TWI749487B - A method and a device for controlling safe lifting of silicon melt crucible - Google Patents

A method and a device for controlling safe lifting of silicon melt crucible Download PDF

Info

Publication number
TWI749487B
TWI749487B TW109109532A TW109109532A TWI749487B TW I749487 B TWI749487 B TW I749487B TW 109109532 A TW109109532 A TW 109109532A TW 109109532 A TW109109532 A TW 109109532A TW I749487 B TWI749487 B TW I749487B
Authority
TW
Taiwan
Prior art keywords
crucible
pos
silicon
liquid level
silicon melt
Prior art date
Application number
TW109109532A
Other languages
Chinese (zh)
Other versions
TW202039942A (en
Inventor
瀚藝 黃
沈偉民
王剛
Original Assignee
大陸商上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海新昇半導體科技有限公司 filed Critical 大陸商上海新昇半導體科技有限公司
Publication of TW202039942A publication Critical patent/TW202039942A/en
Application granted granted Critical
Publication of TWI749487B publication Critical patent/TWI749487B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Abstract

The present invention provides a method and a device for controlling safe lifting of silicon melt crucible. The method comprises steps of: obtaining an initial position height of the crucible POS0 , an initial liquid level of a silicon melt in the crucible D0 , and an initial distance between an liquid level of the silicon melt in the crucible and a draft tube MG0 ; obtaining a current position height POSL of the crucible and the current liquid level DL of the silicon melt in the crucible when a length of a currently grown silicon ingot is L; and determining whether a current position of the crucible is safe when the length of the currently grown silicon ingot is L according to the initial position height POS0 , the current position height POSL , the initial liquid level D0 , and the current liquid level DL .

Description

一種控制矽熔體坩堝安全升降的方法和裝置Method and device for controlling safe lifting and lowering of silicon melt crucible

本發明涉及半導體製造領域,具體而言涉及一種控制矽熔體坩堝安全升降的方法和裝置。The invention relates to the field of semiconductor manufacturing, in particular to a method and device for controlling the safe lifting and lowering of a silicon melt crucible.

直拉法(Cz)是製備半導體及太陽能用矽單晶的一種重要方法,利用碳素材料組成的熱場對放入坩堝的高純矽料進行加熱使之熔化,之後利用將籽晶浸入熔體當中並經過一系列(引晶、放肩、等徑、收尾、冷卻)製程,最終獲得單晶棒。The Czochralski method (Cz) is an important method for preparing silicon single crystals for semiconductors and solar energy. It uses a thermal field composed of carbon materials to heat the high-purity silicon material put into the crucible to melt it, and then use the seed crystal to immerse it into the melt. After a series of (seeding, shoulder setting, equal diameter, finishing, cooling) processes in the body, a single crystal rod is finally obtained.

參看圖1,其示出了一種半導體晶體生長裝置的示意圖。半導體晶體生長裝置包括爐體1,爐體1內設置有坩堝11,坩堝11外側設置有對其進行加熱的加熱器12,坩堝11內容納有矽熔體13。Referring to FIG. 1, it shows a schematic diagram of a semiconductor crystal growth apparatus. The semiconductor crystal growth device includes a furnace body 1 in which a crucible 11 is provided, a heater 12 for heating the crucible 11 is provided outside the crucible 11, and a silicon melt 13 is contained in the crucible 11.

在爐體1頂部設置有提拉裝置14,在提拉裝置14的帶動下,籽晶從矽熔體液面提拉拉出矽晶棒10,同時環繞矽晶棒10四周設置熱屏裝置,示例性的,如圖1所示,熱屏裝置包括有導流筒16,導流筒16設置為圓錐桶型,其作為熱屏裝置一方面用以在晶體生長過程中隔離石英坩堝以及坩堝內的矽熔體對晶體表面產生的熱輻射,提升晶棒的冷卻速度和軸向溫度梯度,增加晶體生長數量,另一方面,影響矽熔體表面的熱場分佈,而避免晶棒的中心和邊緣的軸向溫度梯度差異過大,保證晶棒與矽熔體液面之間的穩定生長;同時導流筒還用以對從晶體生長爐上部導入的惰性氣體進行導流,使之以較大的流速通過矽熔體表面,達到控制晶體內氧含量和雜質含量的效果。A pulling device 14 is provided on the top of the furnace body 1. Under the driving of the pulling device 14, the seed crystal pulls the silicon crystal rod 10 from the liquid surface of the silicon melt, and at the same time, a heat shield device is arranged around the silicon crystal rod 10. Exemplarily, as shown in FIG. 1, the heat shield device includes a diversion cylinder 16, which is set in a conical barrel shape, which serves as a heat shield device to isolate the quartz crucible and the crucible during the crystal growth process. The heat radiation generated by the silicon melt on the surface of the crystal increases the cooling rate and axial temperature gradient of the crystal rod, and increases the number of crystal growth. On the other hand, it affects the thermal field distribution on the surface of the silicon melt, and avoids the center and the center of the crystal rod. The axial temperature gradient difference at the edge is too large to ensure the stable growth between the crystal rod and the liquid surface of the silicon melt; at the same time, the guide tube is also used to divert the inert gas introduced from the upper part of the crystal growth furnace to make it larger The velocity of flow through the surface of the silicon melt achieves the effect of controlling the oxygen content and impurity content in the crystal.

為了實現矽晶棒的穩定增長,在爐體1底部還設置有驅動坩堝11旋轉和上下移動的驅動裝置15,驅動裝置15驅動坩堝11在拉晶過程中保持旋轉是為了減少矽熔體的熱的不對稱性,使矽晶柱等徑生長。驅動裝置15驅動坩堝11上下移動是為了保證矽熔體具有穩定的液面位置,保證晶棒生長的穩定性。In order to realize the stable growth of silicon crystal rods, a driving device 15 that drives the crucible 11 to rotate and move up and down is also provided at the bottom of the furnace body 1. The driving device 15 drives the crucible 11 to keep rotating during the crystal pulling process to reduce the heat of the silicon melt. The asymmetry makes the silicon crystal column grow in equal diameter. The driving device 15 drives the crucible 11 to move up and down to ensure that the silicon melt has a stable liquid surface position and the stability of the crystal rod growth.

然而,在驅動裝置15驅動坩堝11上下移動的過程中,往往發生坩堝位置超出或低於預定位置,使矽熔體液面偏高或者偏低,影響晶體生長質量;更有甚者,在坩堝向上移動超出矽熔體液面一定程度後,與導流筒16接觸,導致裝置毀損。However, when the driving device 15 drives the crucible 11 to move up and down, it often happens that the position of the crucible exceeds or falls below the predetermined position, which causes the liquid level of the silicon melt to be higher or lower, which affects the quality of crystal growth; moreover, in the crucible After moving upward to a certain extent beyond the liquid level of the silicon melt, it comes into contact with the deflector tube 16, causing the device to be damaged.

為此,有必要提出一種新的控制矽熔體坩堝安全升降的方法和裝置,用以解決現有技術中的問題。For this reason, it is necessary to propose a new method and device for controlling the safe lifting and lowering of the silicon melt crucible to solve the problems in the prior art.

在發明內容部分中引入了一系列簡化形式的概念,這將在具體實施方式部分中進一步詳細說明。本發明的發明內容部分並不意味著要試圖限定出所要求保護的技術方案的關鍵特徵和必要技術特徵,更不意味著試圖確定所要求保護的技術方案的保護範圍。A series of simplified concepts are introduced in the content of the invention, which will be explained in further detail in the detailed implementation section. The inventive content part of the present invention does not mean an attempt to limit the key features and necessary technical features of the claimed technical solution, nor does it mean an attempt to determine the protection scope of the claimed technical solution.

本發明提供了一種控制矽熔體坩堝安全升降的方法,所述方法包括: 獲取所述坩堝的初始位置高度POS0 、所述坩堝中矽熔體的初始液面高度D0 以及所述坩堝中矽熔體液面與導流筒之間的初始距離MG0 ; 獲取當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSL 和所述坩堝中矽熔體的當前液面高度DL ; 根據所述初始位置高度POS0 、所述當前位置高度POSL 、所述初始液面高度D0 和所述當前液面高度DL 判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否安全。The present invention provides a method for controlling the safe lifting and lowering of a silicon melt crucible, the method comprising: obtaining the initial position height POS 0 of the crucible, the initial liquid level D 0 of the silicon melt in the crucible, and the crucible The initial distance MG 0 between the liquid level of the silicon melt and the guide tube ; to obtain the current position height POS L of the crucible when the length of the currently grown silicon crystal rod is L and the current liquid level of the silicon melt in the crucible Height D L ; According to the initial position height POS 0 , the current position height POS L , the initial liquid level D 0 and the current liquid level D L, it is determined when the length of the currently grown silicon crystal rod is L Describe whether the current position of the crucible is safe.

示例性地,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否安全: 當α0 POSL1 POS0 <β0 D01 DL2 MG0 +LS 時,所述坩堝的當前位置高度安全; 當α0 POSL1 POS0 >β0 D01 DL2 MG0 +LS 時,所述坩堝的當前位置高度不安全,所述LS 為設定安全控制高度餘量。Exemplarily, judge whether the current height of the crucible is safe when the length of the currently grown silicon crystal rod is L: When α 0 POS L1 POS 00 D 01 D L +β when 2 MG 0 + L S, the current position of the crucible is highly safe; when α 0 POS L -α 1 POS 0 > β 0 D 0 -β 1 D L + β 2 MG 0 + L S, the crucible The current position of is not safe, and the L S is the set safety control height margin.

示例性地,還包括根據所述初始位置高度POS0 、所述當前位置高度POSL 與所述初始液面高度D0 和所述當前液面高度DL 判斷當前生長的矽晶棒長度為L時所述坩堝中的矽熔體液面位置是否穩定。Illustratively, further comprising a height position according to the initial POS 0, the current location of the initial height of the POS level height L D 0 and the current height of the liquid level D L Analyzing current grown silicon rod length is L Whether the liquid level position of the silicon melt in the crucible is stable.

