TWI747713B - Heat detection circuit and heat detection method - Google Patents

Heat detection circuit and heat detection method Download PDF

Info

Publication number
TWI747713B
TWI747713B TW110101428A TW110101428A TWI747713B TW I747713 B TWI747713 B TW I747713B TW 110101428 A TW110101428 A TW 110101428A TW 110101428 A TW110101428 A TW 110101428A TW I747713 B TWI747713 B TW I747713B
Authority
TW
Taiwan
Prior art keywords
coupled
clock signal
frequency
node
thermistor
Prior art date
Application number
TW110101428A
Other languages
Chinese (zh)
Other versions
TW202227788A (en
Inventor
吳志崇
黃啟芳
Original Assignee
大同股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同股份有限公司 filed Critical 大同股份有限公司
Priority to TW110101428A priority Critical patent/TWI747713B/en
Application granted granted Critical
Publication of TWI747713B publication Critical patent/TWI747713B/en
Publication of TW202227788A publication Critical patent/TW202227788A/en

Links

Images

Abstract

A heat detection circuit is provided. The heat detection circuit includes a thermistor, an oscillation circuit and a processing circuit. The thermistor is arranged adjacent to a power element. The oscillation circuit is coupled to the thermistor and generates a clock signal, wherein the oscillation circuit adjusts the frequency of the clock signal according to the resistance value of the thermistor. The processing circuit is configured to receive the clock signal to detect the frequency of the clock signal. The processing circuit is configured to search a comparison table according to the frequency value of the frequency to obtain temperature information corresponding to the frequency value. The comparison table includes a plurality of candidate frequency values and a plurality of corresponding candidate temperature information.

Description

熱偵測電路以及熱偵測方法Heat detection circuit and heat detection method

本發明是有關於一種熱偵測電路,且特別是有關於一種用以偵測功率元件的溫度的熱偵測電路。 The present invention relates to a heat detection circuit, and more particularly to a heat detection circuit for detecting the temperature of a power device.

近年來,環保意識抬頭,使得電動交通工具越來越盛行,例如電動機車、電動汽車、電動巴士...等等。電動交通工具在運行時,功率模組中的功率電晶體會依據車速以及載重而有不同頻率及大小的電流輸出。依據輸出電流不同,功率電晶體將產生不同溫度。當前述溫度超過一閾值時,功率電晶體會受到損害甚至燒毀。 In recent years, environmental awareness has risen, making electric vehicles more and more popular, such as electric cars, electric cars, electric buses, etc. When the electric vehicle is running, the power transistor in the power module will have different frequency and magnitude current output according to the vehicle speed and load. Depending on the output current, the power transistor will generate different temperatures. When the aforementioned temperature exceeds a threshold, the power transistor will be damaged or even burned.

為了避免前述狀況發生,本領域之技術人員通常會在功率電晶體的附近設置偵測電路來監視功率電晶體的溫度變化。圖1A繪示為偵測電路的電路示意圖。請見圖1A,偵測電路100包括電源電壓VDC、電阻R以及熱敏電阻RT。電阻R以及熱敏電阻RT構成分壓電路110,並且熱敏電阻RT被設置在功率電晶體(未繪出)的附近。由於熱敏電阻RT的阻值具有隨溫度變化的特性, 因此分壓電路110的分壓電壓值V2也會隨之改變。透過偵測分壓電壓值V2可以估算功率電晶體的核心溫度,以在溫度升高時採取相應的措施來保護功率電晶體,藉此確保行車安全。 In order to avoid the aforementioned situation, those skilled in the art will usually install a detection circuit near the power transistor to monitor the temperature change of the power transistor. FIG. 1A shows a schematic circuit diagram of the detection circuit. As shown in Figure 1A, the detection circuit 100 includes a power supply voltage VDC, a resistor R, and a thermistor R T. Resistor R and the thermistor R T constituting the voltage dividing circuit 110, and the thermistor R T is disposed near the power transistor (not shown) is. Since the resistance value of the thermistor R T has the characteristic of changing with temperature, the divided voltage value V2 of the voltage divider circuit 110 will also change accordingly. By detecting the divided voltage value V2, the core temperature of the power transistor can be estimated, so that corresponding measures can be taken to protect the power transistor when the temperature rises, thereby ensuring driving safety.

然而,電源電壓VDC中的漣波(ripple)成分(以V1表示)會影響到分壓電壓值V2。圖1B繪示為分壓電壓值V2隨時間變化的波形圖,其中前述波形圖的縱軸為分壓電壓值V2,橫軸為時間t。波形W1顯示排除漣波成分V1影響的分壓電壓值V2的變化,波形W2則顯示實際上受到漣波成分V1影響的分壓電壓值V2的變化。由圖1B可以看出,在波形W2的波峰WP與波谷WT之間具有不可忽視的差距,導致功率電晶體的實際溫度可能被誤判。此外,拉線的線阻也會影響分壓電壓值V2。 However, the ripple component (represented by V1) in the power supply voltage VDC will affect the divided voltage value V2. FIG. 1B shows a waveform diagram of the divided voltage value V2 with time. The vertical axis of the aforementioned waveform diagram is the divided voltage value V2, and the horizontal axis is time t. The waveform W1 shows the change of the divided voltage value V2 excluding the influence of the ripple component V1, and the waveform W2 shows the change of the divided voltage value V2 actually affected by the ripple component V1. It can be seen from FIG. 1B that there is a non-negligible gap between the peak W P and the trough W T of the waveform W2, which may cause the actual temperature of the power transistor to be misjudged. In addition, the wire resistance of the pull wire will also affect the divided voltage value V2.

