TWI749317B - 接收器、通信系統以及偵測方法 - Google Patents

接收器、通信系統以及偵測方法 Download PDF

Info

Publication number
TWI749317B
TWI749317B TW108113492A TW108113492A TWI749317B TW I749317 B TWI749317 B TW I749317B TW 108113492 A TW108113492 A TW 108113492A TW 108113492 A TW108113492 A TW 108113492A TW I749317 B TWI749317 B TW I749317B
Authority
TW
Taiwan
Prior art keywords
receiver
signal
downlink
constellation point
station
Prior art date
Application number
TW108113492A
Other languages
English (en)
Other versions
TW201946393A (zh
Inventor
曾智修
陳光禎
柳德政
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Publication of TW201946393A publication Critical patent/TW201946393A/zh
Application granted granted Critical
Publication of TWI749317B publication Critical patent/TWI749317B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Abstract

本案揭示一種接收器,接收器包括天線以及偵測電路。天線接收於一下行方向的接收信號,其中接收信號包括下行干擾信號及下行目標信號。偵測電路,耦接於天線,對下行方向的接收信號進行多用戶偵測操作,以產生已偵測干擾信號及已偵測目標信號。下行目標信號是根據第一調變階數所產生,並由第一站台所傳送,其傳送對象為接收器。下行干擾信號是根據第二調變階數所產生,並由第二站台所傳送,其傳送對象為第二接收器。

