TWI747535B - Llc resonance converter, control unit, and method of controlling the same - Google Patents

Llc resonance converter, control unit, and method of controlling the same Download PDF

Info

Publication number
TWI747535B
TWI747535B TW109134043A TW109134043A TWI747535B TW I747535 B TWI747535 B TW I747535B TW 109134043 A TW109134043 A TW 109134043A TW 109134043 A TW109134043 A TW 109134043A TW I747535 B TWI747535 B TW I747535B
Authority
TW
Taiwan
Prior art keywords
control signal
switch
rectification
frequency
control
Prior art date
Application number
TW109134043A
Other languages
Chinese (zh)
Other versions
TW202215764A (en
Inventor
楊上凱
王賢凱
林彥瑋
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW109134043A priority Critical patent/TWI747535B/en
Application granted granted Critical
Publication of TWI747535B publication Critical patent/TWI747535B/en
Publication of TW202215764A publication Critical patent/TW202215764A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

An LLC resonance converter includes a square wave generator having a first switch and a second switch, a resonant tank, a transformer, a synchronous rectifying (SR) unit having a first SR switch and a second SR switch, and a control unit. The control unit provides a first control signal controls the first switch, a second control signal controls the second switch, a first rectifying control signal controls the first SR switch, a second rectifying control signal controls the second SR switch. When a frequency control command is less than a phase-shift frequency, the first control signal and the first rectifying control signal are frequency-variable and phase-shifted, and the second control signal and the second rectifying control signal are frequency-variable and phase-shifted.

Description

LLC諧振轉換器、控制單元及其控制方法 LLC resonant converter, control unit and control method thereof

本發明係有關一種LLC諧振轉換器、控制單元及其控制方法,尤指一種具維持時間延長之LLC諧振轉換器及其控制方法。 The present invention relates to an LLC resonant converter, a control unit and a control method thereof, in particular to an LLC resonant converter with extended maintenance time and a control method thereof.

LLC諧振轉換器(LLC resonant converter)是一種直流對直流(直流)電源轉換器,相較於其他直流轉換器具有更多優點,但因為其設計及控制方式較為複雜,因此在以往較少受到關注與研究。但是,由於近幾年電路設計及控制技術的進步,已經有許多相關於LLC諧振轉換器的控制技術被開發出來,使得LLC諧振轉換器的設計變得更容易,並使得此技術獲得更多的關注。LLC諧振轉換器具有初級側開關零電壓導通(ZVS turned-on),次級側同步整流零電流關斷(ZCS turned-off)以及高效率之優點。 LLC resonant converter (LLC resonant converter) is a DC-to-DC (DC) power converter. Compared with other DC converters, it has more advantages, but because its design and control methods are more complicated, it has received less attention in the past. And research. However, due to the advancement of circuit design and control technology in recent years, many control technologies related to LLC resonant converters have been developed, making the design of LLC resonant converters easier and making this technology gain more pay attention to. LLC resonant converter has the advantages of ZVS turned-on on the primary side, ZCS turned-off on the secondary side synchronous rectification (ZCS turned-off), and high efficiency.

以全橋式LLC諧振轉換器(full-bridge LLC converter)為例,其初級側包含第一開關Q1與第二開關Q2組成的第一橋臂以及第三開關Q3與第四開關Q4組成的第二橋臂,其中第一橋臂與第二橋臂並聯連接;其次級側包含第一同步整流開關SR1與第二同步整流開關SR2組成的同步整流開關橋臂。現行的控制方式為初級側的第一開關Q1、第四開關Q4以及次級側的第一同步整流開關SR1提供同相位的PWM信號,而初級側的第二開關Q2、第三開關Q3以及次級側的第二同步整流開關SR2提供同相位的PWM控制。惟這樣控制方式在當輸入電壓不足時,存在以下缺點: Take a full-bridge LLC resonant converter as an example. Its primary side includes a first bridge arm composed of a first switch Q1 and a second switch Q2, and a third switch Q3 and a fourth switch Q4 composed of the first leg. Two bridge arms, where the first bridge arm and the second bridge arm are connected in parallel; the secondary side includes a synchronous rectification switch bridge arm composed of a first synchronous rectification switch SR1 and a second synchronous rectification switch SR2. The current control method provides PWM signals of the same phase for the first switch Q1 on the primary side, the fourth switch Q4, and the first synchronous rectifier switch SR1 on the secondary side, while the second switch Q2, the third switch Q3 and the secondary side The second synchronous rectifier switch SR2 on the stage side provides the same phase PWM control. However, this control method has the following disadvantages when the input voltage is insufficient:

1、高效率應用:為了達到高效率,一般會將電壓的增益值(gain value)設計比較低,但有可能會造成電壓增益的不足,使得維持時間(hold-up time)變低。 1. High-efficiency application: In order to achieve high efficiency, the gain value of the voltage is generally designed to be relatively low, but it may cause insufficient voltage gain and make the hold-up time lower.

2、高維持時間應用:為了達到較高維持時間,一般會將電壓的增益值設計比較高,但這樣一來,容易造成效率變低。 2. High maintenance time application: In order to achieve a higher maintenance time, the voltage gain value is generally designed to be higher, but in this way, it is easy to cause the efficiency to become low.

現有的技術中,為了改善以上問題,使用次級側同步整流做相移動作,以獲得較高的電壓增益值,來達到增加維持時間的方法。此方法是讓第一開關Q1~第四開關Q4以及第一同步整流開關SR1、第二同步整流開關SR2操作在一所需的最低固定頻率下,第一同步整流開關SR1、第二同步整流開關SR2開始執行相移動作,來達到在輸入電壓不足下,增加電壓增益值讓維持時間可以增加的技術。但是此技術的缺點在於:在較低切換頻率下操作,第一同步整流開關SR1、第二同步整流開關SR2才開始做相移,在控制上電壓增益值瞬間變化較大,會造成輸出電壓不易受控制。 In the prior art, in order to improve the above problems, the secondary-side synchronous rectification is used as a phase shift operation to obtain a higher voltage gain value to achieve a method of increasing the maintenance time. This method is to allow the first switch Q1 to the fourth switch Q4, the first synchronous rectifier switch SR1 and the second synchronous rectifier switch SR2 to operate at a required minimum fixed frequency, the first synchronous rectifier switch SR1 and the second synchronous rectifier switch SR2 starts to perform phase shifting to achieve a technology that increases the voltage gain value so that the maintenance time can be increased when the input voltage is insufficient. However, the disadvantage of this technology is that when operating at a lower switching frequency, the first synchronous rectifier switch SR1 and the second synchronous rectifier switch SR2 only begin to phase shift, and the voltage gain value changes greatly in the control, which will cause the output voltage to be difficult. controlled.

為此,如何設計出一種LLC諧振轉換器、控制單元及其控制方法,解決現有技術存在的問題,乃為本案發明人所研究的重要課題。 For this reason, how to design an LLC resonant converter, a control unit and a control method thereof to solve the problems existing in the prior art is an important subject studied by the inventor of this case.

本發明之目的在於提供一種LLC諧振轉換器,解決現有技術存在的問題。 The purpose of the present invention is to provide an LLC resonant converter to solve the problems existing in the prior art.

