TWI817459B - Power delivery device - Google Patents
Power delivery device Download PDFInfo
- Publication number
- TWI817459B TWI817459B TW111115701A TW111115701A TWI817459B TW I817459 B TWI817459 B TW I817459B TW 111115701 A TW111115701 A TW 111115701A TW 111115701 A TW111115701 A TW 111115701A TW I817459 B TWI817459 B TW I817459B
- Authority
- TW
- Taiwan
- Prior art keywords
- buck
- voltage
- output
- terminal
- power supply
- Prior art date
Links
- 230000000903 blocking effect Effects 0.000 claims abstract description 66
- 230000006854 communication Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 description 12
- 238000004804 winding Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 4
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 description 2
- 101100489717 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND2 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Vending Machines For Individual Products (AREA)
Abstract
Description
本發明是有關於一種供電裝置,且特別是有關於一種能夠因應多種不同的電壓需求的供電裝置。The present invention relates to a power supply device, and in particular, to a power supply device capable of responding to a variety of different voltage requirements.
隨著Power Delivery(PD)版本的更新,同一供電裝置可能要因應更多不同的電壓需求。由於現行的最大功率需求會大於能源之星(Energy Star)所定義之75瓦。因此功率因數值必須大於0.9。因此,供電裝置會被設計為雙級架構,前級為升壓轉換器,後級則採用LLC轉換器。As the Power Delivery (PD) version is updated, the same power supply device may have to cope with more different voltage requirements. Because the current maximum power requirement will be greater than the 75 watts defined by Energy Star. Therefore the power factor value must be greater than 0.9. Therefore, the power supply device will be designed as a two-stage architecture, with a boost converter in the front stage and an LLC converter in the rear stage.
LLC轉換器因具有柔性切換的特性,有著高轉換效率等優點。LLC轉換器變頻式的操作來調整電壓增益以達到穩定電壓輸出的功能。請參考圖1,圖1是依據LLC轉換器的諧振曲線趨勢圖。在輕載時,LLC轉換器會基於諧振頻率f1來運行。在重載時,LLC轉換器會基於諧振頻率f2來運行。因此,LLC轉換器的諧振頻率範圍是介於諧振頻率f1與諧振頻率f2之間。LLC converters have the advantages of high conversion efficiency due to their flexible switching characteristics. The LLC converter operates in a variable frequency manner to adjust the voltage gain to achieve a stable voltage output function. Please refer to Figure 1, which is a trend chart of the resonance curve based on the LLC converter. At light load, the LLC converter operates at the resonant frequency f1. At heavy load, the LLC converter operates based on the resonant frequency f2. Therefore, the resonant frequency range of the LLC converter is between the resonant frequency f1 and the resonant frequency f2.
應注意的是,而考量到更多不同的電壓需求,現行的供電裝置所能提供的增益必須基於更寬之諧振頻率範圍。換言之,第二諧振頻率f2必須被設計在更低的諧振頻率,但圖1可明顯得知,如將第二諧振頻率f2持續地往下降,反而會使電壓增益變低,造成輸出電壓和功率不足等問題。因此,如何使供電裝置在有限的諧振頻率範圍中能夠滿足更多不同的電壓需求,是本領域技術人員的研發重點之一。It should be noted that to take into account more different voltage requirements, the gain that current power supply devices can provide must be based on a wider resonant frequency range. In other words, the second resonant frequency f2 must be designed at a lower resonant frequency. However, it is obvious from Figure 1 that if the second resonant frequency f2 continues to decrease, the voltage gain will become lower, resulting in lower output voltage and power. Inadequacy and other issues. Therefore, how to enable the power supply device to meet more different voltage requirements within a limited resonant frequency range is one of the research and development focuses of those skilled in the art.
本發明提供一種能夠因應多種不同的電壓需求的供電裝置。The present invention provides a power supply device capable of responding to multiple different voltage requirements.
本發明的供電裝置。供電裝置對外部裝置進行供電。供電裝置包括LLC轉換器、輸出阻擋開關、降壓模組以及供電控制器。LLC轉換器具有輸出端。LLC轉換器透過輸出端輸出最大輸出電壓以及最小輸出電壓的其中之一。輸出阻擋開關耦接於輸出端與外部裝置的電源輸入端之間。供電控制器耦接於降壓模組以及輸出阻擋開關。供電控制器獲得外部裝置的需求電壓。當需求電壓的電壓值大致上等於最大輸出電壓的電壓值以及最小輸出電壓的電壓值的其中之一時,供電控制器導通輸出阻擋開關。此外,當需求電壓的電壓值不等於最大輸出電壓的電壓值以及最小輸出電壓的電壓值時,供電控制器斷開輸出阻擋開關,並控制降壓模組依據最大輸出電壓將多個降壓輸出電壓的其中之一提供至電源輸入端。The power supply device of the present invention. The power supply device supplies power to the external device. The power supply device includes LLC converter, output blocking switch, buck module and power supply controller. The LLC converter has an output. The LLC converter outputs one of the maximum output voltage and the minimum output voltage through the output terminal. The output blocking switch is coupled between the output terminal and the power input terminal of the external device. The power supply controller is coupled to the buck module and the output blocking switch. The power supply controller obtains the required voltage of the external device. When the voltage value of the demand voltage is substantially equal to one of the voltage value of the maximum output voltage and the voltage value of the minimum output voltage, the power supply controller turns on the output blocking switch. In addition, when the voltage value of the demand voltage is not equal to the voltage value of the maximum output voltage and the voltage value of the minimum output voltage, the power supply controller turns off the output blocking switch and controls the buck module to reduce the multiple buck outputs according to the maximum output voltage. One of the voltages is supplied to the power input.