Description

接收器、通信系統以及偵測方法
本案係指一種接收器、通信系統以及偵測方法,尤指一種符合低延遲要求以及低運算複雜度的接收器、通信系統以及偵測方法。
為了在確保安全性/可靠性的前提下廣泛部署自動駕駛汽車(AV),車載網絡延遲需被限制在毫秒級。然而,最近AV測試中的事故證明了單一AV所能提供的計算量不足以提供維持安全/可靠所需的計算量。因此,可靠且超低延遲車載網路是必要的。在可靠和超低延遲的車載網路中,一組AP由一個服務霧/邊緣計算的錨節點控制,以實現實時控制,基於這種配置,採用虛擬蜂巢的概念來整合開迴路通信以及主動網絡聯繫。
在上行鏈路中,每個車輛可主動聯繫多個AP,以建立其專屬的虛擬蜂巢,以通過虛擬網絡中的無線電資源分割(radio slicing)為車輛提供服務。在下行鏈路中,錨節點預測每個車輛欲聯繫聯的潛在AP,並因此將資料封包發送至適當AP再傳至車輛。在這種情況下,不再需要耗時的換手過程(handover)。
需要注意的是,為了降低延遲(latency),無線資源分配可能無法完美優化。舉例來說,在一下行方向中,虛擬蜂巢內的多個AP可利用相同無線電 資源單元(如頻譜)同時傳輸資料/信號給不同的車輛/接收器。以接收器的觀點來說,僅來自一個AP的資料/信號是目標信號,而來自其他AP的其餘資料/信號是干擾。
然而,傳統仰賴反饋通道狀態資訊(channel state information,CSI)機制(例如波束成形(beamforming)或干擾對齊(interference alignment))的干擾抑制方法無法滿足超可靠低延遲通信系統(ultra-reliable low-latency communications,URLLC)對低延遲的需求。
本案揭露一種接收器,包括一天線,用來接收於一下行方向的一接收信號,其中該接收信號包括一下行干擾信號及一下行目標信號;以及一偵測電路,耦接於該天線,用來對於該下行方向的該接收信號進行一多用戶偵測操作,以產生一已偵測干擾信號及一已偵測目標信號;其中,該下行目標信號係根據一第一調變階數所產生,並由一第一站台所傳送,其傳送對象為該接收器;其中,該下行干擾信號係根據一第二調變階數所產生,並由一第二站台所傳送,其傳送對象為一第二接收器。
本案揭露一種通信系統,包括一第一接收器及一第二接收器;以及一第一站台及一第二站台;其中該第一接收器包括一天線,用來接收於一下行方向的一接收信號,其中該接收信號包括一下行干擾信號及一下行目標信號;以及一偵測電路,耦接於該天線用來對於該下行方向的該接收信號進行一多用戶偵測操作,以產生一已偵測干擾信號及一已偵測目標信號;其中,該下行目標信號係根據一第一調變階數所產生,並由一第一站台所傳送,其傳送對象為 該第一接收器;其中,該下行干擾信號係根據一第二調變階數所產生,並由一第二站台所傳送,其傳送對象為該第二接收器。
本案揭露一種偵測方法,包括接收於一下行方向的一接收信號,其中該接收信號包括一下行干擾信號及一下行目標信號;以及對於該下行方向的該接收信號進行一多用戶偵測操作,以產生一已偵測干擾信號及一已偵測目標信號;其中,該下行目標信號係根據一第一調變階數所產生,並由一第一站台所傳送,其傳送對象為一第一接收器;其中,該下行干擾信號係根據一第二調變階數所產生,並由一第二站台所傳送,其傳送對象為除了該第一接收器以外的一第二接收器。
10:通信系統
11:骨幹網路
110:錨節點
112:運算裝置
114:核心網路
121、122、123:接收器
1210:偵測電路
30:流程
302、304:步驟
AP1、AP2、AP3、HPN:站台
ANT:天線
d2、d2,R:常數
I、II、III、IV:象限
k_1~k_16、k_1’~k_4’:星座點
RG、RG1、RG2、RG6、RG7:區域
R1、R2、R3:無線資源單元
t1、t2、t3:時間
Figure 108113492-A0305-02-0015-18
:已偵測目標信號
Figure 108113492-A0305-02-0015-19
:已偵測干擾信號
VC1、VC2:服務區域
第1圖為根據本案一實施例所繪示之通信系統之示意圖。
第2圖為根據本案一實施例所繪示之接收器之示意圖。
第3圖為根據本案一實施例所繪示之偵測流程之示意圖。