為達成前揭目的,本發明所提出的LLC諧振轉換器包含方波產生器、諧振槽、變壓器、同步整流單元以及控制單元。方波產生器具有第一開關與串聯第一開關的第二開關。諧振槽耦接方波產生器。變壓器具有初級側與次級側, 初級側耦接諧振槽。同步整流單元耦接次級側,具有第一同步整流開關與第二同步整流開關。控制單元接收諧振轉換器的輸出電壓,根據輸出電壓得到頻率控制命令,提供第一控制信號控制第一開關、提供第二控制信號控制第二開關、提供第一整流控制信號控制第一同步整流開關以及提供第二整流控制信號控制第二同步整流開關。當頻率控制命令高於相移頻率時,第一控制信號與第一整流控制信號為相位相同的變頻信號,且第二控制信號與第二整流控制信號為相位相同的變頻信號。當頻率控制命令低於相移頻率時,第一控制信號與第一整流控制信號為相位相異的變頻信號,且第二控制信號與第二整流控制信號為相位相異的變頻信號。 In order to achieve the aforementioned purpose, the LLC resonant converter proposed in the present invention includes a square wave generator, a resonant tank, a transformer, a synchronous rectification unit, and a control unit. The square wave generator has a first switch and a second switch connected in series with the first switch. The resonant tank is coupled to the square wave generator. The transformer has a primary side and a secondary side, The primary side is coupled to the resonance tank. The synchronous rectifier unit is coupled to the secondary side and has a first synchronous rectifier switch and a second synchronous rectifier switch. The control unit receives the output voltage of the resonant converter, obtains a frequency control command according to the output voltage, provides a first control signal to control the first switch, provides a second control signal to control the second switch, and provides a first rectification control signal to control the first synchronous rectification switch And providing a second rectification control signal to control the second synchronous rectification switch. When the frequency control command is higher than the phase shift frequency, the first control signal and the first rectification control signal are frequency conversion signals with the same phase, and the second control signal and the second rectification control signal are frequency conversion signals with the same phase. When the frequency control command is lower than the phase shift frequency, the first control signal and the first rectification control signal are frequency conversion signals with different phases, and the second control signal and the second rectification control signal are frequency conversion signals with different phases.

藉由所提出的LLC諧振轉換器,可實現兼具高電壓增益值與提高(延長)維持時間的功效。 With the proposed LLC resonant converter, it is possible to achieve both high voltage gain value and improved (extended) maintenance time.

本發明之另一目的在於提供一種LLC諧振轉換器的控制單元,解決現有技術存在的問題。 Another object of the present invention is to provide a control unit of LLC resonant converter to solve the problems existing in the prior art.

為達成前揭目的,本發明所提出的LLC諧振轉換器的控制單元提供控制信號控制諧振轉換器初級側的方波產生器,提供整流控制信號控制次級側的同步整流單元,且控制單元根據諧振轉換器的輸出電壓得到頻率控制命令。當頻率控制命令高於相移頻率時,控制信號與整流控制信號為相位相同的變頻信號;當頻率控制命令低於相移頻率時,控制信號與整流控制信號為相位相異的變頻信號。 In order to achieve the foregoing purpose, the control unit of the LLC resonant converter proposed in the present invention provides a control signal to control the square wave generator on the primary side of the resonant converter, and provides a rectification control signal to control the synchronous rectification unit on the secondary side, and the control unit is based on The output voltage of the resonant converter gets the frequency control command. When the frequency control command is higher than the phase shift frequency, the control signal and the rectification control signal are frequency conversion signals with the same phase; when the frequency control command is lower than the phase shift frequency, the control signal and the rectification control signal are frequency conversion signals with different phases.

藉由所提出的LLC諧振轉換器的控制單元,可實現兼具高電壓增益值與提高(延長)維持時間的功效。 With the proposed control unit of the LLC resonant converter, it is possible to achieve both the high voltage gain value and the effect of improving (extending) the maintenance time.

本發明之再另一目的在於提供一種LLC諧振轉換器的控制方法,解決現有技術存在的問題。 Another object of the present invention is to provide a control method of LLC resonant converter to solve the problems existing in the prior art.

為達成前揭目的,本發明所提出的LLC諧振轉換器的控制方法,其中LLC諧振轉換器包含設置於變壓器的初級側的開關橋臂與設置於變壓器的次級側的同步整流單元,並且開關橋臂包含由第一控制信號控制的第一開關與由第二控制信號控制的第二開關,同步整流單元包含由第一整流控制信號控制的第一同步整流開關與由第二整流控制信號控制的第二同步整流開關;控制方法包含:根據輸出電壓回授值得到操作頻率;判斷操作頻率是否高於相移頻率;若操作頻率高於相移頻率,控制第一控制信號與第一整流控制信號為相位相同的變頻信號,且控制第二控制信號與第二整流控制信號為相位相同的變頻信號;及若操作頻率低於相移頻率,控制第一控制信號與第一整流控制信號為相位相異的變頻信號,且控制第二控制信號與第二整流控制信號為相位相異的變頻信號。 In order to achieve the foregoing purpose, the present invention provides a control method for an LLC resonant converter, wherein the LLC resonant converter includes a switching bridge arm arranged on the primary side of the transformer and a synchronous rectification unit arranged on the secondary side of the transformer, and the switch The bridge arm includes a first switch controlled by a first control signal and a second switch controlled by a second control signal. The synchronous rectification unit includes a first synchronous rectifier switch controlled by a first rectification control signal and a second rectifier control signal. The second synchronous rectification switch; the control method includes: obtaining the operating frequency according to the output voltage feedback value; judging whether the operating frequency is higher than the phase shift frequency; if the operating frequency is higher than the phase shift frequency, controlling the first control signal and the first rectification control The signal is a variable frequency signal with the same phase, and the second control signal and the second rectification control signal are controlled to be variable frequency signals with the same phase; and if the operating frequency is lower than the phase shift frequency, the first control signal and the first rectification control signal are controlled to be in phase The frequency conversion signals of different phases are controlled, and the second control signal and the second rectification control signal are controlled to be frequency conversion signals of different phases.

藉由所提出的LLC諧振轉換器的控制方法,可實現兼具高電壓增益值與提高(延長)維持時間的功效。 With the proposed control method of LLC resonant converter, it is possible to achieve both the high voltage gain value and the effect of improving (extending) the maintenance time.

為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology, means and effects of the present invention to achieve the intended purpose, please refer to the following detailed description and drawings of the present invention. I believe that the purpose, features and characteristics of the present invention can be obtained from this in depth and For specific understanding, however, the accompanying drawings are only provided for reference and illustration, and are not intended to limit the present invention.

10:LLC諧振轉換器 10: LLC resonant converter

T:變壓器 T: Transformer

12:初級側電路 12: Primary side circuit

14:次級側電路 14: Secondary side circuit

16:控制器 16: Controller

122:第一開關橋臂 122: first switch bridge arm

124:第二開關橋臂 124: second switch bridge arm

126:諧振槽 126: Resonance tank

142:第一同步整流橋臂 142: The first synchronous rectifier bridge arm

144:第二同步整流橋臂 144: Second synchronous rectifier bridge arm

Q1:第一開關 Q1: The first switch

Q2:第二開關 Q2: The second switch

Q3:第三開關 Q3: The third switch

Q4:第四開關 Q4: The fourth switch

SR1:第一同步整流開關 SR1: The first synchronous rectifier switch

SR2:第二同步整流開關 SR2: The second synchronous rectifier switch

SR3:第三同步整流開關 SR3: The third synchronous rectifier switch

SR4:第四同步整流開關 SR4: The fourth synchronous rectifier switch

Lr:諧振電感 Lr: Resonant inductance

Cr:諧振電容 Cr: Resonant capacitor

SQ1:第一控制信號 S Q1 : the first control signal

SQ2:第二控制信號 S Q2 : second control signal

SQ3:第三控制信號 S Q3 : the third control signal

SQ4:第四控制信號 S Q4 : Fourth control signal

SSR1:第一整流控制信號 S SR1 : the first rectification control signal

SSR2:第二整流控制信號 S SR2 : The second rectification control signal

SSR3:第三整流控制信號 S SR3 : The third rectification control signal

SSR4:第四整流控制信號 S SR4 : Fourth rectification control signal

161:比較單元 161: comparison unit

162:電壓控制器 162: Voltage Controller

163:頻率限制器 163: frequency limiter

164:頻率控制器 164: Frequency Controller

165:頻率與相位控制器 165: Frequency and Phase Controller

VOUT_FB:輸出電壓回授值 V OUT_FB : Output voltage feedback value

VOUT_REF:輸出電壓參考值 V OUT_REF : output voltage reference value

VERR:電壓誤差值 V ERR : voltage error value

fCMD:頻率控制命令 f CMD : Frequency control command

α:相位差 α: Phase difference

fR:諧振頻率 f R : resonance frequency

fPS:相移頻率 f PS : Phase shift frequency

S11~S15:步驟 S11~S15: steps

圖1:係為本發明LLC諧振轉換器的第一實施例的電路圖。 Figure 1: is a circuit diagram of the first embodiment of the LLC resonant converter of the present invention.