基於上述,當需求電壓的電壓值大致上等於最大輸出電壓的電壓值以及最小輸出電壓的電壓值的其中之一時,供電控制器導通輸出阻擋開關。因此,LLC轉換器輸出最大輸出電壓以及最小輸出電壓的其中之一。當需求電壓的電壓值不等於最大輸出電壓的電壓值以及最小輸出電壓的電壓值時,供電控制器斷開輸出阻擋開關。降壓模組將多個降壓輸出電壓的其中之一提供至電源輸入端。因此,LLC轉換器僅提供最大輸出電壓以及最小輸出電壓。LLC轉換器的諧振頻率範圍不需要被放大。如此一來,供電裝置在有限的諧振頻率範圍中能夠滿足更多不同的電壓需求。Based on the above, when the voltage value of the demand voltage is substantially equal to one of the voltage value of the maximum output voltage and the voltage value of the minimum output voltage, the power supply controller turns on the output blocking switch. Therefore, the LLC converter outputs one of the maximum output voltage as well as the minimum output voltage. When the voltage value of the demand voltage is not equal to the voltage value of the maximum output voltage and the voltage value of the minimum output voltage, the power supply controller turns off the output blocking switch. The buck module provides one of multiple buck output voltages to the power input. Therefore, the LLC converter only provides the maximum output voltage as well as the minimum output voltage. The resonant frequency range of the LLC converter does not need to be amplified. In this way, the power supply device can meet more different voltage requirements within a limited resonant frequency range.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.
本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementations of the present invention. Rather, these embodiments are only examples within the scope of the patent application of the invention.
請參考圖2,圖2是依據本發明一實施例所繪示的供電裝置與外部裝置的操作示意圖。供電裝置100對外部裝置LD進行供電。在本實施例中,外部裝置LD可以是筆記型電腦、平板電腦、顯示器、外接式硬碟、智慧型手機、數位相機等電子裝置。在本實施例中,供電裝置100包括LLC轉換器110、輸出阻擋開關QB0、降壓模組120以及供電控制器130。LLC轉換器110具有輸出端TO。LLC轉換器110透過輸出端TO輸出最大輸出電壓Vmax以及最小輸出電壓Vmin的其中之一。輸出阻擋開關QB0耦接於輸出端TO與外部裝置LD的電源輸入端TP之間。供電控制器130耦接於降壓模組120以及輸出阻擋開關QB0。在本實施例中,輸出阻擋開關QB0是由N型MOSFET來實現。然本發明並不以此為限。本發明的輸出阻擋開關QB0可以是由任意形式的電晶體開關、繼電器、傳輸閘來實現。Please refer to FIG. 2 , which is a schematic diagram of the operation of a power supply device and an external device according to an embodiment of the present invention. The
在本實施例中,供電控制器130獲得外部裝置LD的需求電壓VREQ。需求電壓VREQ是用以驅動外部裝置LD的電壓訊號。舉例來說,供電控制器130是能夠支援USB Type C以及任意PD版本的控制器。外部裝置LD是能夠支援USB Type C以及任意PD版本的電子裝置。供電控制器130會透過通用序列匯流排(Universal Serial Bus,USB)的配置通道(configuration channel,CC)與外部裝置LD進行溝通,從而獲得需求電壓VREQ。In this embodiment, the
在本實施例中,供電控制器130會對外部裝置LD的需求電壓VREQ進行判斷。當需求電壓VREQ的電壓值大致上等於最大輸出電壓Vmax的電壓值以及最小輸出電壓Vmin的電壓值的其中之一時,供電控制器130導通輸出阻擋開關QB0。因此,LLC轉換器110透過輸出端TO以及被導通的輸出阻擋開關QB0將最大輸出電壓Vmax以及最小輸出電壓Vmin的其中之一提供至外部裝置LD的電源輸入端TP。舉例來說,最大輸出電壓Vmax的電壓值可以是PD版本中最大的電壓值(如,48伏特)。最小輸出電壓Vmin的電壓值可以是PD版本中最小的電壓值,或者是供電裝置100與外部裝置LD進行連接時所需的溝通電壓值(如,5伏特)。也就是說,在此例中,當供電裝置100與外部裝置LD進行連接時,LLC轉換器會被控制以提供最小輸出電壓Vmin。In this embodiment, the
在另一方面,當需求電壓VREQ的電壓值不等於最大輸出電壓Vmax的電壓值以及最小輸出電壓Vmin的電壓值時,供電控制器130則斷開輸出阻擋開關QB0,並且對控制降壓模組120進行控制。因此,降壓模組120依據最大輸出電壓Vmax將降壓輸出電壓VBU1~VBU5的其中之一提供至外部裝置LD的電源輸入端TP。On the other hand, when the voltage value of the demand voltage VREQ is not equal to the voltage value of the maximum output voltage Vmax and the voltage value of the minimum output voltage Vmin, the
