TWI747510B - Electrostatic discharge protection circuits and semiconductor circuits - Google Patents

Electrostatic discharge protection circuits and semiconductor circuits Download PDF

Info

Publication number
TWI747510B
TWI747510B TW109132525A TW109132525A TWI747510B TW I747510 B TWI747510 B TW I747510B TW 109132525 A TW109132525 A TW 109132525A TW 109132525 A TW109132525 A TW 109132525A TW I747510 B TWI747510 B TW I747510B
Authority
TW
Taiwan
Prior art keywords
drain
electrically connected
source electrode
circuit
terminal
Prior art date
Application number
TW109132525A
Other languages
Chinese (zh)
Other versions
TW202213699A (en
Inventor
王裕凱
李建興
林昌民
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW109132525A priority Critical patent/TWI747510B/en
Application granted granted Critical
Publication of TWI747510B publication Critical patent/TWI747510B/en
Publication of TW202213699A publication Critical patent/TW202213699A/en

Links

Images

Abstract

An electrostatic discharge protection circuit for a semiconductor element is provided. The semiconductor element includes a first drain/source electrode and a second drain/source electrode and surrounded by a deep well region. The electrostatic discharge protection circuit includes a control circuit and a discharge circuit. The control circuit, which is electronically connected between the first drain/source electrode and a power terminal, includes a control terminal electronically connected to the deep well region and generates a control signal. The discharge circuit is electronically connected between the first first drain/source electrode and the power terminal and controlled by the control signal. In response to an electrostatic discharge event occurring on the first drain/source electrode, the control circuit generates the control signal according to a potential state of the deep well region and a potential state of the first drain/source electrode, and the discharge circuit provides a discharge path between the first drain/source electrode and the power terminal.

Description

靜電放電保護電路以及半導體電路Electrostatic discharge protection circuit and semiconductor circuit

本發明係關於一種半導體電路,且特別是關於一種靜電放電保護電路。The present invention relates to a semiconductor circuit, and more particularly to an electrostatic discharge protection circuit.

隨著積體電路的半導體製程的發展,半導體元件尺寸已縮小至次微米階段,以增進積體電路的性能以及運算速度,但元件尺寸的縮減,卻出現了一些可靠度的問題,尤以積體電路對靜電放電(Electrostatic Discharge, ESD)的防護能力影響最大。當元件尺寸由於先進的製程技術而減小,靜電放電的防護能力也降低許多,結果造成元件的ESD耐受力大幅降低。因此,需要靜電放電保護電路來保護元件不受靜電放電所損壞。然而,傳統的靜電放電保護電路包括一電容-電阻電路,其占用較大的面積,不利於積體電路的尺寸縮小化。With the development of the semiconductor manufacturing process of integrated circuits, the size of semiconductor components has been reduced to the sub-micron stage to improve the performance and operation speed of integrated circuits. However, the reduction of component size has caused some reliability problems, especially The body circuit has the greatest impact on the protection capability of Electrostatic Discharge (ESD). When the size of the device is reduced due to advanced process technology, the protection against electrostatic discharge is also reduced a lot, resulting in a significant reduction in the ESD tolerance of the device. Therefore, an electrostatic discharge protection circuit is needed to protect the components from being damaged by electrostatic discharge. However, the conventional electrostatic discharge protection circuit includes a capacitor-resistor circuit, which occupies a large area, which is not conducive to the reduction of the size of the integrated circuit.

本發明之一實施例提供一種靜電放電保護電路,可其用於一半導體元件。此半導體元件具有一第一汲/源極電極以及一第二汲/源極電極,且由一深井區包圍。靜電放電保護電路包括一第一控制電路以及一第一放電電路。第一控制電路電性連接於半導體元件的第一汲/源極電極與一電源端之間,且具有一第一控制端。第一控制端電性連接深井區,且第一控制電路產生一第一控制信號。第一放電電路電性連接第一汲/源極電極與電源端之間,且受控於第一控制信號。當於第一汲/源極電極上發生一靜電放電事件時,第一控制電路根據深井區的電位狀態以及第一汲/源極電極的電位狀態來產生第一控制信號,且第一放電電路根據第一控制信號提供介於第一汲/源極電極與電源端之間的一第一放電路徑。An embodiment of the present invention provides an electrostatic discharge protection circuit, which can be used in a semiconductor device. The semiconductor device has a first drain/source electrode and a second drain/source electrode, and is surrounded by a deep well region. The electrostatic discharge protection circuit includes a first control circuit and a first discharge circuit. The first control circuit is electrically connected between the first drain/source electrode of the semiconductor element and a power terminal, and has a first control terminal. The first control terminal is electrically connected to the deep well area, and the first control circuit generates a first control signal. The first discharge circuit is electrically connected between the first drain/source electrode and the power terminal, and is controlled by a first control signal. When an electrostatic discharge event occurs on the first drain/source electrode, the first control circuit generates a first control signal according to the potential state of the deep well region and the potential state of the first drain/source electrode, and the first discharge circuit A first discharge path between the first drain/source electrode and the power terminal is provided according to the first control signal.

本發明之一實施例提供一種半導體電路。此半導體電路包括一半導體元件、一第一控制電路、以及一第一放電電路。半導體元件形成在一井區,且具有一第一汲/源極電極以及一第二汲/源極電極。井區由一深井區包圍。井區具有一第一導電類型,且深井區具有不同於第一導電類型的一第二導電類型。靜電放電保護電路包括一第一控制電路以及一第一放電電路。第一控制電路電性連接於第一汲/源極電極與一電源端之間,且具有一第一控制端。第一控制端電性連接深井區,且第一控制電路產生一第一控制信號。第一放電電路電性連接第一汲/源極電極與電源端之間,且受控於第一控制信號。當於第一汲/源極電極上發生一靜電放電事件時,第一控制電路根據深井區的一電位狀態以及第一汲/源極電極的一電位狀態來產生第一控制信號,且第一放電電路根據第一控制信號提供介於第一汲/源極電極與電源端之間的一第一放電路徑。An embodiment of the present invention provides a semiconductor circuit. The semiconductor circuit includes a semiconductor element, a first control circuit, and a first discharge circuit. The semiconductor element is formed in a well region and has a first drain/source electrode and a second drain/source electrode. The well area is surrounded by a deep well area. The well region has a first conductivity type, and the deep well region has a second conductivity type different from the first conductivity type. The electrostatic discharge protection circuit includes a first control circuit and a first discharge circuit. The first control circuit is electrically connected between the first drain/source electrode and a power terminal, and has a first control terminal. The first control terminal is electrically connected to the deep well area, and the first control circuit generates a first control signal. The first discharge circuit is electrically connected between the first drain/source electrode and the power terminal, and is controlled by a first control signal. When an electrostatic discharge event occurs on the first drain/source electrode, the first control circuit generates a first control signal according to a potential state of the deep well region and a potential state of the first drain/source electrode, and the first The discharge circuit provides a first discharge path between the first drain/source electrode and the power terminal according to the first control signal.

為使本發明之上述目的、特徵和優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and understandable, a preferred embodiment is specifically cited below in conjunction with the accompanying drawings, which will be described in detail as follows.

