which is mainly used to process etched light-emitting diode epitaxial wafers. The light-emitting diode epitaxial wafer includes a substrate, a first-type semiconductor layer, an active layer, and a second-type semiconductor layer, wherein the first-type semiconductor layer, the active layer, and the second-type semiconductor layer are stacked on the substrate . A plurality of etching grooves and a plurality of terrace structures are formed on the surface of the etched light-emitting diode epitaxy wafer. The etched sidewalls of the terrace structure include exposed first-type semiconductor layers, active layers, and second-type semiconductor layers. Then, the light-emitting diode epitaxial wafer can be cut along the etching groove to produce a plurality of micro-light-emitting diodes.

在蝕刻的過程中,會在發光二極體磊晶片的蝕刻側牆形成至少一懸浮鍵及/或至少一缺陷,並在微發光二極體及平台構造的蝕刻側牆產生非輻射復合。微發光二極體的尺寸很小,通常在10-100um之間,使得微發光二極體及平台構造的尺寸與蝕刻側牆相近。因此當蝕刻側牆產生非輻射復合時,會大幅度的影響微發光二極體的發光亮度。為此本發明提出一種減少非輻射復合的微發光二極體的製作方法,主要對蝕刻後的發光二極體磊晶片進行懸浮鍵及/或缺陷的修補,而後再對經過修補的發光二極體磊晶片進行原子層沉積,以在發光二極體磊晶片的蝕刻側牆上形成一鈍化層,以 防止微發光二極體及平台構造的蝕刻側牆上產生非輻射復合,並可有效提高微發光二極體的發光亮度及轉換效率 During the etching process, at least one floating bond and/or at least one defect will be formed on the etched sidewall of the light-emitting diode epitaxial wafer, and non-radiative recombination will be generated on the etched sidewall of the micro-light-emitting diode and the platform structure. The size of the micro-light-emitting diode is very small, usually between 10-100um, so that the size of the micro-light-emitting diode and the platform structure is similar to that of the etched side wall. Therefore, when non-radiative recombination is produced by etching the sidewall, it will greatly affect the luminous brightness of the micro-luminescence diode. For this reason, the present invention proposes a method for reducing non-radiative recombination micro light-emitting diodes, which mainly repairs suspending bonds and/or defects on the etched light-emitting diode epitaxial wafers, and then repairs the repaired light-emitting diodes. The bulk epitaxial wafer undergoes atomic layer deposition to form a passivation layer on the etching side wall of the light-emitting diode epitaxial wafer to Prevent non-radiative recombination on the etched side walls of the micro-light-emitting diode and platform structure, and can effectively improve the luminous brightness and conversion efficiency of the micro-light-emitting diode

本發明的一目的,在於提供一種減少非輻射復合的微發光二極體的製作方法,主要對至少一蝕刻後的發光二極體磊晶片進行兩階段的原子層沉積,其中兩階段的原子層沉積的溫度不同。對蝕刻後的發光二極體磊晶片進行第一原子層沉積,可修補蝕刻側牆的懸浮鍵及/或缺陷。對經過第一原子層沉積的蝕刻後的發光二極體磊晶片進行第二原子層沉積,則會在發光二極體磊晶片的蝕刻側牆上形成一鈍化層,以防止微發光二極體及平台構造的蝕刻側牆上產生非輻射復合。 An object of the present invention is to provide a method for manufacturing a micro-light-emitting diode that reduces non-radiative recombination, which mainly performs two-stage atomic layer deposition on at least one etched light-emitting diode epitaxial wafer, wherein the two-stage atomic layer The deposition temperature is different. Performing first atomic layer deposition on the etched light-emitting diode epitaxial wafer can repair the floating bonds and/or defects of the etched sidewalls. Performing second atomic layer deposition on the etched light-emitting diode epitaxy wafer that has undergone the first atomic layer deposition will form a passivation layer on the etched side wall of the light-emitting diode epitaxy wafer to prevent micro-light-emitting diodes And the etched side wall of the platform structure produces non-radiative recombination.

本發明的一目的,在於提供一種在減少非輻射復合的微發光二極體的製作方法,主要將蝕刻後的發光二極體磊晶片放置到一反應腔體內,並將一修補氣體輸送至反應腔體,其中修補氣體會與蝕刻側牆的懸浮鍵及/或缺陷反應,並修補蝕刻後的發光二極體磊晶片的懸浮鍵及/或缺陷。而後對經過修補的發光二極體磊晶片進行原子層沉積,以在平台構造的蝕刻側牆上形成一鈍化層。 An object of the present invention is to provide a method for manufacturing a micro-light-emitting diode that reduces non-radiative recombination. The etched light-emitting diode epitaxial wafer is placed in a reaction chamber and a repair gas is delivered to the reaction chamber. The cavity, in which the repair gas reacts with the floating bonds and/or defects of the etched sidewalls, and repairs the floating bonds and/or defects of the etched light-emitting diode epitaxial wafer. Then, atomic layer deposition is performed on the repaired light-emitting diode epitaxial wafer to form a passivation layer on the etching side wall of the platform structure.

此外可依據修補氣體的種類,決定是否對反應腔體提供一交流電壓,使得修補氣體形成一電漿,其中電漿化的修補氣體可提高修補發光二極體的懸浮鍵及/或缺陷的效果及效率,並有利於減少在微發光二極體及平台構造的蝕刻側牆產生非輻射復合。 In addition, it can be determined whether to provide an AC voltage to the reaction chamber according to the type of repairing gas, so that the repairing gas forms a plasma, wherein the repairing gas of plasma can improve the effect of repairing the floating bonds and/or defects of the light-emitting diode And efficiency, and help to reduce the non-radiative recombination in the etching side walls of the micro-light-emitting diode and the platform structure.

為了達到上述的目的,本發明提出一種減少非輻射復合的微發光二極體的製作方法,包括:提供至少一蝕刻後的發光二極體磊晶片,蝕刻後的發光二極體磊晶片包括複數個蝕刻溝槽及複數個平台構造,其中平台 構造包括一第一型半導體層、一活性層及一第二型半導體層,活性層位於第一型半導體層及第二型半導體層之間;蝕刻後的發光二極體磊晶片在一第一溫度區間進行一第一原子層沉積;及經過第一原子層沉積的蝕刻後的發光二極體磊晶片在一第二溫度區間進行一第二原子層沉積,並在平台構造的至少一蝕刻側牆上的第一型半導體層、活性層及第二型半導體層形成一鈍化層,其中第一溫度區間與第二溫度區間不同。 In order to achieve the above objective, the present invention proposes a method for manufacturing a micro-light-emitting diode that reduces non-radiative recombination. Etched trenches and a plurality of platform structures, of which the platform The structure includes a first-type semiconductor layer, an active layer, and a second-type semiconductor layer. The active layer is located between the first-type semiconductor layer and the second-type semiconductor layer; A first atomic layer deposition is performed in the temperature range; and a second atomic layer deposition is performed on the etched light-emitting diode epitaxial wafer after the first atomic layer deposition in a second temperature range, and at least one etching side of the platform structure The first type semiconductor layer, the active layer and the second type semiconductor layer on the wall form a passivation layer, wherein the first temperature range is different from the second temperature range.