因此,需要提出一種解決手段,以避免因電源電壓不穩定以及線阻的存在而造成功率電晶體的實際溫度被誤判的問題。 Therefore, it is necessary to propose a solution to avoid the problem that the actual temperature of the power transistor is misjudged due to the unstable power supply voltage and the existence of line resistance.

本發明提供一種熱偵測電路,可以不受電源電壓的穩定性與線阻影響地偵側一功率元件的溫度。 The present invention provides a thermal detection circuit, which can detect the temperature of a power element without being affected by the stability of the power supply voltage and the line resistance.

本發明的熱偵測電路包括熱敏電阻、振盪電路以及處理電路。熱敏電阻鄰近一功率元件地被配置。振盪電路耦接至熱敏電阻並產生一時脈信號。振盪電路依據熱敏電阻的電阻值以調整時脈信號的頻率。處理電路用以接收時脈信號並檢測時脈信號的頻率,以依據頻率的頻率值對一對照表進行查找來獲得對應頻率 值的溫度資訊。對照表包括多個候選頻率值以及對應的多個候選溫度資訊。 The heat detection circuit of the present invention includes a thermistor, an oscillation circuit and a processing circuit. The thermistor is arranged adjacent to a power element. The oscillation circuit is coupled to the thermistor and generates a clock signal. The oscillation circuit adjusts the frequency of the clock signal according to the resistance value of the thermistor. The processing circuit is used to receive the clock signal and detect the frequency of the clock signal, to search a comparison table according to the frequency value of the frequency to obtain the corresponding frequency The temperature information of the value. The comparison table includes multiple candidate frequency values and corresponding multiple candidate temperature information.

本發明的熱偵測方法適用於熱偵測電路。熱偵測電路包括熱敏電阻、振盪電路以及處理電路。熱敏電阻鄰近功率元件地被配置,並且振盪電路耦接至熱敏電阻。前述熱偵測方法包括:由振盪電路產生時脈信號,並由振盪電路依據熱敏電阻的電阻值以調整時脈信號的頻率;以及由處理電路接收並檢測時脈信號的頻率,並由處理電路依據頻率的頻率值對一對照表進行查找來獲得對應頻率值的溫度資訊。對照表包括多個候選頻率值以及對應的多個候選溫度資訊。 The heat detection method of the present invention is suitable for heat detection circuits. The thermal detection circuit includes a thermistor, an oscillation circuit, and a processing circuit. The thermistor is arranged adjacent to the power element, and the oscillation circuit is coupled to the thermistor. The aforementioned heat detection method includes: generating a clock signal by an oscillation circuit, and adjusting the frequency of the clock signal according to the resistance value of the thermistor by the oscillation circuit; and receiving and detecting the frequency of the clock signal by a processing circuit, and processing The circuit searches a comparison table according to the frequency value of the frequency to obtain the temperature information corresponding to the frequency value. The comparison table includes multiple candidate frequency values and corresponding multiple candidate temperature information.

基於上述,本發明透過將振盪電路耦接至熱敏電阻來產生時脈信號,並利用時脈信號的頻率隨熱敏電阻的阻值變化的特性,以透過讀取到的前述頻率的頻率值來推測功率元件的表面溫度,從而可避免因電源電壓不穩定或線阻影響而導致誤判溫度估測的問題。 Based on the above, the present invention generates a clock signal by coupling the oscillation circuit to the thermistor, and uses the characteristic that the frequency of the clock signal varies with the resistance of the thermistor to read the frequency value of the aforementioned frequency. To estimate the surface temperature of the power element, so as to avoid the problem of misjudgment of temperature estimation due to the unstable power supply voltage or the influence of the line resistance.

100:偵測電路 100: Detection circuit

110:分壓電路 110: Voltage divider circuit

210:功率元件 210: Power components

220:振盪電路 220: Oscillation circuit

230:處理電路 230: processing circuit

240:電源模組 240: Power Module

M1~M6:功率電晶體 M1~M6: power transistor

C1~C3:電容 C1~C3: Capacitance

G1~G4:反向器 G1~G4: Inverter

N1~N8:節點 N1~N8: Node

OP:運算放大器 OP: Operational amplifier

R、R1~R4:電阻 R, R1~R4: resistance

RT、RT1、RT2、RT3:熱敏電阻 R T , R T1 , R T2 , R T3 : Thermistor

RO:輸出電阻 R O : output resistance

S810、S820:步驟 S810, S820: steps

t:時間 t: time

T:溫度 T: temperature

TA:對照表 TA: Comparison table

T1:第一溫度 T1: first temperature

T2:第二溫度 T2: second temperature

t1、t2:時間區間 t1, t2: time interval

VDC:電源電壓 VDC: power supply voltage

V1:漣波成分 V1: ripple component

V2:分壓電壓值 V2: divided voltage value

VB:電壓 VB: Voltage

VDD:工作電壓 VDD: working voltage

VO:時脈信號 V O : Clock signal

W1~W6、W6’:波形 W1~W6, W6’: Waveform

WP:波峰 W P : crest

WT:波谷 W T : trough

圖1A繪示為偵測電路的電路示意圖。 FIG. 1A shows a schematic circuit diagram of the detection circuit.

圖1B繪示為分壓電壓值V2隨時間變化的波形圖。 FIG. 1B shows a waveform diagram of the divided voltage value V2 with time.