第4圖為多個星座點及多個代表性星座點之示意圖。
第5圖為多個星座點及多個代表性星座點之示意圖。
第6圖為多個星座點及一代表性星座點之示意圖。
第7圖為多個星座點及一代表性星座點之示意圖。
第1圖為根據本案一實施例所繪示之通信系統10之示意圖。通信系統10包括站台AP1-AP3及接收器121、122。站台AP1-AP3可為低功率的擷取點 (access points,APs),其連接於一骨幹網路(backhaul network)11。骨幹網路11可包括一錨節點(anchor node)110、一運算裝置112及一核心網路(core network)114。運算裝置112可為一電腦或一伺服器。錨節點110及運算裝置112可替站台AP1-AP3及接收器121、122提供一霧計算(fog computing)或是一邊緣計算(edge computing)。骨幹網路11亦可連接於一站台HPN,站台HPN可為一大型基地台(macro base station)或是一演進節點B(evolved Node B,eNB),其皆可視為高功率節點。站台HPN可提供無線網路服務(如高資料傳輸率的無線網路服務)至一接收器123。
於一實施例中,通信系統10可為應用於一車載網路(vehicular network),換句話說,接收器121及接收器122可分別設置於一第一車輛及一第二車輛(未繪示於第1圖)。於一上行方向(uplink,即從接收器至站台),每一接收器(其可為121或122)可主動聯繫(associate)多個站台,如AP1-AP3,以形成一虛擬蜂巢(virtual cell),而該虛擬蜂巢係用來服務該接收器。於一下行方向(從站台至接收器),錨節點110及/或運算裝置112可預測該車輛可能會與之聯繫的潛在站台,並傳送資料封包至適當的站台,使得該站台可轉傳(forward)資料封包至該接收器或該車輛。於一實施例中,該第一車輛及該第二車輛可為自動駕駛車輛(autonomous vehicle)。
具體來說,接收器121及站台AP1-AP3可形成一第一虛擬蜂巢,其代表一服務區域VC1。服務區域VC1係以接收器121為導向或是以接收器121為中心的服務區域。服務區域VC1可隨著接收器121移動而移動。接收器121可與第一虛擬蜂巢(或服務區域VC1)中的站台(如AP1-AP3)聯繫,使得接收器121可被服務區域VC1中的站台(如AP1-AP3)服務。同樣地,接收器122及站台AP1、 AP3可形成一第二虛擬蜂巢,其代表以接收器122為導向或是以接收器122為中心的一服務區域VC2。服務區域VC2可隨著接收器122移動而移動。接收器122可與服務區域VC2中的站台(如AP1及AP3)聯繫,使得接收器122可被服務區域VC2中的站台(如AP1及AP3)服務。
於一實施例中,如子圖1a所示,於服務區域VC1中,站台AP1於時間t1利用無線資源單元(radio resource unit)R1將資料/信號傳送給接收器121,站台AP2於時間t2利用無線資源單元R2將資料/信號傳送給接收器121,站台AP3於時間t3利用無線資源單元R3將資料/信號傳送給接收器121。同時,於服務區域VC2中,站台AP1於時間t2利用無線資源單元R2將資料/信號傳送給接收器122,站台AP3於時間t1利用無線資源單元R1將資料/信號傳送給接收器122,站台AP2因超出服務區域VC2的範圍而不傳送資料/信號給接收器122。無線資源單元R1/R2/R3可為特定頻譜或是於正交分頻多工(orthogonal frequency division multiplexing,OFDM)系統中的特定子載波集合。
對於無線資源單元R1以及時間t1,以接收器121的觀點來說,站台AP3會在無線資源單元R1及時間t1處對接收器121造成干擾。另外,若站台HPN同時於無線資源單元R1及時間t1傳送資料/信號給接收器123,站台HPN亦會對接收器121造成干擾。於子圖1b中,實線箭頭指的是目標連結(desired links),代表接收器121於無線資源單元R1及時間t1自站台AP1接收一下行目標信號,虛線箭頭指的是干擾連結(interfering links),代表接收器121於無線資源單元R1及時間t1自站台AP3及HPN接收多個下行干擾信號。