示例性地,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝中的矽熔體液面位置是否穩定: 當α0 POSL1 POS0 <β0 D01 DL2 MG0 +LU 時以及α0 POSL1 POS0 >β0 D01 DL2 MG0 -LL 時,所述坩堝中的矽熔體液面位置穩定; 當α0 POSL1 POS0 >β0 D01 DL2 MG0 +LU 時或者α0 POSL1 POS0 <β0 D01 DL2 MG0 -LL 時,所述坩堝中的矽熔體液面位置不穩定;其中,α0 、α1 、β0 、β1 和β2 為係數因子,LU 和LL 分別為設定液面上限和設定液面下限控制餘量。Exemplarily, it is judged whether the position of the silicon melt liquid level in the crucible is stable when the length of the currently grown silicon crystal rod is L according to the following rules: When α 0 POS L1 POS 0 <β 0 D 01 When D L2 MG 0 +L U and α 0 POS L1 POS 0 > β 0 D 01 D L + β 2 MG 0 -L L , the silicon melt liquid in the crucible The surface position is stable; when α 0 POS L1 POS 0 >β 0 D 01 D L2 MG 0 +L U or α 0 POS L1 POS 0 <β 0 D 01 D L + β 2 MG 0 -L L , the liquid level position of the silicon melt in the crucible is unstable; among them, α 0 , α 1 , β 0 , β 1 and β 2 are coefficient factors, and L U and L L is the control margin of the upper limit of the set liquid level and the lower limit of the set liquid level respectively.

示例性地,獲取所述坩堝中矽熔體液面的當前液面高度DL 的步驟包括: 獲取所述坩堝中矽熔體的初始質量G0 和當前生成長度為L時的矽晶棒的質量GL ; 根據所述坩堝中矽熔體的初始質量G0 和所述當前生成的矽晶棒的質量GL ,獲得所述坩堝當前剩餘矽熔體的體積Vr ; 根據所述坩堝當前剩餘矽熔體的體積Vr 和所述坩堝的直徑計算得到所述坩堝中矽熔體液面的當前高度DLSilicon rod when acquiring initial mass of silicon melt in the crucible and the current generated by G 0 of length L: Exemplarily, the step of obtaining the liquid level height L of the current D in the crucible silicon melt level comprises Quality G L ; obtain the volume V r of the remaining silicon melt of the crucible according to the initial mass G 0 of the silicon melt in the crucible and the mass G L of the currently generated silicon ingot; The volume V r of the remaining silicon melt and the diameter of the crucible are calculated to obtain the current height D L of the liquid level of the silicon melt in the crucible.

示例性地,所述獲取當前生成長度為L時的矽晶棒的質量GL 係利用下式計算的獲得:

Figure 02_image001
Figure 02_image003
為所述矽晶棒的橫截面積,
Figure 02_image005
為所述矽晶體的密度。 Exemplarily, the obtaining of the mass G L of the silicon ingot when the current generation length is L is obtained by calculation using the following formula:
Figure 02_image001
,
Figure 02_image003
Is the cross-sectional area of the silicon crystal rod,
Figure 02_image005
Is the density of the silicon crystal.

示例性地,所述獲取當前生成的矽晶棒的質量GL 係利用直接測量當前生成的矽晶棒的質量獲得。Exemplarily, the acquisition of the quality G L of the currently generated silicon ingot is obtained by directly measuring the quality of the currently generated silicon ingot.

本發明還提供了一種控制矽熔體坩堝安全升降的方法,包括: 獲取當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSL ; 獲取N條矽晶棒在生長長度為L時的所述坩堝的位置高度POSLi ,其中,i=1,2……N; 獲取所述坩堝的位置POSLi 的位置中位數POSML 和位置標準差DEVL ; 根據所述位置高度POSL 、所述位置中位數POSML 與位置標準差DEVL 判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否處安全。The present invention also provides a method for controlling the safe lifting and lowering of a silicon melt crucible, including: obtaining the current position height POS L of the crucible when the length of the currently grown silicon crystal rod is L; and obtaining the growth length of N silicon crystal rods The position height POS Li of the crucible at L, where i=1, 2...N; Obtain the position median POSM L and the position standard deviation DEV L of the position POS Li of the crucible; According to the position height POS L , the position median POSM L and the position standard deviation DEV L determine whether the current height of the crucible is safe when the length of the currently grown silicon crystal rod is L.

示例性地,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否安全: 當γ0 POSL1 POSML <DEVL×yS 時,所述坩堝的當前位置高度安全; 當γ0 POSL1 POSML >DEVL×yS 時,所述坩堝的當前位置高度不安全;其中,γ0 和γ1 為係數因子,yS 為設定安全控制因素。Exemplarily, judge whether the current height of the crucible is safe when the length of the currently grown silicon crystal rod is L: When γ 0 POS L1 POSM L <DEVL×y S , the current position of the crucible is The position is highly safe; when γ 0 POS L1 POSM L > DEVL×y S , the current position of the crucible is unsafe; among them, γ 0 and γ 1 are coefficient factors, and y S is a set safety control factor.

示例性地,還包括根據所述位置高度POSL 、所述位置中位數POSML 與位置標準差DEVL 判斷當前生長的矽晶棒長度為L時所述坩堝中的所述矽熔體液面位置是否穩定。Exemplarily, it further includes the silicon melt liquid in the crucible when the length of the currently grown silicon crystal rod is judged to be L according to the position height POS L, the position median POSM L and the position standard deviation DEV L Whether the surface position is stable.

示例性的,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝中的所述矽熔體液面位置是否穩定:γ0 POSL1 POSML <DEVL ×yU 和POSL -POSML >DEVL ×yL 時,所述坩堝中的所述矽熔體液面位置穩定,γ0 POSL1 POSML >DEVL ×yU 或者POSL -POSML <DEVL ×yL 時,所述坩堝中的所述矽熔體液面位置不穩定;其中,γ0 和γ1 為係數因子,yU 和yL 分別為設定液面最高因素和設定液面最低因素。Exemplarily, it is determined whether the position of the silicon melt liquid level in the crucible is stable when the length of the currently grown silicon crystal rod is L according to the following rules: γ 0 POS L1 POSM L <DEV L ×y U and When POS L -POSM L > DEV L ×y L , the liquid level position of the silicon melt in the crucible is stable, γ 0 POS L1 POSM L > DEV L ×y U or POS L -POSM L < When DEV L × y L , the position of the silicon melt liquid level in the crucible is unstable; among them, γ 0 and γ 1 are coefficient factors, and y U and y L are the highest factor of the set liquid level and the set liquid level, respectively The lowest factor.

示例性地,獲取N條矽晶棒在生長長度為L時的所述坩堝的位置POSi 的方法包括: 獲取每一矽晶棒在每生長M長度時所述坩堝的位置高度POSiM; 從每一矽晶棒的多個所述位置高度POSiM 中獲取每一矽晶棒的在生長長度為L時的所述坩堝的位置POSLi Exemplarily, the method for obtaining the position POS i of the crucible when the growth length of N silicon crystal rods is L includes: obtaining the position height POSiM of the crucible when each silicon crystal rod is grown for each length M; Obtain the position POS Li of the crucible when the growth length L of each silicon ingot is obtained from the plurality of position heights POS iM of a silicon ingot.

示例性地,獲取所述坩堝的位置POSi 的位置中位數POSML 和位置標準差DEVL 的方法包括: 根據所述POSiM 獲取每生長M長度時所述坩堝的位置中位數POSMM 和位置標準差DEVL ,並分別繪製成表格或曲線; 從所述表格或曲線中獲取晶棒生長長度為L時所述坩堝的位置中位數POSML 和位置標準差DEVLExemplarily, the method for obtaining the position median POSM L and the position standard deviation DEV L of the position POS i of the crucible includes: obtaining the position median POSM M of the crucible for each growth length M according to the POS iM And the position standard deviation DEV L , and draw them into a table or curve respectively; obtain the position median POSM L and position standard deviation DEV L of the crucible when the growth length of the crystal rod is L from the table or curve.

示例性地,當判斷所述坩堝的位置在安全範圍以外時,使坩堝鎖定在當前位置而不進行上下移動。Exemplarily, when it is determined that the position of the crucible is outside the safe range, the crucible is locked at the current position without moving up and down.

示例性地,當判斷所述坩堝中的液面位置不穩定時,發出警報。Exemplarily, when it is determined that the position of the liquid level in the crucible is unstable, an alarm is issued.

本發明還提供了一種控制矽熔體坩堝安全升降的裝置,包括: 存儲有可執行的計算機程序指令的存儲器和處理器,所述處理器在執行所述可執行的計算機程序指令時,執行上述任意一項所述的方法。The invention also provides a device for controlling the safe lifting and lowering of the silicon melt crucible, which includes: A memory and a processor storing executable computer program instructions, and when the processor executes the executable computer program instructions, the method described in any one of the above is executed.

示例性地,還包括鎖定裝置,當所述處理器判斷所述坩堝的位置在安全範圍以外時,所述鎖定裝置鎖定所述坩堝在當前位置而不進行上下移動。Exemplarily, it further includes a locking device. When the processor determines that the position of the crucible is outside the safe range, the locking device locks the crucible at the current position without moving up and down.

示例性地,還包括警報裝置,當所述處理器判斷所述坩堝中的液面位置不穩定時,所述警報裝置發出警報。Exemplarily, it further includes an alarm device. When the processor determines that the position of the liquid level in the crucible is unstable, the alarm device issues an alarm.

根據本發明的控制矽熔體坩堝安全升降的方法和裝置,利用坩堝位置和坩堝中的液面位置判斷拉晶過程中坩堝當前所處的位置是否在安全範圍內,避免拉晶過程中因為坩堝的上下移動超出限度而發生毀損,同時保證了在坩堝上下移動過程中,位於其中的矽熔體液面的穩定性,進一步保證了矽晶棒的穩定生長。According to the method and device for controlling the safe lifting and lowering of a silicon melt crucible, the position of the crucible and the position of the liquid level in the crucible are used to determine whether the current position of the crucible during the crystal pulling process is within a safe range, so as to avoid the crucible being caused by the crucible during the crystal pulling process. The up and down movement of the crucible exceeds the limit and damage occurs. At the same time, the stability of the silicon melt liquid level in the crucible is ensured during the up and down movement of the crucible, which further ensures the stable growth of the silicon crystal rod.

在下文的描述中,給出了大量具體的細節以便提供對本發明更為徹底的理解。然而,對於本領域技術人員而言顯而易見的是,本發明可以無需一個或多個這些細節而得以實施。在其他的例子中,為了避免與本發明發生混淆,對於本領域公知的一些技術特徵未進行描述。In the following description, a lot of specific details are given in order to provide a more thorough understanding of the present invention. However, it is obvious to those skilled in the art that the present invention can be implemented without one or more of these details. In other examples, in order to avoid confusion with the present invention, some technical features known in the art are not described.