圖2:係為本發明LLC諧振轉換器的第二實施例的電路圖。 Figure 2: is a circuit diagram of the second embodiment of the LLC resonant converter of the present invention.

圖3:係為本發明LLC諧振轉換器的第三實施例的電路圖。 Figure 3: is a circuit diagram of the third embodiment of the LLC resonant converter of the present invention.

圖4:係為本發明LLC諧振轉換器的第四實施例的電路圖。 Figure 4: is a circuit diagram of the fourth embodiment of the LLC resonant converter of the present invention.

圖5:係為本發明控制電路的方塊示意圖。 Figure 5: is a block diagram of the control circuit of the present invention.

圖6:係為本發明LLC諧振轉換器操作於不同模式下的頻率與相位示意圖。 Fig. 6 is a schematic diagram of the frequency and phase of the LLC resonant converter of the present invention operating in different modes.

圖7A~圖7C:係為本發明LLC諧振轉換器操作於不同模式下的控制信號的示意圖。 7A to 7C are schematic diagrams of control signals of the LLC resonant converter of the present invention operating in different modes.

圖8:係為本發明LLC諧振轉換器的控制方法的流程圖。 Fig. 8 is a flow chart of the control method of the LLC resonant converter of the present invention.

茲有關本發明之技術內容及詳細說明,配合圖式說明如下。 The technical content and detailed description of the present invention are described as follows in conjunction with the drawings.

本案LLC諧振轉換器包含方波產生器、諧振槽、變壓器、同步整流單元以及控制單元。其中,所述LLC諧振轉換器具有維持時間(hold-up time)延長功能的轉換器。方波產生器耦接諧振槽及變壓器之初級側,具有第一開關與串聯第一開關的第二開關。同步整流單元耦接變壓器之次級側,具有第一同步整流開關與第二同步整流開關。 The LLC resonant converter in this case includes a square wave generator, a resonant tank, a transformer, a synchronous rectification unit and a control unit. Wherein, the LLC resonant converter has a converter with a hold-up time extension function. The square wave generator is coupled to the resonance tank and the primary side of the transformer, and has a first switch and a second switch connected in series with the first switch. The synchronous rectifier unit is coupled to the secondary side of the transformer, and has a first synchronous rectifier switch and a second synchronous rectifier switch.

控制單元接收LLC諧振轉換器輸出的輸出電壓信號,其中輸出電壓信號可提供LLC諧振轉換器的輸出電壓的資訊。控制單元根據輸出電壓信號得到頻率控制命令,提供第一控制信號控制第一開關、提供第二控制信號控制第二開關、提供第一整流控制信號控制第一同步整流開關以及提供第二整流控制信號控制第二同步整流開關。值得一提,頻率控制命令即為第一控制信號、第二控制信號、第一整流控制信號及第二整流控制信號的操作頻率。 The control unit receives the output voltage signal output by the LLC resonant converter, where the output voltage signal can provide information about the output voltage of the LLC resonant converter. The control unit obtains the frequency control command according to the output voltage signal, provides a first control signal to control the first switch, provides a second control signal to control the second switch, provides a first rectification control signal to control the first synchronous rectification switch, and provides a second rectification control signal Control the second synchronous rectification switch. It is worth mentioning that the frequency control commands are the operating frequencies of the first control signal, the second control signal, the first rectification control signal, and the second rectification control signal.

以下,針對不同電路拓樸的差異,加以說明。請參見圖1至圖4所示,其係分別為本發明LLC諧振轉換器的第一實施例至第四實施例的電路圖。 LLC諧振轉換器10包含變壓器T、初級側電路12、次級側電路14以及控制單元16。 In the following, the differences between different circuit topologies will be explained. Please refer to FIGS. 1 to 4, which are circuit diagrams of the first embodiment to the fourth embodiment of the LLC resonant converter of the present invention, respectively. The LLC resonant converter 10 includes a transformer T, a primary side circuit 12, a secondary side circuit 14 and a control unit 16.

圖1與圖2所示的初級側電路12係為全橋式(full-bridge)架構。初級側電路12包含組成方波產生器的第一開關橋臂122、第二開關橋臂124以及諧振槽126。 The primary side circuit 12 shown in FIG. 1 and FIG. 2 is a full-bridge architecture. The primary side circuit 12 includes a first switching bridge arm 122, a second switching bridge arm 124, and a resonant tank 126 forming a square wave generator.

第一開關橋臂122耦接變壓器T的初級側,具有第一開關Q1與串聯第一開關Q1的第二開關Q2。其中,控制單元16提供第一控制信號SQ1控制第一開關Q1,提供第二控制信號SQ2控制第二開關Q2。第二開關橋臂124並聯第一開關橋臂122,具有第三開關Q3與串聯第三開關Q3的第四開關Q4。其中,控制單元16提供第三控制信號SQ3控制第三開關Q3,提供第四控制信號SQ4控制第四開關Q4。在本發明的應用中,第一控制信號SQ1與第四控制信號SQ4為相同的控制信號;第二控制信號SQ2與第三控制信號SQ3為相同的控制信號(可參見圖7A所示)。並且,第一控制信號SQ1與第二控制信號SQ2為互補的控制信號。 The first switch bridge arm 122 is coupled to the primary side of the transformer T, and has a first switch Q1 and a second switch Q2 connected in series with the first switch Q1. The control unit 16 provides the first control signal S Q1 to control the first switch Q1, and provides the second control signal S Q2 to control the second switch Q2. The second switch bridge arm 124 is connected in parallel with the first switch bridge arm 122, and has a third switch Q3 and a fourth switch Q4 connected in series with the third switch Q3. The control unit 16 provides the third control signal S Q3 to control the third switch Q3, and provides the fourth control signal S Q4 to control the fourth switch Q4. In the application of the present invention, the first control signal S Q1 and the fourth control signal S Q4 are the same control signal; the second control signal S Q2 and the third control signal S Q3 are the same control signal (see Figure 7A Show). In addition, the first control signal S Q1 and the second control signal S Q2 are complementary control signals.

諧振槽126耦接於第一開關橋臂122與第二開關橋臂124之間,主要由諧振電感Lr、變壓器T的激磁電感(圖未示)以及諧振電容Cr所組成的LLC諧振槽。 The resonant tank 126 is coupled between the first switch bridge arm 122 and the second switch bridge arm 124, and is an LLC resonant tank mainly composed of a resonant inductor Lr, a magnetizing inductance of the transformer T (not shown), and a resonant capacitor Cr.

圖3與圖4所示的初級側電路12係為半橋式(half-bridge)架構。初級側電路12包含第一開關橋臂122與諧振槽126。第一開關橋臂122耦接變壓器T的初級側,具有第一開關Q1與串聯第一開關Q1的第二開關Q2。其中,控制單元16提供第一控制信號SQ1控制第一開關Q1,提供第二控制信號SQ2控制第二開關Q2。在本發明的應用中,第一控制信號SQ1與第二控制信號SQ2為互補的控制信號。 The primary side circuit 12 shown in FIGS. 3 and 4 is a half-bridge structure. The primary side circuit 12 includes a first switching bridge arm 122 and a resonant tank 126. The first switch bridge arm 122 is coupled to the primary side of the transformer T, and has a first switch Q1 and a second switch Q2 connected in series with the first switch Q1. The control unit 16 provides the first control signal S Q1 to control the first switch Q1, and provides the second control signal S Q2 to control the second switch Q2. In the application of the present invention, the first control signal S Q1 and the second control signal S Q2 are complementary control signals.