本發明提供另一種減少非輻射復合的微發光二極體的製作方法,包括:提供至少一蝕刻後的發光二極體磊晶片,蝕刻後的發光二極體磊晶片包括複數個蝕刻溝槽及複數個平台構造,其中平台構造包括一第一型半導體層、一活性層及一第二型半導體層,活性層位於第一型半導體層及第二型半導體層之間;將蝕刻後的發光二極體磊晶片放置到一反應腔體,並將一修補氣體輸送至反應腔體內,其中修補氣體會與蝕刻後的發光二極體磊晶片反應;及對蝕刻後的發光二極體磊晶片進行一原子層沉積,並在平台構造的至少一蝕刻側牆上的第一型半導體層、活性層及第二型半導體層形成一鈍化層。 The present invention provides another method for manufacturing a micro light emitting diode that reduces non-radiative recombination, including: providing at least one etched light emitting diode epitaxial wafer, the etched light emitting diode epitaxial wafer including a plurality of etching grooves and A plurality of platform structures, wherein the platform structure includes a first-type semiconductor layer, an active layer, and a second-type semiconductor layer. The active layer is located between the first-type semiconductor layer and the second-type semiconductor layer; The epitaxy wafer is placed in a reaction chamber, and a repair gas is delivered into the reaction chamber, where the repair gas will react with the etched light emitting diode epitaxial wafer; and the etched light emitting diode epitaxial wafer is processed An atomic layer is deposited, and a passivation layer is formed on the first type semiconductor layer, the active layer and the second type semiconductor layer on at least one etching side wall of the platform structure.

本發明還提供一種減少非輻射復合的微發光二極體的製作機台,包括:一傳送腔體,包括至少一傳送裝置,用以傳送至少一蝕刻後的發光二極體磊晶片,其中蝕刻後的發光二極體磊晶片包括複數個蝕刻溝槽及複數個平台構造,平台構造包括一第一型半導體層、一活性層及一第二型半導體層,活性層位於第一型半導體層及第二型半導體層之間;至少一第一原子層沉積腔體,連接傳送腔體,其中傳送裝置將蝕刻後的發光二極體磊晶片傳送至第一原子層沉積腔體,並在第一原子層沉積腔體內以一第 一溫度區間對蝕刻後的發光二極體磊晶片進行一第一原子層沉積;及至少一第二原子層沉積腔體,連接傳送腔體,其中傳送裝置將經過第一原子層沉積的蝕刻後的發光二極體磊晶片傳送至第二原子層沉積腔體,並在第二原子層沉積腔體內以一第二溫度區間對蝕刻後的發光二極體磊晶片進行一第二原子層沉積,以在平台構造的至少一蝕刻側牆上的第一型半導體層、活性層及第二型半導體層形成一鈍化層,其中第一溫度區間與第二溫度區間不同。 The present invention also provides a manufacturing machine for reducing non-radiative recombination of micro-light-emitting diodes, including: a transfer cavity, including at least one transfer device for transferring at least one etched light-emitting diode epitaxial wafer, wherein the etching The latter light-emitting diode epitaxial wafer includes a plurality of etched trenches and a plurality of platform structures. The platform structure includes a first-type semiconductor layer, an active layer, and a second-type semiconductor layer. The active layer is located on the first-type semiconductor layer and Between the second-type semiconductor layers; at least one first atomic layer deposition chamber connected to the transfer chamber, wherein the transfer device transfers the etched light-emitting diode epitaxial wafer to the first atomic layer deposition chamber, and in the first Atomic layer deposition chamber with a first Perform a first atomic layer deposition on the etched light-emitting diode epitaxy wafer in a temperature range; and at least one second atomic layer deposition chamber connected to the transmission cavity, wherein the transmission device will be etched by the first atomic layer deposition The light-emitting diode epitaxial wafer is transferred to the second atomic layer deposition chamber, and a second atomic layer deposition is performed on the etched light-emitting diode epitaxial wafer in a second temperature range in the second atomic layer deposition chamber, A passivation layer is formed with the first type semiconductor layer, the active layer and the second type semiconductor layer on at least one etching side wall of the platform structure, wherein the first temperature range is different from the second temperature range.

本發明提供另一種減少非輻射復合的微發光二極體的製作機台,包括:一傳送腔體,包括至少一傳送裝置,用以傳送至少一蝕刻後的發光二極體磊晶片,其中蝕刻後的發光二極體磊晶片包括複數個蝕刻溝槽及複數個平台構造,平台構造包括一第一型半導體層、一活性層及一第二型半導體層,活性層位於第一型半導體層及第二型半導體層之間;至少一反應腔體,連接傳送腔體,其中傳送裝置將蝕刻後的發光二極體磊晶片傳送至反應腔體,並將一修補氣體輸送至反應腔體內,使得修補氣體與蝕刻後的發光二極體磊晶片反應;及至少一原子層沉積腔體,連接傳送腔體,其中傳送裝置將反應腔體內的蝕刻後的發光二極體磊晶片傳送至原子層沉積腔體,並在原子層沉積腔體內對蝕刻後的發光二極體磊晶片進行一原子層沉積,以在平台構造的至少一蝕刻側牆上的第一型半導體層、活性層及第二型半導體層形成一鈍化層。 The present invention provides another micro-light-emitting diode manufacturing machine for reducing non-radiative recombination, including: a transfer cavity, including at least one transfer device for transferring at least one etched light-emitting diode epitaxial wafer, wherein the etching The latter light-emitting diode epitaxial wafer includes a plurality of etched trenches and a plurality of platform structures. The platform structure includes a first-type semiconductor layer, an active layer, and a second-type semiconductor layer. The active layer is located on the first-type semiconductor layer and Between the second-type semiconductor layers; at least one reaction chamber, connected to the transfer chamber, wherein the transfer device transfers the etched light-emitting diode epitaxial wafer to the reaction chamber, and delivers a repair gas to the reaction chamber, so that The repair gas reacts with the etched light-emitting diode epitaxial wafer; and at least one atomic layer deposition chamber is connected to the transfer chamber, wherein the transfer device transfers the etched light-emitting diode epitaxial wafer in the reaction chamber to the atomic layer deposition Cavity, and perform an atomic layer deposition on the etched light-emitting diode epitaxial wafer in the atomic layer deposition chamber to etch the first type semiconductor layer, the active layer and the second type on at least one side wall of the platform structure The semiconductor layer forms a passivation layer.

所述的減少非輻射復合的微發光二極體的製作方法,其中第一原子層沉積用以修補蝕刻後的發光二極體磊晶片的至少一懸浮鍵或至少一缺陷,而第二原子層沉積在平台構造的一頂表面設置鈍化層。 In the method for manufacturing a micro-light-emitting diode that reduces non-radiation recombination, the first atomic layer deposition is used to repair at least one dangling bond or at least one defect of the etched light-emitting diode epitaxial wafer, and the second atomic layer A passivation layer is deposited on a top surface of the platform structure.

所述的減少非輻射復合的微發光二極體的製作方法,其中第一原子層沉積、第二原子層沉積及原子層沉積使用的一前驅物氣體包括有機鋁化合物、水、二元醇、臭氧或乙醇。 In the method for reducing non-radiation recombination micro light-emitting diodes, a precursor gas used in the first atomic layer deposition, the second atomic layer deposition and the atomic layer deposition includes organoaluminum compound, water, glycol, Ozone or ethanol.

所述的減少非輻射復合的微發光二極體的製作方法,其中原子層沉積在反應腔體內進行。 In the method for manufacturing a micro-light emitting diode that reduces non-radiation recombination, the atomic layer is deposited in the reaction chamber.

所述的減少非輻射復合的微發光二極體的製作方法,包括提供一交流電壓給反應腔體,使得反應腔體內的修補氣體成為一電漿,其中電漿化的修補氣體會與蝕刻後的發光二極體磊晶片反應,並修補蝕刻後的發光二極體磊晶片的至少一懸浮鍵或至少一缺陷,而第二原子層沉積在平台構造的一頂表面設置鈍化層。 The manufacturing method of the non-radiative recombination micro light-emitting diode includes providing an AC voltage to the reaction chamber, so that the repair gas in the reaction chamber becomes a plasma, wherein the repair gas after the plasma will be The light emitting diode epitaxial wafer reacts and repairs at least one floating bond or at least one defect of the etched light emitting diode epitaxial wafer, and the second atomic layer is deposited on a top surface of the platform structure with a passivation layer.