為了徹底理解本發明,將在下列的描述中提出詳細的描述,以說明本發明所述的方法。顯然,本發明的施行並不限於半導體領域的技術人員所熟習的特殊細節。本發明的較佳實施例詳細描述如下,然而除了這些詳細描述外,本發明還可以具有其他實施方式。In order to thoroughly understand the present invention, a detailed description will be provided in the following description to illustrate the method of the present invention. Obviously, the implementation of the present invention is not limited to the specific details familiar to those skilled in the semiconductor field. The preferred embodiments of the present invention are described in detail as follows. However, in addition to these detailed descriptions, the present invention may also have other embodiments.

應予以注意的是,這裡所使用的術語僅是為了描述具體實施例,而非意圖限制根據本發明的示例性實施例。如在這裡所使用的,除非上下文另外明確指出,否則單數形式也意圖包括複數形式。此外,還應當理解的是,當在本說明書中使用術語“包含”和/或“包括”時,其指明存在所述特徵、整體、步驟、操作、元件和/或組件,但不排除存在或附加一個或多個其他特徵、整體、步驟、操作、元件、組件和/或它們的組合。It should be noted that the terms used here are only for describing specific embodiments, and are not intended to limit the exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular form is also intended to include the plural form. In addition, it should also be understood that when the terms "comprising" and/or "including" are used in this specification, they indicate the presence of the described features, wholes, steps, operations, elements, and/or components, but do not exclude the presence or One or more other features, wholes, steps, operations, elements, components, and/or combinations thereof are added.

現在,將參照附圖更詳細地描述根據本發明的示例性實施例。然而,這些示例性實施例可以多種不同的形式來實施,並且不應當被解釋為只限於這裡所闡述的實施例。應當理解的是,提供這些實施例是為了使得本發明的公開徹底且完整,並且將這些示例性實施例的構思充分傳達給本領域普通技術人員。在附圖中,為了清楚起見,誇大了層和區域的厚度,並且使用相同的附圖標記表示相同的元件,因而將省略對它們的描述。 實施例一Now, exemplary embodiments according to the present invention will be described in more detail with reference to the accompanying drawings. However, these exemplary embodiments may be implemented in many different forms, and should not be construed as being limited to the embodiments set forth herein. It should be understood that these embodiments are provided to make the disclosure of the present invention thorough and complete, and to fully convey the concept of these exemplary embodiments to those of ordinary skill in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity, and the same reference numerals are used to denote the same elements, and thus their descriptions will be omitted. Example one

為了解決現有技術中的技術問題,本發明提供了一種控制矽熔體坩堝安全升降的方法,所述方法包括: 獲取所述坩堝的初始位置高度POS0 、所述坩堝中矽熔體的初始液面高度D0 以及所述坩堝中矽熔體液面與導流筒之間的初始距離MG0 ; 獲取當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSL 和所述坩堝中矽熔體的當前液面高度DL ; 根據所述初始位置高度POS0 、所述當前位置高度POSL 、所述初始液面高度D0 和所述當前液面高度DL 判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否安全。In order to solve the technical problems in the prior art, the present invention provides a method for controlling the safe lifting and lowering of a silicon melt crucible. The method includes: obtaining the initial position height POS 0 of the crucible, and the initial liquid of the silicon melt in the crucible The surface height D 0 and the initial distance MG 0 between the silicon melt level in the crucible and the deflector tube ; obtain the current position height POS L of the crucible when the length of the currently grown silicon crystal rod is L and the The current liquid level D L of the silicon melt in the crucible; judge the current growth according to the initial position height POS 0 , the current position height POS L , the initial liquid level D 0 and the current liquid level D L Whether the current position of the crucible is safe when the length of the silicon crystal rod is L.

下面參看圖1和圖2對本發明所提出的一種控制矽熔體坩堝安全升降的方法進行示例性說明,圖1為根據一種半導體晶體生長裝置的結構示意圖;圖2為根據本發明的一個實施例的一種控制矽熔體坩堝安全升降的方法的流程圖。 首先,參看圖2,執行步驟S201:獲取所述坩堝的初始位置高度POS0 、所述坩堝中矽熔體的初始液面高度D0 以及所述坩堝中矽熔體液面與導流筒之間的初始距離MG0 ; 在半導體晶體生長裝置生長矽晶棒之前,對半導體晶體生長裝置內的坩堝初始位置高度POS0 、坩堝中矽熔體的初始液面高度D0 以及矽熔體與導流筒之間的初始距離MG0 分別進行測量獲得各自初始值。這一過程可以利用測量裝置,如紅外測距裝置,直接測量獲得。The following is an exemplary description of a method for controlling the safe lifting and lowering of a silicon melt crucible proposed by the present invention with reference to Figs. 1 and 2. Fig. 1 is a schematic diagram of a semiconductor crystal growth device according to the structure; Fig. 2 is an embodiment according to the present invention A flow chart of a method for controlling the safe lifting and lowering of a silicon melt crucible. First, referring to Figure 2, step S201 is performed: obtaining the initial position height POS 0 of the crucible, the initial liquid level D 0 of the silicon melt in the crucible, and the difference between the silicon melt liquid level in the crucible and the deflector tube The initial distance MG 0 between the semiconductor crystal growth device and the initial position of the crucible POS 0 in the semiconductor crystal growth device, the initial liquid level D 0 of the silicon melt in the crucible, and the silicon melt and conductor The initial distance MG 0 between the flow cylinders is measured to obtain their initial values. This process can be obtained by direct measurement using a measuring device, such as an infrared distance measuring device.

隨著半導體晶體生長裝置中矽晶棒的生長,坩堝中矽液面逐漸下降,其中矽熔體液面的高度不斷降低,為了時矽晶棒穩定生長,需要是坩堝向上移動,以保證坩堝中矽熔體液面的穩定,即保證坩堝中矽熔體液面與導流筒之間的距離穩定在一定範圍內。With the growth of the silicon crystal rod in the semiconductor crystal growth device, the silicon liquid level in the crucible gradually decreases, and the height of the silicon melt liquid level continues to decrease. In order for the silicon crystal rod to grow stably, the crucible needs to be moved upwards to ensure that the crucible The stability of the silicon melt level is to ensure that the distance between the silicon melt level in the crucible and the deflector is within a certain range.

為了控制拉晶過程中坩堝上下移動的位置不超過安全設定範圍以保證矽熔體液面穩定和半導體生長裝置的安全性,對拉晶過程中坩堝的位置進行監控。In order to control the position of the crucible moving up and down during the crystal pulling process to not exceed the safe setting range to ensure the stability of the silicon melt liquid level and the safety of the semiconductor growth device, the position of the crucible during the crystal pulling process is monitored.

繼續參看圖2,執行步驟S2102:獲取當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSL 和所述坩堝中矽熔體的當前液面高度DLContinuing to refer to FIG. 2, step S2102 is performed: obtaining the current position height POS L of the crucible when the length of the currently grown silicon crystal rod is L and the current liquid level height D L of the silicon melt in the crucible.

參看圖1,其示出了在拉晶過程中,生長的矽晶棒長度為L時,坩堝11的當前位置高度POSL 和坩堝11中矽熔體13的當前液面高度DL 在圖示中標示出來的示意圖。其中,矽熔體13液面距離導流筒16的距離相對於初始距離MG0 未發生改變。Referring to Figure 1, which shows when the crystal pulling process, the grown silicon rod length is L, the height of the current position of the crucible and the crucible 11 POS L in this silicon melt level height D L 11 13 In the illustrated Schematic diagram marked in. Among them, the distance between the liquid surface of the silicon melt 13 and the guide tube 16 has not changed relative to the initial distance MG 0.

示例性的,坩堝的當前位置高度POSL 可以利用設置測量裝置(如紅外測距裝置)獲得。示例性的,坩堝中矽熔體的當前液面高度DL 可以利用設置測量裝置(如紅外測距裝置)獲得也可以利用計算獲得。Exemplarily, the current position height POS L of the crucible can be obtained by setting a measuring device (such as an infrared distance measuring device). Exemplary, the crucible silicon melt D L current level height measuring means may be utilized provided (such as an infrared distance measuring device) may also be obtained using the calculated obtained.

示例性的,利用計算方法獲取所述坩堝中矽熔體液面的當前液面高度DL 的步驟包括:獲取所述坩堝中矽熔體的初始質量G0 和當前生成的矽晶棒長度為L時的質量GL ;根據所述坩堝中矽熔體的初始質量G0 和所述當前生成的矽晶棒的質量GL ,獲得所述坩堝當前剩餘矽熔體的體積Vr ;根據所述坩堝當前剩餘矽熔體的體積Vr 和所述坩堝的直徑計算得到所述坩堝中矽熔體液面的當前高度DLExemplary, using the method of calculating the current in the crucible acquiring step the liquid level height L D silicon melt level comprises: obtaining the initial mass of the crucible silicon melt G 0 and the length of the silicon rod is currently generated The mass G L at L ; according to the initial mass G 0 of the silicon melt in the crucible and the mass G L of the currently generated silicon ingot, obtain the current remaining silicon melt volume V r of the crucible; The current remaining silicon melt volume V r of the crucible and the crucible diameter are calculated to obtain the current height D L of the silicon melt liquid level in the crucible.

下面對利用計算的方法獲得矽熔體液面的當前高度DL 的過程進行進一步詳細說明:The current procedure L D below the height of the silicon melt level is obtained using the calculation method will be described in further detail:

首先,獲取所述坩堝中矽熔體的初始質量G0 和當前生成的矽晶棒長度為L時的質量GL 。其中,坩堝中矽熔體的初始質量可以在半導體生長裝置生長矽晶柱之前從半導體生長裝置中的設置中獲得,其利用直接測量獲得。First, obtain the initial mass G 0 of the silicon melt in the crucible and the mass G L when the length of the currently generated silicon crystal rod is L. Among them, the initial quality of the silicon melt in the crucible can be obtained from the settings in the semiconductor growth device before the silicon crystal column is grown by the semiconductor growth device, and it can be obtained by direct measurement.

根據本發明的一個示例,獲取當前生成的矽晶棒長度為L時的質量GL 利用直接測量獲得。示例性的,在拉晶裝置上設置秤重裝置,如彈簧秤。在拉晶過程中,隨著矽晶棒的生長,彈簧秤上實時測量出生長的矽晶棒在不同長度L時的質量GL According to an example of the present invention, the mass G L when the length of the currently generated silicon crystal rod is L is obtained by direct measurement. Exemplarily, a weighing device, such as a spring balance, is provided on the crystal pulling device. During the crystal pulling process, as the silicon crystal rod grows, the spring balance measures the mass G L of the grown silicon crystal rod at different lengths L in real time.

根據本發明的另一個示例,所述獲取當前生成的矽晶棒長度為L時的質量GL 利用計算的方法獲得:

Figure 02_image001
。According to another example of the present invention, the obtaining of the mass G L when the length of the currently generated silicon crystal rod is L is obtained by a calculation method:
Figure 02_image001
.