諧振槽126耦接第一開關橋臂122的第一開關Q1與第二開關Q2,主要由諧振電感Lr、變壓器T的激磁電感(圖未示)以及諧振電容Cr所組成的 LLC諧振槽。本發明中之諧振槽,不限於如圖所示之連接方式,其可利用LC產生兩個諧振頻率的結構皆應包含在本發明之範疇當中。 The resonant tank 126 is coupled to the first switch Q1 and the second switch Q2 of the first switch arm 122, and is mainly composed of a resonant inductor Lr, a magnetizing inductance of the transformer T (not shown), and a resonant capacitor Cr LLC resonance tank. The resonant tank in the present invention is not limited to the connection method shown in the figure, and the structure that can generate two resonant frequencies by using LC should be included in the scope of the present invention.

圖1與圖3所示的次級側電路14係為中心抽頭式(center-taped)架構。次級側電路14包含第一同步整流橋臂142,耦接變壓器T的次級側,具有第一同步整流開關SR1與串聯第一同步整流開關SR1的第二同步整流開關SR2。透過變壓器T的中心抽頭與第一同步整流開關SR1、第二同步整流開關SR2的共接點形成LLC諧振轉換器10的輸出側。其中,控制單元16提供第一整流控制信號SSR1控制第一同步整流開關SR1,提供第二整流控制信號SSR2控制第二同步整流開關SR2。在本發明的應用中,第一整流控制信號SSR1與第二整流控制信號SSR2為互補的控制信號(可參見圖7A所示)。 The secondary side circuit 14 shown in FIG. 1 and FIG. 3 is a center-taped structure. The secondary side circuit 14 includes a first synchronous rectification bridge arm 142 coupled to the secondary side of the transformer T, and has a first synchronous rectification switch SR1 and a second synchronous rectification switch SR2 connected in series with the first synchronous rectification switch SR1. The output side of the LLC resonant converter 10 is formed through the common contact point of the center tap of the transformer T and the first synchronous rectification switch SR1 and the second synchronous rectification switch SR2. The control unit 16 provides the first rectification control signal S SR1 to control the first synchronous rectification switch SR1, and provides the second rectification control signal S SR2 to control the second synchronous rectification switch SR2. In the application of the present invention, the first rectification control signal S SR1 and the second rectification control signal S SR2 are complementary control signals (see FIG. 7A ).

圖2與圖4所示的次級側電路14係為全橋式(full-bridge)架構。次級側電路14包含第一同步整流橋臂142與第二同步整流橋臂144。第一同步整流橋臂142耦接變壓器T的次級側,具有第一同步整流開關SR1與串聯第一同步整流開關SR1的第二同步整流開關SR2。第二同步整流橋臂144並聯第一同步整流橋臂142,具有第三同步整流開關SR3與串聯第三同步整流開關SR3的第四同步整流開關SR4。其中,控制單元16提供第一整流控制信號SSR1控制第一同步整流開關SR1,提供第二整流控制信號SSR2控制第二同步整流開關SR2,提供第三整流控制信號SSR3控制第三同步整流開關SR3,提供第四整流控制信號SSR4控制第四同步整流開關SR4。第一整流控制信號SSR1與第四整流控制信號SSR4為相同的控制信號;第二整流控制信號SSR2與第三整流控制信號SSR3為相同的控制信號。並且,第一整流控制信號SSR1與第二整流控制信號SSR2為互補的控制信號。 The secondary side circuit 14 shown in FIGS. 2 and 4 has a full-bridge architecture. The secondary side circuit 14 includes a first synchronous rectification bridge arm 142 and a second synchronous rectification bridge arm 144. The first synchronous rectification bridge arm 142 is coupled to the secondary side of the transformer T, and has a first synchronous rectification switch SR1 and a second synchronous rectification switch SR2 connected in series with the first synchronous rectification switch SR1. The second synchronous rectification bridge arm 144 is connected in parallel with the first synchronous rectification bridge arm 142, and has a third synchronous rectification switch SR3 and a fourth synchronous rectification switch SR4 connected in series with the third synchronous rectification switch SR3. The control unit 16 provides the first rectification control signal S SR1 to control the first synchronous rectification switch SR1, provides the second rectification control signal S SR2 to control the second synchronous rectification switch SR2, and provides the third rectification control signal S SR3 to control the third synchronous rectification. The switch SR3 provides a fourth rectification control signal S SR4 to control the fourth synchronous rectification switch SR4. The first rectification control signal S SR1 and the fourth rectification control signal S SR4 are the same control signal; the second rectification control signal S SR2 and the third rectification control signal S SR3 are the same control signal. In addition, the first rectification control signal S SR1 and the second rectification control signal S SR2 are complementary control signals.

以下,為方便說明LLC諧振轉換器的操作與控制原理,因此以圖1所示的電路拓樸為例加以說明。請參見圖5與圖6所示,其係分別為本發明控 制電路的方塊示意圖與本發明LLC諧振轉換器操作於不同模式下的頻率與相位示意圖。 Hereinafter, in order to facilitate the description of the operation and control principle of the LLC resonant converter, the circuit topology shown in FIG. 1 is taken as an example for description. Please refer to FIG. 5 and FIG. 6, which are respectively the controller of the present invention The block diagram of the control circuit and the frequency and phase diagram of the LLC resonant converter of the present invention operating in different modes.

控制單元16接收LLC諧振轉換器10輸出的輸出電壓信號,根據輸出電壓信號得到頻率控制命令fCMD。具體地,控制單元16透過比較單元161接收LLC諧振轉換器10的輸出電壓回授值VOUT_FB與輸出電壓參考值VOUT_REF。其中,比較單元161將輸出電壓參考值VOUT_REF與輸出電壓回授值VOUT_FB進行相減比較後,得到電壓誤差值VERRThe control unit 16 receives the output voltage signal output by the LLC resonant converter 10, and obtains the frequency control command f CMD according to the output voltage signal. Specifically, the control unit 16 receives the output voltage feedback value V OUT_FB and the output voltage reference value V OUT_REF of the LLC resonant converter 10 through the comparison unit 161. Wherein, the comparison unit 161 subtracts and compares the output voltage reference value V OUT_REF and the output voltage feedback value V OUT_FB to obtain the voltage error value V ERR .

控制單元16的電壓控制器162接收電壓誤差值VERR,並且對電壓誤差值VERR進行運算可得到頻率控制命令fCMD。以電壓控制器162為比例-積分控制器(PI controller)為例,然不以此為限制本發明。電壓控制器162對電壓誤差值VERR進行比例與積分的線性組合運算,得到控制量,即頻率控制命令fCMD。再者,為了確保頻率控制命令fCMD不會高於控制命令量的最大值fMAX或者低於控制命令量的最小值fMIN,因此,透過頻率限制器163限制頻率控制命令fCMD的上限值與下限值。 The voltage controller 162 of the control unit 16 receives the voltage error value V ERR and calculates the voltage error value V ERR to obtain the frequency control command f CMD . Taking the voltage controller 162 as a proportional-integral controller (PI controller) as an example, the present invention is not limited by this. The voltage controller 162 performs a proportional and integral linear combination operation on the voltage error value V ERR to obtain the control quantity, that is, the frequency control command f CMD . Furthermore, in order to ensure that the frequency control command f CMD is not higher than the maximum value of the control command amount f MAX or lower than the minimum value of the control command amount f MIN , therefore, the upper limit of the frequency control command f CMD is limited by the frequency limiter 163 Value and lower limit.