為了方便說明,以下說明係假設接收器121僅受到站台AP3的干擾, 而忽略來自站台HPN的干擾信號。接收器121接收一接收信號y,其可表示為y=a1 h 1X1+a2 h 2X2+n (公式1),其中a1及a2分別為來自站台AP1及AP3的(接收)信號振幅,h 1/h 2為站台AP1/AP3與接收器121之間的通道向量,X1及X2分別為站台AP1及AP3所傳送的下行信號,n為於接收器121收到的雜訊,其可為零均值複數高斯分佈。由公式1,假設接收器121可具有多根天線,而天線個數對應於向量y/h 1 /h 2 中的元素個數。以接收器121的觀點來說,X1為下行目標信號,X2為下行干擾信號。
由公式1可知,接收信號y包括下行目標信號X1及下行干擾信號X2。另外,下行目標信號X1係以一第一調變方式產生,其對應於一第一調變階數M1,下行干擾信號X2係以一第二調變方式產生,其對應於一第二調變階數M2。本案的調變階數係指在採用一特定調變方式的情況下,不同調變符元的一個數。舉例來說,若下行目標信號X1為64-QAM調變而成,則第一調變階數M1為64。調變方式對應於星座點集合,舉例來說,對應於4-PAM(pulse-amplitude modulation)調變方式的一星座點集合可為{±d,±3d},其中d為一常數。
為了自接收信號y分辨或解碼出下行目標信號X1及下行干擾信號X2,接收器121可對接收信號y進行一多用戶偵測操作(multiuser detection,MUD)。
第2圖為根據本案一實施例所繪示之接收器121之示意圖。接收器121包括天線ANT及一偵測電路1210。天線ANT用來接收接收信號y,偵測電路1210用來對接收信號y進行多用戶偵測操作。於一實施例中,偵測電路1210可執行一最大似然(maximum-likelihood)多用戶偵測操作。也就是說,在雜訊n為複高 斯分佈的情況下,偵測電路1210可取得一已偵測目標信號
Figure 108113492-A0305-02-0009-3
及一已偵測干擾信號
Figure 108113492-A0305-02-0009-4
,使得∥y-a1 h 1X1-a2 h 2X2∥為最小。換句話說,偵測電路1210可藉由找出公式2的解,而取得已偵測目標信號
Figure 108113492-A0305-02-0009-8
及已偵測干擾信號
Figure 108113492-A0305-02-0009-10
Figure 108113492-A0305-02-0009-11
於公式2中,MS1代表對應於下行目標信號X1的第一調變方式的一第一星座點集合,MS2代表對應於下行干擾信號X2的第二調變方式的一第二星座點集合,MS1×MS2代表MS1及MS2的一笛卡兒積(Cartesian product)集合。另外,∥ ∥代表一範數運算子,∥u∥可為向量u的Lp範數,例如,∥u∥可為曼哈頓範數(L1範數)、歐幾里德範數(L2範數)或無限範數(L範數)。
接收器121的操作可歸納為一偵測流程30,如第3圖所示。於偵測流程30中,步驟302可由天線ANT來執行,而步驟304可由偵測電路1210來執行。偵測流程30可由特殊應用積體電路(ASIC)、數位信號處理器(DSP)、微控制器(MCU)或處理單元來實現,而不限於此。
需注意的是,傳統多用戶偵測係用來解決「上行方向」的多重擷取干擾(multiple access interference,MAI)問題,而多重擷取干擾通常發生在上行方向的接收端(如大型基地台或eNB)。傳統多用戶偵測通常由站台(如eNB)執行,以偵測/解碼出來自不同行動/使用者裝置(如使用者設備或UE)的信號,而成功地偵測/解碼出來自不同行動/使用者裝置的上行信號對基地台來說是相當關鍵的。與先前技術不同的是,在多個虛擬蜂巢(其中多個虛擬蜂巢相互重疊)的情境之下,本案係於「下行方向」的接收端(如接收器121)進行多用戶 偵測。更進一步地,與其偵測出來自所有多個站台的多個下行信號,偵測電路1210僅需要解出下行目標信號X1,即使可解出已偵測干擾信號
Figure 108113492-A0305-02-0010-12
,其最終仍會被偵測電路1210丟棄。