第1A圖係表示根據本發明一實施例之半導體電路。參閱第1A圖,半導體電路1包括半導體元件10、靜電放電保護電路11、以及二極體12~13。在第1A圖的實施例中,半導體元件10為一N型電晶體,其具有閘極電極G、汲極電極D、以及源極電極S。於後文中,將以電晶體做為半導體元件10例來說明各實施例。第2A圖顯示電晶體10的結構截面圖。FIG. 1A shows a semiconductor circuit according to an embodiment of the present invention. Referring to FIG. 1A, the semiconductor circuit 1 includes a semiconductor element 10, an electrostatic discharge protection circuit 11, and diodes 12-13. In the embodiment shown in FIG. 1A, the semiconductor device 10 is an N-type transistor, which has a gate electrode G, a drain electrode D, and a source electrode S. In the following, 10 examples of a transistor as a semiconductor element will be used to describe each embodiment. FIG. 2A shows a cross-sectional view of the structure of the transistor 10.

參閱第2A圖,電晶體10形成在基底20,其中,基底20的導電類型為P型。一N型深井區21形成在基底20中,其中,L21表示N型深井區21與基底20之間的邊界。在深井區21中,形成P型井區22以及N型摻雜區25。兩N型摻雜區23與24形成在井區22中,且一閘極介電層26形成在基底20上且介於摻雜區23與24之間。在此實施例中,N型摻雜區25在深井區21形成的位置接近N型摻雜區23。一閘極層27形成在閘極介電層26上,其中,閘極層27為一金屬層或多晶矽層。摻雜區23與24以及閘極層27形成電晶體10。如第1A與2A圖所示,摻雜區23作為電晶體10的汲極區,與摻雜區23電性連接的接觸電極作為汲極電極D。摻雜區24作為電晶體10的源極區,與摻雜區24電性連接的接觸電極作為源極電極S。閘極層27電性連接的接觸電極作為閘極電極G。在本發明實施例中,一接觸電極CE20電性連接摻雜區25。當半導體電路1處於正常操作模式時,一高操作電壓VDD提供至接觸電極CE20;當半導體電路1處於非正常操作模式時,高操作電壓VDD未提供至接觸電極CE20,即接觸電極CE20的電位狀態為浮接(floating)。根據第2A圖的截面圖可得知,電晶體10形成在深井區21內,詳細來說,電晶體10係由深井區21所包圍。第1A圖中顯示邊界L21,其包圍電晶體10,藉以示意第2A圖中電晶體10與深井區21的配置關係。 Referring to FIG. 2A, the transistor 10 is formed on the substrate 20, wherein the conductivity type of the substrate 20 is P-type. An N-type deep well region 21 is formed in the base 20, where L21 represents the boundary between the N-type deep well region 21 and the base 20. In the deep well region 21, a P-type well region 22 and an N-type doped region 25 are formed. Two N-type doped regions 23 and 24 are formed in the well region 22, and a gate dielectric layer 26 is formed on the substrate 20 between the doped regions 23 and 24. In this embodiment, the position where the N-type doped region 25 is formed in the deep well region 21 is close to the N-type doped region 23. A gate layer 27 is formed on the gate dielectric layer 26, wherein the gate layer 27 is a metal layer or a polysilicon layer. The doped regions 23 and 24 and the gate layer 27 form the transistor 10. As shown in FIGS. 1A and 2A, the doped region 23 serves as the drain region of the transistor 10, and the contact electrode electrically connected to the doped region 23 serves as the drain electrode D. The doped region 24 serves as the source region of the transistor 10, and the contact electrode electrically connected to the doped region 24 serves as the source electrode S. The contact electrode electrically connected to the gate layer 27 serves as the gate electrode G. In the embodiment of the present invention, a contact electrode CE20 is electrically connected to the doped region 25. When the semiconductor circuit 1 is in the normal operating mode, a high operating voltage VDD is provided to the contact electrode CE20; when the semiconductor circuit 1 is in the abnormal operating mode, the high operating voltage VDD is not provided to the contact electrode CE20, that is, the potential state of the contact electrode CE20 It is floating. According to the cross-sectional view of FIG. 2A, it can be seen that the transistor 10 is formed in the deep well region 21. In detail, the transistor 10 is surrounded by the deep well region 21. Fig. 1A shows the boundary L21, which surrounds the transistor 10, so as to illustrate the arrangement relationship between the transistor 10 and the deep well region 21 in Fig. 2A.

再次參閱第1A圖,二極體12之陰極電性連接電晶體10的汲極電極D,且其陽極電性連接電源端T10。二極體13之陰極電性連接電晶體10的源極電極S,且其陽極電性連接電源端T10。當半導體電路1處於正常操作模式時,一低操作電壓VSS或一接地電壓GND提供至電源端T10(在後文中,將以低操操作電壓VSS為例來說明本發明個實施例);當半導體電路1處於非正常操作模式時,沒有任何電壓提供至電源端T10,即電源端T10的電位狀態為浮接。 Referring to FIG. 1A again, the cathode of the diode 12 is electrically connected to the drain electrode D of the transistor 10, and the anode is electrically connected to the power terminal T10. The cathode of the diode 13 is electrically connected to the source electrode S of the transistor 10, and its anode is electrically connected to the power terminal T10. When the semiconductor circuit 1 is in the normal operation mode, a low operation voltage VSS or a ground voltage GND is provided to the power supply terminal T10 (in the following, the low operation voltage VSS will be taken as an example to illustrate an embodiment of the present invention); When the circuit 1 is in an abnormal operation mode, no voltage is provided to the power terminal T10, that is, the potential state of the power terminal T10 is floating.

參閱第1A與2A圖,靜電放電保護電路11電性連接汲極電極D,且包括控制電路110與放電電路111。控制電路110具有一控制端T11,其電性連接接觸電極CE20於節點ND10。在此實施例中,控制電路110包括反向器112。反向器112具有輸入端T12以及輸出端T13,且輸入端T12電性連接控制電路11的控制端T11。反向器112包括P型電晶體P110以及N型電晶體N110。P型電 晶體P110的閘極電性連接輸入端T12,其源極電性連接電晶體10的汲極電極D,且其汲極電性連接輸出端T13。N型電晶體N110的閘極電性連接輸入端T12,其汲極電性連接輸出端T13,且其源極電性連接電源端T10。放電電路111包括N型電晶體N111。N型電晶體N111的閘極電性連接反向器112的輸出端T13,其汲極電性連接電晶體10的汲極電極D,且其源極電性連接電源端T10。基於控制電路110的電路架構與電晶體10的連接,控制電路110根據深井區21的電位狀態,且基於汲極電極D的電位狀態或電源端T10的電位狀態來產生控制信號S10。相關敘述請參閱後文。 Referring to FIGS. 1A and 2A, the electrostatic discharge protection circuit 11 is electrically connected to the drain electrode D, and includes a control circuit 110 and a discharge circuit 111. The control circuit 110 has a control terminal T11 which is electrically connected to the contact electrode CE20 at the node ND10. In this embodiment, the control circuit 110 includes an inverter 112. The inverter 112 has an input terminal T12 and an output terminal T13, and the input terminal T12 is electrically connected to the control terminal T11 of the control circuit 11. The inverter 112 includes a P-type transistor P110 and an N-type transistor N110. P-type electricity The gate of the crystal P110 is electrically connected to the input terminal T12, its source is electrically connected to the drain electrode D of the transistor 10, and its drain is electrically connected to the output terminal T13. The gate of the N-type transistor N110 is electrically connected to the input terminal T12, its drain is electrically connected to the output terminal T13, and its source is electrically connected to the power terminal T10. The discharge circuit 111 includes an N-type transistor N111. The gate of the N-type transistor N111 is electrically connected to the output terminal T13 of the inverter 112, its drain is electrically connected to the drain electrode D of the transistor 10, and its source is electrically connected to the power terminal T10. Based on the connection between the circuit structure of the control circuit 110 and the transistor 10, the control circuit 110 generates the control signal S10 according to the potential state of the deep well region 21 and the potential state of the drain electrode D or the potential state of the power terminal T10. Please refer to the following text for related descriptions.