圖2繪示為本發明的熱偵測電路的方塊示意圖。 FIG. 2 is a block diagram of the thermal detection circuit of the present invention.

圖3繪示為圖2的功率元件210的電路示意圖。 FIG. 3 is a schematic circuit diagram of the power device 210 in FIG. 2.

圖4A繪示為本發明第一實施例的振盪電路220的電路示意圖。 FIG. 4A is a schematic circuit diagram of the oscillation circuit 220 according to the first embodiment of the present invention.

圖4B繪示為圖4A中時脈信號VO的隨時間變化的波形示意圖。 FIG. 4B is a schematic diagram showing the waveform of the clock signal V O in FIG. 4A changing with time.

圖5繪示為本發明第二實施例的振盪電路220的電路示意圖。 FIG. 5 is a schematic circuit diagram of the oscillation circuit 220 according to the second embodiment of the present invention.

圖6繪示為本發明第三實施例的振盪電路220的電路示意圖。 FIG. 6 is a schematic circuit diagram of the oscillation circuit 220 according to the third embodiment of the present invention.

圖7A繪示為在第一溫度下的時脈信號VO隨時間變化的波形示意圖。 FIG. 7A is a schematic diagram showing the waveform of the clock signal V O varying with time at the first temperature.

圖7B繪示為在第二溫度下的時脈信號VO隨時間變化的波形示意圖。 FIG. 7B is a schematic diagram showing the waveform of the clock signal V O changing with time at the second temperature.

圖7C繪示為在第二溫度下受雜訊影響的時脈信號VO隨時間變化的波形示意圖。 FIG. 7C is a schematic diagram of the waveform of the clock signal V O affected by noise at the second temperature changing with time.

圖8繪示為本發明的熱偵測方法的步驟流程圖。 FIG. 8 is a flowchart showing the steps of the heat detection method of the present invention.

圖2繪示為本發明的熱偵測電路的方塊示意圖。請見圖2,熱偵測電路包括振盪電路220、處理電路230與熱敏電阻RT。振盪電路220耦接熱敏電阻RT,其中熱敏電阻RT被設置在功率元件210的附近,以使熱敏電阻RT的阻值隨功率元件210的溫度而變化。圖3繪示為圖2的功率元件210的電路示意圖。請見圖3,在本實施例中,功率元件210為具有6個功率電晶體M1~M6的功率模組。其中,功率電晶體M2、M4與M6的附近分別設置有熱 敏電阻RT1、RT2與RT3FIG. 2 is a block diagram of the thermal detection circuit of the present invention. As shown in Fig. 2, the thermal detection circuit includes an oscillation circuit 220, a processing circuit 230, and a thermistor R T. The oscillating circuit 220 is coupled to the thermistor R T , wherein the thermistor R T is arranged near the power element 210 so that the resistance of the thermistor R T changes with the temperature of the power element 210. FIG. 3 is a schematic circuit diagram of the power device 210 in FIG. 2. Please refer to FIG. 3. In this embodiment, the power element 210 is a power module with 6 power transistors M1 to M6. Among them, thermistors R T1 , R T2 and R T3 are respectively arranged near the power transistors M2, M4 and M6.

請再次參酌圖2,振盪電路220用以產生一時脈信號,其中振盪電路220所產生的時脈信號的頻率會受到熱敏電阻RT的阻值的影響。換句話說,振盪電路220可以依據熱敏電阻RT的阻值來調整時脈信號的頻率。處理電路230耦接振盪電路220,以接收振盪電路220產生的時脈信號並檢測時脈信號的頻率。處理電路230預先建立有對照表TA,其中對照表TA包括多個候選頻率值與對應的多個候選溫度資訊。處理電路230還用以依據檢測到的時脈信號的頻率值於對照表TA進行查找,以獲取對應前述頻率值的溫度資訊。電源模組240則用以對振盪電路220與處理電路230供電。 Please refer to FIG. 2 again. The oscillating circuit 220 is used to generate a clock signal. The frequency of the clock signal generated by the oscillating circuit 220 is affected by the resistance of the thermistor R T. In other words, when the frequency of the oscillation circuit 220 may be adjusted based on the resistance of the thermistor R T of clock signal. The processing circuit 230 is coupled to the oscillation circuit 220 to receive the clock signal generated by the oscillation circuit 220 and detect the frequency of the clock signal. The processing circuit 230 pre-established a comparison table TA, wherein the comparison table TA includes a plurality of candidate frequency values and corresponding candidate temperature information. The processing circuit 230 is also used for searching the comparison table TA according to the frequency value of the detected clock signal to obtain the temperature information corresponding to the aforementioned frequency value. The power module 240 is used to supply power to the oscillation circuit 220 and the processing circuit 230.

簡單來說,本發明可以透過偵測受熱敏電阻RT的阻值所影響的時脈信號的頻率,來獲取功率元件210的溫度資訊。相較於先前技術所採取的透過量測分壓電壓值的方式,本發明採用了截然不同的技術手段來估測功率元件210的溫度。 Briefly, the present invention may be acquired temperature of the power device 210 through the information detected by the frequency affected by the resistance of the thermistor R T of clock signal. Compared with the method of measuring the divided voltage value adopted in the prior art, the present invention adopts a completely different technical method to estimate the temperature of the power device 210.