其中,

Figure 02_image007
為矽晶棒的橫截面積,其可以利用半導體生長裝置在晶體生長之前的設置獲得,
Figure 02_image005
為矽晶體的密度。in,
Figure 02_image007
Is the cross-sectional area of the silicon crystal rod, which can be obtained by the setting of the semiconductor growth device before the crystal growth,
Figure 02_image005
Is the density of silicon crystals.

接著,利用坩堝中矽熔體的初始質量G0 和當前生成的矽晶棒的質量GL ,獲得所述坩堝當前剩餘矽熔體的體積V0 。利用坩堝中矽熔體的初始質量G0 和當前生成的矽晶棒的質量GL 得到坩堝中剩餘矽熔體的質量Gr ,利用質量體積公式:

Figure 02_image011
, 其中,
Figure 02_image013
為液態矽的密度。Then, using the initial mass G 0 of the silicon melt in the crucible and the mass G L of the currently generated silicon ingots, the volume V 0 of the current remaining silicon melt in the crucible is obtained. Using the initial mass G 0 of the silicon melt in the crucible and the mass G L of the currently generated silicon ingot to obtain the mass G r of the remaining silicon melt in the crucible, using the mass volume formula:
Figure 02_image011
, in,
Figure 02_image013
Is the density of liquid silicon.

最後,根據所述坩堝當前剩餘矽熔體的體積Vr 和所述坩堝的直徑d計算得到所述坩堝中矽熔體液面的當前高度DL Finally, the current height D L of the liquid level of the silicon melt in the crucible is calculated according to the volume V r of the current remaining silicon melt of the crucible and the diameter d of the crucible.

具體的,在坩堝為圓柱形的情況下,採用如下公式計算公式,

Figure 02_image015
, 或者,計算DL 為滿足
Figure 02_image017
的數值解,其中,
Figure 02_image019
為坩堝在深度為D時的半徑。Specifically, when the crucible is cylindrical, the following formula is used to calculate the formula:
Figure 02_image015
, Or, calculate D L to satisfy
Figure 02_image017
The numerical solution of, where,
Figure 02_image019
Is the radius of the crucible at depth D.

至此,完成對獲取所述坩堝的初始位置高度POS0 、所述坩堝中矽熔體的初始液面高度D0 、所述坩堝中矽熔體液面與導流筒之間的初始距離MG0 、當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSL 和所述坩堝中矽熔體的當前液面高度DL 的方法的示例性介紹。So far, it is completed to obtain the initial position height POS 0 of the crucible, the initial liquid level D 0 of the silicon melt in the crucible, and the initial distance MG 0 between the silicon melt liquid level in the crucible and the deflector. , currently grown silicon rod length L of said crucible at the current location and the POS L exemplary description in the crucible of the liquid level L in the method of the current D silicon melt.

需要理解的是,本實施例中L代表不確定的數值,在本實施例中表示採用本發明的方法對矽晶棒任意生長長度下的坩堝當前位置高度安全性和/或坩堝中矽熔體液面位置進行判斷。It should be understood that in this embodiment, L represents an uncertain value. In this embodiment, the method of the present invention is used to provide a high degree of safety for the current position of the crucible under any growth length of the silicon crystal rod and/or the silicon melt in the crucible The liquid level position is judged.

下面,繼續參看圖2,執行步驟S203:根據所述初始位置高度POS0 、所述當前位置高度POSL 、所述初始液面高度D0 和所述當前液面高度DL 判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否安全,其中, 當α0 POSL1 POS0 <β0 D01 DL2 MG0 +LS 時,所述坩堝的當前位置高度安全, 當α0 POSL1 POS0 >β0 D01 DL2 MG0 +LS 時,所述坩堝的當前位置高度不安全;其中,α0 、α1 、β0 、β1 和β2 為係數因子,所述LS 為設定安全控制高度餘量。Next, continue to refer to FIG. 2 and perform step S203: determine the current growth of silicon based on the initial position height POS 0 , the current position height POS L , the initial liquid level D 0 and the current liquid level D L Whether the current position of the crucible is safe when the length of the crystal rod is L, where, when α 0 POS L1 POS 00 D 0- β 1 D L + β 2 MG 0 +L S , the current position of the crucible highly secure, when α 0 POS L -α 1 POS 0 > β 0 D 0 -β 1 D L + β 2 MG 0 + when L S, the current position of the crucible highly insecure; wherein, [alpha] 0 , α 1 , β 0 , β 1, and β 2 are coefficient factors, and the L S is a margin for setting safety control height.

需要理解的是,α0 、α1 、β0 、β1 和β2 作為係數因子可以取任實數值,其可以由本領域技術人員根據實際應用情況進行設置。Ls作為設定安全控制高度餘量其也是由本領域技術人員啊根據實際應用情況進行設置的值,其最少不低於半導體晶體生產開始時坩堝的位置高度,最大不超過半導體晶體完成時坩堝的位置高度。It should be understood that α 0 , α 1 , β 0 , β 1 and β 2 as coefficient factors can take any real values, which can be set by those skilled in the art according to actual application conditions. Ls, as the set safety control height margin, is also a value set by those skilled in the art according to the actual application. It is at least not lower than the height of the crucible at the beginning of the semiconductor crystal production, and at most it does not exceed the height of the crucible when the semiconductor crystal is completed. .

示例性的,本實施例中,α0 、α1 、β0 、β1 和β2 的取值為1。在這一取值下,POSL -POS0 是矽晶棒生長過程中坩堝位置變化的實時測量值。而D0 -DL 是矽晶棒生長過程中坩堝位置變化的計算值(也是坩堝內矽熔體液面的變化),在穩定拉晶過程中,坩堝位置變化的實時測量值應當與坩堝位置變化的計算值相差不大。為避免坩堝上升過高而與導流筒發生碰撞危險設定D0 -DL +MG0 為坩堝位置變化的實際測量值的最大值。由於在實際製程中,無法做到精准計算和測量,設置一個安全控制高度餘量LS ,設定當POSL -POS0 <D0 -DL +MG0 +LS 時,坩堝的位置在安全範圍內,以進一步增加安全判斷的可靠性。Exemplarily, in this embodiment, the value of α 0 , α 1 , β 0 , β 1 and β 2 is 1. Under this value, POS L -POS 0 is the real-time measurement value of the crucible position change during the growth of the silicon crystal rod. And D 0 -D L is the calculated value of the crucible position change during the growth of the silicon crystal rod (also the change of the silicon melt level in the crucible). In the process of stable crystal pulling, the real-time measurement value of the crucible position change should be the same The calculated value of the change is not much different. In order to avoid the crucible rising too high and the risk of collision with the deflector tube, set D 0 -D L +MG 0 as the maximum value of the actual measured value of the crucible position change. Since accurate calculation and measurement cannot be done in the actual manufacturing process, set a safety control height margin L S , set when POS L -POS 0 <D 0 -D L +MG 0 +L S , the position of the crucible is safe In order to further increase the reliability of safety judgments.

在根據本發明的一個示例中,控制矽熔體坩堝安全升降的方法還包括根據所述初始位置高度POS0 、所述當前位置高度POSL 與所述初始液面高度D0 和所述當前液面高度DL 判斷所述坩堝當前是否處在穩定範圍內。坩堝位置偏高或者偏低會導致製程中坩堝中液面位置的偏高或者偏低而出現不穩定的現象,進一步使生長的矽晶棒的品質受損。為此,增加對坩堝內液面位置的穩定性的判斷。In an example according to the present invention, the method for controlling the safe lifting and lowering of the silicon melt crucible further includes the steps according to the initial position height POS 0 , the current position height POS L, the initial liquid level height D 0 and the current liquid level. The surface height DL judges whether the crucible is currently in a stable range. The high or low position of the crucible will cause the liquid level in the crucible to be high or low during the process, which will cause instability, which will further impair the quality of the grown silicon ingots. For this reason, increase the judgment of the stability of the liquid level position in the crucible.

示例性地,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝中的矽熔體液面位置是否穩定: 當α0 POSL1 POS0 <β0 D01 DL2 MG0 +LU 時以及α0 POSL1 POS0 >β0 D01 DL2 MG0 -LL 時,所述坩堝中的液面位置穩定; 當α0 POSL1 POS0 >β0 D01 DL2 MG0 +LU 時或者α0 POSL1 POS0 <β0 D01 DL2 MG0 -LL 時,所述坩堝中的液面位置不穩定; 其中,α0 、α1 、β0 、β1 和β2 為係數因子,LU 和LL 分別為設定液面上限和設定液面下限控制餘量。Exemplarily, it is judged whether the position of the silicon melt liquid level in the crucible is stable when the length of the currently grown silicon crystal rod is L according to the following rules: When α 0 POS L1 POS 0 <β 0 D 01 When D L2 MG 0 +L U and α 0 POS L1 POS 0 > β 0 D 01 D L + β 2 MG 0 -L L , the position of the liquid level in the crucible is stable ; When α 0 POS L1 POS 0 >β 0 D 01 D L2 MG 0 +L U or α 0 POS L1 POS 0 <β 0 D 01 D L2 MG 0 -L L , the position of the liquid level in the crucible is unstable; where α 0 , α 1 , β 0 , β 1 and β 2 are coefficient factors, and LU and LL are the setting liquids respectively. The upper limit of the surface and the lower limit of the set liquid level control the margin.

同樣,α0 、α1 、β0 、β1 和β2 作為係數因子可以取任實數值,其可以由本領域技術人員根據實際應用情況進行設置。LU 和LL 作為設定液面上限和設定液面下限控制餘量其也是由本領域技術人員根據實際應用情況進行設置的值,其為為控制半導體晶體穩定生長,矽熔體液面可以浮動的上限值和下限值。Similarly, α 0 , α 1 , β 0 , β 1 and β 2 can take any real values as coefficient factors, which can be set by those skilled in the art according to actual application conditions. L U and L L as the upper limit of the set liquid level and the lower limit of the set liquid level control margin are also values set by those skilled in the art according to actual application conditions. They are used to control the stable growth of semiconductor crystals and the liquid level of the silicon melt can be floated. Upper limit and lower limit.