當半導體電路1處於非正常操作模式時,高操作電壓VDD未提供至接觸電極CE20,且沒有任何電壓提供至電源端T10,即接觸電極CE20與電源端T10的電位狀態皆為浮接。由於反向器112的輸入端T12透過控制端T11與節點ND10電性連接接觸電極CE20,因此,輸入端T12亦處於浮接狀態,使得P型電晶體P110導通而N型電晶體N110關閉。當於汲極電極D上發生一靜電放電事件時,汲極電極D的電位瞬間提高。透過導通的P型電晶體P110,輸出端T13處於一高電位狀態,即控制信號S10具有一高電壓位準。N型電晶體N111根據此高電壓位準的控制信號S10而導通,使得在汲極電極D與電源端T10之間具有一放電路徑。汲極電極D上的靜電電荷透過此放電路徑傳導至電源端T10,藉此保護耦接電晶體10的電路或元件不受靜電電荷的破壞。 When the semiconductor circuit 1 is in an abnormal operation mode, the high operating voltage VDD is not provided to the contact electrode CE20, and no voltage is provided to the power terminal T10, that is, the potential states of the contact electrode CE20 and the power terminal T10 are both floating. Since the input terminal T12 of the inverter 112 is electrically connected to the contact electrode CE20 through the control terminal T11 and the node ND10, the input terminal T12 is also in a floating state, so that the P-type transistor P110 is turned on and the N-type transistor N110 is turned off. When an electrostatic discharge event occurs on the drain electrode D, the potential of the drain electrode D increases instantly. Through the turned-on P-type transistor P110, the output terminal T13 is in a high voltage state, that is, the control signal S10 has a high voltage level. The N-type transistor N111 is turned on according to the high voltage level control signal S10, so that there is a discharge path between the drain electrode D and the power terminal T10. The electrostatic charge on the drain electrode D is conducted to the power terminal T10 through the discharge path, thereby protecting the circuit or element coupled to the transistor 10 from the electrostatic charge.

在此實施例中,當半導體電路1處於非正常操作模式且於汲極電極D上發生一靜電放電事件時,由於N型電晶體N111導通且二極體13的連接架構(其陽極電性連接電源端T10,且其陰極電性 連接源極電極S),另一放電路徑形成於在電源端T10與源極電極S之間。因此,當汲極電極D上發生一靜電放電事件時,汲極電極D上的靜電電荷除了可傳導至電源端T10,更可傳導至源極電極S。 In this embodiment, when the semiconductor circuit 1 is in an abnormal operation mode and an electrostatic discharge event occurs on the drain electrode D, since the N-type transistor N111 is turned on and the connection structure of the diode 13 (its anode is electrically connected) Power terminal T10, and its cathode electrical property The source electrode S) is connected, and another discharge path is formed between the power terminal T10 and the source electrode S. Therefore, when an electrostatic discharge event occurs on the drain electrode D, the electrostatic charge on the drain electrode D can be conducted to the source electrode S in addition to the power terminal T10.

當半導體電路1處於正常操作模式時,高操作電壓VDD提供至接觸電極CE20且低操作電壓VSS提供至電源端T10,即接觸電極CE20處於高電位狀態,而電源端T10處於低電位狀態。在正常操作模式下,由於反向器112的輸入端T12透過控制端T11與節點ND10電性連接接觸電極CE20,輸入端T12處於一高電位狀態,使得N型電晶體N110導通而P型電晶體P110關閉。輸出端T13則基於低操作電壓VSS而處於一低電位狀態,即控制信號S10具有一低電壓位準。N型電晶體N111根據此低電壓位準的控制信號S10而關閉。在正常操作模式下,由於N型電晶體N111關閉,使得汲極電極D與電源端T10不具有放電路徑,即阻斷了前述的放電路徑。 When the semiconductor circuit 1 is in the normal operation mode, the high operating voltage VDD is provided to the contact electrode CE20 and the low operating voltage VSS is provided to the power terminal T10, that is, the contact electrode CE20 is in a high potential state, and the power terminal T10 is in a low potential state. In the normal operation mode, since the input terminal T12 of the inverter 112 is electrically connected to the contact electrode CE20 through the control terminal T11 and the node ND10, the input terminal T12 is in a high potential state, so that the N-type transistor N110 is turned on and the P-type transistor is turned on. P110 is closed. The output terminal T13 is at a low level based on the low operating voltage VSS, that is, the control signal S10 has a low voltage level. The N-type transistor N111 is turned off according to the control signal S10 of the low voltage level. In the normal operation mode, since the N-type transistor N111 is turned off, the drain electrode D and the power terminal T10 do not have a discharge path, that is, the aforementioned discharge path is blocked.

在其他實施例中,靜電放電保護電路11也電性連接源極電極S。在此實施例中,如2B圖所示,在深井區21中更形成N型摻雜區28,且一接觸電極CE21電性連接摻雜區28。當半導體電路1處於正常操作模式時,高操作電壓VDD提供至接觸電極CE21;當半導體電路1處於非正常操作模式時,高操作電壓VDD未提供至接觸電極CE21,即接觸電極CE21的電位狀態為浮接。在此實施例中,N型摻雜區28在深井區21形成的位置接近N型摻雜區(源極區)24。參閱第1B圖,靜電放電保護電路11更包括控制電路113與放電電路114。控制電路113具有一控制端T14,其電性連接接觸電極CE21於節點ND11。控制電路113包括反向器115。反向器115具有輸入端T15以及輸出端T16,且輸入端T15電性連接控制電路 113的控制端T14。反向器115包括P型電晶體P113以及N型電晶體N113。P型電晶體P113的閘極電性連接輸入端T15,其源極電性連接電晶體10的源極電極S,且其汲極電性連接輸出端T16。N型電晶體N113的閘極電性連接輸入端T15,其汲極電性連接輸出端T16,且其源極電性連接電源端T10。放電電路114包括N型電晶體N114。N型電晶體N114的閘極電性連接反向器115的輸出端T16,其汲極電性連接電晶體10的源極電極S,且其源極電性連接電源端T10。基於控制電路113的電路架構與電晶體10的連接,控制電路113根據深井區21的電位狀態,且基於源極電極S的電位狀態或電源端T10的電位狀態來產生控制信號S11。相關敘述請參閱後文。 In other embodiments, the electrostatic discharge protection circuit 11 is also electrically connected to the source electrode S. In this embodiment, as shown in FIG. 2B, an N-type doped region 28 is further formed in the deep well region 21, and a contact electrode CE21 is electrically connected to the doped region 28. When the semiconductor circuit 1 is in the normal operation mode, the high operation voltage VDD is supplied to the contact electrode CE21; when the semiconductor circuit 1 is in the abnormal operation mode, the high operation voltage VDD is not supplied to the contact electrode CE21, that is, the potential state of the contact electrode CE21 is Floating. In this embodiment, the position where the N-type doped region 28 is formed in the deep well region 21 is close to the N-type doped region (source region) 24. Referring to FIG. 1B, the electrostatic discharge protection circuit 11 further includes a control circuit 113 and a discharge circuit 114. The control circuit 113 has a control terminal T14 which is electrically connected to the contact electrode CE21 at the node ND11. The control circuit 113 includes an inverter 115. The inverter 115 has an input terminal T15 and an output terminal T16, and the input terminal T15 is electrically connected to the control circuit 113's control terminal T14. The inverter 115 includes a P-type transistor P113 and an N-type transistor N113. The gate of the P-type transistor P113 is electrically connected to the input terminal T15, its source is electrically connected to the source electrode S of the transistor 10, and its drain is electrically connected to the output terminal T16. The gate of the N-type transistor N113 is electrically connected to the input terminal T15, its drain is electrically connected to the output terminal T16, and its source is electrically connected to the power terminal T10. The discharge circuit 114 includes an N-type transistor N114. The gate of the N-type transistor N114 is electrically connected to the output terminal T16 of the inverter 115, its drain is electrically connected to the source electrode S of the transistor 10, and its source is electrically connected to the power terminal T10. Based on the connection between the circuit structure of the control circuit 113 and the transistor 10, the control circuit 113 generates the control signal S11 based on the potential state of the deep well region 21 and the potential state of the source electrode S or the potential state of the power terminal T10. Please refer to the following text for related descriptions.

