TWI746228B - Three-dimensional memory devices and method for forming the same - Google Patents

Three-dimensional memory devices and method for forming the same Download PDF

Info

Publication number
TWI746228B
TWI746228B TW109137088A TW109137088A TWI746228B TW I746228 B TWI746228 B TW I746228B TW 109137088 A TW109137088 A TW 109137088A TW 109137088 A TW109137088 A TW 109137088A TW I746228 B TWI746228 B TW I746228B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
semiconductor
channel
memory device
Prior art date
Application number
TW109137088A
Other languages
Chinese (zh)
Other versions
TW202211447A (en
Inventor
吳林春
張坤
文犀 周
夏志良
霍宗亮
Original Assignee
大陸商長江存儲科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/113464 external-priority patent/WO2021208337A1/en
Application filed by 大陸商長江存儲科技有限責任公司 filed Critical 大陸商長江存儲科技有限責任公司
Application granted granted Critical
Publication of TWI746228B publication Critical patent/TWI746228B/en
Publication of TW202211447A publication Critical patent/TW202211447A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

The embodiment of a 3D memory device and method for forming the same is provided in the application. In one embodiment, the 3D memory device includes an insulating layer, a semiconductor layer, storage layer stack with alternating conductive layers and dielectric layers, source contacts vertically extending through the insulating layer from the side opposite to the semiconductor layer and contacting the semiconductor layer, and a channel structure vertically extending into the insulating layer or source contact through the storage layer stack and the semiconductor layer.

Description

三維記憶體元件和用於形成三維記憶體元件的方法Three-dimensional memory element and method for forming three-dimensional memory element

本案內容的實施例涉及三維(3D)記憶體元件及其製造方法。The embodiment of the content of this case relates to a three-dimensional (3D) memory device and a manufacturing method thereof.

通過改進製程技術、電路設計、程式設計演算法和製程,將平面儲存單元微縮到較小的尺寸。然而,隨著儲存單元的特徵尺寸接近下限,平面製程和製造技術變得具有挑戰性並且成本高。結果,用於平面儲存單元的儲存密度接近上限。By improving the process technology, circuit design, programming algorithm and manufacturing process, the planar storage unit is reduced to a smaller size. However, as the feature size of the storage unit approaches the lower limit, the planar process and manufacturing technology become challenging and costly. As a result, the storage density for the planar storage unit approaches the upper limit.

3D記憶體架構可以解決平面儲存單元中的密度限制。3D記憶體架構包括記憶體陣列和用於控制去往和來自記憶體陣列的訊號的週邊設備。The 3D memory architecture can solve the density limitation in the planar storage unit. The 3D memory architecture includes a memory array and peripheral devices used to control signals to and from the memory array.

本文公開了3D記憶體元件和用於製造3D記憶體元件的方法的實施例。Disclosed herein are embodiments of 3D memory devices and methods for manufacturing 3D memory devices.

在一個示例中,一種3D記憶體元件包括:絕緣層、半導體層,由交錯的導電層和介電層所構成的儲存堆疊層、源極接觸結構,從絕緣層的相對於半導體層的相對側垂直地延伸穿過絕緣層以與半導體層接觸、以及通道結構,該通道結構垂直地延伸穿過儲存堆疊層和半導體層進入絕緣層或源極接觸結構中。In one example, a 3D memory device includes an insulating layer, a semiconductor layer, a storage stack layer composed of interlaced conductive layers and dielectric layers, and a source contact structure. From the opposite side of the insulating layer to the semiconductor layer It extends vertically through the insulating layer to contact the semiconductor layer, and a channel structure that extends vertically through the storage stack layer and the semiconductor layer into the insulating layer or the source contact structure.

在另一示例中,一種3D記憶體元件包括:絕緣層、半導體層,由交錯的導電層和介電層所構成的儲存堆疊層、以及垂直地延伸穿過儲存堆疊層和半導體層的通道結構。該通道結構包括記憶體膜和半導體通道,並且半導體通道沿通道結構的側壁的部分與半導體層的子層接觸。該3D記憶體元件還包括:絕緣結構,該絕緣結構垂直地延伸穿過儲存堆疊層進入半導體層中,其中絕緣結構的底表面與絕緣層的頂表面齊平。In another example, a 3D memory device includes an insulating layer, a semiconductor layer, a storage stack layer composed of interlaced conductive layers and dielectric layers, and a channel structure extending vertically through the storage stack layer and the semiconductor layer . The channel structure includes a memory film and a semiconductor channel, and the semiconductor channel is in contact with a sublayer of the semiconductor layer along a part of the sidewall of the channel structure. The 3D memory device further includes an insulating structure that extends vertically through the storage stack layer into the semiconductor layer, wherein the bottom surface of the insulating structure is flush with the top surface of the insulating layer.

在又一示例中,其公開了一種用於形成3D記憶體元件的方法。在基底的第一側依次形成停止層、第一絕緣層、犧牲層、第一半導體層和介電堆疊層。形成通道結構,該通道結構垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一絕緣層中。形成開口,該開口垂直地延伸穿過介電堆疊層和第一半導體層並在犧牲層處停止以暴露犧牲層的一部分。通過開口、用第一半導體層與第一絕緣層之間的第二半導體層來替換犧牲層。從與基底的所述第一側相對的第二側移除該基底並在停止層處停止。In yet another example, it discloses a method for forming a 3D memory device. A stop layer, a first insulating layer, a sacrificial layer, a first semiconductor layer, and a dielectric stack layer are sequentially formed on the first side of the substrate. A channel structure is formed that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer. An opening is formed that extends vertically through the dielectric stack layer and the first semiconductor layer and stops at the sacrificial layer to expose a portion of the sacrificial layer. Through the opening, the sacrificial layer is replaced with a second semiconductor layer between the first semiconductor layer and the first insulating layer. The substrate is removed from the second side opposite to the first side of the substrate and stopped at the stop layer.

在又一示例中,其公開了一種用於形成3D記憶體元件的方法。在基底上依次形成第一絕緣層、犧牲層、第一半導體層和介電堆疊層。形成通道結構,該通道結構垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一絕緣層中。用第一半導體層與第一絕緣層之間的第二半導體層來替換犧牲層。第一半導體層和第二半導體層中的至少一個半導體層摻雜有N型摻質。N型摻質在第一半導體層和第二半導體層中擴散。In yet another example, it discloses a method for forming a 3D memory device. A first insulating layer, a sacrificial layer, a first semiconductor layer, and a dielectric stack layer are sequentially formed on the substrate. A channel structure is formed that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer. The sacrificial layer is replaced with a second semiconductor layer between the first semiconductor layer and the first insulating layer. At least one of the first semiconductor layer and the second semiconductor layer is doped with N-type dopants. N-type dopants diffuse in the first semiconductor layer and the second semiconductor layer.

儘管討論了具體的配置和設置,但是應該理解的是,這僅僅是為了說明的目的而進行的。相關領域的技術人員將認識到,在不脫離本案公開內容的精神和範圍的情況下,可以使用其它配置和設置。對於相關領域的技術人員將顯而易見的是,本案公開內容還可以用在各種其它應用中。Although specific configurations and settings are discussed, it should be understood that this is done for illustrative purposes only. Those skilled in the relevant art will recognize that other configurations and settings can be used without departing from the spirit and scope of the disclosure of this case. It will be obvious to those skilled in the related art that the disclosure of this case can also be used in various other applications.

應注意的是,在說明書中對「一個實施例」、「實施例」、「示例性實施例」、「一些實施例」等的引用指示所描述的實施例可以包括特定的特徵、結構或特性,但是每個實施例可能不一定包括該特定的特徵、結構或特性。此外,這樣的用語不一定指代相同的實施例。此外,當結合實施例描述特定特徵、結構或特性時,無論是否明確地描述,結合其它實施例來實施這樣的特徵、結構或特性都在相關領域的技術人員的知識範圍內。It should be noted that references to "one embodiment," "an embodiment," "exemplary embodiment," "some embodiments," etc. in the specification indicate that the described embodiment may include specific features, structures, or characteristics. However, each embodiment may not necessarily include the specific feature, structure or characteristic. Furthermore, such terms do not necessarily refer to the same embodiment. In addition, when a specific feature, structure, or characteristic is described in conjunction with an embodiment, whether it is explicitly described or not, it is within the knowledge of those skilled in the relevant art to implement such a feature, structure, or characteristic in combination with other embodiments.

通常,可以至少部分地從上下文中的用法理解術語。例如,至少部分地取決於上下文,如本文所使用的術語「一個或多個」可以用於以單數意義描述任何特徵、結構或特性,或者可以用於以複數意義描述特徵、結構或特性的組合。類似地,至少部分地取決於上下文,諸如「一(a)」、「一個(an)」或「該(the)」之類的術語同樣可以被理解為傳達單數用法或者傳達複數用法。另外,術語「基於」可以被理解為不一定旨在傳達排他性的因素集合,而是可以允許存在不一定明確地描述的額外因素,這同樣至少部分地取決於上下文。Generally, terms can be understood at least partially from the usage in the context. For example, depending at least in part on the context, the term "one or more" as used herein can be used to describe any feature, structure, or characteristic in the singular, or can be used to describe a feature, structure, or combination of characteristics in the plural. . Similarly, depending at least in part on the context, terms such as "a", "an" or "the" can also be understood as conveying singular usage or conveying plural usage. In addition, the term "based on" can be understood as not necessarily intended to convey an exclusive set of factors, but may allow for the existence of additional factors that are not necessarily explicitly described, again depending at least in part on the context.

應當容易理解的是,本案公開內容中的「在……上」、「在……上方」和「在……之上」的含義應當以最寬泛的方式來解釋,使得「在……上」不僅意味著「直接在某物上」,而且包括「在某物上」且在其之間具有中間特徵或層的含義,並且「在……上方」或「在……之上」不僅意味著「在某物上方」或「在某物之上」的含義,而且可以包括「在某物上方」或「在某物之上」且在其之間沒有中間特徵或層的含義(即,直接在某物上)。It should be easy to understand that the meaning of "on", "above" and "above" in the disclosure of this case should be interpreted in the broadest way, so that "on" Not only does it mean "directly on something", but also includes "on something" with the meaning of intermediate features or layers in between, and "above" or "above" not only means The meaning of “above something” or “above something” and can include the meaning of “above something” or “above On something).

此外,為了便於描述,可以在本文中使用諸如「在……之下」、「在……下方」、「下部」、「在……之上」、「上部」等的空間相對術語來描述如圖所示的一個元件或特徵與另一個元件或特徵的關係。除了在附圖中所描繪的位向之外,空間相對術語旨在涵蓋設備在使用或操作中的不同位向。裝置可以以其它方式定向(旋轉90度或處於其它取向)並且同樣可以相應地解釋本文使用的空間相對描述詞。In addition, for the convenience of description, spatial relative terms such as "below", "below", "lower", "above", "upper", etc. can be used in this article to describe such as The relationship between one element or feature shown in the figure and another element or feature. In addition to the orientations depicted in the drawings, spatially relative terms are intended to cover different orientations of the device in use or operation. The device can be oriented in other ways (rotated by 90 degrees or in other orientations) and the spatial relative descriptors used herein can also be interpreted accordingly.