請參見圖7A至圖7C所示,其係為本發明LLC諧振轉換器操作於不同模式下的控制信號的示意圖,配合參見圖6。當頻率控制命令fCMD高於控制單元16設定的相移頻率fPS且高於LLC諧振轉換器10的諧振頻率fR時,LLC諧振轉換器10操作於第一模式M1(配合參見圖7A),在此模式下,控制單元16提供的第一控制信號SQ1(與第四控制信號SQ4為相同信號)與第一整流控制信號SSR1為相位相同的變頻信號,同時,第二控制信號SQ2(與第三控制信號SQ3為相同信號)與第二整流控制信號(SSR2)為相位相同的變頻信號。因此,第一控制信號SQ1與第一整流控制信號SSR1的導通信號上升沿相位差α為0度,並且第二控制信號SQ2與第二整流控制信號SSR2的導通信號上升沿相位差α亦為0度。在此模式下,初級側的第一開關Q1、第二開關Q2、第三開關Q3、第四開關Q4與次級側 的第一同步整流開關SR1、第二同步整流開關SR2皆工作於變頻模式。在此模式下的變頻控制係透過圖5所示的頻率控制器164所實現。 Please refer to FIG. 7A to FIG. 7C, which are schematic diagrams of the control signals of the LLC resonant converter of the present invention operating in different modes. Refer to FIG. 6 for cooperation. When the frequency control command f CMD is higher than the phase shift frequency f PS set by the control unit 16 and higher than the resonant frequency f R of the LLC resonant converter 10, the LLC resonant converter 10 operates in the first mode M1 (see FIG. 7A for cooperation) In this mode, the first control signal S Q1 (the same signal as the fourth control signal S Q4 ) provided by the control unit 16 and the first rectification control signal S SR1 are variable frequency signals with the same phase, and at the same time, the second control signal S Q2 (the same signal as the third control signal S Q3 ) and the second rectification control signal (S SR2 ) are variable frequency signals with the same phase. Therefore, the phase difference α between the rising edge of the turn-on signal of the first control signal S Q1 and the first rectification control signal S SR1 is 0 degrees, and the rising edge of the turn-on signal of the second control signal S Q2 and the second rectification control signal S SR2 The phase difference α is also 0 degrees. In this mode, the first switch Q1 on the primary side, the second switch Q2, the third switch Q3, and the fourth switch Q4, and the first synchronous rectifier switch SR1 and the second synchronous rectifier switch SR2 on the secondary side all work in variable frequency mode. . The frequency conversion control in this mode is implemented through the frequency controller 164 shown in FIG. 5.

當頻率控制命令fCMD高於控制單元16設定的相移頻率fPS但低於LLC諧振轉換器10的諧振頻率fR時,LLC諧振轉換器10操作於第二模式M2(配合參見圖7B),在此模式下,控制單元16提供的第一控制信號SQ1(與第四控制信號SQ4為相同信號)與第一整流控制信號SSR1為相位相同的變頻信號,同時,第二控制信號SQ2(與第三控制信號SQ3為相同信號)與第二整流控制信號(SSR2)為相位相同的變頻信號。亦即,第一控制信號SQ1與第一整流控制信號SSR1的導通信號上升沿相位差α為0度,並且第二控制信號SQ2與第二整流控制信號SSR2的導通信號上升沿相位差α亦為0度。在此模式中,第一整流控制信號SSR1與第二整流控制信號SSR2的佔空比(責任週期、duty cycle)為諧振週期,其中,諧振週期係為諧振頻率fR的倒數,即1/fR。在此模式下,初級側的第一開關Q1、第二開關Q2、第三開關Q3、第四開關Q4與次級側的第一同步整流開關SR1、第二同步整流開關SR2皆工作於變頻模式,並且次級側的第一同步整流開關SR1、第二同步整流開關SR2的佔空比會被限制於諧振週期。亦即,第一同步整流開關SR1的導通時間由原本的時間0至時間t1被限制為時間0至時間t1';第二同步整流開關SR2的導通時間由原本的時間t1至時間t2被限制為時間t1至時間t2'。在此模式下的變頻控制係透過圖5所示的頻率控制器164所實現。 When the frequency control command f CMD is higher than the phase shift frequency f PS set by the control unit 16 but lower than the resonant frequency f R of the LLC resonant converter 10, the LLC resonant converter 10 operates in the second mode M2 (see FIG. 7B for cooperation) In this mode, the first control signal S Q1 (the same signal as the fourth control signal S Q4 ) provided by the control unit 16 and the first rectification control signal S SR1 are variable frequency signals with the same phase, and at the same time, the second control signal S Q2 (the same signal as the third control signal S Q3 ) and the second rectification control signal (S SR2 ) are variable frequency signals with the same phase. That is, the phase difference α between the rising edges of the turn-on signals of the first control signal S Q1 and the first rectification control signal S SR1 is 0 degrees, and the turn-on signals of the second control signal S Q2 and the second rectification control signal S SR2 rise The phase difference α is also 0 degrees. In this mode, the duty cycle (duty cycle, duty cycle) of the first rectification control signal S SR1 and the second rectification control signal S SR2 is the resonant period, where the resonant period is the reciprocal of the resonant frequency f R , namely 1 /f R. In this mode, the first switch Q1 on the primary side, the second switch Q2, the third switch Q3, and the fourth switch Q4, and the first synchronous rectifier switch SR1 and the second synchronous rectifier switch SR2 on the secondary side all work in variable frequency mode. And the duty cycle of the first synchronous rectification switch SR1 and the second synchronous rectification switch SR2 on the secondary side will be limited to the resonant period. That is, the conduction time of the first synchronous rectification switch SR1 is limited from the original time 0 to time t1 to time 0 to time t1'; the conduction time of the second synchronous rectification switch SR2 is limited to the original time t1 to time t2 Time t1 to time t2'. The frequency conversion control in this mode is realized through the frequency controller 164 shown in FIG. 5.

當頻率控制命令fCMD低於控制單元16設定的相移頻率fPS時,LLC諧振轉換器10操作於第三模式M3(配合參見圖7C),在此模式下,控制單元16提供的第一控制信號SQ1(與第四控制信號SQ4為相同信號)與第一整流控制信號SSR1為相位相異的變頻信號,同時,第二控制信號SQ2(與第三控制信號SQ3為相同信號)與第二整流控制信號SSR2為相位相異的變頻信號。亦即,第一控制信號SQ1與第一整流控制信號SSR1的導通信號上升沿相位差α隨著頻率越低相位差越大, 例如圖示的ΦL為0~180且大於0的任意數。值得一提,控制單元16控制第一整流控制信號SSR1的相位超前第一控制信號SQ1的相位為ΦL度。具體控制方式是藉由控制第一同步整流開關SR1的導通週期增大,以達到第一整流控制信號SSR1的導通信號上升沿相位超前(由原本的時間0超前為時間t1",即超前ΦL度)。同樣地,第二控制信號SQ2與第二整流控制信號SSR2的導通信號上升沿相位差α隨著頻率越低相位差越大。其同樣藉由控制第二同步整流開關SR2的導通週期增大,以達到第二整流控制信號SSR2的導通信號上升沿相位超前(由原本的時間t1超前為時間t2",即超前ΦL度)。藉由此控制方式,使得LLC諧振轉換器10於輸入電壓不足導致輸出電壓開始往下掉時,其輸出電壓仍能在一維持時間內維持在一電壓範圍內,使得後端耦接的電子產品有足夠的時間反應,並進行斷電前資料的完整儲存或備份。 When the frequency control command f CMD is lower than the phase shift frequency f PS set by the control unit 16, the LLC resonant converter 10 operates in the third mode M3 (for cooperation, see FIG. 7C). In this mode, the control unit 16 provides the first The control signal S Q1 (the same signal as the fourth control signal S Q4 ) and the first rectification control signal S SR1 are variable-frequency signals with different phases. At the same time, the second control signal S Q2 (the same signal as the third control signal S Q3) Signal) and the second rectification control signal S SR2 are variable frequency signals with different phases. That is, the phase difference α between the rising edge of the turn-on signal of the first control signal S Q1 and the first rectification control signal S SR1 increases with the lower the frequency. For example, the illustrated Φ L is 0 to 180 and greater than 0. Any number. It is worth mentioning that the control unit 16 controls the phase of the first rectification control signal S SR1 to lead the phase of the first control signal S Q1 by Φ L degrees. The specific control method is to increase the conduction period of the first synchronous rectification switch SR1 to achieve the leading edge phase of the conduction signal of the first rectification control signal S SR1 (from the original time 0 leading to time t1", that is, leading Φ L degrees). Similarly, the phase difference α between the rising edge of the turn-on signal of the second control signal S Q2 and the second rectification control signal S SR2 increases with the lower the frequency. It is also controlled by the second synchronous rectification The conduction period of the switch SR2 is increased to achieve the leading edge phase of the conduction signal of the second rectification control signal S SR2 (advance from the original time t1 to time t2", that is, advance Φ L degrees). With this control method, when the output voltage of the LLC resonant converter 10 starts to drop due to insufficient input voltage, the output voltage of the LLC resonant converter 10 can still be maintained within a voltage range for a maintenance time, so that the back-end coupled electronic products There is enough time to respond, and complete storage or backup of the data before the power failure.