當半導體電路1處於非正常操作模式時,高操作電壓VDD未提供至接觸電極CE21,且沒有任何電壓提供至電源端T10,即接觸電極CE21與電源端T10的電位狀態皆為浮接。由於反向器115的輸入端T15透過控制端T14與節點ND11電性連接接觸電極CE21,因此,輸入端T15亦處於浮接狀態,使得P型電晶體P113導通而N型電晶體N113關閉。當於源極電極S上發生一靜電放電事件時,源極電極S的電位瞬間提高。透過導通的P型電晶體P113,輸出端T16處於一高電位狀態,即控制信號S11具有一高電壓位準。N型電晶體N114根據此高電壓位準的控制信號S11而導通,使得在源極電極S與電源端T10之間具有一放電路徑。源極電極S上的靜電電荷透過此放電路徑傳導至電源端T10,藉此保護耦接電晶體10的電路或元件不受靜電電荷的破壞。 When the semiconductor circuit 1 is in an abnormal operation mode, the high operating voltage VDD is not provided to the contact electrode CE21, and no voltage is provided to the power terminal T10, that is, the potential states of the contact electrode CE21 and the power terminal T10 are both floating. Since the input terminal T15 of the inverter 115 is electrically connected to the contact electrode CE21 through the control terminal T14 and the node ND11, the input terminal T15 is also in a floating state, so that the P-type transistor P113 is turned on and the N-type transistor N113 is turned off. When an electrostatic discharge event occurs on the source electrode S, the potential of the source electrode S increases instantly. Through the turned-on P-type transistor P113, the output terminal T16 is in a high voltage state, that is, the control signal S11 has a high voltage level. The N-type transistor N114 is turned on according to the control signal S11 of the high voltage level, so that there is a discharge path between the source electrode S and the power terminal T10. The electrostatic charge on the source electrode S is conducted to the power terminal T10 through the discharge path, thereby protecting the circuit or element coupled to the transistor 10 from the electrostatic charge.

在此實施例中,當半導體電路1處於非正常操作模式且於源極電極S上發生一靜電放電事件時,由於N型電晶體N114導 通且二極體12的連接架構(其陽極電性連接電源端T10,且其陰極電性連接汲極電極D),另一放電路徑形成於在電源端T10與汲極電極D之間。因此,當源極電極S上發生一靜電放電事件時,源極電極S上的靜電電荷除了可傳導至電源端T10,更可傳導至汲極電極D。 In this embodiment, when the semiconductor circuit 1 is in an abnormal operation mode and an electrostatic discharge event occurs on the source electrode S, since the N-type transistor N114 conducts The connection structure of the two-electrode body 12 (its anode is electrically connected to the power terminal T10, and its cathode is electrically connected to the drain electrode D), and another discharge path is formed between the power terminal T10 and the drain electrode D. Therefore, when an electrostatic discharge event occurs on the source electrode S, the electrostatic charge on the source electrode S can be conducted to the drain electrode D in addition to the power terminal T10.

當半導體電路1處於正常操作模式時,高操作電壓VDD提供至接觸電極CE21且低操作電壓VSS提供至電源端T10,即接觸電極CE21處於高電位狀態,而電源端T10處於低電位狀態。在正常操作模式下,由於反向器115的輸入端T15透過控制端T14與節點ND11電性連接接觸電極CE21,輸入端T15處於一高電位狀態,使得N型電晶體N113導通而P型電晶體P113關閉。輸出端T16則基於低操作電壓VSS而處於一低電位狀態,即控制信號S11具有一低電壓位準。N型電晶體N114根據此低電壓位準的控制信號S11而關閉。在正常操作模式下,由於N型電晶體N114關閉,使得源極電極S與電源端T10不具有放電路徑,即阻斷了前述的放電路徑。 When the semiconductor circuit 1 is in the normal operation mode, the high operating voltage VDD is provided to the contact electrode CE21 and the low operating voltage VSS is provided to the power terminal T10, that is, the contact electrode CE21 is in a high potential state, and the power terminal T10 is in a low potential state. In the normal operation mode, since the input terminal T15 of the inverter 115 is electrically connected to the contact electrode CE21 through the control terminal T14 and the node ND11, the input terminal T15 is in a high potential state, so that the N-type transistor N113 is turned on and the P-type transistor is turned on. P113 is closed. The output terminal T16 is at a low level based on the low operating voltage VSS, that is, the control signal S11 has a low voltage level. The N-type transistor N114 is turned off according to the control signal S11 of the low voltage level. In the normal operation mode, since the N-type transistor N114 is turned off, the source electrode S and the power terminal T10 do not have a discharge path, that is, the aforementioned discharge path is blocked.

在其他實施例中,與電晶體10的汲極電極D電性連接的靜電放電保護電路具有其他電路架構。參閱第1A與3圖,與第1A圖比較起來,第3圖中靜電放電電路11的控制電路110’更包括反向器300。反向器300具有輸入端T30以及輸出端T31,且輸入端T30電性連接反向器112的輸出端T13。反向器300包括P型電晶體P300以及N型電晶體N300。P型電晶體P300的閘極電性連接輸入端T30,其源極電性連接電晶體10的汲極電極D,且其汲極電性連接輸出端T31。N型電晶體N300的閘極電性連接輸入端T30,其汲極電性連接輸出端T31,且其源極電性連接電源端T10。此外,基於控制電路110’的架構,第3圖中靜電放電電路11的放電電路111’包 括P型電晶體P301,取代了第1A圖的N型電晶體N111。參閱第3圖,P型電晶體P301的閘極電性連接反向器300的輸出端T31,其源極電性連接電晶體10的汲極電極D,且其汲極電性連接電源端T10。 In other embodiments, the electrostatic discharge protection circuit electrically connected to the drain electrode D of the transistor 10 has other circuit structures. Referring to FIGS. 1A and 3, compared with FIG. 1A, the control circuit 110' of the electrostatic discharge circuit 11 in FIG. 3 further includes an inverter 300. The inverter 300 has an input terminal T30 and an output terminal T31, and the input terminal T30 is electrically connected to the output terminal T13 of the inverter 112. The inverter 300 includes a P-type transistor P300 and an N-type transistor N300. The gate of the P-type transistor P300 is electrically connected to the input terminal T30, its source is electrically connected to the drain electrode D of the transistor 10, and its drain is electrically connected to the output terminal T31. The gate of the N-type transistor N300 is electrically connected to the input terminal T30, its drain is electrically connected to the output terminal T31, and its source is electrically connected to the power terminal T10. In addition, based on the structure of the control circuit 110', the discharge circuit 111' of the electrostatic discharge circuit 11 in Figure 3 includes Including the P-type transistor P301, which replaces the N-type transistor N111 in Figure 1A. Referring to Figure 3, the gate of the P-type transistor P301 is electrically connected to the output terminal T31 of the inverter 300, its source is electrically connected to the drain electrode D of the transistor 10, and its drain is electrically connected to the power terminal T10 .