如本文所使用的,術語「基底」是指在其上添加後續材料層的材料。基底本身可以被圖案化。被添加在基底頂部的材料可以被圖案化或者可以保持未被圖案化。此外,基底可以包括多種半導體材料,例如矽、鍺、砷化鎵、磷化銦等。替代地,基底可以由非導電材料製成,例如玻璃、塑膠或藍寶石晶圓。As used herein, the term "substrate" refers to a material on which a subsequent layer of material is added. The substrate itself can be patterned. The material added on top of the substrate can be patterned or can remain unpatterned. In addition, the substrate may include a variety of semiconductor materials, such as silicon, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate may be made of a non-conductive material, such as glass, plastic, or sapphire wafer.

如本文所使用的,術語「層」是指包括具有厚度的區域的材料部分。層可以在整個下層或上覆結構之上延伸,或者可以具有小於下層或上覆結構範圍的範圍。此外,層可以是均勻或不均勻連續結構的區域,其具有小於該連續結構厚度的厚度。例如,層可以位於連續結構的頂表面和底表面之間或在頂表面和底表面處的任何一對水準平面之間。層可以水準地、垂直地和/或沿著錐形表面延伸。基底可以是層,其中可以包括一個或多個層,和/或可以在其上、在其上方和/或其下方具有一個或多個層。層可以包括多個層。例如,互連層可以包括一個或多個導體和接觸層(其中形成有互連線和/或垂直互連通道(via)觸點)以及一或多個介電層。As used herein, the term "layer" refers to a portion of a material that includes a region having a thickness. The layer may extend over the entire lower layer or the overlying structure, or may have a range smaller than the range of the lower layer or the overlying structure. In addition, the layer may be a region of a uniform or non-uniform continuous structure, which has a thickness less than the thickness of the continuous structure. For example, the layer may be located between the top and bottom surfaces of the continuous structure or between any pair of horizontal planes at the top and bottom surfaces. The layers can extend horizontally, vertically, and/or along a tapered surface. The substrate may be a layer, which may include one or more layers, and/or may have one or more layers on, above, and/or below it. The layer may include multiple layers. For example, the interconnection layer may include one or more conductor and contact layers (where interconnection lines and/or vertical interconnection via contacts are formed) and one or more dielectric layers.

如本文所使用的,術語「標稱/標稱地」是指在產品或製程的設計階段期間針對元件或製程操作設定的特性或參數的期望值或目標值、以及高於和/或低於期望值的值範圍。值範圍可以是由於製程或公差的輕微變化而引起的。如本文所使用的,術語「大約」指示可以基於與主題半導體元件相關聯的特定技術節點而變化的給定量的值。基於特定的技術節點,術語「大約」可以指示給定量的值,該給定量在該值的例如10-30%內變化(例如,值的±10%、±20%或±30%)。As used herein, the term "nominal/nominal" refers to the expected value or target value, and higher and/or lower than expected value of a characteristic or parameter set during the design phase of a product or process for a component or process operation The range of values. The value range can be caused by slight changes in manufacturing processes or tolerances. As used herein, the term "about" indicates a given amount of value that can vary based on the specific technology node associated with the subject semiconductor element. Based on a specific technical node, the term "approximately" may indicate a value of a given amount that varies within, for example, 10-30% of the value (for example, ±10%, ±20%, or ±30% of the value).

如本文所使用的,術語「3D記憶體元件」是指在橫向取向的基底上具有垂直取向的儲存單元電晶體串(在本文中被稱為「記憶體串」,諸如NAND記憶體串)的半導體元件,使得記憶體串相對於基底在垂直方向上延伸。如本文所使用的,術語「垂直/垂直地」意味著標稱地垂直於基底的橫向表面。As used herein, the term "3D memory device" refers to a string of memory cell transistors (referred to herein as "memory strings", such as NAND memory strings) that have vertical orientation on a laterally oriented substrate. The semiconductor device makes the memory string extend in the vertical direction relative to the substrate. As used herein, the term "vertical/perpendicularly" means nominally perpendicular to the lateral surface of the substrate.

在一些3D NAND記憶體元件中,選擇性地生長半導體插塞以圍繞通道結構的側壁,例如,被稱為側壁選擇性磊晶生長(SEG)。與在通道結構的下端形成的另一類型的半導體插塞(例如底部SEG)相比,形成側壁SEG可避免在通道孔(也被稱為“SONO”穿孔)的底表面處蝕刻記憶體膜和半導體通道,從而增大製程的操作空間,特別是在利用先進技術來製造3D NAND記憶體元件(例如具有96或更多級的多層架構)時。此外,側壁SEG結構可以與晶背製程結合以從基底的背面形成源極接觸結構,避免正面源極接觸結構與字元線之間的洩漏電流和寄生電容並增加有效元件區域。In some 3D NAND memory devices, semiconductor plugs are selectively grown to surround the sidewalls of the channel structure, for example, it is called sidewall selective epitaxial growth (SEG). Compared with another type of semiconductor plug (such as bottom SEG) formed at the lower end of the channel structure, forming the sidewall SEG can avoid etching the memory film and Semiconductor channels, thereby increasing the operating space of the process, especially when using advanced technology to manufacture 3D NAND memory devices (for example, a multi-layer structure with 96 or more levels). In addition, the sidewall SEG structure can be combined with the backside process to form a source contact structure from the backside of the substrate to avoid leakage current and parasitic capacitance between the front source contact structure and the word line and increase the effective device area.

由於背面過程需要減薄基底,因此這會面臨諸如在減薄過程中難以在晶片級控制厚度均勻性的挑戰。這些挑戰限制了具有側壁SEG結構和背面過程的3D NAND記憶體元件的成品率。Since the backside process needs to thin the substrate, this will face challenges such as difficulty in controlling the thickness uniformity at the wafer level during the thinning process. These challenges limit the yield of 3D NAND memory devices with sidewall SEG structures and backside processes.

此外,現有的3D記憶體元件通常包括由平行縫隙結構(例如,閘極線縫隙(GLS))分隔開的多個塊儲存區(memory block)。例如,如第1圖所示,3D記憶體元件100包括多個塊儲存區101,這些塊儲存區101由在x方向(例如,字元線方向)上橫向延伸的縫隙結構122分隔開。在每個塊儲存區101中,具有「H」個切口(未示出)的縫隙結構122還將塊儲存區101分隔成多個指儲存區(memory finger)103,其中每個指儲存區包括通道結構112的陣列。應注意,第1圖中包括x和y軸以說明晶片平面中的兩個正交方向。x方向是字元線方向,並且y方向是位元線方向。在y方向(例如,位元線方向)上佈置的相鄰塊儲存區101由在x方向(例如,字元線方向)上橫向延伸的各個縫隙結構122分隔開。In addition, the existing 3D memory device usually includes a plurality of memory blocks separated by a parallel slot structure (for example, a gate line slot (GLS)). For example, as shown in FIG. 1, the 3D memory device 100 includes a plurality of block storage areas 101 separated by gap structures 122 extending laterally in the x direction (for example, the character line direction). In each block storage area 101, a slit structure 122 with "H" cuts (not shown) also divides the block storage area 101 into a plurality of memory fingers 103, where each finger storage area includes An array of channel structures 112. It should be noted that the x and y axes are included in Figure 1 to illustrate two orthogonal directions in the wafer plane. The x direction is the word line direction, and the y direction is the bit line direction. Adjacent block storage areas 101 arranged in the y direction (for example, the bit line direction) are separated by respective slit structures 122 that extend laterally in the x direction (for example, the character line direction).

在製造3D記憶體元件時,縫隙結構122的形狀和尺寸可能容易受到波動,從而潛在地影響最終元件的性能。填充有導電材料(例如鎢(W))的縫隙結構122還會引入顯著的應力而造成晶片彎曲或扭曲。在填充有填充材料之前塊儲存區101之間的縫隙結構122的長的連續縫隙開口還可能造成相鄰堆疊結構在製造過程期間塌陷,從而降低成品率。由此,在一些3D記憶體元件中,在縫隙結構122中形成利用與填充縫隙結構122的材料不同的絕緣材料(例如,二氧化矽)來填充的支撐結構123(例如,虛設通道結構),以使得3D記憶體元件在製造過程期間不太容易變形或損壞,以及在製造之後調節3D記憶體元件的應力。When manufacturing a 3D memory device, the shape and size of the slot structure 122 may be susceptible to fluctuations, thereby potentially affecting the performance of the final device. The gap structure 122 filled with conductive material (for example, tungsten (W)) may also introduce significant stress and cause the wafer to bend or twist. The long continuous gap opening of the gap structure 122 between the block storage areas 101 before being filled with the filling material may also cause the adjacent stacked structure to collapse during the manufacturing process, thereby reducing the yield. Therefore, in some 3D memory devices, a support structure 123 (for example, a dummy channel structure) filled with an insulating material (for example, silicon dioxide) that is different from the material filling the gap structure 122 is formed in the gap structure 122, This makes the 3D memory device less likely to be deformed or damaged during the manufacturing process, and adjust the stress of the 3D memory device after manufacturing.

然而,當在縫隙結構122中形成支撐結構123時,支撐結構123與縫隙結構122之間的重疊部分(需要確保支撐結構與縫隙結構122之間的重疊)會由於用於形成絕緣結構的蝕刻和刨削過程而變成弱點。例如,如第2圖中所示,在3D記憶體元件100製造期間的中間結構包括基底102和具有以下三個子層的半導體層104:頂部半導體層104-1、在最終產品中將被替換為另一半導體層的犧牲層104-2,以及底部半導體層104-3。第2圖在y方向(例如,位元線方向)上示出了第1圖中的縫隙結構122和支撐結構123的重疊部分的橫截面。縫隙結構122和支撐結構123均垂直地延伸穿過介電堆疊層(未示出)進入半導體層104中。例如,在製造期間縫隙結構122和支撐結構123的重疊部分202與縫隙結構122或支撐結構123相比會被蝕刻得更深,而進入底部半導體層104-3中,這是因為對重疊部分202施加了兩個蝕刻過程。重疊部分202受到過蝕刻而深入底部半導體層104-3中可能會造成底部半導體層104-3稍後在移除犧牲層104-2時被無意地移除,從而降低成品率。However, when the support structure 123 is formed in the slot structure 122, the overlap between the support structure 123 and the slot structure 122 (it is necessary to ensure the overlap between the support structure and the slot structure 122) will be due to the etching and the etching used to form the insulating structure. The planing process becomes a weakness. For example, as shown in Figure 2, the intermediate structure during the manufacturing of the 3D memory device 100 includes a substrate 102 and a semiconductor layer 104 with the following three sub-layers: the top semiconductor layer 104-1, which will be replaced in the final product The sacrificial layer 104-2 of the other semiconductor layer, and the bottom semiconductor layer 104-3. Fig. 2 shows a cross-section of the overlapping portion of the slot structure 122 and the support structure 123 in Fig. 1 in the y direction (for example, the bit line direction). Both the slit structure 122 and the support structure 123 extend vertically through the dielectric stack layer (not shown) into the semiconductor layer 104. For example, during manufacturing, the overlap portion 202 of the slit structure 122 and the support structure 123 will be etched deeper than the slit structure 122 or the support structure 123, and enter the bottom semiconductor layer 104-3, because the overlap portion 202 is applied Two etching processes were performed. The overlapping portion 202 is over-etched and penetrates into the bottom semiconductor layer 104-3, which may cause the bottom semiconductor layer 104-3 to be unintentionally removed when the sacrificial layer 104-2 is removed later, thereby reducing the yield.