在本實施例中,功率元件210被設置在功率模組中,振盪電路220可以是電阻電容振盪器(簡稱RC振盪器),並且處理電路230是數位訊號處理器(Digital Signal Processor,DSP)。然而本發明不以此為限。在其他實施例中,處理電路230還可以是微處理器(Microprocessor)、中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、可程式化控制器、特殊應用積體電路 (Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合。另外,在本實施例中,熱敏電阻RT可以是具有正溫度係數(Positive Temperature Coefficient,PTC)的熱敏電阻,即熱敏電阻RT的阻值會隨溫度上昇而增加。然而本發明不以此為限,在其他實施例中,可以採用具有負溫度係數(Negative Temperature Coefficient,NTC)的熱敏電阻RT,即熱敏電阻RT的阻值會隨溫度上昇而減少。 In this embodiment, the power element 210 is disposed in the power module, the oscillation circuit 220 may be a resistance capacitor oscillator (RC oscillator for short), and the processing circuit 230 is a digital signal processor (DSP). However, the present invention is not limited to this. In other embodiments, the processing circuit 230 may also be a microprocessor (Microprocessor), a central processing unit (CPU), or other programmable general-purpose or special-purpose microprocessor (Microprocessor), Programmable controller, Application Specific Integrated Circuits (ASIC), Programmable Logic Device (PLD) or other similar devices or a combination of these devices. In addition, in this embodiment, the thermistor R T may be a thermistor with a positive temperature coefficient (PTC), that is, the resistance of the thermistor R T will increase as the temperature rises. However, the present invention is not limited to this. In other embodiments, a thermistor R T with a negative temperature coefficient (Negative Temperature Coefficient, NTC) may be used, that is, the resistance of the thermistor R T will decrease as the temperature rises. .

下面將針對振盪電路220的多個不同實施態樣進行舉例說明。圖4A繪示為本發明第一實施例的振盪電路220的電路示意圖。請見圖4A,振盪電路220包括電容C1、電阻R1、反向器G1、反向器G2與熱敏電阻RT,振盪電路220並具有節點N1~N3。電容C1耦接在節點N1與節點N2之間。電阻R1的一端耦接至節點N1,並且電阻R1的另一端耦接至反向器G1的輸入端。反向器G1的輸出端耦接至節點N3。熱敏電阻RT則耦接在節點N1與節點N3之間。反向器G2耦接的輸入端耦接至節點N3,並且反向器G2的輸出端耦接至節點N2。反向器G1與反向器G2具有使輸出波形產生振盪與整形的作用。上述元件構成一RC振盪器,且時脈信號VO可由節點N2讀出。 A number of different implementation aspects of the oscillation circuit 220 will be described below with examples. FIG. 4A is a schematic circuit diagram of the oscillation circuit 220 according to the first embodiment of the present invention. Please refer to FIG. 4A. The oscillation circuit 220 includes a capacitor C1, a resistor R1, an inverter G1, an inverter G2, and a thermistor R T. The oscillation circuit 220 also has nodes N1 to N3. The capacitor C1 is coupled between the node N1 and the node N2. One end of the resistor R1 is coupled to the node N1, and the other end of the resistor R1 is coupled to the input end of the inverter G1. The output terminal of the inverter G1 is coupled to the node N3. The thermistor R T is coupled between the node N1 and the node N3. The input terminal of the inverter G2 is coupled to the node N3, and the output terminal of the inverter G2 is coupled to the node N2. The inverter G1 and the inverter G2 have the functions of oscillating and shaping the output waveform. The above-described elements constituting an RC oscillator, and a clock signal V O may be read node N2.

圖4B繪示為圖4A中時脈信號VO的隨時間變化的波形示意圖。請見圖4B,圖4B具有兩種波形。波形W3顯示為未經整形處理所產生的三角波,波形W4顯示為經整形處理的方波。 請先看波形W3,振盪電路220在時間區間t1與時間區間t2之間發生翻轉,然而由於未經整形處理,導致波形W3形成一三角波,而不能直接為處理電路230所使用。因此,本發明透過設置反向器G1與反向器G2,來對三角波進行整形處理,以產生能直接為處理電路230所使用的方波。其中,波形W3的波峰電壓為電壓VB,波形W4的波峰電壓為工作電壓VDD。 FIG. 4B is a schematic diagram showing the waveform of the clock signal V O in FIG. 4A changing with time. Please see Figure 4B, which has two waveforms. Waveform W3 is displayed as a triangular wave generated without shaping, and waveform W4 is displayed as a square wave after shaping. Please look at the waveform W3 first. The oscillating circuit 220 flips between the time interval t1 and the time interval t2. However, the waveform W3 forms a triangular wave due to no shaping process, and cannot be directly used by the processing circuit 230. Therefore, in the present invention, the triangular wave is shaped by setting the inverter G1 and the inverter G2 to generate a square wave that can be directly used by the processing circuit 230. Among them, the peak voltage of the waveform W3 is the voltage VB, and the peak voltage of the waveform W4 is the working voltage VDD.