示例性的,本實施例中,α0 、α1 、β0 、β1 和β2 的取值為1。在這一取值下,同安全判斷一樣,將坩堝位置變化的實時測量值POSL -POS0 與坩堝內矽熔體液面的變化的控制上線D0 -DL +MG0 +LU 和控制下線D0 -DL +MG0 -LL 分別進行對比,以判斷坩堝內液面位置的穩定性。當坩堝位置變化的實時測量值POSL -POS0 高於坩堝內矽熔體液面的變化的控制上線D0 -DL +MG0 +LU 或者低於控制下線D0 -DL +MG0 -LL 時,判斷坩堝中的液面位置不穩定。Exemplarily, in this embodiment, the value of α 0 , α 1 , β 0 , β 1 and β 2 is 1. Under this value, the real-time measurement value POS L -POS 0 of the crucible position change and the change of the silicon melt level in the crucible are controlled on the line D 0 -D L +MG 0 +L U and Control the lower line D 0 -D L +MG 0 -L L to compare separately to judge the stability of the liquid surface position in the crucible. When the crucible position changes, the real-time measured value POS L -POS 0 is higher than the upper control line D 0 -D L +MG 0 +L U of the change of the silicon melt level in the crucible or lower than the control lower line D 0 -D L +MG When 0- L L , it is judged that the position of the liquid level in the crucible is unstable.

在根據本發明的一個示例中,當判斷所述坩堝的位置在安全範圍以外時,使坩堝鎖定在當前位置而不進行上下移動。以避免坩堝與導流筒相撞,從而避免產生安全事故。In an example according to the present invention, when it is judged that the position of the crucible is outside the safe range, the crucible is locked at the current position without moving up and down. In order to avoid the crucible colliding with the deflector, thereby avoiding safety accidents.

在根據本發明的一個示例中,當判斷所述坩堝中的液面位置不穩定時,發出警報。此時製程操作人員可以根據警報對半導體晶體生長裝置進行調整,以避免生長出質量受損的矽晶棒。 實施例二In an example according to the present invention, when it is judged that the position of the liquid level in the crucible is unstable, an alarm is issued. At this time, the process operator can adjust the semiconductor crystal growth device according to the alarm to avoid the growth of silicon ingots with damaged quality. Example two

在實施例一中描述了根據測量和計算的坩堝位置、坩堝中矽熔體液面的位置進行坩堝位置安全性、矽熔體液面穩定性判定的方法。本實施例中,將提供一種統計的方法,採用具有安全坩堝位置和穩定矽熔體液面的多次試驗下矽晶棒的生長過程中的統計數據對後續矽晶棒生長過程中的安全性和穩定性進行判斷。In the first embodiment, a method for determining the safety of the crucible position and the stability of the silicon melt liquid level based on the measured and calculated crucible position and the position of the silicon melt liquid surface in the crucible is described. In this embodiment, a statistical method will be provided. The statistical data during the growth process of the silicon ingot in multiple tests with a safe crucible position and a stable silicon melt level are used to ensure the safety of the subsequent silicon ingot growth process. And stability.

具體的,參看圖3,對根據本實施例的一種控制矽熔體坩堝安全升降的方法進行示例性描述。Specifically, referring to FIG. 3, a method for controlling the safe lifting and lowering of a silicon melt crucible according to this embodiment is exemplarily described.

首先,參看圖3,執行步驟S301:獲取當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSLFirst, referring to FIG. 3, step S301 is performed: obtaining the current position height POS L of the crucible when the length of the currently grown silicon crystal rod is L.

示例性的,坩堝的當前位置高度POSL 可以利用設置測量裝置(如紅外測距裝置)獲得。在半導體晶體生長過程中,實時測量坩堝的位置高度,從而對坩堝的位置進行實時監控,有效避免半導體晶體生長過程中因為坩堝位置偏差導致坩堝碰撞導流筒而發生安全事故,同時也可以避免坩堝中矽熔體液面不穩定而噪聲半導體晶體的生長缺陷。Exemplarily, the current position height POS L of the crucible can be obtained by setting a measuring device (such as an infrared distance measuring device). In the process of semiconductor crystal growth, the position of the crucible is measured in real time, so as to monitor the position of the crucible in real time, effectively avoiding safety accidents caused by the crucible colliding with the deflector due to the deviation of the crucible position during the semiconductor crystal growth process, and also avoiding the crucible The liquid level of the medium silicon melt is unstable and the growth defect of the semiconductor crystal is noisy.

接著,繼續參看圖3,執行步驟S302:獲取N條矽晶棒在生長長度為L時的所述坩堝的位置高度POSLi ,其中,i=1,2……N。Next, continue to refer to FIG. 3 and perform step S302: Obtain the position height POS Li of the crucible when the growth length of N silicon crystal rods is L, where i=1, 2...N.

這一步驟可以利用統計方法獲得。在實際操作過程中,對多次生長矽晶棒的過程進行實時監控,獲取矽晶棒穩定生長過程中的坩堝位置高度的數據。例如,對N條矽晶棒生長過程進行監控,監控過程中,每條矽晶棒每生長L長度時獲取依次坩堝位置高度。示例性的,對100條矽晶棒的生長過程進行監控,其中每條矽晶棒的長度為1000mm。在每條矽晶棒的生長過程中,從最初生長開始,每生長50mm獲取一次坩堝位置高度。因而,每條矽晶棒將獲取20次矽晶棒的位置。設置每條矽晶棒每生長50mm獲取一次坩堝位置高度,是基於晶棒直徑,坩堝直徑以及實際使用中的液面與導流筒之間的距離進行的設置,以保證每條矽晶棒的生長過程中獲取的坩堝位置具有足夠的密度。This step can be obtained using statistical methods. In the actual operation process, real-time monitoring of the process of multiple growth of silicon ingots is carried out to obtain data on the position of the crucible during the stable growth of the silicon ingots. For example, to monitor the growth process of N silicon crystal rods, during the monitoring process, each silicon crystal rod grows L length to obtain the successive crucible position height. Exemplarily, the growth process of 100 silicon crystal rods is monitored, and the length of each silicon crystal rod is 1000 mm. In the growth process of each silicon crystal rod, starting from the initial growth, the crucible position height is obtained every 50 mm of growth. Therefore, each silicon ingot will acquire the position of the silicon ingot 20 times. Setting each silicon crystal rod to obtain the position of the crucible height every 50mm growth is based on the diameter of the crystal rod, the diameter of the crucible and the distance between the liquid surface and the deflector in actual use to ensure that each silicon crystal rod is The crucible position obtained during the growth process has sufficient density.

需要理解的是,上述實施例中,將矽晶棒的條數設置為100,對每條矽晶棒每生長50mm獲取一次坩堝位置高度僅僅是示例性的。任何數量的矽晶棒,以及每生長任何數量長度下獲取坩堝位置均適用於本發明。It should be understood that, in the foregoing embodiment, the number of silicon crystal rods is set to 100, and the crucible position height is obtained for each silicon crystal rod every 50 mm grown. Any number of silicon crystal rods and the position of the crucible obtained at any number of growth lengths are suitable for the present invention.

在統計了上述N條矽晶棒生長過程中各個不同生長長度下坩堝的位置之後,在針對當前正在製程的矽晶棒的生長過程,獲取上述N條矽晶棒在生長長度為L時的所述坩堝的位置高度POSLiAfter counting the positions of the crucibles at different growth lengths during the growth process of the above N silicon crystal rods, according to the growth process of the silicon crystal rods currently in the process, obtain all the above N silicon crystal rods when the growth length is L. The position height of the crucible is POS Li .

接著,繼續參看圖3,執行步驟S303:獲取所述坩堝的位置POSLi 的位置中位數POSML 和位置標準差DEVLNext, continue to refer to FIG. 3 and perform step S303: obtain the position median POSM L and the position standard deviation DEV L of the position POS Li of the crucible.

坩堝的位置POSLi 的位置中位數POSML 代表N條晶棒在生長長度為L時的坩堝位置的中值。The position of the crucible POS The median position of Li POSM L represents the median value of the position of the crucible when the growth length of N crystal rods is L.

坩堝的位置POSLi 的位置標準差DEVL 代表N條晶棒在生長長度為L時的坩堝位置離散程度。採用中位數和標準差作為比較標準,將當前矽晶棒生長製程中生長的矽晶棒在生長長度為L時的坩堝當前位置高度POSL 與坩堝的位置POSLi 的位置中位數POSML 的差值和位置標準差DEVL 相比較,利用判斷當前矽晶棒生長製程中生長的矽晶棒在生長長度為L時的坩堝當前位置高度POSL 偏離位置中位數POSML 的程度,判斷當前位置高度下的坩堝是否處於安全範圍內。實現了利用統計學方法判斷當前坩堝位置高度下的坩堝是否處於安全範圍內,使得比較結果考慮了實際製程中的環境因素和零元件因素,增加判斷結果的準確性。The position standard deviation of the position of the crucible POS Li DEV L represents the degree of dispersion of the position of the crucible when the growth length of N crystal rods is L. Using the median and standard deviation as the comparison standard, the current position of the crucible POS L and the position of the crucible POS Li of the position of the crucible POSM L when the growth length of the silicon ingot grown in the current silicon ingot growth process is L is the position median POSM L The difference value of is compared with the standard deviation of the position DEV L , and the current position height POS L of the crucible when the growth length of the silicon ingot grown in the current silicon ingot growth process is judged is the degree of deviation of the position median POSM L from the position median POSM L. Whether the crucible under the current position height is within the safe range. It realizes the use of statistical methods to judge whether the crucible at the current crucible height is within the safe range, so that the comparison result takes into account the environmental factors and component factors in the actual manufacturing process, and the accuracy of the judgment result is increased.

上述根據坩堝的位置POSLi 獲取所述坩堝的位置POSLi 的位置中位數POSML 和位置標準差DEVL 採用數學上求中位數和標準差的公式進行,是本領域技術人員所熟知的技術,在此不再贅述。According to the above-described position POS of Li Li crucible acquiring position POS of the crucible and the position of the median POSM L DEV L standard deviation, median and standard deviation using the mathematical formula for the request, it is well known to those skilled in the Technology, I won’t repeat it here.

根據本發明的一個示例,獲取N條矽晶棒在生長長度為L時的所述坩堝的位置POSi 的方法包括: 獲取每一矽晶棒在每生長M長度時所述坩堝的位置高度POSiM ; 從每一矽晶棒的多個所述位置高度POSiM 中獲取每一矽晶棒的在生長長度為L時的所述坩堝的位置POSLi According to an example of the present invention, the method for obtaining the position POS i of the crucible when the growth length of N silicon ingots is L includes: obtaining the position height POS of the crucible for each growth of each silicon ingot in M length iM ; Obtain the position POS Li of the crucible when the growth length of each silicon crystal rod is L from the plurality of position heights POS iM of each silicon crystal rod.