根據本案內容的各個實施例提供了改善的3D記憶體元件及其製造方法。可以在犧牲多晶矽層下方形成介電層(即絕緣層)而不是底部半導體層,以使得縫隙結構與支撐結構之間的重疊部分的底表面落在介電層而不是半導體層,以避免在犧牲層移除過程期間出現的弱點,如上所述。此外,在形成通道結構時,通道孔蝕刻可以在介電層內停止。這還可以增大通道孔的製程操作空間。在一些實施例中,還在基底上形成停止層以自動地停止背面減薄過程,以使得可以完全移除基底,以避免晶片厚度均勻性控制問題並降低背面過程的製造複雜度。Various embodiments according to the content of this case provide an improved 3D memory device and a manufacturing method thereof. A dielectric layer (that is, an insulating layer) can be formed under the sacrificial polysilicon layer instead of the bottom semiconductor layer, so that the bottom surface of the overlap between the gap structure and the support structure falls on the dielectric layer instead of the semiconductor layer to avoid sacrificing Weaknesses that occurred during the layer removal process, as described above. In addition, when forming the channel structure, the channel hole etching can be stopped in the dielectric layer. This can also increase the process operation space of the via hole. In some embodiments, a stop layer is also formed on the substrate to automatically stop the backside thinning process so that the substrate can be completely removed to avoid wafer thickness uniformity control problems and reduce the manufacturing complexity of the backside process.

第3A圖和第3B圖示出了根據本案內容的各個實施例的各個示例性3D記憶體元件的截面圖。在一些實施例中,第3A圖中的3D記憶體元件300包括基底(未示出),該基底可以包括矽(例如單晶矽)、鍺矽(SiGe)、砷化鎵(GaAs)、鍺(Ge)、覆矽絕緣體(SOI)、覆鍺絕緣體(GOI)、或任何其它適當的材料。在一些實施例中,基底是減薄的基底(例如半導體層),其是通過研磨、蝕刻、化學機械拋光(CMP)、或其任意組合來減薄的。注意,第3A圖中包括y和z軸以進一步說明3D記憶體元件300中的各元件的空間關係。3D記憶體元件300的基底包括在y方向(即位元線方向)上橫向延伸的兩個橫向表面(例如頂表面和底表面)。如文中所使用者,3D記憶體元件(例如3D記憶體元件100)的一個元件(例如層或元件)是在另一元件(例如層或元件)「上」、「上方」、還是「下方」是當基底被置於3D記憶體元件在z方向上的最低平面時在z方向(即垂直方向)上相對於3D記憶體元件的基底來確定的。本案通篇內容應用相同概念的描述空間關係。Figures 3A and 3B show cross-sectional views of various exemplary 3D memory devices according to various embodiments of the content of the present case. In some embodiments, the 3D memory device 300 in Figure 3A includes a substrate (not shown). The substrate may include silicon (for example, single crystal silicon), silicon germanium (SiGe), gallium arsenide (GaAs), germanium (Ge), silicon-coated insulator (SOI), germanium-coated insulator (GOI), or any other suitable material. In some embodiments, the substrate is a thinned substrate (for example, a semiconductor layer), which is thinned by grinding, etching, chemical mechanical polishing (CMP), or any combination thereof. Note that the y and z axes are included in FIG. 3A to further illustrate the spatial relationship of the components in the 3D memory device 300. The substrate of the 3D memory device 300 includes two lateral surfaces (for example, a top surface and a bottom surface) extending laterally in the y direction (ie, the bit line direction). As the user in the text, a 3D memory device (such as 3D memory device 100) is "on", "above", or "below" another device (such as a layer or device). It is determined relative to the substrate of the 3D memory device in the z direction (ie, the vertical direction) when the substrate is placed on the lowest plane of the 3D memory device in the z direction. The content of this case uses the same concept to describe the spatial relationship.

在一些實施例中,3D記憶體元件300是非單片式3D記憶體元件的一部分,其中在不同基底上分開地形成各組件並且隨後以面對面的方式、面對背的方式、或背對背的方式接合。可以在與在其上形成第3A圖中所示的組件的記憶體陣列基底不同的單獨週邊元件基底上形成用於促進3D記憶體元件300運作的週邊元件(未示出),例如任何適當的數位、類比、和/或混合訊號週邊電路。應理解,記憶體陣列基底可以從3D記憶體元件300移除,如下文詳細描述的,並且週邊元件基底可以成為3D記憶體元件300的基底。還應理解,取決於週邊元件基底和記憶體陣列元件基底接合的方式,記憶體陣列元件(如第3A圖中所示)可以處於原始位置或者可以在3D記憶體元件300中上下顛倒。為參考簡單起見,第3A圖描繪了其中記憶體陣列元件處於原始位置(即未上下顛倒)的3D記憶體元件300的狀態。然而,應理解在一些示例中,第3A圖中所示的記憶體陣列元件可以在3D記憶體元件300中上下顛倒,並且其相對位置可以相應地改變。本案通篇內容應用相同概念的描述空間關係。In some embodiments, the 3D memory device 300 is a part of a non-monolithic 3D memory device in which the components are formed separately on different substrates and then joined in a face-to-face manner, a face-to-back manner, or a back-to-back manner . A peripheral element (not shown) for facilitating the operation of the 3D memory element 300 may be formed on a separate peripheral element substrate different from the memory array substrate on which the components shown in Figure 3A are formed, for example, any suitable Digital, analog, and/or mixed signal peripheral circuits. It should be understood that the memory array substrate can be removed from the 3D memory device 300, as described in detail below, and the peripheral device substrate can become the substrate of the 3D memory device 300. It should also be understood that, depending on how the peripheral device substrate and the memory array device substrate are joined, the memory array device (as shown in FIG. 3A) may be in the original position or may be upside down in the 3D memory device 300. For simplicity of reference, FIG. 3A depicts the state of the 3D memory device 300 in which the memory array device is in the original position (that is, not upside down). However, it should be understood that in some examples, the memory array element shown in FIG. 3A may be upside down in the 3D memory element 300, and its relative position may be changed accordingly. The content of this case uses the same concept to describe the spatial relationship.

如第3A圖和第3B圖中所示,3D記憶體元件300可以包括介電層(即絕緣層)302。介電層302可以包括一或多個層間介電層(ILD,也被稱為「金屬間介電層(IMD)」),其中可以形成互連線和VIA接觸件。介電層302的ILD層可以包括介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽、低介電常數(低k)介電質、或其任意組合。在一些實施例中,介電層302包括氧化矽。As shown in FIGS. 3A and 3B, the 3D memory device 300 may include a dielectric layer (ie, an insulating layer) 302. The dielectric layer 302 may include one or more interlayer dielectric layers (ILD, also referred to as "intermetal dielectric layer (IMD)"), in which interconnect lines and VIA contacts may be formed. The ILD layer of the dielectric layer 302 may include a dielectric material, including but not limited to silicon oxide, silicon nitride, silicon oxynitride, low-k (low-k) dielectric, or any combination thereof. In some embodiments, the dielectric layer 302 includes silicon oxide.

3D記憶體元件300還可以包括在介電層302上方的半導體層304。在一些實施例中,半導體層304被直接設置在介電層302上。在一些實施例中,半導體層304包括多晶矽。例如,根據一些實施例,半導體層304包括N型摻雜多晶矽層。即半導體層304可以摻雜有任何適當的N型摻質,例如,磷(P)、砷(Ar)或銻(Sb),它們貢獻自由電子並增加本徵半導體的導電性。如下文詳細描述的,由於擴散過程,半導體層304可以在垂直方向上具有標稱地均勻摻雜濃度分佈。在一些實施例中,半導體層304的摻雜濃度在約10 19cm -3至約10 22cm -3之間,例如在10 19cm -3至10 22cm -3之間(例如,10 19cm -3、2×10 19cm -3、3×10 19cm -3、4×10 19cm -3、5×10 19cm -3、6×10 19cm -3、7×10 19cm -3、8×10 19cm -3、9×10 19cm -3,10 20cm -3、2×10 20cm -3、3×10 20cm -3、4×10 20cm -3、5×10 20cm -3、6×10 20cm -3、7×10 20cm -3、8×10 20cm -3、9×10 20cm -3、10 21cm -3、2×10 21cm -3、3×10 21cm -3、4×10 21cm -3、5×10 21cm -3、6×10 21cm -3、7×10 21cm -3、8×10 21cm -3、9×10 21cm -3、10 22cm -3,由這些值中的任何一個值界定下端的任何範圍,或在由這些值中的任意兩個值限定的任何範圍中)。雖然第3A圖示出了半導體層304在介電層302上方,如上所述,但應理解,在一些示例中,介電層302可以在半導體層304上方,這是因為第3A圖和第3B圖中所示的記憶體陣列元件可以上下顛倒,並且它們的相對位置可以在3D記憶體元件300中相應地改變。在一些實施例中,第3A圖和第3B圖中所示的記憶體陣列元件上下顛倒(在頂部)並接合到3D記憶體元件300中的週邊元件(在底部),以使得介電層302在半導體層304上方。 The 3D memory device 300 may also include a semiconductor layer 304 above the dielectric layer 302. In some embodiments, the semiconductor layer 304 is directly disposed on the dielectric layer 302. In some embodiments, the semiconductor layer 304 includes polysilicon. For example, according to some embodiments, the semiconductor layer 304 includes an N-type doped polysilicon layer. That is, the semiconductor layer 304 may be doped with any appropriate N-type dopants, for example, phosphorus (P), arsenic (Ar) or antimony (Sb), which contribute free electrons and increase the conductivity of the intrinsic semiconductor. As described in detail below, due to the diffusion process, the semiconductor layer 304 may have a nominally uniform doping concentration distribution in the vertical direction. In some embodiments, the doping concentration of the semiconductor layer 304 is between about 10 19 cm -3 and about 10 22 cm -3 , for example, between 10 19 cm -3 and 10 22 cm -3 (for example, 10 19 cm -3 ). cm -3, 2 × 10 19 cm -3, 3 × 10 19 cm -3, 4 × 10 19 cm -3, 5 × 10 19 cm -3, 6 × 10 19 cm -3, 7 × 10 19 cm - 3 , 8×10 19 cm -3 , 9×10 19 cm -3 , 10 20 cm -3 , 2×10 20 cm -3 , 3×10 20 cm -3 , 4×10 20 cm -3 , 5× 10 20 cm -3, 6 × 10 20 cm -3, 7 × 10 20 cm -3, 8 × 10 20 cm -3, 9 × 10 20 cm -3, 10 21 cm -3, 2 × 10 21 cm - 3 , 3×10 21 cm -3 , 4×10 21 cm -3 , 5×10 21 cm -3 , 6×10 21 cm -3 , 7×10 21 cm -3 , 8×10 21 cm -3 , 9×10 21 cm -3 , 10 22 cm -3 , any range at the lower end is defined by any one of these values, or any range defined by any two of these values). Although FIG. 3A shows that the semiconductor layer 304 is above the dielectric layer 302, as described above, it should be understood that in some examples, the dielectric layer 302 may be above the semiconductor layer 304. This is because of FIGS. 3A and 3B. The memory array elements shown in the figure can be upside down, and their relative positions can be changed in the 3D memory element 300 accordingly. In some embodiments, the memory array elements shown in FIGS. 3A and 3B are turned upside down (at the top) and joined to peripheral elements in the 3D memory element 300 (at the bottom), so that the dielectric layer 302 Above the semiconductor layer 304.