在此值得一提的是,當需求電壓VREQ的電壓值大致上等於最大輸出電壓Vmax的電壓值以及最小輸出電壓Vmin的電壓值的其中之一時,LLC轉換器110將最大輸出電壓Vmax以及最小輸出電壓Vmin的其中之一輸出至電源輸入端TP。當需求電壓VREQ的電壓值不等於最大輸出電壓Vmax的電壓值以及最小輸出電壓Vmin的電壓值時,降壓模組120將降壓輸出電壓VBU1~VBU5的其中之一提供至電源輸入端TP。因此,LLC轉換器110僅用以提供最大輸出電壓Vmax以及最小輸出電壓Vmin即可。LLC轉換器110的諧振頻率範圍不需要被放大。如此一來,供電裝置100在有限的諧振頻率範圍中能夠滿足更多不同的電壓需求VREQ。It is worth mentioning here that when the voltage value of the demand voltage VREQ is substantially equal to one of the voltage value of the maximum output voltage Vmax and the voltage value of the minimum output voltage Vmin, the
在本實施例中,降壓輸出電壓VBU1~VBU5的電壓值小於最大輸出電壓Vmax的電壓值並且大於最小輸出電壓Vmin的電壓值。降壓輸出電壓VBU1~VBU5的電壓值彼此並不相同。舉例來說,降壓輸出電壓VBU1的電壓值是9伏特。降壓輸出電壓VBU2的電壓值是15伏特。降壓輸出電壓VBU3的電壓值是20伏特。降壓輸出電壓VBU4的電壓值是28伏特。降壓輸出電壓VBU5的電壓值是36伏特。本發明的降壓輸出電壓的數量以及降壓輸出電壓的電壓值會基於實際的使用需求而對應調整,並不以本實施例為限。本發明的降壓輸出電壓的數量可以是多個。In this embodiment, the voltage values of the buck output voltages VBU1 to VBU5 are smaller than the voltage value of the maximum output voltage Vmax and larger than the voltage value of the minimum output voltage Vmin. The voltage values of the buck output voltages VBU1 to VBU5 are different from each other. For example, the voltage value of the buck output voltage VBU1 is 9 volts. The voltage value of the buck output voltage VBU2 is 15 volts. The voltage value of the buck output voltage VBU3 is 20 volts. The voltage value of the buck output voltage VBU4 is 28 volts. The voltage value of the buck output voltage VBU5 is 36 volts. The number of buck output voltages and the voltage value of the buck output voltage of the present invention will be adjusted accordingly based on actual usage requirements, and are not limited to this embodiment. The number of buck output voltages of the present invention may be multiple.
請參考圖3,圖3是依據本發明另一實施例所繪示的供電裝置與外部裝置的操作示意圖。在本實施例中,供電裝置200包括LLC轉換器210、輸出阻擋開關QB0、降壓模組220、供電控制器230、整流器240以及升壓轉換器250。在本實施例中,整流器240對輸入電壓VIN進行整流以產生經整流電壓VR。升壓轉換器250對經整流電壓VR進行升壓以產生經升壓電壓VBO。LLC轉換器210對經升壓電壓VBO進行轉換以產生最大輸出電壓Vmax以及最小輸出電壓Vmin的其中之一。Please refer to FIG. 3 , which is a schematic diagram of the operation of a power supply device and an external device according to another embodiment of the present invention. In this embodiment, the
在本實施例中,供電控制器230會依據需求電壓VREQ來提供第一訊號S1。第一訊號S1是用以指示降壓模組220進行降壓操作的訊號。第一訊號S1是高電壓訊號(如15伏特)。在本實施例中,外部裝置LD包括控制器PDC。供電控制器230透過CC腳位與控制器PDC進行溝通。控制器PDC至少透過下拉電阻Rd獲知供電裝置200的供電能力。在供電裝置200與外部裝置LD進行溝通的過程中,輸出阻擋開關QB0被導通。LLC轉換器210提供最小輸出電壓Vmin至外部裝置LD的電源輸入端TP。最小輸出電壓Vmin被作為初始電壓。此時,在還沒有獲得需求電壓VREQ的情況下,供電控制器230並不會提供第一訊號S1,而是提供低電壓訊號(如0伏特)。因此,在供電裝置200與外部裝置LD進行溝通的過程中,降壓模組220並不會進行降壓操作。In this embodiment, the
在完成溝通後,當外部裝置LD的需求電壓VREQ的電壓值大致上等於最小輸出電壓Vmin的電壓值時,這表示供電裝置200能夠利用最小輸出電壓Vmin對外部裝置LD進行供電。因此,供電控制器230會導通輸出阻擋開關QB0,並且不提供第一訊號S1。也因此,當需求電壓VREQ的電壓值大致上等於最小輸出電壓Vmin的電壓值時,降壓模組220並不會進行降壓操作。After the communication is completed, when the voltage value of the demand voltage VREQ of the external device LD is substantially equal to the voltage value of the minimum output voltage Vmin, this means that the
當需求電壓VREQ的電壓值大致上等於最大輸出電壓Vmax的電壓值時,這表示供電裝置200能夠利用最大輸出電壓Vmax對外部裝置LD進行供電。因此,供電控制器230會導通輸出阻擋開關QB0。此時,供電控制器230還會提供第一訊號S1。因此,降壓模組220會反應於第一訊號S1以對最大輸出電壓Vmax進行降壓以產生降壓輸出電壓VBU1~VBU5,但不會將降壓輸出電壓VBU1~VBU5輸出至外部裝置LD。When the voltage value of the demand voltage VREQ is substantially equal to the voltage value of the maximum output voltage Vmax, it means that the