根據本發明的一個示例,獲取所述坩堝的位置POSi 的位置中位數POSML 和位置標準差DEVL 的方法包括: 根據所述POSiM 獲取每生長M長度時所述坩堝的位置中位數POSMM 和位置標準差DEVM ,並分別繪製成表格或曲線。According to an example of the present invention, the method for obtaining the position median POSM L and the position standard deviation DEV L of the position POS i of the crucible includes: obtaining the position median of the crucible for each growth M length according to the POSi M Count the POSM M and the position standard deviation DEV M and plot them into a table or curve respectively.

在上述獲取N條矽晶棒在生長長度為L時的所述坩堝的位置POSi 的方法和獲取所述坩堝的位置POSi 的位置中位數POSML 和位置標準差DEVL 的方法中,利用前期獲取的數據集獲取判斷實際生長製程中正在生長的矽晶棒在生長長度為L時的坩堝當前位置高度POSL 是否安全,使得判斷過程中獲取數據的方法簡便、高效。 In the above method of obtaining the position POS i of the crucible when the growth length of N silicon crystal rods is L and the method of obtaining the position median POSM L and the position standard deviation DEV L of the position POS i of the crucible, Use the data set obtained in the previous stage to determine whether the current position of the crucible POS L is safe when the growth length of the silicon crystal rod is growing in the actual growth process, which makes the method of obtaining data in the judgment process simple and efficient.

從所述表格或曲線中獲取晶棒生長長度為L時所述坩堝的位置中位數POSML 和位置標準差DEVL 。將前期N條矽晶棒的監控過程數據收集後形成表格或曲線,使之在後續矽晶棒的生長製程中隨時取用,簡化後續矽晶棒生長過程中各生長長度下坩堝當前位置高度安全性和坩堝內矽熔體液面穩定性的判斷過程。 Obtain the position median POSM L and position standard deviation DEV L of the crucible when the growth length of the crystal rod is L from the table or curve. Collect the monitoring process data of the N silicon ingots in the early stage and form a table or curve, which can be used at any time during the subsequent growth of silicon ingots, simplifying the current position of the crucible under each growth length during the subsequent growth of silicon ingots. The current position of the crucible is highly safe The process of judging the stability of the silicon melt and the liquid level in the crucible.

接著,繼續參看圖3,執行步驟S304:根據所述位置高度POSL 、所述位置中位數POSML 與位置標準差DEVL 判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否處安全。Next, continue to refer to FIG. 3, perform step S304: judge the current position of the crucible when the length of the currently grown silicon crystal rod is L according to the position height POS L , the position median POSM L and the position standard deviation DEV L Is the height safe?

示例性地,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否安全: 當γ0 POSL1 POSML <DEVL×yS 時,所述坩堝的位置在安全範圍以內, 當γ0 POSL1 POSML >DEVL×yS 時,所述坩堝的位置在安全範圍以外,γ0 和γ1 為係數因子,yS 為設定安全控制因素。Exemplarily, it is determined whether the current height of the crucible is safe when the length of the currently grown silicon crystal rod is L according to the following rules: When γ 0 POS L1 POSM L <DEVL×y S , the position of the crucible Within the safe range, when γ 0 POS L1 POSM L > DEVL×y S , the position of the crucible is outside the safe range, γ 0 and γ 1 are coefficient factors, and y S is the set safety control factor.

γ0 和γ1 為任意實數,本領域技術人員可以根據實際應用情況設定。yS 可以由製程操作人員根據實際製程環境、晶體生長設置條件等進行設定。示例性的,0<yS <10,γ0 和γ1 均為1。γ 0 and γ 1 are arbitrary real numbers, which can be set by those skilled in the art according to actual application conditions. y S can be set by the process operator according to the actual process environment, crystal growth setting conditions, etc. Exemplarily, 0<y S <10, and both γ 0 and γ 1 are 1.

在根據本發明的一個示例中,控制矽熔體坩堝安全升降的方法還包括根據所述位置高度POSL 、所述位置中位數POSML 與位置標準差DEVL 判斷當前生長的矽晶棒長度為L時所述坩堝中所述矽熔體液面是否穩定。In an example according to the present invention, the method for controlling the safe lifting of the silicon melt crucible further includes judging the length of the currently grown silicon crystal rod according to the position height POS L , the position median POSM L and the position standard deviation DEV L When it is L, whether the liquid level of the silicon melt in the crucible is stable.

示例性地,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝中的所述矽熔體液面位置是否穩定: γ0 POSL1 POSML <DEVL ×yU 和γ0 POSL1 POSML >DEVL ×yL 時,所述坩堝中的液面位置穩定, γ0 POSL1 POSML >DEVL ×yU 或者γ0 POSL1 POSML <DEVL ×yL 時,所述坩堝中的液面位置不穩定。Exemplarily, it is determined according to the following rule whether the position of the silicon melt liquid level in the crucible is stable when the length of the currently grown silicon crystal rod is L: γ 0 POS L1 POSM L <DEV L ×y U and When γ 0 POS L1 POSM L > DEV L × y L , the position of the liquid level in the crucible is stable, γ 0 POS L1 POSM L > DEV L × y U or γ 0 POS L1 When POSM L &lt; DEV L ×y L , the position of the liquid surface in the crucible is unstable.

γ0 和γ1 為係數因子,yU 和yL 分別為設定液面最高因素和設定液面最低因素。γ 0 and γ 1 are coefficient factors, and y U and y L are the highest and lowest set liquid level factors, respectively.

同樣,γ0 和γ1 為任意實數,本領域技術人員可以根據實際應用情況設定。yU 和yL 可以由製程操作人員根據實際製程環境、晶體生長設置條件等進行設定。示例性的,0<yU <10,0<yL <10,其中,yU 小於yS ,γ0 和γ1 均為1。Similarly, γ 0 and γ 1 are arbitrary real numbers, which can be set by those skilled in the art according to actual application conditions. y U and y L can be set by the process operator according to the actual process environment, crystal growth setting conditions, etc. Exemplarily, 0<y U <10, 0<y L <10, where y U is less than y S , and γ 0 and γ 1 are both 1.

同樣,將當前矽晶棒生長製程中生長的矽晶棒在生長長度為L時的坩堝當前位置高度POSL 與坩堝的位置POSLi 的位置中位數POSML 的差值和位置標準差DEVL 相比較,利用判斷當前矽晶棒生長製程中生長的矽晶棒在生長長度為L時的坩堝當前位置高度POSL 偏離位置中位數POSML 的程度,判斷當前位置高度下的坩堝中的矽熔體液面位置是否穩定。實現了利用統計學方法判斷當前坩堝位置高度下的坩堝中的矽熔體液面位置是否穩定,使得比較結果考慮了實際製程中的環境因素和零元件因素,增加判斷結果的準確性。Similarly, the position of the current POS crucible made Cheng Zhongsheng silicon rod grown silicon rod grown long length L L of the current height position POS crucible POSM L Li median difference value and the position of the DEV standard deviation L In comparison, the current position height POS L of the crucible when the growth length of the silicon ingot grown in the current silicon ingot growth process is judged when the growth length is L is deviated from the position median POSM L to determine the silicon in the crucible at the current position height Whether the position of the melt level is stable. It realizes the use of statistical methods to determine whether the position of the silicon melt in the crucible is stable at the current crucible position height, so that the comparison result takes into account the environmental factors and zero component factors in the actual manufacturing process, and the accuracy of the judgment result is increased.

需要理解的是,本實施例中L代表不確定的數值,在本實施例中表示採用本發明的方法對矽晶棒任意生長長度下的坩堝當前位置高度安全性和/或坩堝中矽熔體液面位置進行判斷。It should be understood that in this embodiment, L represents an uncertain value. In this embodiment, the method of the present invention is used to provide a high degree of safety for the current position of the crucible under any growth length of the silicon crystal rod and/or the silicon melt in the crucible The liquid level position is judged.

在根據本發明的一個示例中,當判斷所述坩堝的位置在安全範圍以外時,使坩堝鎖定在當前位置而不進行上下移動。以避免坩堝與導流筒相撞,從而避免產生安全事故。In an example according to the present invention, when it is judged that the position of the crucible is outside the safe range, the crucible is locked at the current position without moving up and down. In order to avoid the crucible colliding with the deflector, thereby avoiding safety accidents.

在根據本發明的一個示例中,當判斷所述坩堝中的液面位置不穩定時,發出警報。此時製程操作人員可以根據警報對半導體晶體生長裝置進行調整,以避免生長出質量受損的矽晶棒。 實施例三In an example according to the present invention, when it is judged that the position of the liquid level in the crucible is unstable, an alarm is issued. At this time, the process operator can adjust the semiconductor crystal growth device according to the alarm to avoid the growth of silicon ingots with damaged quality. Example three

本發明還提供一種控制矽熔體坩堝安全升降的裝置,包括: 存儲有可執行的計算機程序指令的存儲器和處理器,所述處理器在執行所述可執行的計算機程序指令時,執行如實施例一或實施例二所述的方法。The invention also provides a device for controlling the safe lifting and lowering of the silicon melt crucible, which includes: A memory and a processor storing executable computer program instructions, and when the processor executes the executable computer program instructions, the method as described in the first embodiment or the second embodiment is executed.

在半導體晶體生長裝置中設置控制矽熔體坩堝安全升降的裝置,利用坩堝位置和坩堝中的液面位置判斷拉晶過程中坩堝當前所處的位置是否在安全範圍內,避免拉晶過程中因為坩堝的上下移動超出限度而發生毀損,同時保證了在坩堝上下移動過程中,位於其中的矽熔體液面的穩定性,進一步保證了矽晶棒的穩定生長。A device for controlling the safe lifting and lowering of the silicon melt crucible is installed in the semiconductor crystal growth device, and the position of the crucible and the liquid level in the crucible are used to determine whether the current position of the crucible during the crystal pulling process is within a safe range, so as to avoid The crucible moves up and down beyond the limit and is damaged. At the same time, the stability of the silicon melt liquid level in the crucible is ensured during the up and down movement of the crucible, which further ensures the stable growth of the silicon crystal rod.

示例性的,所述控制矽熔體坩堝安全升降的裝置還包括鎖定裝置,當所述處理器判斷所述坩堝的位置在安全範圍以外時,所述鎖定裝置鎖定所述坩堝在當前位置而不進行上下移動。Exemplarily, the device for controlling the safe lifting and lowering of the silicon melt crucible further includes a locking device, and when the processor determines that the position of the crucible is outside the safe range, the locking device locks the crucible in the current position without Move up and down.

示例性的,所述控制矽熔體坩堝安全升降的裝置還包括警報裝置,當所述處理器判斷所述坩堝中的液面位置不穩定時,所述警報裝置發出警報。Exemplarily, the device for controlling the safe lifting and lowering of the silicon melt crucible further includes an alarm device. When the processor determines that the position of the liquid level in the crucible is unstable, the alarm device issues an alarm.