所述的減少非輻射復合的微發光二極體的製作方法,其中修補氣體為氮氣、氧氣或臭氧。 In the method for manufacturing a micro-luminescent diode that reduces non-radiation recombination, the repair gas is nitrogen, oxygen or ozone.

20:發光二極體磊晶片 20: Light-emitting diode epitaxy chip

200:蝕刻後的發光二極體磊晶片 200: Etched light-emitting diode epitaxial wafer

21:基板 21: substrate

22:蝕刻溝槽 22: Etching grooves

23:第一型半導體層 23: The first type semiconductor layer

24:平台構造 24: Platform structure

241:蝕刻側牆 241: Etching Side Wall

243:頂表面 243: top surface

25:活性層 25: active layer

26:接觸電極 26: Contact electrode

27:第二型半導體層 27: Type II semiconductor layer

29:鈍化層 29: Passivation layer

40:微發光二極體的製作機台 40: Micro-luminescence diode production machine

41:傳送腔體 41: Teleportation Chamber

411:傳送裝置 411: Conveyor

42:承載盤 42: Carrier plate

43:第一原子層沉積腔體 43: The first atomic layer deposition chamber

430:反應腔體 430: Reaction Chamber

45:第二原子層沉積腔體 45: The second atomic layer deposition chamber

450:原子層沉積腔體 450: Atomic layer deposition chamber

[圖1]為本發明減少非輻射復合的微發光二極體的製作方法一實施例的步驟流程圖。 [Fig. 1] is a flowchart of an embodiment of a method for manufacturing a micro-light emitting diode for reducing non-radiation recombination according to the present invention.

[圖2]為本發明發光二極體磊晶片一實施例的剖面示意圖。 [Fig. 2] is a schematic cross-sectional view of an embodiment of a light-emitting diode epitaxial wafer of the present invention.

[圖3]為本發明蝕刻後的發光二極體磊晶片一實施例的剖面示意圖。 [FIG. 3] is a schematic cross-sectional view of an embodiment of the light-emitting diode epitaxial wafer after etching of the present invention.

[圖4]為本發明設置鈍化層的蝕刻後的發光二極體磊晶片一實施例的剖面示意圖。 Fig. 4 is a schematic cross-sectional view of an embodiment of an etched light-emitting diode epitaxial wafer provided with a passivation layer according to the present invention.

[圖5]為本發明設置鈍化層的蝕刻後的發光二極體磊晶片又一實施例的剖面示意圖。 Fig. 5 is a schematic cross-sectional view of another embodiment of an etched light emitting diode epitaxial wafer provided with a passivation layer according to the present invention.

[圖6]為本發明減少非輻射復合的微發光二極體的製作方法又一實施例的步驟流程圖。 [Fig. 6] is a flowchart of another embodiment of the method for manufacturing a micro-luminescent diode for reducing non-radiation recombination according to the present invention.

[圖7]為本發明減少非輻射復合的微發光二極體的製作機台一實施例的構造示意圖。 [Fig. 7] is a schematic diagram of an embodiment of a manufacturing machine for reducing non-radiation composite micro-light-emitting diodes of the present invention.

請參閱圖1,為本發明減少非輻射復合的微發光二極體的製作方法一實施例的步驟流程圖。請配合參閱圖2至圖5,提供至少一發光二極體磊晶片20,其中發光二極體磊晶片20包括一基板21、一第一型半導體層23、一活性層25及一第二型半導體層27。在發光二極體的製程中,可透過有機金屬化學氣相沉積(MOCVD)在基板21上依序成長第一型半導體層23、活性層25及第二型半導體層27,其中活性層25位於第一型半導體層23及第二型半導體層27之間,如圖2所示。例如基板21為藍寶石(Sapphire)、碳化矽(SiC)、矽(Si)、砷化鎵(GaAs)、偏鋁酸鋰(LiAlO2)、氧化鎂(MgO)、氧化鋅(ZnO)、氮化鎵(GaN)、氮化鋁(AlN)、或氮化銦(InN)等單晶基板,第一型半導體層23為N型半導體,活性層25為複數層量子井(Quantum Well),而第二型半導體層27為P型半導體。 Please refer to FIG. 1, which is a flowchart of an embodiment of a method for manufacturing a micro-luminescence diode for reducing non-radiation recombination according to the present invention. Please refer to FIGS. 2 to 5, at least one light emitting diode epitaxial chip 20 is provided, wherein the light emitting diode epitaxial chip 20 includes a substrate 21, a first type semiconductor layer 23, an active layer 25 and a second type Semiconductor layer 27. In the manufacturing process of light-emitting diodes, the first type semiconductor layer 23, the active layer 25 and the second type semiconductor layer 27 can be sequentially grown on the substrate 21 through metal organic chemical vapor deposition (MOCVD), wherein the active layer 25 is located Between the first type semiconductor layer 23 and the second type semiconductor layer 27, as shown in FIG. For example, the substrate 21 is sapphire (Sapphire), silicon carbide (SiC), silicon (Si), gallium arsenide (GaAs), lithium metaaluminate (LiAlO2), magnesium oxide (MgO), zinc oxide (ZnO), gallium nitride (GaN), Aluminum Nitride (AlN), or InN The type semiconductor layer 27 is a P type semiconductor.

蝕刻發光二極磊晶片20,在發光二極體磊晶片20的一表面形成複數個蝕刻溝槽22及複數個平台構造24,其中蝕刻溝槽22使得第一型半導體層23露出,並形成一蝕刻後的發光二極體磊晶片200,如步驟11及圖3所示。 The light emitting diode epitaxial wafer 20 is etched, and a plurality of etching trenches 22 and a plurality of terrace structures 24 are formed on a surface of the light emitting diode epitaxial wafer 20. The etching trenches 22 expose the first type semiconductor layer 23 and form a The etched light-emitting diode epitaxial wafer 200 is shown in step 11 and FIG. 3.

蝕刻後的發光二極體磊晶片200的平台構造24包括複數個蝕刻側牆241,其中蝕刻側牆241位於平台構造24與蝕刻溝槽22的交界處,平台構造24在蝕刻側牆241上具有裸露的第一型半導體層23、活性層25及第二型半導體層27。例如蝕刻溝槽22可為棋盤狀的溝槽,而平台構造24則是以矩陣方式排列的凸起,可以是方形凸起或圓形凸起等。 The platform structure 24 of the etched light-emitting diode epitaxy wafer 200 includes a plurality of etched sidewalls 241, wherein the etched sidewalls 241 are located at the junction of the platform structure 24 and the etching trench 22, and the platform structure 24 is provided on the etched sidewalls 241 The first-type semiconductor layer 23, the active layer 25, and the second-type semiconductor layer 27 are exposed. For example, the etching groove 22 may be a checkerboard-shaped groove, and the platform structure 24 may be protrusions arranged in a matrix, which may be square protrusions or circular protrusions.

蝕刻的過程中會破壞發光二極體磊晶片20的結構,並在蝕刻後的發光二極體磊晶片200的蝕刻側牆241形成至少一懸浮鍵(dangling bond)及/或至少一缺陷,使得蝕刻側牆241產生非輻射復合(non-radiative recombination)。 During the etching process, the structure of the light-emitting diode epitaxial wafer 20 will be destroyed, and at least one dangling bond and/or at least one defect will be formed on the etched sidewall 241 of the etched light-emitting diode epitaxial wafer 200, so that Etching the sidewall 241 produces non-radiative recombination.

由於微發光二極體及平台構造24的尺寸很小,例如在10-100um之間,與微發光二極體及平台構造24上蝕刻側牆241的尺寸相近。因此當蝕刻側牆241產生非輻射復合時,勢必會大幅影響微發光二極體的發光亮度。 Since the size of the micro-light-emitting diode and the platform structure 24 is small, for example, between 10-100 um, it is similar to the size of the etched sidewall 241 on the micro-light-emitting diode and the platform structure 24. Therefore, when the sidewall 241 is etched to produce non-radiative recombination, it will inevitably greatly affect the luminous brightness of the micro light emitting diode.