當需求電壓VREQ的電壓值不等於最大輸出電壓Vmax的電壓值以及最小輸出電壓Vmin的電壓值時,這表示供電裝置200無法利用最大輸出電壓Vmax或最小輸出電壓Vmin來對外部裝置LD進行供電。因此,供電控制器230會斷開輸出阻擋開關QB0,並且提供第一訊號S1。降壓模組220會反應於第一訊號S1以對最大輸出電壓Vmax進行降壓,並且輸出對應於需求電壓VREQ的降壓輸出電壓。When the voltage value of the demand voltage VREQ is not equal to the voltage value of the maximum output voltage Vmax and the voltage value of the minimum output voltage Vmin, this means that the
舉例來說,基於LLC轉換器210以及升壓轉換器250的設計,最大輸出電壓Vmax的電壓值會等於48伏特。最小輸出電壓Vmin的電壓值會等於5伏特。當需求電壓VREQ的電壓值等於9伏特時,供電控制器230會斷開輸出阻擋開關QB0,並且提供第一訊號S1。降壓模組220會輸出對應於需求電壓VREQ的降壓輸出電壓VBU1。再舉例來說,當需求電壓VREQ的電壓值等於15伏特時,供電控制器230會斷開輸出阻擋開關QB0,並且提供第一訊號S1。降壓模組220會輸出對應於需求電壓VREQ的降壓輸出電壓VBU2。For example, based on the design of the
在一些實施例中,第一訊號S1可以作為用以驅動降壓模組220的驅動電壓。因此,降壓模組220會反應於第一訊號S1而被致能。In some embodiments, the first signal S1 can be used as a driving voltage for driving the
在一些實施例中,外部裝置LD會依據需求電壓VREQ來提供第二訊號(圖3未示出)。相似於第一訊號S1,第二訊號也是高電壓訊號(如15伏特)。在溝通的過程中,外部裝置LD不會提供第二訊號。在完成溝通之後,當需求電壓VREQ的電壓值大致上等於最小輸出電壓Vmin的電壓值時,外部裝置LD也不會提供第二訊號。當需求電壓VREQ的電壓值大於最小輸出電壓Vmin的電壓值時,外部裝置LD會提供第二訊號。換言之,在正常的情況下,第二訊號的時序大致上與第一訊號S1的時序相同。如此一來,降壓模組220能夠透過第二訊號來確定出外部裝置LD的狀態。舉例來說,當降壓模組220接收到第一訊號S1並且沒有接收到第二訊號時,這表示外部裝置LD發生異常。因此,降壓模組220不會對最大輸出電壓Vmax進行降壓。在另一方面,當降壓模組220接收到第一訊號S1以及第二訊號時,降壓模組220則會對最大輸出電壓Vmax進行降壓。In some embodiments, the external device LD provides the second signal according to the demand voltage VREQ (not shown in FIG. 3 ). Similar to the first signal S1, the second signal is also a high voltage signal (eg 15 volts). During the communication process, the external device LD will not provide a second signal. After the communication is completed, when the voltage value of the demand voltage VREQ is substantially equal to the voltage value of the minimum output voltage Vmin, the external device LD will not provide the second signal. When the voltage value of the demand voltage VREQ is greater than the voltage value of the minimum output voltage Vmin, the external device LD will provide the second signal. In other words, under normal circumstances, the timing of the second signal is substantially the same as the timing of the first signal S1. In this way, the
進一步來說明,在本實施例中,整流器240是全橋式整流器。升壓轉換器250包括升壓電感器LM1、功率開關Q1、二極體DO1以及電容器CO1。升壓電感器LM1的第一端偶接於整流器240以接收經整流電壓VR。功率開關Q1的第一端耦接於升壓電感器LM1的第二端。功率開關Q1的第二端耦接於第一參考低電壓(如,初級側接地端GND1)。功率開關Q1的控制端用以接收控制訊號SC1。二極體DO1的陽極耦接於升壓電感器LM1的第二端。二極體DO1的陰極用以作為升壓轉換器250的輸出端。電容器CO1耦接於二極體DO1的陰極與第一參考低電壓之間。To further explain, in this embodiment, the
在本實施例中,升壓轉換器250基於控制訊號SC1對經整流電壓VR進行升壓以產生經升壓電壓VBO。In this embodiment, the
在本實施例中,LLC轉換器210包括初級側電路211、變壓器TR以及次級側電路212。初級側電路211包括功率開關Q2、Q3、諧振電感器LR、激磁電感器LM2以及諧振電容器CR。功率開關Q2的第一端耦接於升壓轉換器250的輸出端。功率開關Q2的控制端用以接收控制訊號SC2。功率開關Q3的第一端耦接於功率開關Q2的第二端。功率開關Q3的第二端耦接於第一參考低電壓。功率開關Q3的控制端用以接收控制訊號SC3。諧振電感器LR、激磁電感器LM2以及諧振電容器CR彼此串聯耦接於功率開關Q2的第二端與第一參考低電壓之間。變壓器TR包括初級側繞組N1以及次級側繞組N2、N3。初級側繞組N1與激磁電感器LM2並聯耦接。次級側電路212包括二極體DO2、DO3以及電容器CO2。次級側繞組N2的第一端耦接於二極體DO2的陽極。次級側繞組N2的第二端耦接於次級側繞組N3的第一端。次級側繞組N3的第二端耦接於二極體DO3的陽極。二極體DO2的陰極耦接於二極體DO3的陰極。二極體DO2的陰極用以作為LLC轉換器210的輸出端。電容器CO2的第一端耦接於二極體DO2的陰極。電容器CO2的第二端耦接於次級側繞組N2的第二端以及第二參考低電壓(如,次級側接地端GND2)。In this embodiment, the
在本實施例中,LLC轉換器210基於控制訊號SC2、SC3對經升壓電壓VBO進行轉換以產生最大輸出電壓Vmax以及最小輸出電壓Vmin的其中之一。在本實施例中,LLC轉換器210是半橋式諧振轉換器。在一些實施例中,初級側電路211可以由全橋式拓墣來實現。在一些實施例中,次級側電路212可以由同步整流拓墣來實現。In this embodiment, the