參閱前文關於第1A圖的敘述,在非正常操作模式時,高操作電壓VDD未提供至接觸電極CE20,且沒有任何電壓提供至電源端T10,即接觸電極CE20與電源端T10的電位狀態皆為浮接。當於汲極電極D上發生一靜電放電事件時,反向器112的輸出端T13處於一高電位狀態。根據輸出端T13的高電位狀態,N型電晶體N300導通,而P型電晶體P300關閉。透過導通的N型電晶體N300,輸出端T31基於電源端T10的浮接狀態而處於一低電壓位準,即控制信號S10’具有一低電壓位準。P型電晶體P301根據此低電壓位準的控制信號S10’而導通,使得在汲極電極D與電源端T10之間具有一放電路徑。汲極電極D上的靜電電荷透過此放電路徑傳導至電源端T10,藉此保護耦接電晶體10的電路或元件不受靜電電荷的破壞。 Refer to the description of Figure 1A above, in the abnormal operation mode, the high operating voltage VDD is not provided to the contact electrode CE20, and no voltage is provided to the power supply terminal T10, that is, the potential states of the contact electrode CE20 and the power supply terminal T10 are both Floating. When an electrostatic discharge event occurs on the drain electrode D, the output terminal T13 of the inverter 112 is in a high potential state. According to the high potential state of the output terminal T13, the N-type transistor N300 is turned on, and the P-type transistor P300 is turned off. Through the turned-on N-type transistor N300, the output terminal T31 is at a low voltage level based on the floating state of the power terminal T10, that is, the control signal S10' has a low voltage level. The P-type transistor P301 is turned on according to the control signal S10' of the low voltage level, so that there is a discharge path between the drain electrode D and the power terminal T10. The electrostatic charge on the drain electrode D is conducted to the power terminal T10 through the discharge path, thereby protecting the circuit or element coupled to the transistor 10 from the electrostatic charge.

在此實施例中,當半導體電路1處於非正常操作模式且於汲極電極D上發生一靜電放電事件時,由於P型電晶體P301導通且二極體13的連接架構(其陽極電性連接電源端T10,且其陰極電性連接源極電極S),另一放電路徑形成於在電源端T10與源極電極S之間。因此,當汲極電極D上發生一靜電放電事件時,汲極電極D上的靜電電荷除了可傳導至電源端T10,更可傳導至源極電極S。 In this embodiment, when the semiconductor circuit 1 is in an abnormal operation mode and an electrostatic discharge event occurs on the drain electrode D, since the P-type transistor P301 is turned on and the connection structure of the diode 13 (the anode is electrically connected The power terminal T10, and its cathode is electrically connected to the source electrode S), and another discharge path is formed between the power terminal T10 and the source electrode S. Therefore, when an electrostatic discharge event occurs on the drain electrode D, the electrostatic charge on the drain electrode D can be conducted to the source electrode S in addition to the power terminal T10.

同樣的,參閱前文關於第1A圖的敘述,當半導體電路1處於正常操作模式時,高操作電壓VDD提供至接觸電極CE20且低操作電壓VSS提供至電源端T10,即接觸電極CE20處於高電位 狀態,而電源端T10處於低電位狀態。在正常操作模式下,輸出端T13處於一低電位狀態。根據輸出端T13的低電位狀態,P型電晶體P300導通,而N型電晶體N300關閉。透過導通的P型電晶體P300,輸出端T31基於電晶體10操作時汲極電極D的電位而處於一高電壓位準,即控制信號S10’具有一高電壓位準。P型電晶體P301根據此高電壓位準的控制信號S10’而關閉。在正常操作模式下,由於P型電晶體P301關閉,使得汲極電極D與電源端T10不具有放電路徑,即阻斷了前述的放電路徑。 Similarly, referring to the previous description of Figure 1A, when the semiconductor circuit 1 is in the normal operation mode, the high operating voltage VDD is provided to the contact electrode CE20 and the low operating voltage VSS is provided to the power terminal T10, that is, the contact electrode CE20 is at a high potential. State, and the power terminal T10 is in a low potential state. In the normal operation mode, the output terminal T13 is in a low potential state. According to the low potential state of the output terminal T13, the P-type transistor P300 is turned on, and the N-type transistor N300 is turned off. Through the turned-on P-type transistor P300, the output terminal T31 is at a high voltage level based on the potential of the drain electrode D when the transistor 10 is operating, that is, the control signal S10' has a high voltage level. The P-type transistor P301 is turned off according to the control signal S10' of the high voltage level. In the normal operation mode, since the P-type transistor P301 is turned off, the drain electrode D and the power terminal T10 do not have a discharge path, that is, the aforementioned discharge path is blocked.

根據上述個實施例,本案之靜電放電保護電路不具有習知技術所採用的一電容-電阻電路,因此占用較小的面積。 According to the above-mentioned embodiment, the electrostatic discharge protection circuit of this case does not have a capacitor-resistor circuit used in the prior art, and therefore occupies a smaller area.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above in preferred embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to the scope of the attached patent application.

1:半導體電路 1: Semiconductor circuit

10:半導體元件 10: Semiconductor components

11:靜電放電保護電路 11: Electrostatic discharge protection circuit

12、13:二極體 12, 13: Diode

20:基底 20: Base

21:N型深井區 21: N-type deep well area

22:P型井區 22: P-type well area

23:N型摻雜區(汲極區) 23: N-type doped region (drain region)

24:N型摻雜區(源極區) 24: N-type doped region (source region)

25:N型摻雜區 25: N-type doped region

26:閘極介電層 26: Gate dielectric layer

27:閘極層 27: Gate layer

28:N型摻雜區 28: N-type doped region

110、110’:控制電路 110, 110’: Control circuit

111、111’:放電電路 111, 111’: Discharge circuit

112:反向器 112: Inverter

113:控制電路 113: control circuit

114:放電電路 114: Discharge circuit

115、300:反向器 115, 300: Inverter

CE20、CE21:接觸電極 CE20, CE21: contact electrode

D:汲極電極 D: Drain electrode

G:閘極電極 G: Gate electrode

GND:接地電壓 GND: Ground voltage

L21:邊界 L21: Border

N110、N111、N113、N114、N300:N型電晶體 N110, N111, N113, N114, N300: N-type transistor

ND10、ND11:節點 ND10, ND11: Node

P110、P113、P300、P301:P型電晶體 P110, P113, P300, P301: P-type transistor

S:源極電極 S: source electrode

S10、S10'、S11:控制信號 S10, S10', S11: control signal

T10:電源端 T10: power terminal

T11、T14:控制端 T11, T14: control terminal

T12、T15、T30:輸入端 T12, T15, T30: input terminal

T13、T16、T31:輸出端 T13, T16, T31: output terminal

VDD:高操作電壓 VDD: High operating voltage

VSS:低操作電壓 VSS: Low operating voltage

第1A圖表示根據本發明一實施例之半導體電路。 第1B圖表示根據本發明另一實施例之半導體電路。 第2A圖表示根據本發明一實施例之電晶體的結構截面圖。 第2B圖表示根據本發明另一實施例之電晶體的結構截面圖。 第3圖表示根據本發明另一實施例之半導體電路。 FIG. 1A shows a semiconductor circuit according to an embodiment of the present invention. FIG. 1B shows a semiconductor circuit according to another embodiment of the present invention. FIG. 2A shows a cross-sectional view of the structure of a transistor according to an embodiment of the present invention. FIG. 2B shows a cross-sectional view of the structure of a transistor according to another embodiment of the present invention. Figure 3 shows a semiconductor circuit according to another embodiment of the present invention.