於一實施例中,公式2所示的多用戶偵測牽涉對笛卡兒積集合MS1×MS2進行一窮竭搜尋(exhausted search)操作。假設MS1={h_1,...,h_M1}及MS2={k_1,...,k_M2},其中h_m1/k_m2代表積集合MS1/MS2中的一個星座點,指標m1可為1到M1的整數,指標m2可為1到M2的整數。為了進行公式2所示的多用戶偵測操作,偵測電路1210可對積集合MS1×MS2進行窮竭搜尋操作,以取得一雙已偵測信號對
Figure 108113492-A0305-02-0010-13
,其可將∥y-a1 h 1X1-a2 h 2X2∥最小化。需注意的是,MS1×MS2={(h_1,k_1),...,(h_1,k_M2),(h_2,k_1),...,(h_2,k_M2),...,(h_M1,k_1),...,(h_M1,k_M2)},積集合MS1×MS2的一基數(Cardinality,即一集合內的元素個數)為M1.M2,也就是說,執行公式2以進行多用戶偵測操作的可行解集合(feasible set,即MS1×MS2)相當大,尤其是當調變階數為高時。過大的可行解集合會增加運算複雜度。
過於沈重的運算負荷或許對基地台(eNB)來說不是太大的問題,然而,對行動裝置(如接收器121)有限可負荷的運算量及功耗而言,過於沈重的運算負荷是不切實際的。為了避開執行公式2多用戶偵測操作所帶來的龐大計算複雜度,於一實施例中,偵測電路1210可形成一縮小星座點集合MS2,R為MS2,R={k_1’,...,k_M2,R’},而偵測電路1210可藉由找出公式3的解,進行一種低複雜度多用戶偵測操作。
Figure 108113492-A0305-02-0010-31
於公式3中,縮小星座點集合MS2,R的基數M2,R小於第二星座點集合MS2的基數M2,即M2,R=|MS2,R|<M2=|MS2|,其中|S|代表集合S的基數。星座點s k_1’-k_M2,R’可視為星座點k_1-k_M2中的代表性(representative)星座點。
公式2與公式3的不同之處在於,公式2中的第二星座點集合MS2被縮小星座點集合MS2,R取代,而成為公式3。需注意的是,已偵測干擾信號
Figure 108113492-A0305-02-0011-29
的正確與否對偵測電路1210來說不重要,對偵測電路1210來說重要的是運算複雜度。雖然將第二星座點集合MS2替換成為縮小星座點集合MS2,R會犧牲及已偵測干擾信號
Figure 108113492-A0305-02-0011-28
的錯誤率效能,但偵測電路1210(執行公式3)可簡化多用戶偵測操作的運算複雜度。
形成縮小星座點集合MS2,R及取得代表性星座點k_1’-k_M2,R’的操作細節敘述如下。假設下行干擾信號X2係以16-QAM(quadrature amplitude modulation,QAM)調變而成(即M2=16)。請參考第4圖,第4圖繪示第二星座點集合MS2中的星座點k_1-k_M2(即k_1-k_16)以及縮小星座點集合MS2,R中的星座點k_1’-k_M2,R’(如,k_1’-k_4’)。以第二星座點集合MS2中位於象限/卦限(quadrant/orthant)I的星座點k_1-k_4為例,星座點k_1-k_4可表示為k_1=3d2+j.3d2,k_2=d2+j.3d2,k_3=3d2+j.d2及k_4=d2+j.d2,其中d2為對應於第二星座點集合MS2的一常數。星座點k_1-k_4可以用星座點k_1’來作為其代表,換言之,以偵測電路1210的角度來說,星座點k_1’可視為用來代表星座點k_1-k_4的代表性星座點,其中k_1’可表示為k_1’=-d2,R+j.d2,R,對應於縮小星座點集合MS2,R的常數d2,R可為2.d2。相同的原則可應用於位於象限II、III、IV的星座點,而取得代表性星座點k_2’-k_4’,如第4圖所示。因此,偵測電路1210可形成縮小星座點集 合MS2,R={k_1’,k_2’,k_3’,k_4’}。
偵測電路1210取得代表性星座點的方式並未有所限。舉例來說,偵測電路1210可選取一特定區域RG(如第4圖的象限I)並取得於特定區域RG中的多個星座點(如第4圖的星座點k_1-k_4),偵測電路1210可取得特定區域RG中多個星座點的一中心點(如第4圖的星座點k_1’)作為用來代表特定區域RG中多個星座點的代表性星座點。