在一些實施例中,3D記憶體元件300還包括源極接觸結構328,該源極接觸結構328從半導體層304的相對於介電層302的相對側(即背面)垂直地延伸穿過介電層302,以與半導體層304接觸。源極接觸結構328的頂表面可以與半導體層304的底表面標稱地齊平或進一步延伸到半導體層304中。源極接觸結構328可以將3D記憶體元件300的NAND記憶體串的源極從記憶體陣列基底(被移除)的背面通過半導體層304電連接到週邊元件,並且因此在本文中也可以被稱為「背面源極拾取」。源極接觸結構328可以包括任何適當類型的接觸件。在一些實施例中,源極接觸結構328包括VIA接觸件。在一些實施例中,源極接觸結構328包括橫向延伸的壁形接觸件。源極接觸結構328可以包括一或多個導電層,例如金屬層,例如鎢(W)、鈷(Co)、銅(Cu)或鋁(Al)、或被導電黏合層(例如氮化鈦(TiN))圍繞的矽化物層。In some embodiments, the 3D memory device 300 further includes a source contact structure 328 that extends perpendicularly through the dielectric layer 304 from the opposite side (ie, the back surface) of the dielectric layer 302. The layer 302 is in contact with the semiconductor layer 304. The top surface of the source contact structure 328 may be nominally flush with the bottom surface of the semiconductor layer 304 or extend further into the semiconductor layer 304. The source contact structure 328 can electrically connect the source of the NAND memory string of the 3D memory device 300 from the backside of the memory array substrate (removed) to the peripheral device through the semiconductor layer 304, and therefore can also be used herein. It is called "rear source pick-up". The source contact structure 328 may include any suitable type of contact. In some embodiments, the source contact structure 328 includes VIA contacts. In some embodiments, the source contact structure 328 includes laterally extending wall-shaped contacts. The source contact structure 328 may include one or more conductive layers, such as metal layers, such as tungsten (W), cobalt (Co), copper (Cu), or aluminum (Al), or a conductive adhesive layer (such as titanium nitride ( TiN)) Surrounding silicide layer.

在一些實施例中,3D記憶體元件300是NAND快閃記憶體元件,其中以NAND記憶體串的陣列形式提供儲存單元。每個NAND記憶體串可以包括通道結構312,該通道結構312延伸穿過多個對,每一對包括堆疊導電層308和堆疊介電層310(在本文中被稱為「導電層/介電層對」)。堆疊的導電層/介電層對在本文中也被稱為儲存堆疊層306。儲存堆疊層306中的導電層/介電層對的數量(例如32、64、96、128、160、192、224、256等等)確定3D記憶體元件300中的儲存單元的數量。儘管在第3A圖和第3B圖中未示出,但應理解,在一些實施例中,儲存堆疊層306可以具有多層(multi-deck)架構,例如包括下部記憶體層和在該下部記憶體層上的上部記憶體層的雙層架構。每個記憶體層中成對的堆疊導電層308和堆疊介電層310的數目可以相同或不同。In some embodiments, the 3D memory device 300 is a NAND flash memory device, in which storage cells are provided in an array of NAND memory strings. Each NAND memory string may include a channel structure 312 that extends through multiple pairs, each pair including a stacked conductive layer 308 and a stacked dielectric layer 310 (referred to herein as "conductive layer/dielectric layer right"). The stacked conductive layer/dielectric layer pair is also referred to as the storage stack 306 herein. The number of conductive layer/dielectric layer pairs in the storage stack 306 (for example, 32, 64, 96, 128, 160, 192, 224, 256, etc.) determines the number of storage cells in the 3D memory device 300. Although not shown in FIGS. 3A and 3B, it should be understood that, in some embodiments, the storage stack 306 may have a multi-deck structure, for example, including a lower memory layer and on the lower memory layer The two-layer architecture of the upper memory layer. The number of pairs of stacked conductive layers 308 and stacked dielectric layers 310 in each memory layer may be the same or different.

儲存堆疊層306可以包括多個交錯的堆疊導電層308和堆疊介電層310。儲存堆疊層306中的堆疊導電層308和堆疊介電層310可以在垂直方向上交替。換言之,除了在儲存堆疊層306的頂部或底部的層之外,每個堆疊導電層308可以在兩側被兩個堆疊介電層310鄰接,並且每個堆疊介電層310可以在兩側被兩個堆疊導電層308鄰接。堆疊導電層308可以包括導電材料,包括但不限於W、Co、Cu、Al、多晶矽、摻雜的矽、矽化物、或其任意組合。每個堆疊導電層308可以包括被黏合層和閘極介電層324圍繞的閘電極(閘極線)。堆疊導電層308的閘電極可以作為字元線橫向延伸,停止於儲存堆疊層306的一或多個階梯結構(未示出)。堆疊介電層310可以包括介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽、或其任意組合。The storage stack 306 may include a plurality of staggered stacked conductive layers 308 and stacked dielectric layers 310. The stacked conductive layers 308 and stacked dielectric layers 310 in the storage stacked layer 306 may alternate in the vertical direction. In other words, in addition to the layers on the top or bottom of the storage stacked layer 306, each stacked conductive layer 308 may be abutted by two stacked dielectric layers 310 on both sides, and each stacked dielectric layer 310 may be abutted on both sides. The two stacked conductive layers 308 adjoin. The stacked conductive layer 308 may include conductive materials, including but not limited to W, Co, Cu, Al, polysilicon, doped silicon, silicide, or any combination thereof. Each stacked conductive layer 308 may include a gate electrode (gate line) surrounded by an adhesion layer and a gate dielectric layer 324. The gate electrode of the stacked conductive layer 308 may extend laterally as a word line and stop at one or more stepped structures (not shown) of the storage stacked layer 306. The stacked dielectric layer 310 may include dielectric materials, including but not limited to silicon oxide, silicon nitride, silicon oxynitride, or any combination thereof.

如第3A圖和第3B圖中所示,每個通道結構312垂直地延伸穿過儲存堆疊層306和半導體層304進入介電層302中。即通道結構312可以包括三個部分:被介電層302圍繞的下部部分(即在半導體層304與介電層302之間的介面下方),被半導體層304圍繞的中間部分(即在半導體層304的頂表面與底表面之間),以及被儲存堆疊層306圍繞的上部部分(即在半導體層304與儲存堆疊層306之間的介面上方)。如本文所使用的,元件(例如通道結構312)的「上部/上端」是當基底被置於3D記憶體元件300的最低平面中時在z方向上遠離基底的部分/端部,並且元件(例如通道結構312)的「下部/下端」是當基底被置於3D記憶體元件300的最低平面中時在z方向上更接近基底的部分/端部。在一些實施例中,每個通道結構312垂直地延伸到介電層302中。例如,通道結構312的下端可以低於介電層302的頂表面。因此,可以相應地增大通道結構312的製程操作空間。As shown in FIGS. 3A and 3B, each channel structure 312 extends vertically through the storage stack 306 and the semiconductor layer 304 into the dielectric layer 302. That is, the channel structure 312 can include three parts: the lower part surrounded by the dielectric layer 302 (that is, under the interface between the semiconductor layer 304 and the dielectric layer 302), and the middle part surrounded by the semiconductor layer 304 (that is, in the semiconductor layer). Between the top and bottom surfaces of 304), and the upper portion surrounded by the storage stack 306 (that is, above the interface between the semiconductor layer 304 and the storage stack 306). As used herein, the "upper/upper end" of an element (such as the channel structure 312) is the part/end away from the substrate in the z direction when the substrate is placed in the lowest plane of the 3D memory element 300, and the element ( For example, the "lower/lower end" of the channel structure 312) is the portion/end that is closer to the substrate in the z direction when the substrate is placed in the lowest plane of the 3D memory device 300. In some embodiments, each channel structure 312 extends vertically into the dielectric layer 302. For example, the lower end of the channel structure 312 may be lower than the top surface of the dielectric layer 302. Therefore, the process operation space of the channel structure 312 can be increased accordingly.

在如第3A圖中所示的一些實施例中,通道結構312在介電層302中與源極接觸結構328橫向地間隔開。例如,如第3A圖中所示,通道結構312被介電層302圍繞的下部部分在y方向上與介電層302中的源極接觸結構328分隔開。在如第3B圖中所示的一些實施例中,通道結構312延伸到源極接觸結構328中,而不是延伸到介電層302中。因此,源極接觸結構328可以與通道結構312的下部部分的半導體通道316接觸。通過允許通道結構312延伸到並直接接觸源極接觸結構328,可以增加源極接觸結構328的特徵尺寸,從而也增加了通道結構312的覆蓋餘量。In some embodiments as shown in FIG. 3A, the channel structure 312 is laterally spaced apart from the source contact structure 328 in the dielectric layer 302. For example, as shown in FIG. 3A, the lower portion of the channel structure 312 surrounded by the dielectric layer 302 is separated from the source contact structure 328 in the dielectric layer 302 in the y direction. In some embodiments as shown in FIG. 3B, the channel structure 312 extends into the source contact structure 328 instead of extending into the dielectric layer 302. Therefore, the source contact structure 328 may be in contact with the semiconductor channel 316 in the lower portion of the channel structure 312. By allowing the channel structure 312 to extend to and directly contact the source contact structure 328, the feature size of the source contact structure 328 can be increased, thereby also increasing the coverage margin of the channel structure 312.

通道結構312可以包括填充有半導體材料(例如作為半導體通道316)和介電材料(例如作為記憶體膜314)的通道孔。在一些實施例中,半導體通道316包括矽,例如非晶矽、多晶矽或單晶矽。在一個示例中,半導體通道316包括多晶矽。在一些實施例中,記憶體膜314是包括穿隧層、儲存層(也被稱為「電荷捕獲層」)和阻擋層的複合層。通道孔的剩餘空間可以部分地或完全地利用覆蓋層318來填充,該覆蓋層318包括介電材料,例如氧化矽和/或氣隙。通道結構312可以具有圓柱形狀(例如柱形)。根據一些實施例,覆蓋層318、半導體通道316、記憶體膜314的穿隧層、儲存層和阻擋層以此順序從柱的中心朝向柱的外表面徑向設置。穿隧層可以包括氧化矽、氮氧化矽或其任意組合。儲存層可以包括氮化矽、氮氧化矽或其任意組合。阻擋層可包括氧化矽、氧氮化矽、高k介電質或其任意組合。在一個示例中,記憶體膜314可包括氧化矽/氮氧化矽/氧化矽(ONO)的複合層。在一些實施例中,通道結構312還包括在通道結構312的上部部分的頂上的通道插塞320。通道插塞320可以包括半導體材料(例如多晶矽)。在一些實施例中,通道插塞320用作NAND記憶體串的汲極。The channel structure 312 may include a channel hole filled with a semiconductor material (for example, as a semiconductor channel 316) and a dielectric material (for example, as a memory film 314). In some embodiments, the semiconductor channel 316 includes silicon, such as amorphous silicon, polycrystalline silicon, or single crystal silicon. In one example, the semiconductor channel 316 includes polysilicon. In some embodiments, the memory film 314 is a composite layer including a tunneling layer, a storage layer (also referred to as a “charge trapping layer”), and a blocking layer. The remaining space of the via hole may be partially or completely filled with a cover layer 318, which includes a dielectric material, such as silicon oxide and/or an air gap. The channel structure 312 may have a cylindrical shape (for example, a cylindrical shape). According to some embodiments, the capping layer 318, the semiconductor channel 316, the tunneling layer of the memory film 314, the storage layer, and the barrier layer are arranged radially from the center of the pillar toward the outer surface of the pillar in this order. The tunneling layer may include silicon oxide, silicon oxynitride, or any combination thereof. The storage layer may include silicon nitride, silicon oxynitride, or any combination thereof. The barrier layer may include silicon oxide, silicon oxynitride, high-k dielectric, or any combination thereof. In one example, the memory film 314 may include a composite layer of silicon oxide/silicon oxynitride/silicon oxide (ONO). In some embodiments, the channel structure 312 also includes a channel plug 320 on top of the upper portion of the channel structure 312. The channel plug 320 may include a semiconductor material (for example, polysilicon). In some embodiments, the channel plug 320 is used as the drain of the NAND memory string.