圖5繪示為本發明第二實施例的振盪電路220的電路示意圖。請見圖5,振盪電路220包括電容C2、反向器G3、電阻R2、反向器G4、熱敏電阻RT以及輸出電阻RO,振盪電路220並具有節點N4~N7。電容C2耦接在節點N4與一參考接地電壓之間。反向器G3的輸入端耦接至節點N4,並且反向器G3的輸出端耦接至節點N5。電阻R2耦接在節點N5與節點N6之間。熱敏電阻RT則耦接在節點N4與節點N6之間。反向器G4的輸入端耦接至節點N5,並且反向器G4的輸出端耦接至節點N7。輸出電阻RO的一端耦接節點N7。上述元件構成一RC振盪器,並且時脈信號VO可由輸出電阻RO的另一端讀出。與第一實施例類似的是,圖5所示第二實施例的反向器G3與反向器G4同樣具有使輸出波形產生振盪與整形的作用。 FIG. 5 is a schematic circuit diagram of the oscillation circuit 220 according to the second embodiment of the present invention. See Figure 5, oscillation circuit 220 comprises a capacitor C2, inverter G3, the resistor R2, an inverter G4, a thermistor R T, and an output resistance R O, the oscillation circuit 220 and having a node N4 ~ N7. The capacitor C2 is coupled between the node N4 and a reference ground voltage. The input terminal of the inverter G3 is coupled to the node N4, and the output terminal of the inverter G3 is coupled to the node N5. The resistor R2 is coupled between the node N5 and the node N6. The thermistor R T is coupled between the node N4 and the node N6. The input terminal of the inverter G4 is coupled to the node N5, and the output terminal of the inverter G4 is coupled to the node N7. One end of the output resistance R O is coupled to node N7. The above-mentioned elements constitute an RC oscillator, and the clock signal V O can be read from the other end of the output resistor R O. Similar to the first embodiment, the inverter G3 and the inverter G4 of the second embodiment shown in FIG. 5 also have the functions of oscillating and shaping the output waveform.

圖6繪示為本發明第三實施例的振盪電路220的電路示意圖。請見圖6,振盪電路220包括運算放大器OP、電容C3、電阻R3、熱敏電阻RT以及電阻R4。運算放大器OP具有反向輸入端、非反向輸入端以及輸出端。電容C3耦接在運算放大器OP的 反向輸入端與參考接地電壓之間。電阻R3耦接在運算放大器OP的非反向輸入端與參考接地電壓之間。電阻R4耦接在運算放大器OP的非反向輸入端與運算放大器OP的輸出端(即節點N8)之間。熱敏電阻RT則耦接在運算放大器OP的反向輸入端與運算放大器OP的輸出端(即節點N8)之間。上述元件構成一RC振盪器,並且時脈信號VO可由節點N8讀出。 FIG. 6 is a schematic circuit diagram of the oscillation circuit 220 according to the third embodiment of the present invention. As shown in FIG. 6, the oscillation circuit 220 includes an operational amplifier OP, a capacitor C3, a resistor R3, a thermistor R T, and a resistor R4. The operational amplifier OP has an inverting input terminal, a non-inverting input terminal, and an output terminal. The capacitor C3 is coupled between the inverting input terminal of the operational amplifier OP and the reference ground voltage. The resistor R3 is coupled between the non-inverting input terminal of the operational amplifier OP and the reference ground voltage. The resistor R4 is coupled between the non-inverting input terminal of the operational amplifier OP and the output terminal (ie node N8) of the operational amplifier OP. Thermistor R T is coupled to the inverting input terminal and output terminal of the operational amplifier OP of the operational amplifier OP (i.e., node N8) between. The above-described elements constituting an RC oscillator, and a clock signal V O is read out by the node N8.

需說明的是,為了方便說明,圖4A、圖5與圖6中的熱敏電阻RT都繪示在振盪電路220內,但實際上熱敏電阻RT被設置在功率元件(如功率電晶體)附近,並可透過拉線耦接至振盪電路220的其他元件。另外,雖然圖4A、圖5與圖6所繪示的都是雙端型的RC振盪器,但本發明不以此為限。在其他實施例中,也可以採用單端型的RC振盪器。 It should be noted that, for convenience of explanation, 4A, 5 and 6 in FIG thermistors R T are shown in the oscillation circuit 220, but in fact the thermistor R T is arranged in a power element (e.g., power Crystal) nearby, and can be coupled to other components of the oscillator circuit 220 through a cable. In addition, although FIGS. 4A, 5, and 6 are all double-ended RC oscillators, the present invention is not limited thereto. In other embodiments, a single-ended RC oscillator can also be used.