在本實施例中,控制訊號SC1~SC3可以由一控制電路來提供。控制訊號SC1~SC3也可以由供電控制器230來提供。In this embodiment, the control signals SC1 ~ SC3 can be provided by a control circuit. The control signals SC1~SC3 can also be provided by the
在本實施例中,諧振電感器LR、激磁電感器LM2以及諧振電容器CR可形成諧振路徑。諧振路徑的設計決定出LLC轉換器210的諧振頻率範圍。諧振電感器LR以及諧振電容器CR可決定出諧振頻率範圍的上限(如圖1所示的諧振頻率f1)。諧振電感器LR、激磁電感器LM2以及諧振電容器CR可決定出諧振頻率範圍的下限(如圖1所示的諧振頻率f2)。In this embodiment, the resonant inductor LR, the magnetizing inductor LM2 and the resonant capacitor CR may form a resonant path. The design of the resonant path determines the resonant frequency range of
接下來說明降壓模組的實施細節。請同時參考圖3以及圖4,圖4是依據本發明一實施例所繪示的降壓模組的示意圖。在本實施例中,降壓模組220包括降壓控制器221、降壓轉換器222_1~222_5以及降壓阻擋開關QB1~QB5。降壓控制器221耦接於供電控制器230、LLC轉換器210的輸出端以及電源輸入端TP。降壓控制器221反應於供電控制器230的控制而被致能,從而提供降壓控制訊號SCB以及選擇訊號SS1~SS5。在本實施例中,當需求電壓VREQ的電壓值大於最小輸出電壓Vmin的電壓值時,供電控制器230會提供第一訊號S1。外部裝置LD會提供第二訊號S2。當接收到第一訊號S1以及第二訊號S2時,降壓控制器221會提供降壓控制訊號SCB以及選擇訊號SS1~SS5。在本實施例中,降壓控制訊號SCB是具有切換頻率的訊號。舉例來說,降壓控制訊號SCB的切換頻率為65kHz(本發明並不以此為限)。Next, the implementation details of the buck module are explained. Please refer to FIG. 3 and FIG. 4 at the same time. FIG. 4 is a schematic diagram of a voltage-reducing module according to an embodiment of the present invention. In this embodiment, the
在本實施例中,降壓轉換器222_1~222_5分別耦接於LLC轉換器210的輸出端。降壓轉換器222_1~222_5分別依據最大輸出電壓Vmax以及降壓控制訊號SCB以產生降壓輸出電壓VBU1~VBU5的其中之一。舉例來說,降壓轉換器222_1依據最大輸出電壓Vmax以及降壓控制訊號SCB以產生降壓輸出電壓VBU1。降壓轉換器222_2依據最大輸出電壓Vmax以及降壓控制訊號SCB以產生降壓輸出電壓VBU2,依此類推。In this embodiment, the buck converters 222_1 ~ 222_5 are respectively coupled to the output terminals of the
在本實施例中,降壓阻擋開關QB1~QB5的第一端分別耦接於對應的降壓轉換器。降壓阻擋開關QB1~QB5的第二端分別耦接於電源輸入端TP。降壓阻擋開關QB1~QB5反應於選擇訊號SS1~SS5的其中之一而被導通或被斷開。舉例來說,降壓阻擋開關QB1的第一端耦接於降壓轉換器222_1。降壓阻擋開關QB1的第二端耦接於電源輸入端TP。降壓阻擋開關QB1的控制端接收選擇訊號SS1。降壓阻擋開關QB2的第一端耦接於降壓轉換器222_2。降壓阻擋開關QB2的第二端耦接於電源輸入端TP。降壓阻擋開關QB2的控制端接收選擇訊號SS2,依此類推。在本實施例中,降壓阻擋開關QB1~QB5分別是由N型MOSFET來實現。然本發明並不以此為限。本發明的降壓阻擋開關QB1~QB5可以是由任意形式的電晶體開關、繼電器、傳輸閘來實現。In this embodiment, the first terminals of the buck blocking switches QB1 to QB5 are respectively coupled to corresponding buck converters. The second terminals of the buck blocking switches QB1 ~ QB5 are respectively coupled to the power input terminal TP. The buck blocking switches QB1~QB5 are turned on or off in response to one of the selection signals SS1~SS5. For example, the first terminal of the buck blocking switch QB1 is coupled to the buck converter 222_1. The second terminal of the buck blocking switch QB1 is coupled to the power input terminal TP. The control terminal of the buck blocking switch QB1 receives the selection signal SS1. The first terminal of the buck blocking switch QB2 is coupled to the buck converter 222_2. The second terminal of the buck blocking switch QB2 is coupled to the power input terminal TP. The control terminal of the buck blocking switch QB2 receives the selection signal SS2, and so on. In this embodiment, the buck blocking switches QB1 to QB5 are respectively implemented by N-type MOSFETs. However, the present invention is not limited to this. The buck blocking switches QB1 to QB5 of the present invention can be implemented by any form of transistor switches, relays, and transmission gates.