1:半導體電路 1: Semiconductor circuit

10:半導體元件 10: Semiconductor components

11:靜電放電保護電路 11: Electrostatic discharge protection circuit

12、13:二極體 12, 13: Diode

110:控制電路 110: control circuit

111:放電電路 111: Discharge circuit

112:反向器 112: Inverter

D:汲極電極 D: Drain electrode

G:閘極電極 G: Gate electrode

GND:接地電壓 GND: Ground voltage

L21:邊界 L21: Border

N110、N111:N型電晶體 N110, N111: N-type transistor

ND10:節點 ND10: Node

P110:P型電晶體 P110: P-type transistor

S:源極電極 S: source electrode

S10:控制信號 S10: Control signal

T10:電源端 T10: power terminal

T11:控制端 T11: Control terminal

T12:輸入端 T12: input

T13:輸出端 T13: output

VSS:低操作電壓 VSS: Low operating voltage

Claims (22)

一種靜電放電保護電路,用於一半導體元件,該半導體元件具有一第一汲/源極電極以及一第二汲/源極電極,且由一深井區包圍,包括: 一第一控制電路,電性連接於該半導體元件的該第一汲/源極電極與一電源端之間,且具有一第一控制端,其中,該第一控制端電性連接該深井區,且該第一控制電路產生一第一控制信號;以及 一第一放電電路,電性連接該第一汲/源極電極與該電源端之間,且受控於該第一控制信號; 其中,當於該第一汲/源極電極上發生一靜電放電事件時,該第一控制電路根據該深井區的一電位狀態以及該第一汲/源極電極的一電位狀態來產生該第一控制信號,且該第一放電電路根據該第一控制信號提供介於該第一汲/源極電極與該電源端之間的一第一放電路徑。 An electrostatic discharge protection circuit for a semiconductor element, the semiconductor element having a first drain/source electrode and a second drain/source electrode, and surrounded by a deep well region, including: A first control circuit is electrically connected between the first drain/source electrode of the semiconductor element and a power terminal, and has a first control terminal, wherein the first control terminal is electrically connected to the deep well region , And the first control circuit generates a first control signal; and A first discharge circuit electrically connected between the first drain/source electrode and the power terminal and controlled by the first control signal; Wherein, when an electrostatic discharge event occurs on the first drain/source electrode, the first control circuit generates the first control circuit according to a potential state of the deep well region and a potential state of the first drain/source electrode A control signal, and the first discharge circuit provides a first discharge path between the first drain/source electrode and the power terminal according to the first control signal. 如請求項1之靜電放電保護電路,其中,該第一控制電路包括: 一第一反向器,電性連接該第一汲/源極電極與該電源端之間,且具有一第一輸入端以及一第一輸出端; 其中,該第一輸入端電性連接該第一控制端;以及 其中,該第一反向器根據該深井區的該電位狀態,選擇性地基於該第一汲/源極電極的該電位狀態或該電源端的一電位狀態來決定該第一輸出端的一電壓,且該第一控制電路根據該第一輸出端的該電壓來產生該第一控制信號。 For example, the electrostatic discharge protection circuit of claim 1, wherein the first control circuit includes: A first inverter electrically connected between the first drain/source electrode and the power terminal, and has a first input terminal and a first output terminal; Wherein, the first input terminal is electrically connected to the first control terminal; and Wherein, the first inverter determines a voltage of the first output terminal according to the potential state of the deep well region, selectively based on the potential state of the first drain/source electrode or a potential state of the power terminal, And the first control circuit generates the first control signal according to the voltage of the first output terminal. 如請求項2之靜電放電保護電路,其中,當於該第一汲/源極電極上發生該靜電放電事件時,該第一反向器基於該第一汲/源極電極的該電位狀態來產生該第一控制信號,以控制該放電電路提供該第一放電路徑。 The electrostatic discharge protection circuit of claim 2, wherein, when the electrostatic discharge event occurs on the first drain/source electrode, the first inverter is based on the potential state of the first drain/source electrode The first control signal is generated to control the discharge circuit to provide the first discharge path. 如請求項3之靜電放電保護電路,其中,該靜電放電事件是發生在該深井區的該電位狀態為一浮接狀態(floating)的期間。 For example, the electrostatic discharge protection circuit of claim 3, wherein the electrostatic discharge event occurs during a period during which the potential state of the deep well region is a floating state. 如請求項2之靜電放電保護電路,其中,當該半導體元件處於一正常操作模式時,該第一反向器基於該電源端的該電位狀態來產生該第一控制信號,以控制該放電電路阻斷該第一放電路徑。 Such as the electrostatic discharge protection circuit of claim 2, wherein, when the semiconductor element is in a normal operation mode, the first inverter generates the first control signal based on the potential state of the power terminal to control the resistance of the discharge circuit Disconnect the first discharge path. 如請求項5之靜電放電保護電路,其中,於該正常操作模式時,該深井區接收一操作電壓。 Such as the electrostatic discharge protection circuit of claim 5, wherein, in the normal operation mode, the deep well area receives an operating voltage. 如請求項2之靜電放電保護電路,其中,該第一反向器包括:一第一P型電晶體,具有電性連接該第一輸入端的一控制電極、電性連接該第一汲/源極電極的一第一電極、以及電性連接該第一輸出端的一第二電極;以及一第一N型電晶體,具有電性連接該第一輸入端的一控制電極、電性連接該第一輸出端的一第一電極、以及電性連接該電源端之一第二電極。 The electrostatic discharge protection circuit of claim 2, wherein the first inverter includes: a first P-type transistor having a control electrode electrically connected to the first input terminal, and electrically connected to the first drain/source A first electrode of the pole electrode and a second electrode electrically connected to the first output terminal; and a first N-type transistor having a control electrode electrically connected to the first input terminal and electrically connected to the first output terminal A first electrode of the output terminal and a second electrode of the power terminal are electrically connected. 如請求項7之靜電放電保護電路,其中,該第一放電電路包括:一第二N型電晶體,具有電性連接該第一輸出端的一控制電極、電性連接該第一汲/源電極的一第一電極、以及電性連接該電源端之 一第二電極。 The electrostatic discharge protection circuit of claim 7, wherein the first discharge circuit includes: a second N-type transistor having a control electrode electrically connected to the first output terminal, and electrically connected to the first drain/source electrode Of a first electrode, and electrically connected to the power terminal A second electrode. 如請求項2之靜電放電保護電路,其中,該第一控制電路更包括:一第二反向器,電性連接該第一汲/源極電極與該電源端,且具有一第二輸入端以及一第二輸出端;其中,該第二輸入端電性連接該第一輸出端;以及其中,該第二反向器根據該該第一輸出端的該電壓,選擇性地基於該第一汲/源極電極的該電位狀態或該電源端的該電位狀態來產生該第一控制信號。 The electrostatic discharge protection circuit of claim 2, wherein the first control circuit further includes: a second inverter, electrically connected to the first drain/source electrode and the power terminal, and has a second input terminal And a second output terminal; wherein the second input terminal is electrically connected to the first output terminal; and wherein the second inverter is selectively based on the first output terminal according to the voltage of the first output terminal / The potential state of the source electrode or the potential state of the power terminal to generate the first control signal. 如請求項1之靜電放電保護電路,更包括:一第二控制電路,電性連接於該半導體元件的該第二汲/源極電極與該電源端之間,且具有一第二控制端,其中,該第二控制端電性連接該深井區,且該第二控制電路產生一第二控制信號;以及一第二放電電路,電性連接該第二汲/源極電極與該電源端之間,且受控於該第二控制信號;其中,當於該第二汲/源極電極上發生該靜電放電事件時,該第二控制電路根據該深井區的該電位狀態以及該第二汲/源極電極的一電位狀態來產生該第二控制信號,且該第二放電電路根據該第二控制信號提供介於該第二汲/源極電極與該電源端之間的一第二放電路徑。 For example, the electrostatic discharge protection circuit of claim 1, further comprising: a second control circuit, which is electrically connected between the second drain/source electrode of the semiconductor element and the power terminal, and has a second control terminal, Wherein, the second control terminal is electrically connected to the deep well region, and the second control circuit generates a second control signal; and a second discharge circuit is electrically connected to the second drain/source electrode and the power terminal And controlled by the second control signal; wherein, when the electrostatic discharge event occurs on the second drain/source electrode, the second control circuit is based on the potential state of the deep well region and the second drain /Source electrode is a potential state to generate the second control signal, and the second discharge circuit provides a second discharge between the second drain/source electrode and the power terminal according to the second control signal path. 如請求項1之靜電放電保護電路,更包括:一二極體,具有電性連接該電源端的陽極端以及電性連接該第二汲/源極電極的陰極端;其中,當於該第一汲/源極電極上發生該靜電放電事件時,一第二放電路徑經由該二極體形成於該電源端與該第二汲/源極電極 之間。 For example, the electrostatic discharge protection circuit of claim 1, further comprising: a diode having an anode terminal electrically connected to the power terminal and a cathode terminal electrically connected to the second drain/source electrode; wherein, it is used as the first When the electrostatic discharge event occurs on the drain/source electrode, a second discharge path is formed between the power terminal and the second drain/source electrode via the diode between. 