於一實施例中,偵測電路1210可取得該中心點為特定區域RG中所有星座點的算術平均數(arithmetic mean/average)。舉例來說,k_1’可為星座點k_1-k_4的算術平均數,其可表示為k_1’=avea(k_1,k_2,k_3,k_4)=(k_1+k_2+k_3+k_4)/4,其中avea(.)代表算術平均運算子。算術平均適用於QAM或PAM調變方式,如第4圖(QAM)及第5圖(PAM)所示。於第5圖,星座點k_1-k_4為以PAM調變而成。星座點k_1-k_4可表示為k_1=c-3d,k_2=c-d,k_3=c+d及k_4=c+3d,其中c及d為常數。於子圖5a中,代表性星座點k_1’代表星座點k_1-k_4。於子圖5b中,代表性星座點k_1’代表區域RG1中的星座點k_1-k_2,即k_1’=avea(k_1,k_2),而代表性星座點k_2’代表區域RG2中的星座點k_3-k_4,即k_2’=avea(k_3,k_4)。
於一實施例中,偵測電路1210可取得該中心點為特定區域中所有星座點的幾何平均數(geometric mean/average)。如第6圖所示,代表性星座點k_1’可為區域RG6中的星座點k_1-k_4的幾何平均數,其可表示為k_1’=aveg(k_1,k_2,k_3,k_4)=(k_1.k_2.k_3.k_4)1/4,其中aveg(.)代表幾何平均運算子。幾何平均適用於PSK(phase-shift keying)調變方式,或是FSK(frequency-shift keying)調 變方式。於第6圖所繪示的實施例中,星座點k_1-k_4為PSK調變而成,其可表示為k_1=r.exp(θ1),k_2=r.exp(θ2),k_3=r.exp(θ3)及k_4=r.exp(θ4)。
於一實施例中,偵測電路1210可藉由計算k_1’=avea(aveg(k_1,k_2),aveg(k_3,k_4)) (公式4)或k_1’=aveg(avea(k_1,k_3),avea(k_2,k_4)) (公式5),以取得該中心點,如第7圖所示。於第7圖中,星座點k_1-k_4係以APSK(amplitude and phase-shift keying)調變而成。位於區域RG7中的星座點k_1-k_4可表示為k_1=r1.exp(θ1),k_2=r1.exp(θ2),k_3=r2.exp(θ3)and k_4=r2.exp(θ4)。公式4及公式5適用於APSK調變方式。
於偵測電路1210取得代表性星座點k_1’-k_M2,R’並形成縮小星座點集合MS2,R後,偵測電路1210可透過對經過縮小的積集合MS1×MS2,R進行搜尋操作,以進行公式3中的低複雜度多用戶偵測操作。由於可行解集合(即積集合MS1×MS2,R)已縮小,偵測電路1210應可負荷公式3的低複雜度多用戶偵測操作。
更進一步地,公式3的邏輯可推展至多個干擾站台。舉例來說,接收信號y可表示為y=a1 h 1X1+a2 h 2X2+...+aK h KXK+n,其中X2-XK為多個下行干擾信號,h 2-h K為自多個干擾站台至接收器121的多個通道向量,a2-aK為干擾信號的振幅。偵測電路1210可解公式6以進行低複雜度多用戶偵測操作。
Figure 108113492-A0305-02-0013-15
於公式6中,偵測電路1210可利用與上述相同或相似的方法取得縮小 星座點集合MS3,R-MSK,R,其中Mk,R=|MSk,R|<Mk=|MSk|,基數Mk及第二星座點集合MSk對應於下行干擾信號Xk,其中指標k可為3到K的整數。
綜上所述,由於本案的多個虛擬蜂巢會相互重疊,行動接收器可進行多用戶偵測操作以偵測/解碼出下行目標信號,並將下行干擾信號丟棄。另外,藉由縮小對應於下行干擾信號的星座點集合,可降低運算複雜度。以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
121:接收器
1210:偵測電路
ANT:天線
Figure 108113492-A0305-02-0002-1
:已偵測目標信號
Figure 108113492-A0305-02-0002-2
:已偵測干擾信號