在此模式下,初級側的第一開關Q1、第二開關Q2、第三開關Q3、第四開關Q4保持工作於變頻模式,而次級側的第一同步整流開關SR1、第二同步整流開關SR2則工作於變頻模式與相移(相位超前)模式。在此模式下的變頻控制與相位超前控制係透過圖5所示的頻率與相位控制器165所實現。 In this mode, the first switch Q1, the second switch Q2, the third switch Q3, and the fourth switch Q4 on the primary side keep working in the variable frequency mode, while the first synchronous rectifier switch SR1 and the second synchronous rectifier switch on the secondary side SR2 works in variable frequency mode and phase shift (phase lead) mode. The frequency conversion control and phase advance control in this mode are implemented through the frequency and phase controller 165 shown in FIG. 5.

請參見圖8所示,其係為本發明LLC諧振轉換器的控制方法的流程圖。LLC諧振轉換器包含設置於變壓器初級側的方波產生器與設置於變壓器的次級側的同步整流單元。方波產生器至少包含由第一控制信號控制的第一開關與由第二控制信號控制的第二開關。同步整流單元至少包含由第一整流控制信號控制的第一同步整流開關與由第二整流控制信號控制的第二同步整流開關。 Please refer to FIG. 8, which is a flowchart of the control method of the LLC resonant converter of the present invention. The LLC resonant converter includes a square wave generator arranged on the primary side of the transformer and a synchronous rectification unit arranged on the secondary side of the transformer. The square wave generator includes at least a first switch controlled by a first control signal and a second switch controlled by a second control signal. The synchronous rectification unit at least includes a first synchronous rectification switch controlled by a first rectification control signal and a second synchronous rectification switch controlled by a second rectification control signal.

所述控制方法包含。首先,接收輸出電壓回授值與輸出電壓參考值,且比較輸出電壓回授值與輸出電壓參考值產生電壓誤差值(S11)。然後,對電壓誤差值進行運算得到頻率控制命令(S12)。然後,判斷頻率控制命令是否高於相移頻率(S13)。若是(即頻率控制命令高於相移頻率),控制第一控制信號與第一 整流控制信號為相位相同的變頻信號,且控制第二控制信號與第二整流控制信號為相位相同的變頻信號(S14)。若否(即頻率控制命令低於相移頻率),控制第一控制信號與第一整流控制信號為相位相異的變頻信號,且控制第二控制信號與第二整流控制信號為相位相異的變頻信號(S15)。 The control method includes. First, the output voltage feedback value and the output voltage reference value are received, and the output voltage feedback value and the output voltage reference value are compared to generate a voltage error value (S11). Then, the voltage error value is calculated to obtain the frequency control command (S12). Then, it is judged whether the frequency control command is higher than the phase shift frequency (S13). If yes (that is, the frequency control command is higher than the phase shift frequency), control the first control signal and the first The rectification control signal is a variable frequency signal with the same phase, and the second control signal and the second rectification control signal are controlled to be a variable frequency signal with the same phase (S14). If not (that is, the frequency control command is lower than the phase shift frequency), control the first control signal and the first rectification control signal to be variable-frequency signals with different phases, and control the second control signal and the second rectification control signal to be phase-different Frequency conversion signal (S15).

步驟(S14)更包含:當頻率控制命令高於相移頻率但低於諧振頻率時,控制第一整流控制信號與第二整流控制信號的佔空比為諧振週期。 Step (S14) further includes: when the frequency control command is higher than the phase shift frequency but lower than the resonance frequency, controlling the duty cycle of the first rectification control signal and the second rectification control signal to be the resonance period.

步驟(S15)更包含:當頻率控制命令低於相移頻率時,控制第一整流控制信號的相位超前第一控制信號的相位,且控制第二整流控制信號的相位超前第二控制信號的相位。 Step (S15) further includes: when the frequency control command is lower than the phase shift frequency, controlling the phase of the first rectification control signal to lead the phase of the first control signal, and controlling the phase of the second rectification control signal to lead the phase of the second control signal .

故此,使得LLC諧振轉換器於當輸入電壓不足時,仍能夠維持輸出電壓在一電壓範圍內一段時間,使得後端耦接的電子產品有足夠的時間反應,並進行斷電前資料的完整儲存或備份。 Therefore, when the input voltage is insufficient, the LLC resonant converter can still maintain the output voltage within a voltage range for a period of time, so that the electronic products coupled to the back end have enough time to react and perform complete data storage before the power failure. Or backup.

以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包含於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。 The above are only detailed descriptions and drawings of the preferred embodiments of the present invention. However, the features of the present invention are not limited to these, and are not intended to limit the present invention. The full scope of the present invention should be covered by the following patent application scope As the standard, all embodiments that conform to the spirit of the patent application of the present invention and similar changes should be included in the scope of the present invention. Anyone familiar with the art in the field of the present invention can easily think of changes or Modifications can be covered in the following patent scope of this case.

16:控制單元 16: control unit

SQ1:第一控制信號 S Q1 : the first control signal

SQ2:第二控制信號 S Q2 : second control signal

SQ3:第三控制信號 S Q3 : the third control signal

SQ4:第四控制信號 S Q4 : Fourth control signal

SSR1:第一整流控制信號 S SR1 : the first rectification control signal

SSR2:第二整流控制信號 S SR2 : The second rectification control signal

161:比較單元 161: comparison unit

162:電壓控制器 162: Voltage Controller

163:頻率限制器 163: frequency limiter

164:頻率控制器 164: Frequency Controller

165:頻率與相位控制器 165: Frequency and Phase Controller

VOUT_FB:輸出電壓回授值 V OUT_FB : Output voltage feedback value

VOUT_REF:輸出電壓參考值 V OUT_REF : output voltage reference value

VERR:電壓誤差值 V ERR : voltage error value

fCMD:頻率控制命令 f CMD : Frequency control command

Claims (17)