下面將從波形圖來觀察本發明的效果。圖7A繪示為在第一溫度下的時脈信號VO隨時間變化的波形示意圖。圖7B繪示為在第二溫度下的時脈信號VO隨時間變化的波形示意圖。圖7C繪示為在第二溫度下受雜訊影響的時脈信號VO隨時間變化的波形示意圖。圖7A~7C的波形示意圖的縱軸皆是時脈信號VO(單位為V),橫軸皆是時間t(單位為ms)。T表示功率電晶體的溫度,例如第一溫度T1與第二溫度T2。在本實施例中,第一溫度T1可以是85℃,並且第二溫度T2可以是25℃。由圖7A的波形W5與圖7B的波形W6可以觀察到,隨著溫度變低,時脈信號VO的頻率也會隨之變高。由圖7C的波形W6’可以觀察到,當時脈信號VO 受到雜訊影響時,時脈信號VO的波峰與波谷的形狀與圖7B(時脈信號VO未受雜訊影響)所示不同(請見箭頭處)。然而,圖7C的時脈信號VO的頻率仍維持與圖7B的時脈信號VO的頻率相同。也就是說,在相同溫度下的時脈信號VO的頻率並不會因為受到雜訊影響而改變。另外,此處的雜訊泛指先前技術所提到的電源漣波以及線阻變化所引起的信號波動。因此,本發明可不受雜訊影響地經由偵測時脈信號VO的頻率來進行查表,以推知功率元件210的溫度。 The following will observe the effect of the present invention from the waveform diagram. FIG. 7A is a schematic diagram showing the waveform of the clock signal V O varying with time at the first temperature. FIG. 7B is a schematic diagram showing the waveform of the clock signal V O changing with time at the second temperature. FIG. 7C is a schematic diagram of the waveform of the clock signal V O affected by noise at the second temperature changing with time. In the waveform diagrams of FIGS. 7A to 7C, the vertical axis is the clock signal V O (unit: V), and the horizontal axis is the time t (unit: ms). T represents the temperature of the power transistor, such as the first temperature T1 and the second temperature T2. In this embodiment, the first temperature T1 may be 85°C, and the second temperature T2 may be 25°C. It can be observed from the waveform W5 of FIG. 7A and the waveform W6 of FIG. 7B that as the temperature becomes lower, the frequency of the clock signal V O will also become higher. FIG. 7C by the waveform W6 'can be observed, when the clock signal V O affected by noise, the peaks and valleys of the clock signal V O shape of FIG. 7B (V O clock signal unaffected impact noise) shown in FIG. Different (see arrow). However, the clock signal frequency in FIG. 7C V O remains the same as when the clock signal frequency V O of FIG. 7B. In other words, the frequency of the clock signal V O at the same temperature will not change due to the influence of noise. In addition, the noise here generally refers to the signal fluctuations caused by power supply ripples and line resistance changes mentioned in the prior art. Therefore, the present invention can perform a look-up table by detecting the frequency of the clock signal V O without being affected by noise, so as to infer the temperature of the power element 210.

處理電路230所預先建立的對照表TA的內容可以如下面的表(一)所示。表(一)中的溫度資訊以及對應的頻率值可以透過實際量測來取得。具體來說,可以透過量測功率元件的表面溫度,以及量測在前述表面溫度下的時脈信號VO的頻率值,來獲得表(一)各欄位的數值。對照表TA可以預先儲存在處理電路230的記憶體中。前述記憶體可以是隨機存取記憶體(RAM)、動態隨機存取記憶體(DRAM)、同步動態隨機存取記憶體(SDRAM)以及靜態隨機存取記憶體(SRAM)等揮發性記憶體。前述記憶體也可以是NAND快閃記憶體、NOR快閃記憶體、唯讀記憶體(ROM)、電可抹除可程式化ROM(EEPROM)、可抹除可程式化ROM(EPROM),及相位改變隨機存取記憶體(PCRAM)等非揮發性記憶體。又或者,前述記憶體也可以是一次編程非揮發性記憶體,例如熔絲記憶體(fuse)。 The content of the comparison table TA pre-established by the processing circuit 230 may be as shown in Table (1) below. The temperature information and the corresponding frequency value in Table (1) can be obtained through actual measurement. Specifically, by measuring the surface temperature of the power device and measuring the frequency value of the clock signal V O at the aforementioned surface temperature, the values of each column of the table (1) can be obtained. The comparison table TA may be stored in the memory of the processing circuit 230 in advance. The aforementioned memory may be volatile memory such as random access memory (RAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), and static random access memory (SRAM). The aforementioned memory may also be NAND flash memory, NOR flash memory, read-only memory (ROM), electrically erasable programmable ROM (EEPROM), erasable programmable ROM (EPROM), and Phase change random access memory (PCRAM) and other non-volatile memory. Alternatively, the aforementioned memory may also be a one-time programming non-volatile memory, such as a fuse memory (fuse).

表(一)

Figure 110101428-A0305-02-0012-1
Table I)
Figure 110101428-A0305-02-0012-1

圖8繪示為本發明的熱偵測方法的步驟流程圖。本發明的熱偵測方法適用於如圖2所示熱偵測電路。請同時參酌圖2與圖8,熱偵測電路包括熱敏電阻RT、振盪電路220以及處理電路230。熱敏電阻RT鄰近一功率元件210地被配置,並且振盪電路220耦接至熱敏電阻RT。在步驟S810中,由振盪電路220產生時脈信號,並由振盪電路220依據熱敏電阻RT的電阻值來調整時脈信號的頻率。在步驟S820中,由處理電路230接收並檢測時脈信號的頻率,並由處理電路230依據前述頻率的頻率值對一對照表進行查找,以獲得對應頻率值的一溫度資訊。 FIG. 8 is a flowchart showing the steps of the heat detection method of the present invention. The heat detection method of the present invention is suitable for the heat detection circuit shown in FIG. 2. Please refer to FIG. 2 and FIG. 8 at the same time. The thermal detection circuit includes the thermistor R T , the oscillation circuit 220 and the processing circuit 230. Thermistor R T are disposed adjacent to a power element 210, the oscillation circuit 220 and is coupled to the thermistor R T. In step S810, generated by the oscillation circuit 220 when the clock signal, the frequency of the clock signal by the oscillation circuit 220 is adjusted based on the resistance value of the thermistor R T. In step S820, the processing circuit 230 receives and detects the frequency of the clock signal, and the processing circuit 230 searches a comparison table according to the frequency value of the aforementioned frequency to obtain a temperature information corresponding to the frequency value.