為此本發明在第一溫度區間對蝕刻後的發光二極體磊晶片200進行一第一原子層沉積,如步驟13所示。在對蝕刻後的發光二極體磊晶片200進行第一原子層沉積的過程中,前驅物氣體可能會與蝕刻後的發光二極體磊晶片200反應,並修補蝕刻後的發光二極體磊晶片200的平台構造24的懸浮鍵及缺陷,可初步避免蝕刻側牆241發生非輻射復合。 For this reason, the present invention performs a first atomic layer deposition on the etched light-emitting diode epitaxial wafer 200 in the first temperature range, as shown in step 13. During the first atomic layer deposition process on the etched LED epitaxial wafer 200, the precursor gas may react with the etched LED epitaxial wafer 200 and repair the etched LED epitaxial wafer. The floating bonds and defects of the platform structure 24 of the wafer 200 can preliminarily prevent the non-radiative recombination of the etched sidewall 241.

對經過第一原子層沉積的蝕刻後的發光二極體磊晶片200在第二溫度區間進行第二原子層沉積,在平台構造24的蝕刻側牆241上的第一型半導體層23、活性層25及第二型半導體層27形成形成一鈍化層29,如步驟15及圖4所示。在本發明一實施例中,鈍化層29可完整的包覆蝕刻溝槽22,例如包覆蝕刻溝槽22的底部及側邊,防止在平台構造24的蝕刻側牆241發生非 輻射復合。在本發明一實施例中,第一原子層沉積及第二原子層沉積使用的前驅物氣體包括有機鋁化合物、TMA、水、二元醇、臭氧或乙醇,而鈍化層29可以是三氧化二鋁(Al2O3)。 Perform second atomic layer deposition on the etched light-emitting diode epitaxial wafer 200 after the first atomic layer deposition in the second temperature range, and etch the first type semiconductor layer 23 and the active layer on the sidewall 241 of the platform structure 24 25 and the second type semiconductor layer 27 are formed to form a passivation layer 29, as shown in step 15 and FIG. 4. In an embodiment of the present invention, the passivation layer 29 can completely cover the etching trench 22, for example, cover the bottom and sides of the etching trench 22, so as to prevent the etched sidewalls 241 of the platform structure 24 from generating abnormalities. Radiation recombination. In an embodiment of the present invention, the precursor gases used in the first atomic layer deposition and the second atomic layer deposition include organoaluminum compounds, TMA, water, glycol, ozone or ethanol, and the passivation layer 29 may be trioxide. Aluminum (Al2O3).

在本發明實施例中,進行第一原子層沉積的第一溫度區間與進行第二原子層沉積的第二溫度區間不同。當第一溫度區間小於第二溫度區間時,可延長第一原子層沉積的時間,並增加修補蝕刻側牆241的懸浮鍵及缺陷的反應時間。第一溫度區間大於第二溫度區間時,可提高第一原子層沉積時前驅物氣體的活性,同樣有利於修補蝕刻側牆241的懸浮鍵及缺陷。具體而言,上述步驟13至步驟15可應用在批次原子層沉積(Batch ALD)或空間原子層沉積(Spatial ALD)。此外第一原子層沉積的時間可大於或遠大於第二原子層沉積的時間。 In the embodiment of the present invention, the first temperature interval for performing the first atomic layer deposition is different from the second temperature interval for performing the second atomic layer deposition. When the first temperature interval is smaller than the second temperature interval, the first atomic layer deposition time can be prolonged, and the reaction time for repairing the floating bonds and defects of the etching sidewall spacer 241 can be increased. When the first temperature range is greater than the second temperature range, the activity of the precursor gas during the deposition of the first atomic layer can be improved, and it is also beneficial to repair the floating bonds and defects of the etched sidewall spacers 241. Specifically, the above steps 13 to 15 can be applied to batch atomic layer deposition (Batch ALD) or spatial atomic layer deposition (Spatial ALD). In addition, the time for the deposition of the first atomic layer may be greater or far greater than the time for the deposition of the second atomic layer.

以下表格為只有進行第二原子層沉積,並未進行第一原子層沉積、第一溫度區間小於第二溫度區間及第一溫度區間大於第二溫度區間的實驗數據。下表中的發光強度差異(%)是上述製程條件形成的微發光二極體,與表面形成約5000A的二氧化矽(SiO2)的微發光二極體磊晶片200的強度比較。另外以下的數據並非在完成發光二極體磊晶片20的蝕刻後,便立即進行第一及/或第二原子層沉積,因此以下的數據並非絕對。 The following table is the experimental data of only the second atomic layer deposition is performed, the first atomic layer deposition is not performed, the first temperature interval is less than the second temperature interval, and the first temperature interval is greater than the second temperature interval. The difference in luminous intensity (%) in the following table is the intensity comparison of the micro-light-emitting diode formed by the above process conditions and the micro-light-emitting diode epitaxial wafer 200 with about 5000 A of silicon dioxide (SiO2) formed on the surface. In addition, the following data does not immediately perform the first and/or second atomic layer deposition after the etching of the light-emitting diode epitaxial wafer 20 is completed, so the following data is not absolute.

Figure 109145096-A0305-02-0012-1
Figure 109145096-A0305-02-0012-1

Figure 109145096-A0305-02-0013-2
Figure 109145096-A0305-02-0013-2

Figure 109145096-A0305-02-0013-3
Figure 109145096-A0305-02-0013-3

Figure 109145096-A0305-02-0013-4
Figure 109145096-A0305-02-0013-4

如表1所示,在未進行第一原子層沉積時,微發光二極體的亮度未能有效提升。如表2所示,第一溫度區間為200℃,且第二溫度區間為220℃時,微發光二極體的亮度有小幅的提升。如表3所示,第一溫度區間為270℃,且第二溫度區間為220℃時,微發光二極體的亮度有相當顯著的提升。如表4所示,第一溫度區間為150℃,且第二溫度區間為220℃時,微發光二極體的亮度亦有明顯的提升。可說明第一原子層沉積的第一溫度區間與進行第二原子層沉積的第二溫度區間不同時,皆可提升微發光二極體的發光 亮度。當然上述表格的數據僅為本發明的實驗數據,並非本發明權利範圍的限制。 As shown in Table 1, when the first atomic layer deposition is not performed, the brightness of the micro light emitting diode cannot be effectively improved. As shown in Table 2, when the first temperature interval is 200°C and the second temperature interval is 220°C, the brightness of the micro light-emitting diode is slightly improved. As shown in Table 3, when the first temperature interval is 270°C and the second temperature interval is 220°C, the brightness of the micro light-emitting diode is significantly improved. As shown in Table 4, when the first temperature interval is 150°C and the second temperature interval is 220°C, the brightness of the micro light-emitting diode is also significantly improved. It can be explained that when the first temperature range of the first atomic layer deposition is different from the second temperature range of the second atomic layer deposition, the luminescence of the micro light emitting diode can be improved. brightness. Of course, the data in the above table is only the experimental data of the present invention, and is not a limitation of the scope of rights of the present invention.

在本發明另一實施例中,第二原子層沉積亦可在平台構造24的一頂表面243設置鈍化層29,其中鈍化層29除了包覆平台構造24的蝕刻側牆241外,還延伸至平台構造24的頂表面243,如圖5所示。此外將鈍化層29設置在平台構造24的蝕刻側牆241及頂表面243,亦可將鈍化層29充當反射層,並用以反射微發光二極體及平台構造24產生的光源。 In another embodiment of the present invention, the second atomic layer deposition can also provide a passivation layer 29 on a top surface 243 of the mesa structure 24, where the passivation layer 29 not only covers the etched sidewalls 241 of the mesa structure 24, but also extends to The top surface 243 of the platform structure 24 is shown in FIG. 5. In addition, the passivation layer 29 is provided on the etched sidewalls 241 and the top surface 243 of the platform structure 24, and the passivation layer 29 can also be used as a reflective layer to reflect the light source generated by the micro light emitting diode and the platform structure 24.