Claims (9)

  1. 一種接收器,包括:一天線,用來接收於一下行方向的一接收信號,其中該接收信號包括一下行干擾信號及一下行目標信號;以及一偵測電路,耦接於該天線,用來對於該下行方向的該接收信號進行一多用戶偵測操作,以產生一已偵測干擾信號及一已偵測目標信號;其中,該下行目標信號係根據一第一調變階數所產生,並由一第一站台所傳送,該下行目標信號的傳送對象為該接收器;其中,該下行干擾信號係根據一第二調變階數所產生,並由一第二站台所傳送,該下行干擾信號的傳送對象為一第二接收器;其中,該偵測電路進行該多用戶偵測操作係透過對一積集合進行一搜尋操作來執行,該積集合為一第一星座點集合與一縮小星座點集合所形成的,該第一星座點集合的一第一基數為該第一調變階數,該縮小星座點集合的一第二基數小於該第二調變階數;其中,該偵測電路根據對應於該下行干擾信號的一第二星座點集合中的多個星座點,取得多個代表性星座點並形成該縮小星座點集合,該縮小星座點集合包括該多個代表性星座點。
  2. 如請求項1所述的接收器,其中該偵測電路進行該多用戶偵測操作係透過對一第一星座點集合與一第二星座點集合所形成的一積集合進行一搜尋操作來執行,該第一星座點集合的一第一基數為該第一調變階數,該第二星座點集合的一第二基數為該第二調變階數。
  3. 如請求項1所述的接收器,其中該接收信號另包括多個下行干擾信 號,該多個下行干擾信號係根據多個第二調變階數所產生,該偵測電路進行該多用戶偵測操作係透過對一積集合進行一搜尋操作來執行,該積集合為一第一星座點集合與多個縮小星座點集合所形成的,該第一星座點集合的一第一基數為該第一調變階數,對應於一第一下行干擾信號的一縮小星座點集合的一第二基數小於對應於該第一下行干擾信號的一第二調變階數。
  4. 一種通信系統,包括:一第一接收器及一第二接收器;以及一第一站台及一第二站台;其中該第一接收器包括:一天線,用來接收於一下行方向的一接收信號,其中該接收信號包括一下行干擾信號及一下行目標信號;以及一偵測電路,耦接於該天線用來對於該下行方向的該接收信號進行一多用戶偵測操作,以產生一已偵測干擾信號及一已偵測目標信號;其中,該下行目標信號係根據一第一調變階數所產生,並由一第一站台所傳送,該下行目標信號的傳送對象為該第一接收器;其中,該下行干擾信號係根據一第二調變階數所產生,並由一第二站台所傳送,該下行干擾信號的傳送對象為該第二接收器;其中,該偵測電路進行該多用戶偵測操作係透過對一積集合進行一搜尋操作來執行,該積集合為一第一星座點集合與一縮小星座點集合所形成的,該第一星座點集合的一第一基數為該第一調變階數,該縮小星座點集合的一第二基數小於該第二調變階數;其中,該偵測電路根據對應於該下行干擾信號的一第二星座點集合中的多個 星座點,取得多個代表性星座點並形成該縮小星座點集合,該縮小星座點集合包括該多個代表性星座點。
  5. 如請求項4所述的通信系統,其中該偵測電路進行該多用戶偵測操作係透過對一積集合進行一搜尋操作來執行,該積集合為一第一星座點集合與一第二星座點集合所形成的,該第一星座點集合的一第一基數為該第一調變階數,該第二星座點集合的一第二基數為該第二調變階數。
  6. 如請求項4所述的通信系統,其中該接收信號另包括多個下行干擾信號,該多個下行干擾信號係根據多個第二調變階數所產生,該偵測電路進行該多用戶偵測操作係透過對一積集合進行一搜尋操作來執行,該積集合為一第一星座點集合與多個縮小星座點集合所形成的,該多個縮小星座點集合對應於該多個下行干擾信號,該第一星座點集合的一第一基數為該第一調變階數,對應於一第一下行干擾信號的一縮小星座點集合的一第二基數小於對應於該第一下行干擾信號的一第二調變階數。
  7. 一種偵測方法,包括:接收於一下行方向的一接收信號,其中該接收信號包括一下行干擾信號及一下行目標信號;以及對於該下行方向的該接收信號進行一多用戶偵測操作,以產生一已偵測干擾信號及一已偵測目標信號;其中,該下行目標信號係根據一第一調變階數所產生,並由一第一站台所傳送,該下行目標信號的傳送對象為一第一接收器;其中,該下行干擾信號係根據一第二調變階數所產生,並由一第二站台所傳 送,該下行干擾信號的傳送對象為除了該第一接收器以外的一第二接收器;其中,該多用戶偵測操作係透過對一積集合進行一搜尋操作來執行,該積集合為一第一星座點集合與一縮小星座點集合所形成的,該第一星座點集合的一第一基數為該第一調變階數,該縮小星座點集合的一第二基數小於該第二調變階數;其中,根據對應於該下行干擾信號的一第二星座點集合中的多個星座點,取得多個代表性星座點並形成該縮小星座點集合,該縮小星座點集合包括該多個代表性星座點。
  8. 如請求項4所述的通信系統,其中該第一站台及該第二站台耦接於一骨幹網路(backhaul network)。
  9. 如請求項4所述的通信系統,其中該第一接收器、該第一站台及該第二站台形成對應於一第一服務區域之一第一虛擬蜂巢(virtual cell),其中,該第一服務區域以該第一接收器為導向;該第二接收器、該第一站台及該第二站台形成對應於一第二服務區域之一第二虛擬蜂巢,其中,該第二服務區域以該第一接收器為導向。
TW108113492A 2018-04-26 2019-04-18 接收器、通信系統以及偵測方法 TWI749317B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862662780P 2018-04-26 2018-04-26
US62/662,780 2018-04-26
US16/368,872 2019-03-29
US16/368,872 US10716121B2 (en) 2018-04-26 2019-03-29 Receiver, communication system and detecting method