綜上所述,根據本發明的控制矽熔體坩堝安全升降的方法和裝置,利用坩堝位置和坩堝中的液面位置判斷拉晶過程中坩堝當前所處的位置是否在安全範圍內,避免拉晶過程中因為坩堝的上下移動超出限度而發生毀損,同時保證了在坩堝上下移動過程中,位於其中的矽熔體液面的穩定性,進一步保證了矽晶棒的穩定生長。In summary, according to the method and device for controlling the safe lifting and lowering of a silicon melt crucible of the present invention, the position of the crucible and the position of the liquid level in the crucible are used to determine whether the current position of the crucible during the crystal pulling process is within a safe range, so as to avoid pulling During the crystallization process, the crucible is damaged due to the up and down movement of the crucible beyond the limit. At the same time, the stability of the liquid level of the silicon melt located in the crucible is ensured during the up and down movement of the crucible, which further ensures the stable growth of the silicon crystal rod.

本發明已經利用上述實施例進行了說明,但應當理解的是,上述實施例只是用於舉例和說明的目的,而非意在將本發明限制於所描述的實施例範圍內。此外本領域技術人員可以理解的是,本發明並不局限於上述實施例,根據本發明的教導還可以做出更多種的變型和修改,這些變型和修改均落在本發明所要求保護的範圍以內。本發明的保護範圍由附屬的發明申請專利範圍及其等效範圍所界定。The present invention has been described using the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can be made according to the teachings of the present invention, and these variations and modifications fall under the protection of the present invention. Within the range. The scope of protection of the present invention is defined by the scope of the attached invention patent application and its equivalent scope.

1:爐體1 10:矽晶棒 11:坩堝 12:加熱器 13:矽熔體 14:提拉裝置 15:驅動裝置 16:導流筒 L:矽晶棒長度 DL:當前液面高度 POSL:坩堝當前位置高度 MG0:坩堝中矽熔體液面與導流筒之間的初始距離 S201~S203:控制矽熔體坩堝安全升降的方法的流程步驟 S301~S304:控制矽熔體坩堝安全升降的方法的流程步驟1: Furnace 1 10: Silicon crystal rod 11: Crucible 12: Heater 13: Silicon melt 14: Lifting device 15: Drive device 16: Diversion cylinder L: Silicon crystal rod length D L : Current liquid level POS L : The current position of the crucible MG 0 : The initial distance between the liquid level of the silicon melt in the crucible and the deflector S201~S203: The process steps of the method to control the safe lifting of the silicon melt crucible S301~S304: Control the silicon melt crucible Process steps of safe lifting method

本發明的下列附圖在此作為本發明的一部分用於理解本發明。附圖中示出了本發明的實施例及其描述,用來解釋本發明的原理。The following drawings of the present invention are used here as a part of the present invention for understanding the present invention. The drawings show the embodiments of the present invention and the description thereof to explain the principle of the present invention.

附圖中: 圖1為根據一種半導體晶體生長裝置的結構示意圖; 圖2為根據本發明的一個實施例的一種控制矽熔體坩堝安全升降的方法的流程圖; 圖3為根據本發明的一個實施例的一種控制矽熔體坩堝安全升降的方法的流程圖。In the attached picture: Figure 1 is a schematic diagram of a semiconductor crystal growth device according to the structure; 2 is a flowchart of a method for controlling the safe lifting and lowering of a silicon melt crucible according to an embodiment of the present invention; 3 is a flowchart of a method for controlling the safe lifting and lowering of a silicon melt crucible according to an embodiment of the present invention.

none

S201~S203:控制矽熔體坩堝安全升降的方法的流程步驟 S201~S203: Process steps of the method to control the safe lifting and lowering of the silicon melt crucible

Claims (16)

一種控制矽熔體坩堝安全升降的方法,包括:獲取所述坩堝的初始位置高度POS0、所述坩堝中矽熔體的初始液面高度D0以及所述坩堝中矽熔體液面與導流筒之間的初始距離MG0;獲取當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSL和所述坩堝中矽熔體的當前液面高度DL;根據所述初始位置高度POS0、所述當前位置高度POSL、所述初始液面高度D0和所述當前液面高度DL根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否安全:當α0POSL1POS00D01DL2MG0+LS時,所述坩堝的當前位置高度安全;當α0POSL1POS00D01DL2MG0+LS時,所述坩堝的當前位置高度不安全;其中,α0、α1、β0、β1和β2為係數因子,LS為設定安全控制高度餘量。 A method for controlling the safe lifting and lowering of a silicon melt crucible includes: obtaining the initial position height POS 0 of the crucible, the initial liquid level D 0 of the silicon melt in the crucible, and the level and guide of the silicon melt in the crucible. The initial distance MG 0 between the flow cylinders; obtain the current position height POS L of the crucible when the length of the currently grown silicon crystal rod is L and the current liquid level height D L of the silicon melt in the crucible; according to the The initial position height POS 0 , the current position height POS L , the initial liquid level D 0 and the current liquid level D L are judged according to the following rules to determine the current of the crucible when the length of the currently grown silicon crystal rod is L Is the position height safe: when α 0 POS L1 POS 00 D 0- β 1 D L + β 2 MG 0 +L S , the current position of the crucible is highly safe; when α 0 POS L- When α 1 POS 0 > β 0 D 0- β 1 D L + β 2 MG 0 +L S , the current position of the crucible is highly unsafe; among them, α 0 , α 1 , β 0 , β 1 and β 2 Is the coefficient factor, and L S is the margin for setting the safety control height. 如請求項1所述的方法,還包括根據所述初始位置高度POS0、所述當前位置高度POSL與所述初始液面高度D0和所述當前液面高度DL判斷當前生長的矽晶棒長度為L時所述坩堝中的矽熔體液面位置是否穩定。 The method according to claim 1, further comprising judging the currently grown silicon based on the initial position height POS 0 , the current position height POS L, the initial liquid level height D 0 and the current liquid level D L When the length of the crystal rod is L, whether the liquid level position of the silicon melt in the crucible is stable. 如請求項2所述的方法,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝中的矽熔體液面位置是否穩定:當α0POSL1POS00D01DL2MG0+LU時以及α0POSL1POS00D01DL2MG0-LL時,所述坩堝中的矽熔體液面位置穩定; 當α0POSL1POS00D01DL2MG0+LU時或者α0POSL1POS00D01DL2MG0-LL時,所述坩堝中的矽熔體液面位置不穩定;其中,α0、α1、β0、β1和β2為係數因子,LU和LL分別為設定液面上限和設定液面下限控制餘量。 According to the method described in claim 2, judge whether the liquid level position of the silicon melt in the crucible is stable when the length of the currently grown silicon crystal rod is L: when α 0 POS L1 POS 00 When D 0- β 1 D L + β 2 MG 0 + L U and α 0 POS L1 POS 0 > β 0 D 0- β 1 D L + β 2 MG 0 -L L , the crucible The liquid level position of the silicon melt is stable; when α 0 POS L1 POS 0 > β 0 D 0- β 1 D L + β 2 MG 0 + L U or α 0 POS L1 POS 0When 0 D 01 D L + β 2 MG 0 -L L , the position of the liquid level of the silicon melt in the crucible is unstable; where α 0 , α 1 , β 0 , β 1 and β 2 are coefficients The factors, L U and L L are the set liquid level upper limit and the set liquid level lower limit control margin respectively. 如請求項3所述的方法,其中獲取所述坩堝中矽熔體液面的當前液面高度DL的步驟包括:獲取所述坩堝中矽熔體的初始質量G0和當前生成長度為L時的矽晶棒的質量GL;根據所述坩堝中矽熔體的初始質量G0和所述當前生成的矽晶棒的質量GL,獲得所述坩堝當前剩餘矽熔體的體積Vr;根據所述坩堝當前剩餘矽熔體的體積Vr和所述坩堝的直徑計算得到所述坩堝中矽熔體液面的當前高度DLThe request method according to 3, wherein the step of obtaining the liquid level height L D of the current in the crucible silicon melt level includes: obtaining a silicon melt in the crucible initial mass G 0 and the current generated length L The mass G L of the silicon ingot at time; according to the initial mass G 0 of the silicon melt in the crucible and the mass G L of the currently generated silicon ingot, obtain the current remaining silicon melt volume V r of the crucible Calculate the current height D L of the liquid level of the silicon melt in the crucible according to the current remaining volume of the silicon melt in the crucible V r and the diameter of the crucible. 如請求項求4所述的方法,其中所述獲取當前生成長度為L時的矽晶棒的質量GL係利用下式計算的獲得:G L =(ʃ Area L dL) * ρ Si ,其中Area L 為所述矽晶棒的橫截面積,ρ Si 為所述矽晶體的密度。 The method described in request item 4, wherein the obtaining the mass of the silicon ingot when the current generation length is L, G L is calculated by the following formula: G L = (ʃ Area L dL ) * ρ Si , where Area L is the cross-sectional area of the silicon crystal rod, and ρ Si is the density of the silicon crystal. 如請求項4所述的方法,其中所述獲取當前生成的矽晶棒的質量GL係利用直接測量當前生成的矽晶棒的質量獲得。 The method according to claim 4, wherein said obtaining the quality G L of the currently generated silicon ingot is obtained by directly measuring the quality of the currently generated silicon ingot. 一種控制矽熔體坩堝安全升降的方法,包括:獲取當前生長的矽晶棒長度為L時的所述坩堝的當前位置高度POSL;獲取N條矽晶棒在生長長度為L時的所述坩堝的位置高度POSLi,其中,i=1,2......N; 獲取所述坩堝的位置POSLi的位置中位數POSML和位置標準差DEVL;根據所述位置高度POSL、所述位置中位數POSML與位置標準差DEVL根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝的當前位置高度是否處安全:γ0POSL1POSML<DEVL×yS時,所述坩堝的當前位置高度安全;γ0POSL1POSML>DEVL×yS時,所述坩堝的當前位置高度不安全;其中,γ0和γ1為係數因子,yS為設定安全控制因素。 A method for controlling the safe lifting and lowering of a silicon melt crucible includes: obtaining the current position height POS L of the crucible when the length of the currently grown silicon crystal rod is L; The position of the crucible is POS Li , where i=1, 2. . . . . . N; Obtain the position median POSM L and position standard deviation DEV L of the position POS Li of the crucible; judge according to the following rules according to the position height POS L , the position median POSM L and the position standard deviation DEV L Whether the current position of the crucible is safe when the length of the currently grown silicon crystal rod is L: γ 0 POS L1 POSM L <DEVL×y S , the current position of the crucible is highly safe; γ 0 POS L -When γ 1 POSM L >DEVL×y S , the current position of the crucible is unsafe; among them, γ 0 and γ 1 are coefficient factors, and y S is a set safety control factor. 如請求項7所述的方法,還包括根據所述位置高度POSL、所述位置中位數POSML與位置標準差DEVL判斷當前生長的矽晶棒長度為L時所述坩堝中的所述矽熔體液面位置是否穩定。 The method according to claim 7, further comprising judging from the position height POS L , the position median POSM L and the position standard deviation DEV L to determine the current growth of the silicon crystal rod when the length is L in the crucible State whether the liquid level position of the silicon melt is stable. 如請求項8所述的方法,根據以下規則判斷當前生長的矽晶棒長度為L時所述坩堝中的所述矽熔體液面位置是否穩定:當γ0POSL1POSML<DEVL×yU和γ0POSL1POSML>DEVL×yL時,所述坩堝中的所述矽熔體液面位置穩定;當γ0POSL1POSML>DEVL×yU或者γ0POSL1POSML<DEVL×yL時,所述坩堝中的所述矽熔體液面位置不穩定;其中,γ0和γ1為係數因子,yU和yL分別為設定液面最高因素和設定液面最低因素。 According to the method described in claim 8, judge whether the position of the silicon melt liquid level in the crucible is stable when the length of the currently grown silicon crystal rod is L: when γ 0 POS L1 POSM L < When DEV L × y U and γ 0 POS L1 POSM L > DEV L × y L , the liquid level position of the silicon melt in the crucible is stable; when γ 0 POS L1 POSM L > DEV When L × y U or γ 0 POS L1 POSM L <DEV L × y L , the position of the liquid level of the silicon melt in the crucible is unstable; where γ 0 and γ 1 are coefficient factors, and y U and y L are respectively the highest factor of the set liquid level and the lowest factor of the set liquid level. 如請求項7所述的方法,其中獲取N條矽晶棒在生長長度為L時的所述坩堝的位置POSLi的方法包括:獲取每一矽晶棒在每生長M長度時所述坩堝的位置高度POSiM; 從每一矽晶棒的多個所述位置高度POSiM中獲取每一矽晶棒的在生長長度為L時的所述坩堝的位置POSLiThe method according to claim 7, wherein the method of obtaining the position POS Li of the crucible when the growth length of N silicon ingots is L includes: obtaining the position of the crucible when the growth length of each silicon ingot is M. Position height POS iM ; Obtain the position POS Li of the crucible for each silicon ingot when the growth length is L from the plurality of position heights POS iM of each silicon ingot. 如請求項10所述的方法,其中所述獲取所述坩堝的位置POSi的位置中位數POSML和位置標準差DEVL的方法包括:根據所述POSiM獲取每生長M長度時所述坩堝的位置中位數POSMM和位置標準差DEVL,並分別繪製成表格或曲線;從所述表格或曲線中獲取晶棒生長長度為L時所述坩堝的位置中位數POSML和位置標準差DEVLThe method according to claim 10, wherein the method of obtaining the position median POSM L and the position standard deviation DEV L of the position POS i of the crucible includes: obtaining the length of each growth M according to the POS iM The position median POSM M and position standard deviation DEV L of the crucible are plotted as a table or curve respectively; the position median POSM L and position of the crucible when the growth length of the ingot is L is obtained from the table or curve Standard deviation DEV L. 如請求項1或7所述的方法,當判斷所述坩堝的位置在安全範圍以外時,使所述坩堝鎖定在當前位置而不進行上下移動。 According to the method described in claim 1 or 7, when it is determined that the position of the crucible is outside the safe range, the crucible is locked at the current position without moving up and down. 如請求項3或9所述的方法,當判斷所述坩堝中的液面位置不穩定時,發出警報。 According to the method described in claim 3 or 9, when it is judged that the position of the liquid level in the crucible is unstable, an alarm is issued. 一種控制矽熔體坩堝安全升降的裝置,包括:存儲有可執行的計算機程序指令的存儲器和處理器,所述處理器在執行所述可執行的計算機程序指令時,執行如請求項1、2、3、7、8、或9所述的方法。 A device for controlling the safe lifting and lowering of a silicon melt crucible includes: a memory and a processor storing executable computer program instructions, and the processor executes items such as request items 1, 2 when executing the executable computer program instructions. , 3, 7, 8, or 9. 如請求項14所述的裝置,還包括鎖定裝置,當所述處理器判斷所述坩堝的位置在安全範圍以外時,所述鎖定裝置鎖定所述坩堝在當前位置而不進行上下移動。 The device according to claim 14, further comprising a locking device, when the processor determines that the position of the crucible is outside the safe range, the locking device locks the crucible at the current position without moving up and down. 如請求項14所述的裝置,還包括警報裝置,當所述處理器判斷所述坩堝中的液面位置不穩定時,所述警報裝置發出警報。 The device according to claim 14, further comprising an alarm device, when the processor determines that the position of the liquid level in the crucible is unstable, the alarm device issues an alarm.
TW109109532A 2019-04-23 2020-03-23 A method and a device for controlling safe lifting of silicon melt crucible TWI749487B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910329242.8A CN111826710A (en) 2019-04-23 2019-04-23 Method and device for controlling safe lifting of silicon melt crucible
CN201910329242.8 2019-04-23