在實際應用時可先在平台構造24上設置接觸電極26,而後再設置鈍化層29,其中鈍化層29可與接觸電極26接觸,亦可完成鈍化層29的設置之後,再於平台構造24上設置接觸電極26。在完成鈍化層29的設置後,可沿著蝕刻溝槽22切割蝕刻後的發光二極體磊晶片200,以形成複數個微發光二極體。 In actual application, the contact electrode 26 can be provided on the platform structure 24 first, and then the passivation layer 29 can be provided. The passivation layer 29 can be in contact with the contact electrode 26, or after the passivation layer 29 is set, it can be placed on the platform structure 24. The contact electrode 26 is provided. After the passivation layer 29 is set up, the etched light emitting diode epitaxial wafer 200 can be cut along the etching groove 22 to form a plurality of micro light emitting diodes.

在本發明一實施例中,可於蝕刻後的發光二極體磊晶片200上設置接觸電極26、反射層、透明電流擴散層等,發光二極體技術領域中常見的構造,上述構造並非本發明的重點,為此便不再詳細說明。 In an embodiment of the present invention, contact electrodes 26, a reflective layer, a transparent current diffusion layer, etc. may be provided on the etched light-emitting diode epitaxial wafer 200. The structure is common in the field of light-emitting diode technology. The key point of the invention will not be explained in detail for this reason.

請參閱圖6,為本發明減少非輻射復合的微發光二極體的製作方法又一實施例的步驟流程圖。請配合參閱圖2至圖5,首先提供至少一發光二極體磊晶片20,其中發光二極體磊晶片20包括一基板21、一第一型半導體層23、一活性層25及一第二型半導體層27。 Please refer to FIG. 6, which is a flowchart of another embodiment of a method for manufacturing a micro-light-emitting diode for reducing non-radiation recombination according to the present invention. Please refer to FIGS. 2 to 5 together. First, at least one light-emitting diode epitaxial chip 20 is provided. The light-emitting diode epitaxial chip 20 includes a substrate 21, a first-type semiconductor layer 23, an active layer 25, and a second Type semiconductor layer 27.

蝕刻發光二極磊晶片20,以在發光二極體磊晶片20上形成複數個蝕刻溝槽22及複數個平台構造24,並形成一蝕刻後的發光二極體磊晶片200,如步驟11及圖3所示。蝕刻後的發光二極體磊晶片200的平台構造24包括複數 個蝕刻側牆241,其中蝕刻側牆241位於平台構造24與蝕刻溝槽22的交界處,而蝕刻側牆241上具有裸露的第一型半導體層23、活性層25及第二型半導體層27。例如蝕刻溝槽22可為棋盤狀的溝槽,而平台構造24則是以矩陣方式排列的凸起,可以是方形凸起或圓形凸起等。 Etch the light emitting diode epitaxial wafer 20 to form a plurality of etching grooves 22 and a plurality of terrace structures 24 on the light emitting diode epitaxial wafer 20, and form an etched light emitting diode epitaxial wafer 200, as in steps 11 and As shown in Figure 3. The platform structure 24 of the etched light-emitting diode epitaxy wafer 200 includes plural Etched sidewalls 241, wherein the etched sidewalls 241 are located at the junction of the mesa structure 24 and the etching trench 22, and the etched sidewalls 241 have exposed first-type semiconductor layers 23, active layers 25, and second-type semiconductor layers 27 . For example, the etching groove 22 may be a checkerboard-shaped groove, and the platform structure 24 may be protrusions arranged in a matrix, which may be square protrusions or circular protrusions.

將蝕刻後的發光二極體磊晶片200放置到一反應腔體,並將一修補氣體輸送至反應腔體內,如步驟33所示。在實際應用時可依據第一型半導體層23、活性層25及第二型半導體層27的材料選擇修補氣體,其中修補氣體包括氧氣、氮氣或臭氧等。 Place the etched light emitting diode epitaxy wafer 200 in a reaction chamber, and deliver a repair gas into the reaction chamber, as shown in step 33. In practical applications, the repair gas can be selected according to the materials of the first-type semiconductor layer 23, the active layer 25, and the second-type semiconductor layer 27, where the repair gas includes oxygen, nitrogen, or ozone.

提供一交流電壓給反應腔體,使得反應腔體內的修補氣體成為電漿,其中電漿化的修補氣體會與蝕刻後的發光二極體磊晶片200反應,並修補蝕刻後的發光二極體磊晶片200,如步驟35所示。例如當第一型半導體層23、活性層25及第二型半導體層27為氮化銦鎵(InGaN),修補氣體可為氮氣,並透過電漿化的修補氣體修補平台構造24的蝕刻側邊241的懸浮鍵及缺陷。在本發明一實施例中,反應腔體可以是一般的物理氣相沉積腔體或原子層沉積腔體,便可以電漿化的修補氣體修補蝕刻後的發光二極體磊晶片200。 Provide an AC voltage to the reaction chamber, so that the repair gas in the reaction chamber becomes plasma. The plasma repair gas will react with the etched light-emitting diode epitaxial wafer 200 and repair the etched light-emitting diode Epitaxial wafer 200, as shown in step 35. For example, when the first type semiconductor layer 23, the active layer 25, and the second type semiconductor layer 27 are indium gallium nitride (InGaN), the repair gas can be nitrogen, and the etching side of the platform structure 24 is repaired through the plasma repair gas 241 floating bonds and defects. In an embodiment of the present invention, the reaction chamber may be a general physical vapor deposition chamber or an atomic layer deposition chamber, so that the etched light-emitting diode epitaxial wafer 200 can be repaired with a plasma repair gas.

此外當修補氣體而臭氧時,便不需要提供交流電壓給反應腔體。只要在反應腔體內提供一定濃度的臭氧,便可使得臭氧與蝕刻後的發光二極體磊晶片200反應,並修補平台構造24的蝕刻側邊241的懸浮鍵及缺陷。因此步驟35並非本發明的必要步驟,並可依據修補氣體的種類決定是否進行步驟35。此外在將修補氣體傳輸至反應腔體後,可提高反應腔體及修補氣體的溫度。 In addition, when repairing gas and ozone, there is no need to provide AC voltage to the reaction chamber. As long as a certain concentration of ozone is provided in the reaction chamber, the ozone can react with the etched light-emitting diode epitaxial wafer 200 and repair the floating bonds and defects of the etched side 241 of the platform structure 24. Therefore, step 35 is not a necessary step of the present invention, and it can be determined whether to perform step 35 according to the type of repair gas. In addition, after the repairing gas is delivered to the reaction chamber, the temperature of the reaction chamber and the repairing gas can be increased.

對經過修補的蝕刻後的發光二極體磊晶片200進行原子層沉積,並在平台構造24的至少一蝕刻側邊241形成一鈍化層29,其中鈍化層29覆蓋平台構造24的蝕刻側邊241上的第一型半導體層23、活性層25及第二型半導體層27,如步驟37所示。在本發明一實施例中,原子層沉積使用的前驅物氣體包括有機鋁化合物、TMA、水、二元醇、臭氧或乙醇,而鈍化層29可以是三氧化二鋁(Al2O3)。 Perform atomic layer deposition on the repaired and etched light-emitting diode epitaxy wafer 200, and form a passivation layer 29 on at least one etched side 241 of the mesa structure 24, wherein the passivation layer 29 covers the etched side 241 of the mesa structure 24 The upper first type semiconductor layer 23, active layer 25, and second type semiconductor layer 27 are as shown in step 37. In an embodiment of the present invention, the precursor gas used for atomic layer deposition includes organoaluminum compound, TMA, water, glycol, ozone or ethanol, and the passivation layer 29 may be aluminum oxide (Al2O3).