一種LLC諧振轉換器,包含:一方波產生器,具有一第一開關與串聯該第一開關的一第二開關;一諧振槽,耦接該方波產生器;一變壓器,具有一初級側與一次級側,該初級側耦接該諧振槽與該方波產生器的該第一開關與該第二開關;一同步整流單元,耦接該次級側,具有一第一同步整流開關與一第二同步整流開關;及一控制單元,接收該諧振轉換器的一輸出電壓,根據該輸出電壓得到一頻率控制命令,提供一第一控制信號控制該第一開關、提供一第二控制信號控制該第二開關、提供一第一整流控制信號控制該第一同步整流開關以及提供一第二整流控制信號控制該第二同步整流開關;其中,當該頻率控制命令高於一相移頻率時,該第一控制信號與該第一整流控制信號為相位相同的變頻信號,且該第二控制信號與該第二整流控制信號為相位相同的變頻信號;當該頻率控制命令低於該相移頻率時,該第一控制信號與該第一整流控制信號為相位相異的變頻信號,且該第二控制信號與該第二整流控制信號為相位相異的變頻信號。 An LLC resonant converter includes: a square wave generator with a first switch and a second switch connected in series with the first switch; a resonant tank coupled to the square wave generator; a transformer with a primary side and On the secondary side, the primary side is coupled to the resonant tank and the first switch and the second switch of the square wave generator; a synchronous rectifier unit, coupled to the secondary side, has a first synchronous rectifier switch and a A second synchronous rectifier switch; and a control unit that receives an output voltage of the resonant converter, obtains a frequency control command according to the output voltage, provides a first control signal to control the first switch, and provides a second control signal to control The second switch provides a first rectification control signal to control the first synchronous rectification switch and provides a second rectification control signal to control the second synchronous rectification switch; wherein, when the frequency control command is higher than a phase shift frequency, The first control signal and the first rectification control signal are variable frequency signals with the same phase, and the second control signal and the second rectification control signal are variable frequency signals with the same phase; when the frequency control command is lower than the phase shift frequency At this time, the first control signal and the first rectification control signal are frequency conversion signals with different phases, and the second control signal and the second rectification control signal are frequency conversion signals with different phases. 如請求項1所述之LLC諧振轉換器,其中,當該頻率控制命令高於該相移頻率但低於一諧振頻率時,該第一整流控制信號與該第二整流控制信號的佔空比為一諧振週期。 The LLC resonant converter according to claim 1, wherein when the frequency control command is higher than the phase shift frequency but lower than a resonant frequency, the duty ratio of the first rectification control signal and the second rectification control signal It is a resonant period. 如請求項1所述之LLC諧振轉換器,其中,當該頻率控制命令低於該相移頻率時,該第一整流控制信號的相位超前該第一控制信號的相位,且該第二整流控制信號的相位超前該第二控制信號的相位。 The LLC resonant converter according to claim 1, wherein when the frequency control command is lower than the phase shift frequency, the phase of the first rectification control signal leads the phase of the first control signal, and the second rectification control The phase of the signal leads the phase of the second control signal. 如請求項1所述之LLC諧振轉換器,其中,該控制單元包含:一比較單元,接收對應該輸出電壓的一輸出電壓回授值與一輸出電壓參考值,比較該輸出電壓回授值與該輸出電壓參考值產生一電壓誤差值;及一電壓控制器,接收該電壓誤差值,對該電壓誤差值進行運算以得到該頻率控制命令。 The LLC resonant converter according to claim 1, wherein the control unit includes: a comparison unit that receives an output voltage feedback value and an output voltage reference value corresponding to the output voltage, and compares the output voltage feedback value with The output voltage reference value generates a voltage error value; and a voltage controller receives the voltage error value and performs operations on the voltage error value to obtain the frequency control command. 如請求項1所述之LLC諧振轉換器,其中,該方波產生器,包含由該第一開關與該第二開關組成的一第一開關橋臂,以形成半橋式電路架構。 The LLC resonant converter according to claim 1, wherein the square wave generator includes a first switch bridge arm composed of the first switch and the second switch to form a half-bridge circuit structure. 如請求項1所述之LLC諧振轉換器,其中,該方波產生器,包含由該第一開關與該第二開關組成的一第一開關橋臂,及由一第三開關與一第四開關組成的一第二開關橋臂,以形成全橋式電路架構。 The LLC resonant converter according to claim 1, wherein the square wave generator includes a first switch bridge arm composed of the first switch and the second switch, and a third switch and a fourth switch. A second switch bridge arm is composed of switches to form a full-bridge circuit structure. 如請求項1所述之LLC諧振轉換器,其中,該變壓器為中心抽頭式架構,並且該第一同步整流開關與該第二同步整流開關分別耦接該變壓器之兩端。 The LLC resonant converter according to claim 1, wherein the transformer has a center-tap structure, and the first synchronous rectifier switch and the second synchronous rectifier switch are respectively coupled to two ends of the transformer. 如請求項1所述之LLC諧振轉換器,其中,該變壓器耦接由該第一同步整流開關與該第二同步整流開關組成的一第一同步整流橋臂,以及由一第三同步整流開關與一第四同步整流開關組成的一第二同步整流橋臂,以形成全橋式整流電路架構。 The LLC resonant converter according to claim 1, wherein the transformer is coupled to a first synchronous rectification bridge arm composed of the first synchronous rectification switch and the second synchronous rectification switch, and a third synchronous rectification switch A second synchronous rectifier bridge arm composed of a fourth synchronous rectifier switch forms a full-bridge rectifier circuit structure. 如請求項3所述之LLC諧振轉換器,其中,透過控制該第一同步整流開關的導通週期增大,使得該第一整流控制信號的相位超前該第一控制 信號的相位;透過控制該第二同步整流開關的導通週期增大,使得該第二整流控制信號的相位超前該第二控制信號的相位。 The LLC resonant converter according to claim 3, wherein the on-period of the first synchronous rectification switch is controlled to increase, so that the phase of the first rectification control signal leads the first control The phase of the signal; by controlling the on-period of the second synchronous rectification switch to increase, so that the phase of the second rectification control signal leads the phase of the second control signal. 一種LLC諧振轉換器的控制單元,該控制單元提供一控制信號控制該諧振轉換器一初級側的一方波產生器該方波產生器具有一第一開關與串聯該第一開關的一第二開關,提供一整流控制信號控制一次級側的一同步整流單元,且該控制單元根據該諧振轉換器的一輸出電壓得到一頻率控制命令;其中,當該頻率控制命令高於一相移頻率時,該控制信號與該整流控制信號為相位相同的變頻信號;當該頻率控制命令低於該相移頻率時,該控制信號與該整流控制信號為相位相異的變頻信號。 A control unit of an LLC resonant converter. The control unit provides a control signal to control a square wave generator on a primary side of the resonant converter. The square wave generator has a first switch and a second switch connected in series with the first switch, A rectification control signal is provided to control a synchronous rectification unit on the secondary side, and the control unit obtains a frequency control command according to an output voltage of the resonant converter; wherein, when the frequency control command is higher than a phase shift frequency, the The control signal and the rectification control signal are variable frequency signals with the same phase; when the frequency control command is lower than the phase shift frequency, the control signal and the rectification control signal are variable frequency signals with different phases. 如請求項10所述之LLC諧振轉換器的控制單元,其中,當該頻率控制命令高於該相移頻率但低於一諧振頻率時,該整流控制信號的佔空比為一諧振週期。 The control unit of the LLC resonant converter according to claim 10, wherein when the frequency control command is higher than the phase shift frequency but lower than a resonant frequency, the duty cycle of the rectification control signal is a resonant period. 如請求項10所述之LLC諧振轉換器的控制單元,當該頻率控制命令低於該相移頻率時,該整流控制信號的相位超前該控制信號的相位。 For the control unit of the LLC resonant converter described in claim 10, when the frequency control command is lower than the phase shift frequency, the phase of the rectification control signal leads the phase of the control signal. 如請求項12所述之LLC諧振轉換器的控制單元,其中,透過控制該整流控制信號所對應控制的一同步整流開關的導通週期增大,使得該整流控制信號的相位超前該控制信號的相位。 The control unit of the LLC resonant converter according to claim 12, wherein the on-period of a synchronous rectification switch corresponding to the rectification control signal is controlled to increase, so that the phase of the rectification control signal leads the phase of the control signal . 一種LLC諧振轉換器的控制方法,其中該諧振轉換器包含耦接於一變壓器的一初級側的一開關橋臂與耦接於該變壓器的一次級側的一同步整流單元,並且該開關橋臂包含由一第一控制信號控制的一第一開關與由一第二控制信號控制的一第二開關,該同步整流單元包含由一第一整流控制信號控 制的一第一同步整流開關與由一第二整流控制信號控制的一第二同步整流開關;該控制方法包含:根據一輸出電壓回授值得到一操作頻率;判斷該操作頻率是否高於一相移頻率;若該操作頻率高於該相移頻率,控制該第一控制信號與該第一整流控制信號為相位相同的變頻信號,且控制該第二控制信號與該第二整流控制信號為相位相同的變頻信號;若該操作頻率低於該相移頻率,控制該第一控制信號與該第一整流控制信號為相位相異的變頻信號,且控制該第二控制信號與該第二整流控制信號為相位相異的變頻信號。 A control method of an LLC resonant converter, wherein the resonant converter includes a switching bridge arm coupled to a primary side of a transformer and a synchronous rectification unit coupled to the primary side of the transformer, and the switching bridge arm It includes a first switch controlled by a first control signal and a second switch controlled by a second control signal. The synchronous rectification unit includes a first rectifier control signal. A first synchronous rectification switch controlled by a second rectification control signal and a second synchronous rectification switch controlled by a second rectification control signal; the control method includes: obtaining an operating frequency according to an output voltage feedback value; judging whether the operating frequency is higher than a Phase shift frequency; if the operating frequency is higher than the phase shift frequency, control the first control signal and the first rectification control signal to be variable frequency signals with the same phase, and control the second control signal and the second rectification control signal to be Frequency conversion signals with the same phase; if the operating frequency is lower than the phase shift frequency, the first control signal and the first rectification control signal are controlled to be frequency conversion signals with different phases, and the second control signal and the second rectification control signal are controlled The control signal is a variable frequency signal with different phases. 如請求項14所述之LLC諧振轉換器的控制方法,更包含:當該操作頻率高於該相移頻率但低於一諧振頻率時,控制該第一整流控制信號與該第二整流控制信號的佔空比為一諧振週期。 The control method of the LLC resonant converter according to claim 14, further comprising: when the operating frequency is higher than the phase shift frequency but lower than a resonant frequency, controlling the first rectification control signal and the second rectification control signal The duty cycle of is a resonant period. 如請求項14所述之LLC諧振轉換器的控制方法,更包含:當該操作頻率低於該相移頻率時,控制該第一整流控制信號的相位超前該第一控制信號的相位,且控制該第二整流控制信號的相位超前該第二控制信號的相位。 The control method of the LLC resonant converter according to claim 14, further comprising: when the operating frequency is lower than the phase shift frequency, controlling the phase of the first rectification control signal to lead the phase of the first control signal, and controlling The phase of the second rectification control signal leads the phase of the second control signal. 如請求項16所述之LLC諧振轉換器的控制方法,其中透過控制該第一同步整流開關的導通週期增大,使得該第一整流控制信號的相位超前該第一控制信號的相位;透過控制該第二同步整流開關的導通週期增大,使得該第二整流控制信號的相位超前該第二控制信號的相位。 The control method of the LLC resonant converter according to claim 16, wherein the on-period of the first synchronous rectification switch is controlled to increase, so that the phase of the first rectification control signal leads the phase of the first control signal; The conduction period of the second synchronous rectification switch is increased, so that the phase of the second rectification control signal leads the phase of the second control signal.
TW109134043A 2020-09-30 2020-09-30 Llc resonance converter, control unit, and method of controlling the same TWI747535B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109134043A TWI747535B (en) 2020-09-30 2020-09-30 Llc resonance converter, control unit, and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109134043A TWI747535B (en) 2020-09-30 2020-09-30 Llc resonance converter, control unit, and method of controlling the same