綜上所述,本發明將振盪電路耦接至熱敏電阻來產生時 脈信號,其中時脈信號的頻率具有隨熱敏電阻的阻值變化的特性。如此一來,本發明可以透過讀取前述頻率的頻率值,來推測功率元件的表面溫度。相較於先前技術,本發明的優點在於,前述頻率值不會受到電源電壓不穩定或線阻的影響。因此,本發明可以更精確地獲取功率元件的表面溫度,避免對功率元件的表面溫度的誤判,並可更為即時地採取相應的措施來避免功率元件受到損害。 In summary, the present invention couples the oscillation circuit to the thermistor to generate time Pulse signal, in which the frequency of the clock signal has the characteristic of changing with the resistance of the thermistor. In this way, the present invention can estimate the surface temperature of the power device by reading the frequency value of the aforementioned frequency. Compared with the prior art, the advantage of the present invention is that the aforementioned frequency value will not be affected by unstable power supply voltage or line resistance. Therefore, the present invention can obtain the surface temperature of the power element more accurately, avoid misjudgment of the surface temperature of the power element, and can take corresponding measures more immediately to prevent the power element from being damaged.

210:功率元件 210: Power components

220:振盪電路 220: Oscillation circuit

230:處理電路 230: processing circuit

240:電源模組 240: Power Module

RT:熱敏電阻 R T : Thermistor

TA:對照表 TA: Comparison table

Claims (4)

一種熱偵測電路,包括:一熱敏電阻,鄰近一功率元件地被配置;一振盪電路,耦接至該熱敏電阻,產生一時脈信號,其中該振盪電路依據該熱敏電阻的電阻值以調整該時脈信號的一頻率,其中該振盪電路包括:一電容,耦接在一第一節點與一第二節點之間;一電阻,該電阻的一端耦接至該第一節點;一第一反向器,該第一反向器的一輸入端耦接該電阻的另一端,該第一反向器的一輸出端耦接至一第三節點;以及一第二反向器,該第二反向器的一輸入端耦接至該第三節點,該第二反向器的一輸出端耦接至該第二節點,其中該熱敏電阻的一端耦接至該第一節點,該熱敏電阻的另一端耦接至該第三節點,並且該時脈信號自該第二節點被讀出;以及一處理電路,用以接收該時脈信號,檢測該時脈信號的該頻率,依據該頻率的一頻率值對一對照表進行查找來獲得對應該頻率值的一溫度資訊,其中,該對照表包括多個候選頻率值以及對應的多個候選溫度資訊。 A heat detection circuit includes: a thermistor arranged adjacent to a power element; an oscillating circuit coupled to the thermistor to generate a clock signal, wherein the oscillating circuit is based on the resistance value of the thermistor To adjust a frequency of the clock signal, the oscillating circuit includes: a capacitor coupled between a first node and a second node; a resistor, one end of the resistor is coupled to the first node; A first inverter, an input end of the first inverter is coupled to the other end of the resistor, an output end of the first inverter is coupled to a third node; and a second inverter, An input end of the second inverter is coupled to the third node, an output end of the second inverter is coupled to the second node, and one end of the thermistor is coupled to the first node , The other end of the thermistor is coupled to the third node, and the clock signal is read from the second node; and a processing circuit for receiving the clock signal and detecting the clock signal Frequency, searching a comparison table according to a frequency value of the frequency to obtain a temperature information corresponding to the frequency value, wherein the comparison table includes a plurality of candidate frequency values and a plurality of corresponding candidate temperature information. 一種熱偵測電路,包括:一熱敏電阻,鄰近一功率元件地被配置; 一振盪電路,耦接至該熱敏電阻,產生一時脈信號,其中該振盪電路依據該熱敏電阻的電阻值以調整該時脈信號的一頻率,其中該振盪電路包括:一電容,耦接在一第一節點與一參考接地電壓之間;一第一反向器,耦接在該第一節點與一第二節點之間;一第一電阻,耦接在該第二節點與一第三節點之間;以及一第二反向器,耦接在該第二節點與一第四節點之間,其中,該熱敏電阻的一端耦接至該第一節點,該熱敏電阻的另一端耦接至該第三節點,並且該時脈信號自該第四節點被讀出;以及一處理電路,用以接收該時脈信號,檢測該時脈信號的該頻率,依據該頻率的一頻率值對一對照表進行查找來獲得對應該頻率值的一溫度資訊,其中,該對照表包括多個候選頻率值以及對應的多個候選溫度資訊。 A heat detection circuit includes: a thermistor, which is arranged adjacent to a power element; An oscillating circuit is coupled to the thermistor to generate a clock signal, wherein the oscillating circuit adjusts a frequency of the clock signal according to the resistance value of the thermistor, wherein the oscillating circuit includes: a capacitor coupled to Between a first node and a reference ground voltage; a first inverter, coupled between the first node and a second node; a first resistor, coupled between the second node and a first node Between three nodes; and a second inverter coupled between the second node and a fourth node, wherein one end of the thermistor is coupled to the first node, and the other of the thermistor One end is coupled to the third node, and the clock signal is read from the fourth node; and a processing circuit for receiving the clock signal, detecting the frequency of the clock signal, according to a frequency of the frequency The frequency value searches a comparison table to obtain a temperature information corresponding to the frequency value, wherein the comparison table includes a plurality of candidate frequency values and a plurality of corresponding candidate temperature information. 一種熱偵測電路,包括:一熱敏電阻,鄰近一功率元件地被配置;一振盪電路,耦接至該熱敏電阻,產生一時脈信號,其中該振盪電路依據該熱敏電阻的電阻值以調整該時脈信號的一頻率,其中該振盪電路包括:一運算放大器,具有一反向輸入端、一非反向輸入端以 及一輸出端,其中該熱敏電阻耦接在該運算放大器的該反向輸入端與該輸出端之間;一電容,耦接在該運算放大器的該反向輸入端與一參考接地電壓之間;一第一電阻,耦接在該運算放大器的該非反向輸入端與該參考接地電壓之間;以及一第二電阻,耦接在該運算放大器的該非反向輸入端與該輸出端之間,其中,該時脈信號自該運算放大器的該輸出端被讀出;以及一處理電路,用以接收該時脈信號,檢測該時脈信號的該頻率,依據該頻率的一頻率值對一對照表進行查找來獲得對應該頻率值的一溫度資訊,其中,該對照表包括多個候選頻率值以及對應的多個候選溫度資訊。 A heat detection circuit includes: a thermistor arranged adjacent to a power element; an oscillating circuit coupled to the thermistor to generate a clock signal, wherein the oscillating circuit is based on the resistance value of the thermistor In order to adjust a frequency of the clock signal, the oscillating circuit includes: an operational amplifier having an inverting input terminal, a non-inverting input terminal and And an output terminal, wherein the thermistor is coupled between the inverting input terminal and the output terminal of the operational amplifier; a capacitor is coupled between the inverting input terminal of the operational amplifier and a reference ground voltage A first resistor, coupled between the non-inverting input terminal of the operational amplifier and the reference ground voltage; and a second resistor, coupled between the non-inverting input terminal and the output terminal of the operational amplifier Wherein, the clock signal is read out from the output terminal of the operational amplifier; and a processing circuit for receiving the clock signal, detecting the frequency of the clock signal, and pairing it according to a frequency value of the frequency A look-up table is performed to obtain temperature information corresponding to the frequency value, wherein the look-up table includes a plurality of candidate frequency values and a plurality of corresponding candidate temperature information. 如請求項1~3中任一項所述的熱偵測電路,其中該處理電路為數位訊號處理器。The thermal detection circuit according to any one of claims 1 to 3, wherein the processing circuit is a digital signal processor.
TW110101428A 2021-01-14 2021-01-14 Heat detection circuit and heat detection method TWI747713B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110101428A TWI747713B (en) 2021-01-14 2021-01-14 Heat detection circuit and heat detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110101428A TWI747713B (en) 2021-01-14 2021-01-14 Heat detection circuit and heat detection method