上述步驟33至步驟37所述的修補反應及原子層沉積製程,可以在同一個或兩個不同的反應腔體進行,例如當修補反應及原子層沉積製程的溫度相同或相近時,可以在同一個反應腔體或同一個原子層沉積腔體進行修補反應及原子層沉積製程。具體而言,上述步驟33至步驟37可應用在批次原子層沉積(Batch ALD)或空間原子層沉積(Spatial ALD)。此外修補反應的時間可大於或遠大於原子層沉積的時間。 The repair reaction and the atomic layer deposition process described in step 33 to step 37 can be performed in the same or two different reaction chambers. For example, when the temperature of the repair reaction and the atomic layer deposition process are the same or similar, they can A reaction chamber or the same atomic layer deposition chamber is used for repair reaction and atomic layer deposition process. Specifically, the above steps 33 to 37 can be applied to batch atomic layer deposition (Batch ALD) or spatial atomic layer deposition (Spatial ALD). In addition, the repair reaction time can be longer or much longer than the atomic layer deposition time.

請參閱圖7,為本發明減少非輻射復合的微發光二極體的製作機台一實施例的構造示意圖。請配合參閱圖1,微發光二極體的製作機台40包括一傳送腔體41、至少一第一原子層沉積腔體43及至少一第二原子層沉積腔體45,其中傳送腔體41連接第一原子層沉積腔體43及第二原子層沉積腔體45,且傳送腔體41、第一原子層沉積腔體43及第二原子層沉積腔體45內保持低壓或真空。 Please refer to FIG. 7, which is a schematic structural view of an embodiment of a manufacturing machine for reducing non-radiation composite micro-light-emitting diodes according to the present invention. Please refer to FIG. 1, the manufacturing machine 40 of the micro light emitting diode includes a transmission cavity 41, at least one first atomic layer deposition cavity 43, and at least one second atomic layer deposition cavity 45, wherein the transmission cavity 41 The first atomic layer deposition chamber 43 and the second atomic layer deposition chamber 45 are connected, and the transfer chamber 41, the first atomic layer deposition chamber 43, and the second atomic layer deposition chamber 45 are kept at low pressure or vacuum.

在本發明一實施例中,傳送腔體41包括至少一傳送裝置411,例如傳送裝置411可為機械手臂,其中傳送裝置411用以承載及傳送至少一蝕刻後的發光二極體磊晶片200。在實際應用時,可將複數個蝕刻後的發光二極體磊晶片200放置在一承載盤42上,並透過輸送裝置411承載及輸送承載 盤42與蝕刻後的發光二極體磊晶片200。輸送裝置411可相對於第一原子層沉積腔體43及第二原子層沉積腔體45伸縮,並將蝕刻後的發光二極體磊晶片200輸送至第一原子層沉積腔體43及第二原子層沉積腔體45,或者是將蝕刻後的發光二極體磊晶片200由第一原子層沉積腔體43及第二原子層沉積腔體45取出。 In an embodiment of the present invention, the transfer chamber 41 includes at least one transfer device 411, for example, the transfer device 411 may be a robotic arm, wherein the transfer device 411 is used to carry and transfer at least one etched light-emitting diode epitaxial wafer 200. In practical applications, a plurality of etched light-emitting diode epitaxial wafers 200 can be placed on a carrier plate 42 and carried and transported by the transport device 411 The disk 42 and the etched light-emitting diode epitaxial wafer 200. The conveying device 411 can expand and contract with respect to the first atomic layer deposition chamber 43 and the second atomic layer deposition chamber 45, and convey the etched light-emitting diode epitaxy wafer 200 to the first atomic layer deposition chamber 43 and the second atomic layer deposition chamber 43 and the second atomic layer deposition chamber 45. The atomic layer deposition cavity 45, or the etched light emitting diode epitaxial wafer 200 is taken out from the first atomic layer deposition cavity 43 and the second atomic layer deposition cavity 45.

傳送裝置411先將蝕刻後的發光二極體磊晶片200輸送至第一原子層沉積腔體43內,並在第一原子層沉積腔體43以一第一溫度區間對蝕刻後的發光二極體磊晶片200進行第一原子層沉積。在第一原子層沉積腔體43內進行第一原子層沉積時,前驅物氣體可用以修補平台構造24的蝕刻側牆241上的懸浮鍵及缺陷,初步避免蝕刻側牆241發生非輻射復合。 The conveying device 411 first conveys the etched light-emitting diode epitaxial wafer 200 into the first atomic layer deposition chamber 43, and performs a first temperature interval on the etched light-emitting diode in the first atomic layer deposition chamber 43. The bulk wafer 200 undergoes first atomic layer deposition. When the first atomic layer deposition is performed in the first atomic layer deposition chamber 43, the precursor gas can be used to repair the floating bonds and defects on the etched sidewall 241 of the platform structure 24, and preliminarily prevent the non-radiative recombination of the etched sidewall 241.

而後傳送裝置411將經過第一原子層沉積的蝕刻後的發光二極體磊晶片200由第一原子層沉積腔體43取出,並傳送至第二原子層沉積腔體45。第二原子層沉積腔體45以一第二溫度區間對蝕刻後的發光二極體磊晶片200進行第二原子層沉積,以在蝕刻後的發光二極體磊晶片200的蝕刻側牆241上形成一鈍化層29,其中鈍化層29包覆平台構造24的蝕刻側牆241上的第一型半導體層23、活性層25及第二型半導體層27,以防止在平台構造24的蝕刻側牆241發生非輻射復合。 Then the transfer device 411 takes the etched light-emitting diode epitaxial wafer 200 after the first atomic layer deposition out of the first atomic layer deposition chamber 43 and transfers it to the second atomic layer deposition chamber 45. The second atomic layer deposition chamber 45 performs second atomic layer deposition on the etched light-emitting diode epitaxial wafer 200 in a second temperature range, so as to deposit on the etched sidewall 241 of the etched light-emitting diode epitaxial wafer 200 A passivation layer 29 is formed, wherein the passivation layer 29 covers the first type semiconductor layer 23, the active layer 25 and the second type semiconductor layer 27 on the etched sidewall 241 of the mesa structure 24 to prevent the sidewall from being etched on the mesa structure 24 241 non-radiative recombination occurred.

在本發明實施例中,第一溫度區間與第二溫度區間不同。當第一溫度區間小於第二溫度區間時,可延長第一原子層沉積的時間,並增加修補蝕刻側牆241上的懸浮鍵及缺陷的時間。當第一溫度區間大於第二溫度區間時,可增加第一原子層沉積時前驅物氣體的活性,同樣有利於修補蝕刻側牆241的懸浮鍵及缺陷。 In the embodiment of the present invention, the first temperature interval is different from the second temperature interval. When the first temperature range is smaller than the second temperature range, the time for the first atomic layer deposition can be prolonged, and the time for repairing the floating bonds and defects on the etching sidewall spacer 241 can be increased. When the first temperature range is greater than the second temperature range, the activity of the precursor gas during the first atomic layer deposition can be increased, which is also beneficial to repair the floating bonds and defects of the etching sidewall spacer 241.