Publications (2)

Publication Number Publication Date
TWI747535B true TWI747535B (en) 2021-11-21
TW202215764A TW202215764A (en) 2022-04-16

Family

ID=79907705

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109134043A TWI747535B (en) 2020-09-30 2020-09-30 Llc resonance converter, control unit, and method of controlling the same

Country Status (1)

Country Link
TW (1) TWI747535B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782841B (en) * 2021-12-30 2022-11-01 新唐科技股份有限公司 Event detection control device and method for circuit system controlled by pulse wave modulation signal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817459B (en) * 2022-04-25 2023-10-01 宏碁股份有限公司 Power delivery device
TWI812354B (en) * 2022-07-18 2023-08-11 宏碁股份有限公司 Power supply device with high efficiency

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI363481B (en) * 2008-03-28 2012-05-01 Delta Electronics Inc Synchronous rectifying circuit having burst mode controller and controlling method thereof
JP6021972B2 (en) * 2015-03-04 2016-11-09 三菱電機株式会社 Power converter
TWI568166B (en) * 2015-11-26 2017-01-21 A High Efficiency LLC Resonant Converter with Secondary Side Synchronous Rectifier Blind Control
CN107346940A (en) * 2016-05-05 2017-11-14 中车株洲电力机车研究所有限公司 A kind of power conversion circuit
CN206775393U (en) * 2017-04-21 2017-12-19 昆明理工大学 A kind of LLC resonant converter
CN207251477U (en) * 2017-02-28 2018-04-17 深圳市皓文电子有限公司 A kind of controlled resonant converter
US9979308B1 (en) * 2017-06-02 2018-05-22 Infineon Technologies Austria Ag Synchronous rectifier switch control during burst mode operation of an LLC converter
CN208094441U (en) * 2017-01-05 2018-11-13 意法半导体股份有限公司 Control circuit and controlled resonant converter
CN109756142A (en) * 2019-01-24 2019-05-14 上海科技大学 Restructural H5 inverter bridge and single-direction and dual-direction controlled resonant converter based on the inverter bridge

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI363481B (en) * 2008-03-28 2012-05-01 Delta Electronics Inc Synchronous rectifying circuit having burst mode controller and controlling method thereof
JP6021972B2 (en) * 2015-03-04 2016-11-09 三菱電機株式会社 Power converter
TWI568166B (en) * 2015-11-26 2017-01-21 A High Efficiency LLC Resonant Converter with Secondary Side Synchronous Rectifier Blind Control
CN107346940A (en) * 2016-05-05 2017-11-14 中车株洲电力机车研究所有限公司 A kind of power conversion circuit
CN208094441U (en) * 2017-01-05 2018-11-13 意法半导体股份有限公司 Control circuit and controlled resonant converter
CN207251477U (en) * 2017-02-28 2018-04-17 深圳市皓文电子有限公司 A kind of controlled resonant converter
CN206775393U (en) * 2017-04-21 2017-12-19 昆明理工大学 A kind of LLC resonant converter
US9979308B1 (en) * 2017-06-02 2018-05-22 Infineon Technologies Austria Ag Synchronous rectifier switch control during burst mode operation of an LLC converter
CN109756142A (en) * 2019-01-24 2019-05-14 上海科技大学 Restructural H5 inverter bridge and single-direction and dual-direction controlled resonant converter based on the inverter bridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782841B (en) * 2021-12-30 2022-11-01 新唐科技股份有限公司 Event detection control device and method for circuit system controlled by pulse wave modulation signal

Also Published As

Publication number Publication date
TW202215764A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
TWI747535B (en) Llc resonance converter, control unit, and method of controlling the same
US11509213B2 (en) LLC resonant converter, control unit, and method of controlling the same
US8923018B2 (en) DC/DC converter, power converter and control method thereof
US9263960B2 (en) Power converters for wide input or output voltage range and control methods thereof
US8842450B2 (en) Power converter using multiple phase-shifting quasi-resonant converters
CN103516196B (en) Switching power unit
WO2016150245A1 (en) Dc/dc converter
KR100772658B1 (en) Active-clamp current-source push-pull dc-dc converter
US8582321B2 (en) Resonant converters and burst mode control method thereof
CN103326580B (en) DC-to-DC converter, power converter and control method thereof
US20070285952A1 (en) Resonant converter and voltage stabilizing method thereof
US11611283B2 (en) Switching power supply unit and electric power supply system
JP2007020391A (en) Highly efficient half-bridge dc/dc converter and its control method
CN101106335A (en) A harmonic vibration converter
JP2011217566A (en) Switching power supply device
TWI752891B (en) Llc resonance converter, control unit, and method of controlling the same
WO2018157796A1 (en) Resonant converter
JP5060827B2 (en) Fuel cell grid-connected inverter
CN114583967A (en) Isolated direct-current boost converter of two-phase parallel boost circuit and control method thereof
US11658584B2 (en) LLC resonance converter and method of controlling the same
CN114362532A (en) LLC resonant converter and control method thereof
JP2012010528A (en) Load driving device
CN116613993A (en) Control method and circuit of resonant converter and resonant converter
CN116191893A (en) LLC resonant converter
Kim et al. High efficiency dual-output LLC resonant converter with synchronous rectifier control