如第3A圖和第3B圖中所示,根據一些實施例,半導體通道316沿通道結構312的側壁(例如在通道結構312的中間部分)的部分與半導體層304的子層309接觸。即根據一些實施例,記憶體膜314在通道結構312的與半導體層304的子層309鄰接的中間部分中斷開,從而使半導體通道316暴露以與半導體層304的周圍子層309接觸。因此,半導體層304的圍繞並接觸半導體通道316的子層309可以用作通道結構312的「側壁SEG」以代替如上所述的「底部SEG」,這可以緩解諸如覆蓋控制、磊晶層形成和SONO穿孔之類的問題。如以下詳細描述的,根據一些實施例,半導體層304的子層309與半導體層304的其餘部分分開地形成。然而,應理解,由於半導體層304的子層309可以具有與半導體層304的其餘部分相同的多晶矽材料,並且在擴散之後半導體層304中的摻雜濃度可以是標稱地均勻的。因此,子層309可能無法與3D記憶體元件300中半導體層304的其餘部分進行區分。然而,子層309是指半導體層304的在通道結構312的中間部分中與半導體通道316接觸(而不是與記憶體膜314接觸)的部分。As shown in FIGS. 3A and 3B, according to some embodiments, the semiconductor channel 316 is in contact with the sublayer 309 of the semiconductor layer 304 along a portion of the sidewall of the channel structure 312 (for example, in the middle portion of the channel structure 312). That is, according to some embodiments, the memory film 314 is disconnected in the middle portion of the channel structure 312 adjacent to the sublayer 309 of the semiconductor layer 304, so that the semiconductor channel 316 is exposed to contact the surrounding sublayer 309 of the semiconductor layer 304. Therefore, the sub-layer 309 of the semiconductor layer 304 surrounding and in contact with the semiconductor channel 316 can be used as the "sidewall SEG" of the channel structure 312 instead of the "bottom SEG" described above, which can alleviate such things as coverage control, epitaxial layer formation and SONO perforation and the like. As described in detail below, according to some embodiments, the sub-layer 309 of the semiconductor layer 304 is formed separately from the rest of the semiconductor layer 304. However, it should be understood that since the sub-layer 309 of the semiconductor layer 304 may have the same polysilicon material as the rest of the semiconductor layer 304, and the doping concentration in the semiconductor layer 304 may be nominally uniform after diffusion. Therefore, the sub-layer 309 may not be distinguished from the rest of the semiconductor layer 304 in the 3D memory device 300. However, the sub-layer 309 refers to a portion of the semiconductor layer 304 that is in contact with the semiconductor channel 316 (rather than in contact with the memory film 314) in the middle portion of the channel structure 312.

如第3A圖和第3B圖中所示,3D記憶體元件300還可以包括絕緣結構322,每個絕緣結構垂直地延伸穿過儲存堆疊層306中的交錯的堆疊導電層308和堆疊介電層310。絕緣結構322可以是第1圖中的縫隙結構122的一個示例,其填充有介電質並且其中不包括導電接觸件。根據一些實施例,絕緣結構322延伸穿過半導體層304的整個厚度,停止於介電層302的頂表面處。即,根據一些實施例,絕緣結構322的底表面與介電層302的頂表面標稱地齊平。每個絕緣結構322也可以橫向延伸以將通道結構312分隔成多個塊儲存區(例如,作為第1圖中的縫隙結構122的一個示例)。即,可以通過絕緣結構322將儲存堆疊層306劃分成多個塊儲存區,以使得可以將通道結構312的陣列分隔成每個塊儲存區。根據一些實施例,與包括正面源極接觸結構的一些3D NAND記憶體元件中的縫隙結構不同,絕緣結構322中不包括任何接觸件(即不充當源極接觸結構),並且因此不會引入與堆疊導電層308(包括字元線)的寄生電容和洩漏電流。在一些實施例中,每個絕緣結構322包括填充有一或多種介電材料的開口(例如縫隙),該介電材料包括但不限於氧化矽、氮化矽、氧氮化矽或其任意組合。在一個示例中,每個絕緣結構322可以填充有作為絕緣體芯326的氧化矽以及與圍繞堆疊導電層308的閘極介電層324連接的高k介電質。As shown in FIGS. 3A and 3B, the 3D memory device 300 may also include insulating structures 322, each insulating structure extending vertically through the interleaved stacked conductive layers 308 and stacked dielectric layers in the storage stack 306 310. The insulating structure 322 may be an example of the slot structure 122 in FIG. 1, which is filled with a dielectric substance and does not include conductive contacts therein. According to some embodiments, the insulating structure 322 extends through the entire thickness of the semiconductor layer 304 and stops at the top surface of the dielectric layer 302. That is, according to some embodiments, the bottom surface of the insulating structure 322 is nominally flush with the top surface of the dielectric layer 302. Each insulating structure 322 may also extend laterally to partition the channel structure 312 into a plurality of block storage areas (for example, as an example of the slot structure 122 in FIG. 1). That is, the storage stack layer 306 can be divided into a plurality of block storage areas by the insulating structure 322, so that the array of the channel structure 312 can be divided into each block storage area. According to some embodiments, unlike the gap structure in some 3D NAND memory devices that include a front source contact structure, the insulating structure 322 does not include any contacts (that is, does not serve as a source contact structure), and therefore does not incorporate The parasitic capacitance and leakage current of the stacked conductive layer 308 (including the word line). In some embodiments, each insulating structure 322 includes openings (such as gaps) filled with one or more dielectric materials including but not limited to silicon oxide, silicon nitride, silicon oxynitride, or any combination thereof. In one example, each insulating structure 322 may be filled with silicon oxide as an insulator core 326 and a high-k dielectric connected to the gate dielectric layer 324 surrounding the stacked conductive layer 308.

在一些實施例中,通過用N型摻質來摻雜半導體層304,(即消除P阱作為孔的源極),3D記憶體元件300被配置為在根據一些實施例執行擦除操作時生成閘極感應的汲極洩漏(GIDL)輔助的體偏置。NAND記憶體串的源極選擇閘極周圍的GIDL可以生成去往NAND記憶體串中的孔電流,以提高用於擦除操作的體電勢。In some embodiments, by doping the semiconductor layer 304 with N-type dopants, (ie, eliminating the P-well as the source of the hole), the 3D memory device 300 is configured to be generated when the erase operation is performed according to some embodiments. Body bias assisted by gate-induced drain leakage (GIDL). The GIDL around the source selection gate of the NAND memory string can generate a hole current to the NAND memory string to increase the body potential for the erase operation.

如第3A圖和第3B圖中所示,絕緣結構322垂直地延伸穿過儲存堆疊層306和整個半導體層304,以使得絕緣結構322的底表面落在介電層302的頂表面。As shown in FIGS. 3A and 3B, the insulating structure 322 extends vertically through the storage stack 306 and the entire semiconductor layer 304 so that the bottom surface of the insulating structure 322 falls on the top surface of the dielectric layer 302.

例如,如第4圖中所示,在3D記憶體元件300的製造期間的中間結構包括介電層302和半導體層304,如上所述。第4圖示出了絕緣結構322和支撐結構323(例如,對應於第1圖和第2圖中的支撐結構123)的重疊部分的橫截面。絕緣結構322和支撐結構323均垂直地延伸穿過儲存堆疊層306(未示出)和整個半導體層304,以使得絕緣結構322和支撐結構323的底表面落在介電層302的頂表面上。在製造期間,絕緣結構322和支撐結構323的重疊部分402落在介電層302上,而不是半導體層304的一部分(例如,第2圖中的底部半導體層104-3)上。如上所述,這可以避免在犧牲層移除過程期間發生的弱點,並且可以避免因無意去除底部半導體層(例如,第2圖中的底部半導體層104-3)引起的降低成品率。For example, as shown in Figure 4, the intermediate structure during the manufacture of the 3D memory device 300 includes a dielectric layer 302 and a semiconductor layer 304, as described above. Fig. 4 shows a cross-section of the overlapping portion of the insulating structure 322 and the supporting structure 323 (for example, corresponding to the supporting structure 123 in Figs. 1 and 2). Both the insulating structure 322 and the supporting structure 323 extend vertically through the storage stack 306 (not shown) and the entire semiconductor layer 304, so that the bottom surface of the insulating structure 322 and the supporting structure 323 falls on the top surface of the dielectric layer 302 . During manufacturing, the overlapping portion 402 of the insulating structure 322 and the supporting structure 323 falls on the dielectric layer 302 instead of a part of the semiconductor layer 304 (for example, the bottom semiconductor layer 104-3 in Figure 2). As described above, this can avoid weaknesses that occur during the sacrificial layer removal process, and can avoid lowering the yield caused by unintentionally removing the bottom semiconductor layer (for example, the bottom semiconductor layer 104-3 in FIG. 2).

如上所述並且下面將進一步詳細描述的,根據一些實施例,在其上形成介電層302、半導體層304、儲存堆疊層306、通道結構312和絕緣結構322的記憶體陣列基底從3D記憶體元件300移除,以使得3D記憶體元件300不包括記憶體陣列基底。As described above and described in further detail below, according to some embodiments, the memory array substrate on which the dielectric layer 302, the semiconductor layer 304, the storage stack layer 306, the channel structure 312, and the insulating structure 322 are formed is from a 3D memory The device 300 is removed so that the 3D memory device 300 does not include a memory array substrate.

第5A圖~第5K圖示出了根據本案內容的一些實施例的用於形成示例性3D記憶體元件的製造過程。第6圖示出了根據本案內容的一些實施例的用於形成示例性3D記憶體元件的方法600的流程圖。在第5A圖~第5K圖和第6圖中所描繪的3D記憶體元件的示例包括第3A圖和第3B圖中所描繪的3D記憶體元件300。第5A圖~第5K圖和第6圖將一起進行描述。應理解,方法600中所示出的操作不是窮舉的,並且還可以在任何所示出的操作之前、之後或之間執行其它操作。此外,一些操作可以同時執行,或者以與第6圖中所示的不同順序來執行。Figures 5A to 5K illustrate a manufacturing process for forming an exemplary 3D memory device according to some embodiments of the content of this case. FIG. 6 shows a flowchart of a method 600 for forming an exemplary 3D memory device according to some embodiments of the content of the present case. Examples of the 3D memory device depicted in FIGS. 5A to 5K and 6 include the 3D memory device 300 depicted in FIGS. 3A and 3B. Figures 5A to 5K and Figure 6 will be described together. It should be understood that the operations shown in method 600 are not exhaustive, and other operations may be performed before, after, or between any of the operations shown. In addition, some operations may be performed at the same time or in a different order from that shown in Figure 6.