在本發明另一實施例中,上述的第一原子層沉積腔體43可為一反應腔體430,而第二原子層沉積腔體45可為原子層沉積腔體450。反應腔體430及原子層沉積腔體450連接傳送腔體41,並透過傳送腔體41的傳送裝置411在反應腔體430及原子層沉積腔體450之間傳送蝕刻後的發光二極體磊晶片200。 In another embodiment of the present invention, the aforementioned first atomic layer deposition chamber 43 may be a reaction chamber 430, and the second atomic layer deposition chamber 45 may be an atomic layer deposition chamber 450. The reaction chamber 430 and the atomic layer deposition chamber 450 are connected to the transfer chamber 41, and the etched light-emitting diode cell is transferred between the reaction chamber 430 and the atomic layer deposition chamber 450 through the transfer device 411 of the transfer chamber 41 Wafer 200.

傳送裝置411先將蝕刻後的發光二極體磊晶片200輸送至反應腔體43,並將一修補氣體輸送至反應腔體430內。而後可對反應腔體430提供一交流電壓,使得反應腔體430內的修補氣體成為電漿。電漿化的修補氣體會與蝕刻後的發光二極體磊晶片200的反應,並修補蝕刻後的發光二極體磊晶片200,例如修補平台構造24的蝕刻側牆241上的第一型半導體層23、活性層25及第二型半導體層27的懸浮鍵及缺陷。在實際應用時可依據第一型半導體層23、活性層25及第二型半導體層27的材料選擇修補氣體,其中修補氣體包括氧氣、氮氣及臭氧等。 The conveying device 411 first conveys the etched light-emitting diode epitaxial wafer 200 to the reaction chamber 43 and conveys a repair gas into the reaction chamber 430. Then, an AC voltage can be provided to the reaction cavity 430 so that the repair gas in the reaction cavity 430 becomes plasma. The plasma repair gas will react with the etched light-emitting diode epitaxial wafer 200 and repair the etched light-emitting diode epitaxial wafer 200, such as repairing the first type semiconductor on the etched sidewall 241 of the platform structure 24 The floating bonds and defects of the layer 23, the active layer 25, and the second-type semiconductor layer 27. In practical applications, the repair gas can be selected according to the materials of the first type semiconductor layer 23, the active layer 25, and the second type semiconductor layer 27, where the repair gas includes oxygen, nitrogen, and ozone.

此外當修補氣體而臭氧時,則不需要提供交流電壓給反應腔體。只要在反應腔體內提供一定濃度的臭氧,便可使得臭氧與蝕刻後的發光二極體磊晶片200反應。 In addition, when repairing gas and ozone, there is no need to provide AC voltage to the reaction chamber. As long as a certain concentration of ozone is provided in the reaction chamber, the ozone can react with the etched light-emitting diode epitaxy wafer 200.

傳送裝置411將反應腔體430內經過修復的蝕刻後的發光二極體磊晶片200取出,並傳送到原子層沉積腔體450內。原子層沉積腔體450對經過蝕刻後的發光二極體磊晶片200進行一原子層沉積,以在平台構造24的蝕刻側牆241上形成鈍化層29,例如以鈍化層29覆蓋蝕刻側牆241上的第一型半導體層23、活性層25及第二型半導體層27,以防止在平台構造24的蝕刻側牆241發生非輻射復合。 The transfer device 411 takes out the repaired and etched light-emitting diode epitaxial wafer 200 in the reaction chamber 430 and transfers it into the atomic layer deposition chamber 450. The atomic layer deposition chamber 450 performs an atomic layer deposition on the etched light emitting diode epitaxial wafer 200 to form a passivation layer 29 on the etched sidewall 241 of the platform structure 24, for example, the passivation layer 29 covers the etched sidewall 241 The upper first type semiconductor layer 23, the active layer 25 and the second type semiconductor layer 27 prevent non-radiative recombination in the etched sidewall 241 of the mesa structure 24.

以上所述者,僅為本發明之一較佳實施例而已,並非用來限定本發明實施之範圍,即凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。 The above is only one of the preferred embodiments of the present invention, and is not used to limit the scope of implementation of the present invention. That is to say, all the shapes, structures, features and spirits described in the scope of the patent application of the present invention are equivalently changed and changed. Modifications shall be included in the scope of the patent application of the present invention.

Claims (4)

一種減少非輻射復合的微發光二極體的製作方法,包括:提供至少一蝕刻後的發光二極體磊晶片,該蝕刻後的發光二極體磊晶片包括複數個蝕刻溝槽及複數個平台構造,其中該平台構造包括一第一型半導體層、一活性層及一第二型半導體層,該活性層位於該第一型半導體層及該第二型半導體層之間;該蝕刻後的發光二極體磊晶片在一第一溫度區間進行一第一原子層沉積,其中該第一原子層沉積的至少一前驅物氣體與該蝕刻後的發光二極體磊晶片反應;及經過該第一原子層沉積的該蝕刻後的發光二極體磊晶片在一第二溫度區間進行一第二原子層沉積,並在該平台構造的至少一蝕刻側牆上的該第一型半導體層、該活性層及該第二型半導體層形成一鈍化層,其中該第一溫度區間與該第二溫度區間不同。 A method for manufacturing a micro light emitting diode that reduces non-radiative recombination includes: providing at least one etched light emitting diode epitaxial wafer, the etched light emitting diode epitaxial wafer including a plurality of etching grooves and a plurality of platforms Structure, wherein the platform structure includes a first-type semiconductor layer, an active layer and a second-type semiconductor layer, the active layer is located between the first-type semiconductor layer and the second-type semiconductor layer; the etched light emission A first atomic layer deposition is performed on the epitaxial diode wafer in a first temperature range, wherein at least one precursor gas deposited by the first atomic layer reacts with the etched light-emitting diode epitaxial wafer; The etched light-emitting diode epitaxial wafer of atomic layer deposition is subjected to a second atomic layer deposition in a second temperature range, and the first type semiconductor layer and the active layer are deposited on at least one etching side wall of the platform structure The layer and the second type semiconductor layer form a passivation layer, wherein the first temperature interval is different from the second temperature interval. 如請求項1所述的減少非輻射復合的微發光二極體的製作方法,其中該第一原子層沉積用以修補該蝕刻後的發光二極體磊晶片的至少一懸浮鍵或至少一缺陷,而該第二原子層沉積在該平台構造的一頂表面設置該鈍化層。 The method for manufacturing a micro-light-emitting diode that reduces non-radiation recombination according to claim 1, wherein the first atomic layer deposition is used to repair at least one floating bond or at least one defect of the etched light-emitting diode epitaxial wafer , And the second atomic layer deposition provides the passivation layer on a top surface of the platform structure. 如請求項1所述的減少非輻射復合的微發光二極體的製作方法,其中該第一原子層沉積及該第二原子層沉積使用的一前驅物氣體包括有機金屬化合物、有機矽化合物、氯化矽化合物、水、二元醇、臭氧或乙醇。 The method for manufacturing a non-radiation-reducing composite micro-light-emitting diode according to claim 1, wherein a precursor gas used in the first atomic layer deposition and the second atomic layer deposition includes organometallic compounds, organosilicon compounds, Silicon chloride compound, water, glycol, ozone or ethanol. 一種減少非輻射復合的微發光二極體的製作機台,包括:一傳送腔體,包括至少一傳送裝置,用以傳送至少一蝕刻後的發光二極體磊晶片,其中該蝕刻後的發光二極體磊晶片包括複數個蝕刻溝槽及複數個平台構 造,該平台構造包括一第一型半導體層、一活性層及一第二型半導體層,該活性層位於該第一型半導體層及該第二型半導體層之間;至少一第一原子層沉積腔體,連接該傳送腔體,其中該傳送裝置將該蝕刻後的發光二極體磊晶片傳送至該第一原子層沉積腔體,並在該第一原子層沉積腔體內以一第一溫度區間對該蝕刻後的發光二極體磊晶片進行一第一原子層沉積,其中該第一原子層沉積的至少一前驅物氣體與該蝕刻後的發光二極體磊晶片反應;及至少一第二原子層沉積腔體,連接該傳送腔體,其中該傳送裝置將經過該第一原子層沉積的該蝕刻後的發光二極體磊晶片傳送至該第二原子層沉積腔體,並在該第二原子層沉積腔體內以一第二溫度區間對該蝕刻後的發光二極體磊晶片進行一第二原子層沉積,以在該平台構造的至少一蝕刻側牆上的該第一型半導體層、該活性層及該第二型半導體層形成一鈍化層,其中該第一溫度區間與該第二溫度區間不同。 A manufacturing machine for reducing non-radiative recombination of micro light-emitting diodes, comprising: a conveying cavity, including at least one conveying device for conveying at least one etched light-emitting diode epitaxial wafer, wherein the etched light-emitting diode The diode epitaxial wafer includes a plurality of etched grooves and a plurality of terrace structures The platform structure includes a first-type semiconductor layer, an active layer, and a second-type semiconductor layer. The active layer is located between the first-type semiconductor layer and the second-type semiconductor layer; at least one first atomic layer The deposition chamber is connected to the transfer chamber, wherein the transfer device transfers the etched light-emitting diode epitaxial wafer to the first atomic layer deposition chamber, and uses a first atomic layer deposition chamber in the first atomic layer deposition chamber. Perform a first atomic layer deposition on the etched light-emitting diode epitaxial wafer in the temperature range, wherein at least one precursor gas deposited by the first atomic layer reacts with the etched light-emitting diode epitaxial wafer; and at least one The second atomic layer deposition chamber is connected to the transfer chamber, wherein the transfer device transfers the etched light-emitting diode epitaxial wafer after the first atomic layer deposition to the second atomic layer deposition chamber, and In the second atomic layer deposition chamber, a second atomic layer deposition is performed on the etched light-emitting diode epitaxial wafer in a second temperature range, so as to deposit the first type on at least one etched side wall of the platform structure The semiconductor layer, the active layer and the second type semiconductor layer form a passivation layer, wherein the first temperature interval is different from the second temperature interval.
TW109145096A 2020-09-28 2020-12-18 Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro led TWI749955B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109133734 2020-09-28
TW109133734 2020-09-28