Publications (2)

Publication Number Publication Date
TW202039942A TW202039942A (en) 2020-11-01
TWI749487B true TWI749487B (en) 2021-12-11

Family

ID=72912240

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109109532A TWI749487B (en) 2019-04-23 2020-03-23 A method and a device for controlling safe lifting of silicon melt crucible

Country Status (3)

Country Link
US (1) US20200340137A1 (en)
CN (1) CN111826710A (en)
TW (1) TWI749487B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147835A1 (en) * 2021-01-11 2022-07-14 眉山博雅新材料有限公司 Crystal growth control method and system
CN114046755A (en) * 2021-11-16 2022-02-15 西安奕斯伟材料科技有限公司 Device and method for obtaining real-time length of silicon rod pulled by Czochralski method and crystal pulling furnace
CN114808115B (en) * 2022-04-28 2023-08-15 晶科能源股份有限公司 Liquid mouth distance measuring method and liquid mouth distance testing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060145A1 (en) 1999-04-07 2000-10-12 Memc Electronic Materials, Inc. Method and system of controlling taper growth in a semiconductor crystal growth process
US20020029738A1 (en) * 2000-05-31 2002-03-14 Keiichi Takanashi Apparatus for pulling a single crystal
CN101168848A (en) * 2006-10-23 2008-04-30 北京有色金属研究总院 Method for controlling fused silicon liquid level position of czochralski silicon mono-crystal furnace
US8801853B2 (en) * 2005-07-22 2014-08-12 Sumco Corporation Mechanism for controlling melt level in single crystal pulling apparatus, method for controlling melt level in single crystal pulling apparatus, mechanism for adjusting melt level in single crystal pulling apparatus and method for adjusting melt level while pulling single crystal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784401B2 (en) * 2006-05-30 2011-10-05 株式会社Sumco Molten liquid level monitoring device in silicon single crystal growth process
JP5333146B2 (en) * 2009-10-14 2013-11-06 株式会社Sumco Pulling method of silicon single crystal
CN104514030B (en) * 2013-09-29 2017-01-04 内蒙古恒嘉晶体材料有限公司 Rate of crystalline growth detection method, control method and system
CN106435714A (en) * 2015-08-07 2017-02-22 特变电工新疆新能源股份有限公司 Polycrystalline silicon solution liquid level distance positioning method
CN106637389A (en) * 2016-12-07 2017-05-10 内蒙古中环光伏材料有限公司 Technological method for automatically controlling industrialized diameter growth for czochralski crystal
CN109306511A (en) * 2018-11-20 2019-02-05 河北晶龙阳光设备有限公司 A kind of single crystal growing furnace with multiple security protection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060145A1 (en) 1999-04-07 2000-10-12 Memc Electronic Materials, Inc. Method and system of controlling taper growth in a semiconductor crystal growth process
US20020029738A1 (en) * 2000-05-31 2002-03-14 Keiichi Takanashi Apparatus for pulling a single crystal
US8801853B2 (en) * 2005-07-22 2014-08-12 Sumco Corporation Mechanism for controlling melt level in single crystal pulling apparatus, method for controlling melt level in single crystal pulling apparatus, mechanism for adjusting melt level in single crystal pulling apparatus and method for adjusting melt level while pulling single crystal
CN101168848A (en) * 2006-10-23 2008-04-30 北京有色金属研究总院 Method for controlling fused silicon liquid level position of czochralski silicon mono-crystal furnace

Also Published As

Publication number Publication date
US20200340137A1 (en) 2020-10-29
TW202039942A (en) 2020-11-01
CN111826710A (en) 2020-10-27

Similar Documents

Publication Publication Date Title
TWI749487B (en) A method and a device for controlling safe lifting of silicon melt crucible
CN110284186B (en) Czochralski single crystal furnace and method for measuring and controlling longitudinal temperature gradient of Czochralski single crystal furnace
EP1270769B1 (en) Method for producing silicon single crystal having no flaw
WO2020039553A1 (en) Method for growing silicon single crystal
TWI624569B (en) Single crystal pulling method
JPH1179889A (en) Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
CN104995340B (en) The manufacture method of silicon single crystal rod
KR101385997B1 (en) Apparatus for producing single crystal and method for producing single crystal
TWI776373B (en) Method for calculating liquid-solid interface morphology during growth of ingot
CN113061983A (en) Crystal pulling furnace for semiconductor monocrystalline silicon
TWI568897B (en) Cultivation method of silicon single crystal
WO2018116590A1 (en) Method for producing silicon single crystal, heat shield, and single crystal pulling device
TWI625432B (en) Method for manufacturing single crystal silicon and single crystal silicon
KR20180051827A (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP6263999B2 (en) Method for growing silicon single crystal
CN110965118B (en) Guide cylinder device and crystal pulling furnace
JP6729484B2 (en) Method for producing silicon single crystal
JP3147069B2 (en) Single crystal growing method, single crystal grown using the method, and single crystal wafer
WO2020220766A1 (en) Semiconductor crystal growth method and apparatus
JP2006248808A (en) Crystal growth apparatus
TW202331015A (en) Single crystal silicon rod growth method and device capable of improving the product yield of the single crystal silicon rod
JP2023170512A (en) Single crystal pulling-up apparatus
CN110273178A (en) The method of pulling up of monocrystalline silicon
JP2000086384A (en) Pulling method of silicon single crystal