此外,選擇訊號SS1~SS5的電壓準位可以是由需求電壓VREQ來決定。在本實施例中,降壓控制器221還會接收關聯於需求電壓VREQ的狀態訊號來提供選擇訊號SS1~SS5。舉例來說,當狀態訊號指示出需求電壓VREQ的電壓值大致上等於降壓輸出電壓VBU1的電壓值時,降壓控制器221會提供高電壓準位的選擇訊號SS1以及低電壓準位的選擇訊號SS2~SS5。In addition, the voltage levels of the selection signals SS1 ~ SS5 may be determined by the demand voltage VREQ. In this embodiment, the
在本實施例中,降壓阻擋開關QB1~QB5以及輸出阻擋開關QB0不同時被導通。也就是說,供電裝置200在運行中,只有降壓阻擋開關QB1~QB5以及輸出阻擋開關QB0的其中之一被導通。一旦降壓阻擋開關QB1~QB5的其中之一被導通時,輸出阻擋開關QB0必須立即被斷開。如此一來,供電裝置200能夠避免最大輸出電壓Vmax以及至少一降壓輸出電壓同時輸出的誤動作。In this embodiment, the buck blocking switches QB1 to QB5 and the output blocking switch QB0 are not turned on at the same time. That is to say, when the
在本實施例中,降壓轉換器222_1包括降壓功率開關QX1、降壓二極體DX1以及降壓電感器LX1。降壓功率開關QX1的第一端耦接於該輸出端。降壓功率開關QX1的控制端耦接於該降壓控制器221以接收降壓控制訊號SCB。降壓二極體DX1的陰極耦接於降壓功率開關QX1的第二端。降壓二極體DX1的陽極耦接於第二參考低電壓。降壓電感器LX1的第一端耦接於降壓功率開關QX1的第二端。降壓電感器LX1的第二端耦接於降壓阻擋開關QB1的第一端。In this embodiment, the buck converter 222_1 includes a buck power switch QX1, a buck diode DX1, and a buck inductor LX1. The first terminal of the buck power switch QX1 is coupled to the output terminal. The control terminal of the buck power switch QX1 is coupled to the
降壓轉換器222_2包括降壓功率開關QX2、降壓二極體DX2以及降壓電感器LX2。降壓功率開關QX2的第一端耦接於該輸出端。降壓功率開關QX2的控制端耦接於該降壓控制器221以接收降壓控制訊號SCB。降壓二極體DX2的陰極耦接於降壓功率開關QX2的第二端。降壓二極體DX2的陽極耦接於第二參考低電壓。降壓電感器LX2的第一端耦接於降壓功率開關QX2的第二端。降壓電感器LX2的第二端耦接於降壓阻擋開關QB2的第一端。The buck converter 222_2 includes a buck power switch QX2, a buck diode DX2, and a buck inductor LX2. The first terminal of the buck power switch QX2 is coupled to the output terminal. The control terminal of the buck power switch QX2 is coupled to the
降壓轉換器222_3包括降壓功率開關QX3、降壓二極體DX3以及降壓電感器LX3。降壓轉換器222_4包括降壓功率開關QX4、降壓二極體DX4以及降壓電感器LX4。此外,降壓轉換器222_5包括降壓功率開關QX5、降壓二極體DX5以及降壓電感器LX5。降壓轉換器222_3~222_5的配置相似於降壓轉換器222_1、222_2,故不再描述降壓轉換器222_3~222_5的配置。The buck converter 222_3 includes a buck power switch QX3, a buck diode DX3, and a buck inductor LX3. Buck converter 222_4 includes a buck power switch QX4, a buck diode DX4, and a buck inductor LX4. In addition, the buck converter 222_5 includes a buck power switch QX5, a buck diode DX5, and a buck inductor LX5. The configuration of the buck converters 222_3 ~ 222_5 is similar to the buck converters 222_1 and 222_2, so the configuration of the buck converters 222_3 ~ 222_5 will not be described again.
在本實施例中,降壓電感器LX1~LX5的電感值彼此並不相同。降壓電感器LX1~LX5的電感值關係會關聯於降壓輸出電壓VBU1~VBU5的電壓值關係。因此,基於相同的降壓控制訊號SCB,降壓轉換器222_1~222_5能夠分別提供具有不同電壓值的降壓輸出電壓VBU1~VBU5。舉例來說,降壓輸出電壓VBU1的電壓值是9伏特。降壓輸出電壓VBU2的電壓值是15伏特。降壓輸出電壓VBU3的電壓值是20伏特。降壓輸出電壓VBU4的電壓值是28伏特。降壓輸出電壓VBU5的電壓值是36伏特。因此,降壓電感器LX1的電感值被設計為180微亨利(μH)。降壓電感器LX2的電感值被設計為300μH。降壓電感器LX3的電感值被設計為400μH。降壓電感器LX4的電感值被設計為560μH。降壓電感器LX5的電感值被設計為720μH。In this embodiment, the inductance values of the buck inductors LX1 ~ LX5 are different from each other. The inductance value relationship of the buck inductors LX1~LX5 will be related to the voltage value relationship of the buck output voltages VBU1~VBU5. Therefore, based on the same buck control signal SCB, the buck converters 222_1 ~ 222_5 can respectively provide buck output voltages VBU1 ~ VBU5 with different voltage values. For example, the voltage value of the buck output voltage VBU1 is 9 volts. The voltage value of the buck output voltage VBU2 is 15 volts. The voltage value of the buck output voltage VBU3 is 20 volts. The voltage value of the buck output voltage VBU4 is 28 volts. The voltage value of the buck output voltage VBU5 is 36 volts. Therefore, the inductance value of the buck inductor LX1 is designed to be 180 microhenries (μH). The inductance value of the buck inductor LX2 is designed to be 300μH. The inductance value of the buck inductor LX3 is designed to be 400μH. The inductance value of the buck inductor LX4 is designed to be 560μH. The inductance value of the buck inductor LX5 is designed to be 720μH.