Publications (2)

Publication Number Publication Date
TWI749955B true TWI749955B (en) 2021-12-11
TW202213812A TW202213812A (en) 2022-04-01

Family

ID=80681302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109145096A TWI749955B (en) 2020-09-28 2020-12-18 Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro led

Country Status (1)

Country Link
TW (1) TWI749955B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097916A1 (en) * 2009-06-25 2012-04-26 Nec Corporation Semiconductor device and method for manufacturing same
US20120306081A1 (en) * 2011-06-01 2012-12-06 Takeshi Ishizaki Semiconductor device and semiconductor device manufacturing method
US20130285086A1 (en) * 2012-04-27 2013-10-31 Hsin-Hua Hu Method of forming a micro led device with self-aligned metallization stack
TW201502613A (en) * 2007-01-17 2015-01-16 Univ Illinois Semiconductor-based optical system and method of making the same
US20150084157A1 (en) * 2013-09-26 2015-03-26 Infineon Technologies Ag Electronic structure, a battery structure, and a method for manufacturing an electronic structure
TW201530809A (en) * 2013-12-20 2015-08-01 Luxvue Technology Corp LED with current injection confinement trench
TW201532188A (en) * 2013-10-25 2015-08-16 Lam Res Corp Treatment for flowable dielectric deposition on substrate surfaces
TW201923901A (en) * 2017-09-12 2019-06-16 美商應用材料股份有限公司 Apparatus and methods for manufacturing semiconductor structures using protective barrier layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201502613A (en) * 2007-01-17 2015-01-16 Univ Illinois Semiconductor-based optical system and method of making the same
US20120097916A1 (en) * 2009-06-25 2012-04-26 Nec Corporation Semiconductor device and method for manufacturing same
US20120306081A1 (en) * 2011-06-01 2012-12-06 Takeshi Ishizaki Semiconductor device and semiconductor device manufacturing method
US20130285086A1 (en) * 2012-04-27 2013-10-31 Hsin-Hua Hu Method of forming a micro led device with self-aligned metallization stack
US20150084157A1 (en) * 2013-09-26 2015-03-26 Infineon Technologies Ag Electronic structure, a battery structure, and a method for manufacturing an electronic structure
TW201532188A (en) * 2013-10-25 2015-08-16 Lam Res Corp Treatment for flowable dielectric deposition on substrate surfaces
TW201530809A (en) * 2013-12-20 2015-08-01 Luxvue Technology Corp LED with current injection confinement trench
TW201923901A (en) * 2017-09-12 2019-06-16 美商應用材料股份有限公司 Apparatus and methods for manufacturing semiconductor structures using protective barrier layer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S E. Härkönen, S. E. Potts, W. M.M. Kessels, B. Díaz, A. Seyeux, J. Swiatowska, V. Maurice, P. Marcus, G. Radnóczi, L. Tóth, M. Kariniemi, J. Niinistö, and M. Ritala,"Hydrogen–argon plasma pre-treatment for improving the anti-corrosion properties of thin Al2O3 films deposited using atomic layer deposition on steel", Thin Solid Films, 1 May, 2013. Vol. 534, page 384–393. *
Xingjuan Song,Jingping Xu, Lu Liu, and Pui-To Lai ,"Comprehensive investigation on CF4/O2-plasma treating the interfaces of stacked gate dielectric in MoS2 transistors", Applied Surface Science, published on-line 12 Nov., 2020. Vol. 542, page 148437.
Xingjuan Song,Jingping Xu, Lu Liu, and Pui-To Lai ,"Comprehensive investigation on CF4/O2-plasma treating the interfaces of stacked gate dielectric in MoS2 transistors", Applied Surface Science, published on-line 12 Nov., 2020. Vol. 542, page 148437.; *

Also Published As

Publication number Publication date
TW202213812A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US10229958B2 (en) Devices combining thin film inorganic LEDs with organic LEDs and fabrication thereof
US11251223B2 (en) Array substrate, method of manufacturing the same, and display device
KR102625489B1 (en) Micro led display panel and method of manufacturing the same
US20110056429A1 (en) Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
US9093596B2 (en) Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same
US20190207043A1 (en) Methods for fabricating iii-nitride tunnel junction devices
JP2008153285A (en) Nitride semiconductor apparatus and nitride semiconductor manufacturing method
JP2015023291A (en) GaN-BASED LED EPITAXIAL STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
CN112768571A (en) Manufacturing method of micro light-emitting diode structure
CN106711295A (en) Growing method of GaN-based light emitting diode epitaxial wafer
TWI749955B (en) Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro led
CN104617192A (en) Manufacturing method of light emitting diode epitaxial wafer
US11139339B2 (en) Array substrate, method of manufacturing the same, and display device
TWM611412U (en) Micro light emitting diode manufacturing machine for reducing non-radiation recovery
CN214226935U (en) Micro LED manufacturing machine for reducing non-radiative recombination
US11532665B2 (en) Manufacturing method and manufacturing machine for reducing non-radiative recombination of micro LED
CN114823995A (en) LED epitaxial wafer manufacturing method
CN114744092A (en) Method and apparatus for fabricating micro light emitting diode capable of reducing non-radiative recombination
CN106887492A (en) A kind of preparation method of GaN base light emitting epitaxial wafer
CN104465897B (en) The manufacture method of LED crystal particle
CN111048698B (en) Method for manufacturing organic light-emitting diode structure
CN105161583A (en) GaN-based UV semiconductor LED and manufacturing method thereof
CN109087979B (en) Preparation method of light-emitting diode epitaxial wafer
CN109545912A (en) A kind of preparation method and its epitaxial wafer of the epitaxial wafer of light emitting diode
CN102576652A (en) Rapid growth method and structures for gallium and nitrogen containing ultra-thin epitaxial structures for devices