一種半導體電路,包括:一半導體元件,形成在一井區,且具有一第一汲/源極電極以及一第二汲/源極電極,其中,該井區由一深井區包圍,該井區具有一第一導電類型,且該深井區具有不同於該第一導電類型的一第二導電類型;一第一控制電路,電性連接於該第一汲/源極電極與一電源端之間,且具有一第一控制端,其中,該第一控制端電性連接該深井區,且該第一控制電路產生一第一控制信號;以及一第一放電電路,電性連接該第一汲/源極電極與該電源端之間,且受控於該第一控制信號;其中,當於該第一汲/源極電極上發生一靜電放電事件時,該第一控制電路根據該深井區的一電位狀態以及該第一汲/源極電極的一電位狀態來產生該第一控制信號,且該第一放電電路根據該第一控制信號提供介於該第一汲/源極電極與該電源端之間的一第一放電路徑。 A semiconductor circuit includes: a semiconductor element formed in a well region and having a first drain/source electrode and a second drain/source electrode, wherein the well region is surrounded by a deep well region, and the well region Having a first conductivity type, and the deep well region has a second conductivity type different from the first conductivity type; a first control circuit electrically connected between the first drain/source electrode and a power terminal , And has a first control terminal, wherein the first control terminal is electrically connected to the deep well region, and the first control circuit generates a first control signal; and a first discharge circuit is electrically connected to the first drain / Between the source electrode and the power terminal and controlled by the first control signal; wherein, when an electrostatic discharge event occurs on the first drain/source electrode, the first control circuit is based on the deep well region A potential state of the first drain/source electrode and a potential state of the first drain/source electrode to generate the first control signal, and the first discharge circuit provides the first control signal between the first drain/source electrode and the A first discharge path between the power terminals. 如請求項12之半導體電路,其中,該第一控制電路包括:一第一反向器,電性連接該第一汲/源極電極與該電源端之間,且具有一第一輸入端以及一第一輸出端;其中,該第一輸入端電性連接該第一控制端;以及其中,該第一反向器根據該深井區的該電位狀態,選擇性地基於該第一汲/源極電極的該電位狀態或該電源端的一電位狀態來決定該第一輸出端的一電壓,且該第一控制電路根據該第一輸出端的該 電壓來產生該第一控制信號。 The semiconductor circuit of claim 12, wherein the first control circuit includes: a first inverter electrically connected between the first drain/source electrode and the power terminal, and has a first input terminal and A first output terminal; wherein the first input terminal is electrically connected to the first control terminal; and wherein the first inverter is selectively based on the first drain/source according to the potential state of the deep well region The potential state of the pole electrode or a potential state of the power terminal determines a voltage of the first output terminal, and the first control circuit is based on the first output terminal Voltage to generate the first control signal. 如請求項13之半導體電路,其中,當於該第一汲/源極電極上發生該靜電放電事件時,該第一反向器基於該第一汲/源極電極的該電位狀態來產生該第一控制信號,以控制該放電電路提供該第一放電路徑。 The semiconductor circuit of claim 13, wherein, when the electrostatic discharge event occurs on the first drain/source electrode, the first inverter generates the first drain/source electrode based on the potential state The first control signal is used to control the discharge circuit to provide the first discharge path. 如請求項14之半導體電路,其中,該靜電放電事件是發生在該深井區的該電位狀態為浮接狀態(floating)的期間。 The semiconductor circuit of claim 14, wherein the electrostatic discharge event occurs during a period during which the potential state of the deep well region is a floating state (floating). 如請求項13之半導體電路,其中,當該半導體元件處於一正常操作模式時,該第一反向器基於該電源端的該電位狀態來產生該第一控制信號,以控制該放電電路阻斷該第一放電路徑。 The semiconductor circuit of claim 13, wherein, when the semiconductor element is in a normal operation mode, the first inverter generates the first control signal based on the potential state of the power terminal to control the discharge circuit to block the The first discharge path. 如請求項16之半導體電路,其中,於該正常操作模式時,該深井區接收一操作電壓。 Such as the semiconductor circuit of claim 16, wherein, in the normal operation mode, the deep well region receives an operating voltage. 如請求項13之半導體電路,其中,該第一反向器包括:一第一P型電晶體,具有電性連接該第一輸入端的一控制電極、電性連接該第一汲/源極電極的一第一電極、以及電性連接該第一輸出端的一第二電極;以及一第一N型電晶體,具有電性連接該第一輸入端的一控制電極、電性連接該第一輸出端的一第一電極、以及電性連接該電源端之一第二電極。 The semiconductor circuit of claim 13, wherein the first inverter includes: a first P-type transistor having a control electrode electrically connected to the first input terminal, and electrically connected to the first drain/source electrode A first electrode and a second electrode electrically connected to the first output terminal; and a first N-type transistor having a control electrode electrically connected to the first input terminal, and a control electrode electrically connected to the first output terminal A first electrode and a second electrode electrically connected to the power terminal. 如請求項18之半導體電路,其中,該第一放電電路包括:一第二N型電晶體,具有電性連接該第一輸出端的一控制電極、 電性連接該第一汲/源電極的一第一電極、以及電性連接該電源端之一第二電極。 The semiconductor circuit of claim 18, wherein the first discharge circuit includes: a second N-type transistor having a control electrode electrically connected to the first output terminal, A first electrode electrically connected to the first drain/source electrode and a second electrode electrically connected to the power terminal. 如請求項13之半導體電路,其中,該第一控制電路更包括:一第二反向器,電性連接該第一汲/源極電極與該電源端,且具有一第二輸入端以及一第二輸出端;其中,該第二輸入端電性連接該第一輸出端;以及其中,該第二反向器根據該該第一輸出端的該電壓,選擇性地基於該第一汲/源極電極的該電位狀態或該電源端的該電位狀態來產生該第一控制信號。 The semiconductor circuit of claim 13, wherein the first control circuit further includes: a second inverter electrically connected to the first drain/source electrode and the power terminal, and has a second input terminal and a Second output terminal; wherein, the second input terminal is electrically connected to the first output terminal; and wherein, the second inverter is selectively based on the first drain/source according to the voltage of the first output terminal The potential state of the pole electrode or the potential state of the power terminal generates the first control signal. 如請求項12之半導體電路,更包括:一第二控制電路,電性連接於該半導體元件的該第二汲/源極電極與該電源端之間,且具有一第二控制端,其中,該第二控制端電性連接該深井區,且該第二控制電路產生一第二控制信號;以及一第二放電電路,電性連接該第二汲/源極電極與該電源端之間,且受控於該第二控制信號;其中,當於該第二汲/源極電極上發生該靜電放電事件時,該第二控制電路根據該深井區的該電位狀態以及該第二汲/源極電極的一電位狀態來產生該第二控制信號,且該第二放電電路根據該第二控制信號提供介於該第二汲/源極電極與該電源端之間的一第二放電路徑。 For example, the semiconductor circuit of claim 12, further comprising: a second control circuit, which is electrically connected between the second drain/source electrode of the semiconductor element and the power terminal, and has a second control terminal, wherein, The second control terminal is electrically connected to the deep well region, and the second control circuit generates a second control signal; and a second discharge circuit is electrically connected between the second drain/source electrode and the power terminal, And controlled by the second control signal; wherein, when the electrostatic discharge event occurs on the second drain/source electrode, the second control circuit is based on the potential state of the deep well region and the second drain/source A potential state of the electrode electrode generates the second control signal, and the second discharge circuit provides a second discharge path between the second drain/source electrode and the power terminal according to the second control signal. 如請求項12之半導體電路,更包括:一二極體,具有電性連接該電源端的陽極端以及電性連接該第二汲/源極電極的陰極端; 其中,當於該第一汲/源極電極上發生該靜電放電事件時,一第二放電路徑經由該二極體形成於該電源端與該第二汲/源極電極之間。 For example, the semiconductor circuit of claim 12, further comprising: a diode having an anode terminal electrically connected to the power terminal and a cathode terminal electrically connected to the second drain/source electrode; Wherein, when the electrostatic discharge event occurs on the first drain/source electrode, a second discharge path is formed between the power terminal and the second drain/source electrode via the diode.
TW109132525A 2020-09-21 2020-09-21 Electrostatic discharge protection circuits and semiconductor circuits TWI747510B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109132525A TWI747510B (en) 2020-09-21 2020-09-21 Electrostatic discharge protection circuits and semiconductor circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109132525A TWI747510B (en) 2020-09-21 2020-09-21 Electrostatic discharge protection circuits and semiconductor circuits