在本實施例中,降壓電感器LX1~LX5可以被整合在單一個耦合電感器元件中。進一步來說,降壓電感器LX1~LX5可以共用一鐵芯。然而,降壓電感器LX1~LX5之間被屏蔽以防止降壓電感器LX1~LX5之間的耦合。如此一來,降壓模組220的體積得以被縮小。In this embodiment, the buck inductors LX1 ~ LX5 can be integrated into a single coupled inductor element. Furthermore, the buck inductors LX1~LX5 can share the same iron core. However, the step-down inductors LX1~LX5 are shielded to prevent coupling between the step-down inductors LX1~LX5. In this way, the volume of the voltage-reducing
本實施例以5個降壓轉換器222_1~222_5為例。然本發明並不以此為限。本發明的降壓轉換器的數量可以是多個。This embodiment takes five buck converters 222_1~222_5 as an example. However, the present invention is not limited to this. The number of buck converters of the present invention may be multiple.
綜上所述,當需求電壓的電壓值大致上等於最大輸出電壓的電壓值以及最小輸出電壓的電壓值的其中之一時,供電控制器導通輸出阻擋開關。因此,LLC轉換器輸出最大輸出電壓以及最小輸出電壓的其中之一。當需求電壓的電壓值不等於最大輸出電壓的電壓值以及最小輸出電壓的電壓值時,供電控制器斷開輸出阻擋開關。因此,降壓模組將多個降壓輸出電壓的其中之一提供至電源輸入端。由於LLC轉換器僅提供最大輸出電壓以及最小輸出電壓,因此LLC轉換器的諧振頻率範圍不需要被放大。如此一來,供電裝置在有限的諧振頻率範圍中能夠滿足更多不同的電壓需求。In summary, when the voltage value of the demand voltage is substantially equal to one of the voltage value of the maximum output voltage and the voltage value of the minimum output voltage, the power supply controller turns on the output blocking switch. Therefore, the LLC converter outputs one of the maximum output voltage as well as the minimum output voltage. When the voltage value of the demand voltage is not equal to the voltage value of the maximum output voltage and the voltage value of the minimum output voltage, the power supply controller turns off the output blocking switch. Therefore, the buck module provides one of a plurality of buck output voltages to the power input terminal. Since the LLC converter only provides the maximum output voltage as well as the minimum output voltage, the resonant frequency range of the LLC converter does not need to be amplified. In this way, the power supply device can meet more different voltage requirements within a limited resonant frequency range.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.
100、200:供電裝置100, 200: power supply device
110、210:LLC轉換器110, 210: LLC converter
120、220:降壓模組120, 220: Buck module
130、230:供電控制器130, 230: Power supply controller
211:初級側電路211: Primary side circuit
212:次級側電路212:Secondary side circuit
221:降壓控制器221: Buck controller
222_1~222_5:降壓轉換器222_1~222_5: Buck converter
240:整流器240: Rectifier
250:升壓轉換器250:Boost converter
CO1、CO2:電容器CO1, CO2: capacitor
CR:諧振電容器CR: resonant capacitor
DO1、DO2、DO3:二極體DO1, DO2, DO3: Diode
DX1~DX5:降壓二極體DX1~DX5: Buck diodes
f1、f2:諧振頻率f1, f2: resonant frequency
GND1:初級側接地端GND1: primary side ground terminal
GND2:次級側接地端GND2: secondary side ground terminal
LD:外部裝置LD: external device
LM1:升壓電感器LM1: Boost inductor
LM2:激磁電感器LM2: Magnetizing inductor
LR:諧振電感器LR: Resonant inductor
LX1~LX5:降壓電感器LX1~LX5: Buck inductor
N1:初級側繞組N1: primary side winding
N2、N3:次級側繞組N2, N3: secondary side winding
PDC:控制器PDC: controller
Q1、Q2、Q3:功率開關Q1, Q2, Q3: power switch
QB0:輸出阻擋開關QB0: Output blocking switch
QB1~QB5:降壓阻擋開關QB1~QB5: Buck blocking switch
QX1~QX5:降壓功率開關QX1~QX5: Buck power switch
Rd:下拉電阻Rd: pull-down resistor
S1:第一訊號S1: first signal
S2:第二訊號S2: Second signal
SC1~SC3:控制訊號SC1~SC3: control signal
SCB:降壓控制訊號SCB: Buck control signal
SS1~SS5:選擇訊號SS1~SS5: select signal
TO:輸出端TO: output terminal
TP:電源輸入端TP: power input terminal
TR:變壓器TR: Transformer
VBO:經升壓電壓VBO: boosted voltage
VBU1~VBU5:降壓輸出電壓VBU1~VBU5: Buck output voltage
VIN:輸入電壓VIN: input voltage
Vmin:最小輸出電壓Vmin: minimum output voltage
Vmax:最大輸出電壓Vmax: maximum output voltage
VR:經整流電壓VR: rectified voltage
VREQ:需求電壓VREQ: demand voltage
圖1是依據LLC轉換器的諧振曲線趨勢圖。 圖2是依據本發明一實施例所繪示的供電裝置與外部裝置的操作示意圖。 圖3是依據本發明另一實施例所繪示的供電裝置與外部裝置的操作示意圖。 圖4是依據本發明一實施例所繪示的降壓模組的示意圖。 Figure 1 is a trend chart based on the resonance curve of the LLC converter. FIG. 2 is an operation schematic diagram of a power supply device and an external device according to an embodiment of the present invention. FIG. 3 is an operation schematic diagram of a power supply device and an external device according to another embodiment of the present invention. FIG. 4 is a schematic diagram of a voltage-reducing module according to an embodiment of the present invention.