Publications (2)

Publication Number Publication Date
TWI747713B true TWI747713B (en) 2021-11-21
TW202227788A TW202227788A (en) 2022-07-16

Family

ID=79907576

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101428A TWI747713B (en) 2021-01-14 2021-01-14 Heat detection circuit and heat detection method

Country Status (1)

Country Link
TW (1) TWI747713B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI227320B (en) * 2003-12-22 2005-02-01 Sunplus Technology Co Ltd Radio frequency temperature sensor and temperature calibrating method therefor
TWM416077U (en) * 2011-05-09 2011-11-11 Prodigid Ltd Temperature recorder with RF transmission interface
CN110108379A (en) * 2019-05-07 2019-08-09 广州小鹏汽车科技有限公司 Motor temperature detection circuit, temp measuring method and corresponding motor based on RC oscillator
JP2019191141A (en) * 2018-04-19 2019-10-31 Tdk株式会社 Environment detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI227320B (en) * 2003-12-22 2005-02-01 Sunplus Technology Co Ltd Radio frequency temperature sensor and temperature calibrating method therefor
TWM416077U (en) * 2011-05-09 2011-11-11 Prodigid Ltd Temperature recorder with RF transmission interface
JP2019191141A (en) * 2018-04-19 2019-10-31 Tdk株式会社 Environment detection device
CN110108379A (en) * 2019-05-07 2019-08-09 广州小鹏汽车科技有限公司 Motor temperature detection circuit, temp measuring method and corresponding motor based on RC oscillator

Also Published As

Publication number Publication date
TW202227788A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
CN107771273B (en) Ring oscillator for temperature detection in broadband supply noise environments
JP5280449B2 (en) Reference frequency generation circuit, semiconductor integrated circuit, electronic equipment
US9882558B1 (en) Power-on reset circuit
JP6080497B2 (en) Resistance correction circuit, resistance correction method, and semiconductor device
TWI747713B (en) Heat detection circuit and heat detection method
JP4055948B2 (en) Delay circuit and semiconductor integrated circuit device
US20180062626A1 (en) Methods and Apparatus for a Low Power Relaxation Oscillator
JP2006222524A (en) Oscillation circuit
JP3625918B2 (en) Voltage generation circuit
TWI422835B (en) Voltage detection circuit and the use of its oscillator
US9606007B2 (en) Semiconductor device and measurement method
WO2022012203A1 (en) Antifuse storage unit state detection circuit and memory
US9000850B2 (en) Method and apparatus for self-calibrating driving capability and resistance of on-die termination
TWI445306B (en) Power supply voltage monitoring circuit
JP3868131B2 (en) Back bias circuit
KR101415702B1 (en) Delay circuit
JP2003283305A (en) Oscillation circuit with temperature compensation
JP4395412B2 (en) Constant voltage circuit
JP6655510B2 (en) Semiconductor device, electronic control unit, and vehicle device
TWI687045B (en) Oscillator and operation method thereof
JP2013219454A (en) Power-on reset circuit and semiconductor device
CN112129424B (en) Temperature detection device and method
JP4551862B2 (en) Temperature controlled oscillator
JP2010004683A (en) Overheating protective circuit
CN115986693A (en) Over-temperature protection circuit and method and over-temperature protection driving chip