Publications (2)

Publication Number Publication Date
TWI747510B true TWI747510B (en) 2021-11-21
TW202213699A TW202213699A (en) 2022-04-01

Family

ID=79907552

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132525A TWI747510B (en) 2020-09-21 2020-09-21 Electrostatic discharge protection circuits and semiconductor circuits

Country Status (1)

Country Link
TW (1) TWI747510B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136126A1 (en) * 2003-01-10 2004-07-15 Smith Jeremy C. Electrostatic discharge protection circuit with feedback enhanced triggering
TW200541040A (en) * 2004-06-04 2005-12-16 Macronix Int Co Ltd ESD protection circuit
TW200612542A (en) * 2004-10-14 2006-04-16 Taiwan Semiconductor Mfg Co Ltd ESD protection circuit with adjusted trigger voltage
TW200939444A (en) * 2008-03-05 2009-09-16 Holtek Semiconductor Inc Integrated circuit and electrostatic discharge protection method thereof
TW201143025A (en) * 2010-05-21 2011-12-01 Vanguard Int Semiconduct Corp Electrostatic discharge protection device and electrostatic discharge protection circuit
TW201314861A (en) * 2011-08-23 2013-04-01 Micron Technology Inc Combination ESD protection circuits and methods
US20160155737A1 (en) * 2014-11-30 2016-06-02 Globalfoundries Singapore Pte. Ltd. Rc-stacked mosfet circuit for high voltage (hv) electrostatic discharge (esd) protection
US20160372921A1 (en) * 2015-06-16 2016-12-22 Nxp B.V. Electrostatic Discharge Power Rail Clamp Circuit
US20170069618A1 (en) * 2015-09-03 2017-03-09 Novatek Microelectronics Corp. Electrostatic discharge protection circuit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136126A1 (en) * 2003-01-10 2004-07-15 Smith Jeremy C. Electrostatic discharge protection circuit with feedback enhanced triggering
TW200541040A (en) * 2004-06-04 2005-12-16 Macronix Int Co Ltd ESD protection circuit
TW200612542A (en) * 2004-10-14 2006-04-16 Taiwan Semiconductor Mfg Co Ltd ESD protection circuit with adjusted trigger voltage
TW200939444A (en) * 2008-03-05 2009-09-16 Holtek Semiconductor Inc Integrated circuit and electrostatic discharge protection method thereof
TW201143025A (en) * 2010-05-21 2011-12-01 Vanguard Int Semiconduct Corp Electrostatic discharge protection device and electrostatic discharge protection circuit
TW201314861A (en) * 2011-08-23 2013-04-01 Micron Technology Inc Combination ESD protection circuits and methods
US20160155737A1 (en) * 2014-11-30 2016-06-02 Globalfoundries Singapore Pte. Ltd. Rc-stacked mosfet circuit for high voltage (hv) electrostatic discharge (esd) protection
TW201630115A (en) * 2014-11-30 2016-08-16 格羅方德半導體私人有限公司 RC-stacked MOSFET circuit for high voltage (HV) electrostatic discharge (ESD) protection
US20160372921A1 (en) * 2015-06-16 2016-12-22 Nxp B.V. Electrostatic Discharge Power Rail Clamp Circuit
US20170069618A1 (en) * 2015-09-03 2017-03-09 Novatek Microelectronics Corp. Electrostatic discharge protection circuit

Also Published As

Publication number Publication date
TW202213699A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US9728512B2 (en) Electro static discharge clamping device
JP2006261427A (en) Semiconductor integrated circuit device
JP2008182239A (en) Electrostatic discharge (esd) protection device
US7092227B2 (en) Electrostatic discharge protection circuit with active device
US20070096793A1 (en) Semiconductor device
US8004805B2 (en) Semiconductor integrated circuit
WO2017157117A1 (en) Electrostatic discharge (esd) protective circuit for integrated circuit
JP6398696B2 (en) Electrostatic protection circuit and semiconductor integrated circuit device
JP3450909B2 (en) Semiconductor device
JP4723443B2 (en) Semiconductor integrated circuit
US20070264804A1 (en) Method and system for reducing charge damage in silicon-on-insulator technology
TWI747510B (en) Electrostatic discharge protection circuits and semiconductor circuits
JP4857353B2 (en) Semiconductor device and plasma display driving semiconductor device using the same
JP6405986B2 (en) Electrostatic protection circuit and semiconductor integrated circuit device
US11296503B1 (en) Electrostatic discharge protection circuits and semiconductor circuits
CN114388492A (en) Electrostatic discharge protection circuit and semiconductor circuit
US6757148B2 (en) Electro-static discharge protection device for integrated circuit inputs
TW584952B (en) Power supply clamp circuit
KR19980043416A (en) ESD protection circuit
JP3753506B2 (en) Semiconductor integrated circuit device
KR100661671B1 (en) Protection circuit for electrostatic discharge in a flash memory device
KR20020055936A (en) Electrostatic discharge protection circuit
JPH0374870A (en) Semiconductor device
TW202306100A (en) Electro-static discharge protection circuit and chip
JP2000307070A (en) Semiconductor device equipped with protective circuit