100:供電裝置 100:Power supply device
110:LLC轉換器 110: LLC converter
120:降壓模組 120: Buck module
130:供電控制器 130:Power supply controller
LD:外部裝置 LD: external device
QB0:輸出阻擋開關 QB0: Output blocking switch
TO:輸出端 TO: output terminal
TP:電源輸入端 TP: power input terminal
VBU1~VBU5:降壓輸出電壓 VBU1~VBU5: Buck output voltage
Vmin:最小輸出電壓 Vmin: minimum output voltage
Vmax:最大輸出電壓 Vmax: maximum output voltage
VREQ:需求電壓 VREQ: demand voltage
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111115701A TWI817459B (en) | 2022-04-25 | 2022-04-25 | Power delivery device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111115701A TWI817459B (en) | 2022-04-25 | 2022-04-25 | Power delivery device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI817459B true TWI817459B (en) | 2023-10-01 |
TW202343195A TW202343195A (en) | 2023-11-01 |
Family
ID=89720592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111115701A TWI817459B (en) | 2022-04-25 | 2022-04-25 | Power delivery device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI817459B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201347376A (en) * | 2012-05-03 | 2013-11-16 | Delta Electronics Shanghai Co | Frequency-conversion mode converter and regulated method thereof |
CN112994465A (en) * | 2021-02-08 | 2021-06-18 | 康舒科技股份有限公司 | Power supply device and control method thereof |
US20210249961A1 (en) * | 2020-02-12 | 2021-08-12 | Dell Products L. P. | Providing a wide variety of voltages with a power supply that uses an llc topology |
TW202215764A (en) * | 2020-09-30 | 2022-04-16 | 台達電子工業股份有限公司 | Llc resonance converter, control unit, and method of controlling the same |
-
2022
- 2022-04-25 TW TW111115701A patent/TWI817459B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201347376A (en) * | 2012-05-03 | 2013-11-16 | Delta Electronics Shanghai Co | Frequency-conversion mode converter and regulated method thereof |
US20210249961A1 (en) * | 2020-02-12 | 2021-08-12 | Dell Products L. P. | Providing a wide variety of voltages with a power supply that uses an llc topology |
TW202215764A (en) * | 2020-09-30 | 2022-04-16 | 台達電子工業股份有限公司 | Llc resonance converter, control unit, and method of controlling the same |
CN112994465A (en) * | 2021-02-08 | 2021-06-18 | 康舒科技股份有限公司 | Power supply device and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202343195A (en) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7375994B2 (en) | Highly efficient isolated AC/DC power conversion technique | |
US7532493B2 (en) | Power supply with low standby loss | |
US7012817B2 (en) | Converter with integrated active clamp circuit and bias circuit | |
US20070013349A1 (en) | Zero voltage switching buck converter | |
US20050174813A1 (en) | High efficiency power converter with synchronous rectification | |
US7915757B2 (en) | Multi-output DC/DC converter | |
US10784790B1 (en) | Resonant conversion apparatus with extended hold-up time and method of operating the same | |
US20080304295A1 (en) | Switching Power Converter with a Secondary-Side Control | |
KR102136564B1 (en) | Power supply apparatus and driving method thereof | |
US8817497B2 (en) | Switching power converter for reducing EMI from ring oscillation and its control method | |
JP2006311689A (en) | Dc-dc converter | |
US20110199796A1 (en) | Structure of a power supply | |
TWI772016B (en) | Voltage transforming device | |
US7061779B2 (en) | Power factor correction circuit | |
US6567284B2 (en) | DC to DC converting incorporating ZVS circuit and synchronized isolation circuit | |
US20110109288A1 (en) | Power converting circuit | |
CN111030479B (en) | Active clamping flyback power converter and related control method | |
TWI817459B (en) | Power delivery device | |
US20230155477A1 (en) | Resonance conversion device | |
US11622430B2 (en) | Control circuit, control method and power converter | |
CN117650699A (en) | Power supply with resonant voltage stabilizing feedback compensation design | |
US20140376271A1 (en) | Switching Power-Supply Device | |
JP3143847B2 (en) | DC-DC converter | |
CN221597720U (en) | Power supply conversion circuit | |
US11228250B2 (en) | Flyback power switch structure for bridgeless rectifier |