Publications (2)

Publication Number Publication Date
TW201946393A TW201946393A (zh) 2019-12-01
TWI749317B true TWI749317B (zh) 2021-12-11

Family

ID=68291411

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113492A TWI749317B (zh) 2018-04-26 2019-04-18 接收器、通信系統以及偵測方法

Country Status (3)

Country Link
US (1) US10716121B2 (zh)
CN (1) CN110417426B (zh)
TW (1) TWI749317B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104808A1 (en) * 2001-12-05 2003-06-05 Foschini Gerard J. Wireless communication system with interference compensation
TW201236396A (en) * 2011-01-21 2012-09-01 Research In Motion Ltd Providing mobile-guided downlink interference management

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577560B (zh) * 2008-05-08 2013-04-24 联咏科技股份有限公司 频率调变信号接收器及接收方法
US9264097B2 (en) * 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
ES2791352T3 (es) * 2014-06-09 2020-11-04 Commscope Technologies Llc Programación del mismo recurso en redes de acceso a la radio
CN106209301A (zh) * 2015-04-30 2016-12-07 电信科学技术研究院 一种干扰信息指示方法、干扰删除方法及装置
CN107682124B (zh) * 2017-10-23 2021-02-02 哈尔滨工业大学 多用户共享接入技术上行链路的先并后串多用户检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104808A1 (en) * 2001-12-05 2003-06-05 Foschini Gerard J. Wireless communication system with interference compensation
TW201236396A (en) * 2011-01-21 2012-09-01 Research In Motion Ltd Providing mobile-guided downlink interference management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Byonghyo Shim; Insung Kang, "Joint modulation classification and multi-user detection using multi-modulation sphere decoding," 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, 2009. *

Also Published As

Publication number Publication date
TW201946393A (zh) 2019-12-01
US20190335473A1 (en) 2019-10-31
US10716121B2 (en) 2020-07-14
CN110417426A (zh) 2019-11-05
CN110417426B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
US11503614B2 (en) Downlink data transmission method and device
KR100868948B1 (ko) 무선 통신 시스템에서 하드 핸드오버 장치 및 방법
EP3038280B1 (en) Radio communication system and user equipment
WO2020092820A1 (en) Remote interference management reference signal
WO2011026372A1 (zh) 频偏预补偿的方法与装置
JP5280548B2 (ja) 無線ネットワークにおける同一チャネル干渉除去のための方法およびシステム
CN111245750B (zh) 频偏估计方法、装置及存储介质
CN109391445A (zh) 一种pdsch接收信息的指示方法、数据接收方法及装置
US11146322B2 (en) Method for supporting beam correspondence and apparatus thereof
US9503960B2 (en) Radio communication apparatus and radio communication method
CN110913483B (zh) 一种被用于无线通信节点中的方法和装置
KR20140125321A (ko) 무선 통신 시스템에서 복수의 변조 및 부호화 기법을 이용한 신호 송수신 방법 및 장치
JP2002111564A (ja) 基地局装置及び無線送信方法
CN110545164B (zh) 用于通信系统中干扰指示的方法及装置
KR20230098169A (ko) 역추적 및 디더링을 이용한 빔 관리
US20190149362A1 (en) Hybrid mimo detection of ofdm signals
Wu et al. Frequency and quadrature amplitude modulation for 5G networks
TWI749317B (zh) 接收器、通信系統以及偵測方法
US8744026B2 (en) Method and apparatus for interference suppression using a reduced-complexity joint detection
US20240129170A1 (en) Spectral shaping
CN114938320A (zh) 一种5g双连接场景中的自干扰消除方法及系统
WO2017012448A1 (zh) 一种信号发送、解调方法以及设备和系统
KR20180041347A (ko) 무선 셀룰라 통신 시스템에서 네트워크 지원 간섭 제거 및 억제 기술을 위한 간섭정보 전송 방법 및 장치
KR101944506B1 (ko) 기지국에서의 상향 링크 신호 검출 방법
CN108702230B (zh) 无线通信装置和发送流数决定方法