參考第6圖,方法600開始於操作602,在操作602中,在基底的第一側依次形成停止層、第一介電層(即,第一絕緣層)、犧牲層、第一半導體層和介電堆疊層。基底可以是矽基底或由任何合適材料(例如玻璃、藍寶石、塑膠,舉幾個示例)製成的載體基底,以降低基底的成本。第一側可以是基底的正面,可以在該正面形成半導體元件。在一些實施例中,停止層可以包括氮化矽。介電層可包括介電材料,包括但不限於氧化矽、氮化矽、氧氮化矽或其任意組合。在一些實施例中,為了形成犧牲層,依次形成第一犧牲層和第二犧牲層。第一犧牲層可以包括多晶矽或氮化矽,並且第二犧牲層可以包括氮氧化矽。介電堆疊層可以包括多個交錯的堆疊犧牲層和堆疊介電層。在一些實施例中,第一半導體層包括多晶矽。Referring to FIG. 6, the method 600 starts at operation 602. In operation 602, a stop layer, a first dielectric layer (ie, a first insulating layer), a sacrificial layer, a first semiconductor layer, and a first semiconductor layer are sequentially formed on the first side of the substrate. Dielectric stacking layer. The substrate can be a silicon substrate or a carrier substrate made of any suitable material (for example, glass, sapphire, plastic, to name a few) to reduce the cost of the substrate. The first side may be the front surface of the substrate, and semiconductor elements may be formed on the front surface. In some embodiments, the stop layer may include silicon nitride. The dielectric layer may include a dielectric material, including but not limited to silicon oxide, silicon nitride, silicon oxynitride, or any combination thereof. In some embodiments, in order to form the sacrificial layer, the first sacrificial layer and the second sacrificial layer are sequentially formed. The first sacrificial layer may include polysilicon or silicon nitride, and the second sacrificial layer may include silicon oxynitride. The dielectric stack layer may include a plurality of staggered stacked sacrificial layers and stacked dielectric layers. In some embodiments, the first semiconductor layer includes polysilicon.

如第5A圖中所示,在基底502的正面依次形成停止層503、第一介電層(即第一絕緣層)505、第一犧牲層507、第二犧牲層509、第一半導體層511和介電堆疊層508。基底502可以是矽基底,或由任何合適材料(例如玻璃、藍寶石、塑膠,舉幾個示例)製成的載體基板。在一些實施例中,停止層503包括氮化矽。如下面詳細描述的,在從背面移除基底502時,停止層503可以用作停止層,並且因此可以包括除了基底502的材料之外的任何其他合適材料。應理解,在一些實施例中,可以在基底502與停止層503之間形成墊氧化物層(例如氧化矽層)以緩和不同層之間的應力。類似地,可以在停止層503與第一介電層505之間形成另一墊氧化物層,以緩和它們之間的應力。As shown in Figure 5A, a stop layer 503, a first dielectric layer (ie, a first insulating layer) 505, a first sacrificial layer 507, a second sacrificial layer 509, and a first semiconductor layer 511 are sequentially formed on the front surface of the substrate 502. And the dielectric stack layer 508. The substrate 502 may be a silicon substrate, or a carrier substrate made of any suitable material (for example, glass, sapphire, plastic, to name a few). In some embodiments, the stop layer 503 includes silicon nitride. As described in detail below, when the substrate 502 is removed from the backside, the stop layer 503 may be used as a stop layer, and thus may include any other suitable material in addition to the material of the substrate 502. It should be understood that, in some embodiments, a pad oxide layer (such as a silicon oxide layer) may be formed between the substrate 502 and the stop layer 503 to relieve the stress between different layers. Similarly, another pad oxide layer can be formed between the stop layer 503 and the first dielectric layer 505 to relieve the stress between them.

第一犧牲層507和第二犧牲層509在本文中可以被統稱為犧牲層。在一些實施例中,第一犧牲層507和第二犧牲層509分別包括多晶矽或氮化矽以及氮氧化矽。如下面詳細描述的,第一犧牲層507稍後可以選擇性地移除,並且因此可以包括相對於氧化矽具有高蝕刻選擇性(例如大於約5)的任何其他合適的材料,例如多晶矽、氮化矽、或碳。第二犧牲層509可以在蝕刻第一犧牲層507時用作停止層,並且稍後可以選擇性地移除,並且因此可以包括相對於多晶矽(第一犧牲層507和第一半導體層511的材料)具有高蝕刻選擇性(例如約大於5)的任何其他合適的材料。The first sacrificial layer 507 and the second sacrificial layer 509 may be collectively referred to as sacrificial layers herein. In some embodiments, the first sacrificial layer 507 and the second sacrificial layer 509 include polysilicon or silicon nitride and silicon oxynitride, respectively. As described in detail below, the first sacrificial layer 507 can be selectively removed later, and therefore can include any other suitable material that has a high etch selectivity (for example, greater than about 5) relative to silicon oxide, such as polysilicon, nitrogen Silica, or carbon. The second sacrificial layer 509 may be used as a stop layer when etching the first sacrificial layer 507, and may be selectively removed later, and therefore may include materials relative to polysilicon (the first sacrificial layer 507 and the first semiconductor layer 511). ) Any other suitable material with high etch selectivity (for example, about greater than 5).

停止層503、第一介電層505、第一犧牲層507、第二犧牲層509和第一半導體層511(或它們之間的任何其他層)可以通過使用一或多種薄膜沉積製程(包括但不限於化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、電鍍、無電式沉積、任何其他合適的沉積製程或其任意組合)在多個製程迴圈中按此順序依次沉積對應的材料來形成。在一些實施例中,第一半導體層511摻雜有N型摻質,例如P、As或Sb。在一個示例中,可以在沉積多晶矽材料之後使用離子佈植製程來摻雜第一半導體層511。在另一示例中,當沉積多晶矽以形成第一半導體層511時,可以執行N型摻質的原位摻雜。應理解,在一些示例中,在該階段第一半導體層511未摻雜有N型摻質。The stop layer 503, the first dielectric layer 505, the first sacrificial layer 507, the second sacrificial layer 509, and the first semiconductor layer 511 (or any other layer in between) can be achieved by using one or more thin film deposition processes (including but Not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), electroplating, electroless deposition, any other suitable deposition process or any combination thereof) in multiple process loops The corresponding materials are deposited sequentially in this order to form. In some embodiments, the first semiconductor layer 511 is doped with N-type dopants, such as P, As, or Sb. In one example, an ion implantation process can be used to dope the first semiconductor layer 511 after the polysilicon material is deposited. In another example, when polysilicon is deposited to form the first semiconductor layer 511, in-situ doping of N-type dopants may be performed. It should be understood that, in some examples, the first semiconductor layer 511 is not doped with N-type dopants at this stage.

如第5A圖中所示,在第一半導體層511上形成包括多對第一介電層(被稱為「堆疊犧牲層512」)和第二介電層(被稱為「堆疊介電層510」)的介電堆疊層508。根據一些實施例,介電堆疊層508包括交錯的堆疊犧牲層512和堆疊介電層510。堆疊介電層510和堆疊犧牲層512可以替代地沉積在第一半導體層511上以形成介電堆疊層508。在一些實施例中,每個堆疊介電層510包括氧化矽層,並且每個堆疊犧牲層512包括氮化矽層。介電堆疊層508可以通過一或多種薄膜沉積製程(包括但不限於CVD、PVD、ALD或其任意組合)來形成。在一些實施例中,在第一半導體層511與介電堆疊層508之間形成墊氧化物層(例如,氧化矽層,未示出)。As shown in Figure 5A, a plurality of pairs of first dielectric layers (called "stacked sacrificial layers 512") and second dielectric layers (called "stacked dielectric layers") are formed on the first semiconductor layer 511. 510″) dielectric stack 508. According to some embodiments, the dielectric stack 508 includes interleaved stacked sacrificial layers 512 and stacked dielectric layers 510. The stacked dielectric layer 510 and the stacked sacrificial layer 512 may alternatively be deposited on the first semiconductor layer 511 to form the dielectric stacked layer 508. In some embodiments, each stacked dielectric layer 510 includes a silicon oxide layer, and each stacked sacrificial layer 512 includes a silicon nitride layer. The dielectric stack 508 may be formed by one or more thin film deposition processes (including but not limited to CVD, PVD, ALD, or any combination thereof). In some embodiments, a pad oxide layer (for example, a silicon oxide layer, not shown) is formed between the first semiconductor layer 511 and the dielectric stack layer 508.

如第6圖中所示,方法600行進到操作604,在操作604中形成通道結構,該通道結構垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一介電層中。在一些實施例中,為了形成通道結構,形成垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一介電層中的通道孔,並且沿通道孔的側壁依次形成記憶體膜和半導體通道。在一些實施例中,在半導體通道上方形成通道插塞並與該半導體通道接觸。如上面提到的並且在下面詳細描述的,在一些實施例中,代替延伸到介電層中,通道結構還可以延伸到源極接觸結構中。例如,源極接觸結構可以稍後在介電層中形成,橫向地延伸以與通道結構的在介電層內的部分接觸。可以將通道結構視為延伸到源極接觸結構中並在源極接觸結構內停止。As shown in Figure 6, the method 600 proceeds to operation 604, in which a channel structure is formed that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first dielectric layer . In some embodiments, in order to form a channel structure, a channel hole extending vertically through the dielectric stack layer, the first semiconductor layer and the sacrificial layer into the first dielectric layer is formed, and the memory is sequentially formed along the sidewall of the channel hole Membrane and semiconductor channels. In some embodiments, a channel plug is formed over and in contact with the semiconductor channel. As mentioned above and described in detail below, in some embodiments, instead of extending into the dielectric layer, the channel structure may also extend into the source contact structure. For example, the source contact structure may be formed later in the dielectric layer, extending laterally to contact the portion of the channel structure within the dielectric layer. The channel structure can be viewed as extending into the source contact structure and stopping within the source contact structure.

如第5A圖中所示,通道孔是垂直地延伸穿過介電堆疊層508、第一半導體層511以及犧牲層509和507、在第一介電層505內停止的開口。在一些實施例中,形成多個開口,以使得每個開口變成用於在稍後過程中生長各個通道結構514的位置。在一些實施例中,用於形成通道結構514的通道孔的製造製程包括濕蝕刻和/或乾蝕刻製程,例如深反應離子式蝕刻(DRIE)。根據一些實施例,對通道孔的蝕刻會持續直到在第一介電層505內停止,例如通道孔延伸至低於第一介電層505的頂表面。在一些實施例中,可以控制蝕刻條件(例如蝕刻速率和時間)以確保每個通道孔已到達第一介電層505並在第一介電層505內停止,以增加通道孔的製程操作空間以及在通道孔中其中形成的通道結構514。As shown in FIG. 5A, the via hole is an opening that extends vertically through the dielectric stack 508, the first semiconductor layer 511, and the sacrificial layers 509 and 507, and stops in the first dielectric layer 505. In some embodiments, multiple openings are formed so that each opening becomes a location for growing various channel structures 514 in a later process. In some embodiments, the manufacturing process for forming the channel hole of the channel structure 514 includes a wet etching and/or dry etching process, such as deep reactive ion etching (DRIE). According to some embodiments, the etching of the channel hole will continue until it stops in the first dielectric layer 505, for example, the channel hole extends below the top surface of the first dielectric layer 505. In some embodiments, the etching conditions (for example, etching rate and time) can be controlled to ensure that each via hole has reached the first dielectric layer 505 and stopped in the first dielectric layer 505, so as to increase the processing space of the via hole. And the channel structure 514 formed in the channel hole.

如第5A圖中所示,沿通道孔的側壁和底表面按此順序依次形成記憶體膜516(包括阻擋層、儲存層和穿隧層)和半導體通道518。在一些實施例中,首先沿通道孔的側壁和底表面沉積記憶體膜516,並且隨後在記憶體膜516之上沉積半導體通道518。隨後可以使用一或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其他合適的製程或其任意組合)按此順序依次沉積阻擋層、儲存層和穿隧層,以形成記憶體膜516。隨後可以通過使用一或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其他合適的製程或其任意組合)在記憶體膜516的穿隧層之上沉積半導體材料(例如多晶矽)來形成半導體通道518。在一些實施例中,隨後沉積第一氧化矽層、氮化矽層、第二氧化矽層和多晶矽層(「SONO」結構)以形成記憶體膜516和半導體通道518。As shown in FIG. 5A, a memory film 516 (including a barrier layer, a storage layer, and a tunneling layer) and a semiconductor channel 518 are sequentially formed along the sidewall and bottom surface of the via hole in this order. In some embodiments, the memory film 516 is deposited along the sidewall and bottom surface of the via hole first, and then the semiconductor channel 518 is deposited on the memory film 516. Subsequently, one or more thin film deposition processes (such as ALD, CVD, PVD, any other suitable process, or any combination thereof) may be used to sequentially deposit the barrier layer, the storage layer, and the tunnel layer in this order to form the memory film 516. The semiconductor channel can then be formed by depositing a semiconductor material (such as polysilicon) on the tunnel layer of the memory film 516 using one or more thin film deposition processes (such as ALD, CVD, PVD, any other suitable process, or any combination thereof) 518. In some embodiments, a first silicon oxide layer, a silicon nitride layer, a second silicon oxide layer, and a polysilicon layer ("SONO" structure) are subsequently deposited to form the memory film 516 and the semiconductor channel 518.

如第5A圖中所示,在通道孔中並在半導體通道518之上形成覆蓋層520,以完全或部分地填充通道孔(例如,沒有或具有氣隙)。可以通過使用一種或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其他合適的製程或其任意組合)沉積介電材料(例如氧化矽)來形成覆蓋層520。隨後可以在通道孔的上部部分中形成通道插塞522。在一些實施例中,通過CMP、濕蝕刻和/或乾蝕刻製程來移除並平坦化記憶體膜516、半導體通道518和覆蓋層520的在介電堆疊層508的頂表面上的部分。隨後可以通過濕蝕刻和/或乾蝕刻半導體通道518和覆蓋層520的在通道孔的上部部分中的部分來在該通道孔的上部部分中形成凹部。隨後可以用一或多種薄膜沉積製程(例如CVD、PVD、ALD或其任意組合),通過將半導體材料(例如多晶矽)沉積到凹部中來形成通道插塞522。根據一些實施例,由此形成穿過介電堆疊層508、第一半導體層511以及犧牲層509和507進入第一介電層505中的通道結構514。As shown in FIG. 5A, a capping layer 520 is formed in the channel hole and over the semiconductor channel 518 to completely or partially fill the channel hole (for example, without or with an air gap). The capping layer 520 may be formed by depositing a dielectric material (such as silicon oxide) using one or more thin film deposition processes (such as ALD, CVD, PVD, any other suitable process, or any combination thereof). The channel plug 522 may then be formed in the upper portion of the channel hole. In some embodiments, the portions of the memory film 516, the semiconductor channel 518, and the capping layer 520 on the top surface of the dielectric stack 508 are removed and planarized by CMP, wet etching, and/or dry etching processes. The recesses may then be formed in the upper portion of the channel hole by wet etching and/or dry etching of the semiconductor channel 518 and the portion of the capping layer 520 in the upper portion of the channel hole. Subsequently, one or more thin film deposition processes (such as CVD, PVD, ALD, or any combination thereof) may be used to form the channel plug 522 by depositing a semiconductor material (such as polysilicon) into the recess. According to some embodiments, a channel structure 514 passing through the dielectric stack layer 508, the first semiconductor layer 511, and the sacrificial layers 509 and 507 into the first dielectric layer 505 is thereby formed.

如第6圖中所示,方法600行進到操作606,在操作606中形成開口,該開口垂直地延伸穿過介電堆疊層和第一半導體層並在犧牲層處停止以暴露犧牲層的一部分。在一些實施例中,形成開口在第二犧牲層處停止。As shown in Figure 6, the method 600 proceeds to operation 606, in which an opening is formed that extends vertically through the dielectric stack layer and the first semiconductor layer and stops at the sacrificial layer to expose a portion of the sacrificial layer . In some embodiments, forming the opening stops at the second sacrificial layer.

如第5B圖中所示,縫隙524是所形成的垂直地延伸穿過介電堆疊層508和第一半導體層511、在第二犧牲層509處停止的開口,該開口暴露第二犧牲層509的一部分。在一些實施例中,用於形成縫隙524的製造製程包括濕蝕刻和/或乾蝕刻製程,例如DRIE。在一些實施例中,首先蝕刻介電堆疊層508的堆疊介電層510和堆疊犧牲層512。介電堆疊層508的蝕刻在第一半導體層511的頂表面可以不停止,並且可以以各種深度(即刨削變動)進一步延伸到第一半導體層511中。因此,由於第二犧牲層509和第一犧牲層507的材料(例如多晶矽)之間的蝕刻選擇性,因此可以執行第二蝕刻過程(有時被稱為後蝕刻處理)以蝕刻第一半導體層511直至被第二犧牲層509(例如氮氧化矽層)停止。As shown in FIG. 5B, the slit 524 is an opening formed to extend vertically through the dielectric stack 508 and the first semiconductor layer 511 and stop at the second sacrificial layer 509, and the opening exposes the second sacrificial layer 509 a part of. In some embodiments, the manufacturing process for forming the gap 524 includes a wet etching and/or dry etching process, such as DRIE. In some embodiments, the stacked dielectric layer 510 and the stacked sacrificial layer 512 of the dielectric stack layer 508 are etched first. The etching of the dielectric stack layer 508 may not stop on the top surface of the first semiconductor layer 511, and may further extend into the first semiconductor layer 511 at various depths (ie, gouging variations). Therefore, due to the etching selectivity between the material (for example, polysilicon) of the second sacrificial layer 509 and the first sacrificial layer 507, a second etching process (sometimes referred to as a post-etching process) may be performed to etch the first semiconductor layer 511 is stopped by the second sacrificial layer 509 (for example, a silicon oxynitride layer).

如第6圖中所示,方法600行進到操作608,在操作608中通過開口、用第一半導體層與第一介電層之間的第二半導體層來替換犧牲層。在一些實施例中,第二半導體層包括多晶矽。在一些實施例中,為了用第二半導體層替換犧牲層,通過開口來移除犧牲層,以在第一半導體層與第一介電層之間形成空腔,通過開口來移除記憶體膜的一部分,以暴露半導體通道沿通道孔的側壁的部分,並且通過開口將多晶矽沉積到空腔中以形成第二半導體層。在一些實施例中,第一或第二半導體層中的至少一個半導體層摻雜有N型摻質。N型摻質可以在第一半導體層和第二半導體層中擴散。As shown in Figure 6, the method 600 proceeds to operation 608, in which the sacrificial layer is replaced with a second semiconductor layer between the first semiconductor layer and the first dielectric layer through the opening. In some embodiments, the second semiconductor layer includes polysilicon. In some embodiments, in order to replace the sacrificial layer with the second semiconductor layer, the sacrificial layer is removed through the opening to form a cavity between the first semiconductor layer and the first dielectric layer, and the memory film is removed through the opening To expose a portion of the semiconductor channel along the sidewall of the via hole, and deposit polysilicon into the cavity through the opening to form a second semiconductor layer. In some embodiments, at least one of the first or second semiconductor layers is doped with N-type dopants. N-type dopants may diffuse in the first semiconductor layer and the second semiconductor layer.

如第5C圖中所示,通過沿縫隙524的側壁沉積一或多種介電質(例如高k介電質)來沿縫隙524的側壁形成間隔物528。間隔物528的底表面(以及第二犧牲層509在縫隙524中的一部分(如果仍然保留的話))可以使用濕蝕刻和/或乾蝕刻製程來打開,以暴露第一犧牲層507的一部分(如第5B圖所示,例如多晶矽層)。在一些實施例中,隨後通過濕蝕刻和/或乾蝕刻來移除第一犧牲層507以形成空腔526。在一些實施例中,第一犧牲層507包括多晶矽,間隔物528包括高k介電質,第二犧牲層509包括通過縫隙524施加四甲基氫氧化銨(TMAH)蝕刻劑來蝕刻的氮氧化矽,該蝕刻可以由間隔物528的高k介電質以及第二犧牲層509的氮氧化矽停止。即,根據一些實施例,第一犧牲層507的移除不會影響分別由間隔物528和第二犧牲層509保護的介電堆疊層508和第一半導體層511。As shown in FIG. 5C, spacers 528 are formed along the sidewalls of the gap 524 by depositing one or more dielectrics (for example, high-k dielectrics) along the sidewalls of the gap 524. The bottom surface of the spacer 528 (and a part of the second sacrificial layer 509 in the gap 524 (if still remaining)) can be opened using a wet etching and/or dry etching process to expose a part of the first sacrificial layer 507 (such as As shown in Figure 5B, for example a polysilicon layer). In some embodiments, the first sacrificial layer 507 is subsequently removed by wet etching and/or dry etching to form the cavity 526. In some embodiments, the first sacrificial layer 507 includes polysilicon, the spacer 528 includes a high-k dielectric, and the second sacrificial layer 509 includes oxynitride etched by applying a tetramethylammonium hydroxide (TMAH) etchant through the gap 524 For silicon, the etching can be stopped by the high-k dielectric of the spacer 528 and the silicon oxynitride of the second sacrificial layer 509. That is, according to some embodiments, the removal of the first sacrificial layer 507 does not affect the dielectric stack layer 508 and the first semiconductor layer 511 protected by the spacer 528 and the second sacrificial layer 509, respectively.

如第5D圖中所示,移除記憶體膜516在空腔526中暴露的部分,以暴露半導體通道518沿通道結構514的側壁的部分。在一些實施例中,阻擋層(例如包括氧化矽)、儲存層(例如包括氮化矽)和穿隧層(例如包括氧化矽)的一部分經由通過縫隙524和空腔526施加蝕刻劑(例如用於蝕刻氮化矽的磷酸和用於蝕刻氧化矽的氫氟酸)來進行蝕刻。可以由間隔物528和半導體通道518來停止蝕刻。即,根據一些實施例,移除記憶體膜516在空腔526中暴露的部分不會影響(由間隔物528保護的)介電堆疊層508和包括多晶矽的半導體通道518以及被半導體通道518包封的覆蓋層520。在一些實施例中,第二犧牲層509(包括氮氧化矽)也通過相同的蝕刻製程被移除。As shown in FIG. 5D, the exposed portion of the memory film 516 in the cavity 526 is removed to expose the portion of the semiconductor channel 518 along the sidewall of the channel structure 514. In some embodiments, a part of the barrier layer (for example, including silicon oxide), the storage layer (for example, including silicon nitride), and the tunneling layer (for example, including silicon oxide) is applied through the gap 524 and the cavity 526 by applying etchant (for example, using Phosphoric acid for etching silicon nitride and hydrofluoric acid for etching silicon oxide) for etching. The etching can be stopped by the spacer 528 and the semiconductor channel 518. That is, according to some embodiments, removing the exposed portion of the memory film 516 in the cavity 526 will not affect the dielectric stack layer 508 (protected by the spacer 528) and the semiconductor channel 518 including polysilicon and the semiconductor channel 518. Sealed cover layer 520. In some embodiments, the second sacrificial layer 509 (including silicon oxynitride) is also removed through the same etching process.

如第5E圖中所示,在第一半導體層511與第一介電層505之間形成第二半導體層530。在一些實施例中,通過使用一或多種薄膜沉積製程(例如CVD、PVD、ALD或其任意組合),經過縫隙524將多晶矽沉積到空腔526(如第5D圖中所示)中來形成第二半導體層530。在一些實施例中,移除保留在縫隙524的下部部分中的多晶矽,以使得縫隙524的底表面與第一介電層505的頂表面齊平,並且第一介電層505的一部分從縫隙524暴露,如第5F圖中所示。在一些實施例中,當沉積多晶矽以形成第二半導體層530時,執行N型摻質(例如P、As或Sb)的原位摻雜。第二半導體層530可以填充空腔526以與通道結構514的半導體通道518的暴露部分接觸。應理解,取決於第一半導體層511是否摻雜有N型摻雜物,可以摻雜或不摻雜第二半導體層530,這是因為第一半導體層511和第二半導體層530中的至少一個可能需要摻雜有N型摻質。在一些實施例中,使用熱擴散製程(例如退火)在第一半導體層511和第二半導體層530中的至少一個半導體層中擴散N型摻質以在垂直方向上在第一半導體層511和第二半導體層530中實現均勻的摻雜濃度分佈。例如,擴散之後的摻雜濃度可以在10 19cm -3至10 22cm -3之間。如上所述,由於第一半導體層511和第二半導體層530中的每個半導體層包括具有標稱地相同的摻雜濃度的相同多晶矽材料,因此第一半導體層511和第二半導體層530之間的介面可能變得無法區分。因此,第一半導體層511和第二半導體層530在擴散之後可以被共同地視為半導體層。 As shown in FIG. 5E, a second semiconductor layer 530 is formed between the first semiconductor layer 511 and the first dielectric layer 505. In some embodiments, one or more thin film deposition processes (such as CVD, PVD, ALD, or any combination thereof) are used to deposit polysilicon into the cavity 526 (as shown in Figure 5D) through the gap 524 to form the first Two semiconductor layer 530. In some embodiments, the polysilicon remaining in the lower portion of the gap 524 is removed so that the bottom surface of the gap 524 is flush with the top surface of the first dielectric layer 505, and a portion of the first dielectric layer 505 is removed from the gap. 524 is exposed, as shown in Figure 5F. In some embodiments, when polysilicon is deposited to form the second semiconductor layer 530, in-situ doping of N-type dopants (such as P, As, or Sb) is performed. The second semiconductor layer 530 may fill the cavity 526 to contact the exposed portion of the semiconductor channel 518 of the channel structure 514. It should be understood that depending on whether the first semiconductor layer 511 is doped with N-type dopants, the second semiconductor layer 530 may be doped or undoped, because at least one of the first semiconductor layer 511 and the second semiconductor layer 530 One may need to be doped with N-type dopants. In some embodiments, a thermal diffusion process (such as annealing) is used to diffuse N-type dopants in at least one semiconductor layer of the first semiconductor layer 511 and the second semiconductor layer 530 to vertically spread the N-type dopants in the first semiconductor layer 511 and the second semiconductor layer 530. A uniform doping concentration distribution is achieved in the second semiconductor layer 530. For example, the doping concentration after diffusion may be between 10 19 cm -3 and 10 22 cm -3 . As described above, since each of the first semiconductor layer 511 and the second semiconductor layer 530 includes the same polysilicon material with nominally the same doping concentration, the difference between the first semiconductor layer 511 and the second semiconductor layer 530 The interface may become indistinguishable. Therefore, the first semiconductor layer 511 and the second semiconductor layer 530 may be collectively regarded as a semiconductor layer after diffusion.

如第6圖中所示,方法600行進到操作610,在操作610中使用所謂的「閘極替換製程」,通過開口、用儲存堆疊層來替換介電堆疊層。如第5F圖中所示,使用濕蝕刻和/或乾蝕刻來移除第二半導體層530的一部分和沿縫隙524如第5E圖中所示)的側壁形成的任何剩餘間隔物528(以通過縫隙524暴露介電堆疊層508的堆疊犧牲層512。第一介電層505上的第二半導體層530沿縫隙524的部分(第5E圖中所示)也使用濕蝕刻和/或乾蝕刻來移除,以使得縫隙524在第一介電層505的頂表面處停止。可以控制蝕刻製程(例如通過控制蝕刻速率和/或時間),以使得第二半導體層530的剩餘部分仍然保留在第一半導體層511和第一介電層505之間並且與通道結構514的半導體通道518接觸。As shown in Figure 6, the method 600 proceeds to operation 610, in which a so-called "gate replacement process" is used to replace the dielectric stack with the storage stack through the opening. As shown in Figure 5F, wet etching and/or dry etching are used to remove a portion of the second semiconductor layer 530 and any remaining spacers 528 formed along the sidewalls of the gap 524 as shown in Figure 5E (to pass The gap 524 exposes the stacked sacrificial layer 512 of the dielectric stacked layer 508. The portion of the second semiconductor layer 530 on the first dielectric layer 505 along the gap 524 (shown in Figure 5E) also uses wet etching and/or dry etching to Removed so that the gap 524 stops at the top surface of the first dielectric layer 505. The etching process can be controlled (for example, by controlling the etching rate and/or time) so that the remaining part of the second semiconductor layer 530 remains in the first A semiconductor layer 511 and the first dielectric layer 505 are in contact with the semiconductor channel 518 of the channel structure 514.

如第5G圖中所示,可以通過閘極替換製程(即用堆疊導電層536替換堆疊犧牲層512)來形成儲存堆疊層534。儲存堆疊層534因此可以包括在第一半導體層511上的交錯的堆疊導電層536和堆疊介電層510。在一些實施例中,為了形成儲存堆疊層534,經由通過縫隙524施加蝕刻劑來移除堆疊犧牲層512,以形成多個橫向凹部。隨後可以通過使用一或多種薄膜沉積製程(例如,PVD、CVD、ALD或其任意組合)沉積一或多種導電材料來將堆疊導電層536沉積到橫向凹部中。根據一些實施例,通道結構514由此垂直地延伸穿過儲存堆疊層534和包括第一半導體層511和第二半導體層530的半導體層,在第一介電層505處停止。As shown in FIG. 5G, the storage stacked layer 534 can be formed by a gate replacement process (ie, replacing the stacked sacrificial layer 512 with the stacked conductive layer 536). The storage stack 534 may therefore include a staggered stacked conductive layer 536 and a stacked dielectric layer 510 on the first semiconductor layer 511. In some embodiments, in order to form the storage stacked layer 534, the stacked sacrificial layer 512 is removed by applying an etchant through the slit 524 to form a plurality of lateral recesses. The stacked conductive layer 536 can then be deposited into the lateral recesses by depositing one or more conductive materials using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof). According to some embodiments, the channel structure 514 thus extends vertically through the storage stack 534 and the semiconductor layer including the first semiconductor layer 511 and the second semiconductor layer 530, stopping at the first dielectric layer 505.

如第6圖中所示,方法600行進到操作612,在操作612中在開口中形成絕緣結構。在一些實施例中,為了形成絕緣結構,將一或多種介電材料沉積到開口中以填充該開口。如第5H圖中所示,在縫隙524(第5G圖中所示)中形成絕緣結構542。可以通過使用一或多種薄膜沉積製程(例如PVD、CVD、ALD或其任意組合)在縫隙524中沉積一或多種介電材料(例如高k介電質(也作為閘極介電層538)和氧化矽)作為絕緣芯540,以在具有或沒有氣隙的情況下完全或部分地填充縫隙524來形成絕緣結構542。As shown in Figure 6, the method 600 proceeds to operation 612, in which an insulating structure is formed in the opening. In some embodiments, to form an insulating structure, one or more dielectric materials are deposited into the opening to fill the opening. As shown in FIG. 5H, an insulating structure 542 is formed in the gap 524 (shown in FIG. 5G). One or more dielectric materials (such as high-k dielectric (also used as gate dielectric layer 538) and Silicon oxide) is used as the insulating core 540 to completely or partially fill the gap 524 with or without an air gap to form the insulating structure 542.

如第6圖中所示,方法600行進到操作614,在操作614中從與基底的第一側相反的第二側移除基底並在停止層處停止。第二側可以是基底的背面。如第5I圖中所示,從背面移除基底502(第5H圖中所示)。儘管在第5I圖中未示出,但應理解,第5H圖中的中間結構可以上下顛倒以在中間結構的頂上具有基底502。在一些實施例中,使用CMP、研磨、濕蝕刻和/或乾蝕刻直至被停止層503(例如,氮化矽層)停止來完全移除基底502。在一些實施例中,使用矽CMP來移除基底502(矽基底),其中該矽CMP在到達具有除矽之外的材料的停止層503時自動停止,即,用作晶背CMP停止層。在一些實施例中,使用通過TMAH的濕蝕刻來移除基底502(矽基底),該濕蝕刻在到達具有除矽之外的材料的停止層503時自動停止,即用作為晶背蝕刻停止層。然而,停止層503可以確保完全移除基底502,而無需考慮減薄之後的厚度均勻性。As shown in Figure 6, the method 600 proceeds to operation 614, in which the substrate is removed from the second side opposite the first side of the substrate and stopped at the stop layer. The second side can be the back of the substrate. As shown in Figure 5I, the base 502 (shown in Figure 5H) is removed from the back side. Although not shown in Figure 51, it should be understood that the intermediate structure in Figure 5H may be upside down to have a base 502 on top of the intermediate structure. In some embodiments, CMP, grinding, wet etching, and/or dry etching are used to completely remove the substrate 502 until stopped by the stop layer 503 (eg, a silicon nitride layer). In some embodiments, silicon CMP is used to remove the substrate 502 (silicon substrate), where the silicon CMP automatically stops when it reaches the stop layer 503 having a material other than silicon, that is, it is used as a backside CMP stop layer. In some embodiments, wet etching by TMAH is used to remove the substrate 502 (silicon substrate). The wet etching stops automatically when it reaches the stop layer 503 with a material other than silicon, that is, it is used as a backside etching stop layer. . However, the stop layer 503 can ensure that the substrate 502 is completely removed without considering the thickness uniformity after thinning.

如第6圖中所示,方法600行進到操作616,在操作616中形成垂直地延伸穿過介電層並在半導體層處停止的源極接觸結構。源極接觸結構與第二半導體層接觸。如第5J圖中所示,使用濕蝕刻和/或乾蝕刻來移除停止層503以暴露第一介電層505。可以通過使用一或多種薄膜沉積製程(例如PVD、CVD、ALD或其任意組合)在第一介電層505的頂上沉積介電材料(例如氧化矽)來在第一介電層505的第二側形成第二介電層(即第二絕緣層)506。在一些實施例中,由於第一介電層505和第二介電層506中的每個介電層都包括相同的介電材料(例如氧化矽),因此第一介電層505和第二介電層506之間的介面可能變得無法區分。因此,第一介電層505和第二介電層506在沉積之後可以被統稱為介電層(即絕緣層)544。As shown in Figure 6, the method 600 proceeds to operation 616, in which a source contact structure that extends vertically through the dielectric layer and stops at the semiconductor layer is formed. The source contact structure is in contact with the second semiconductor layer. As shown in FIG. 5J, wet etching and/or dry etching are used to remove the stop layer 503 to expose the first dielectric layer 505. A dielectric material (such as silicon oxide) can be deposited on top of the first dielectric layer 505 by using one or more thin film deposition processes (such as PVD, CVD, ALD, or any combination thereof) to deposit a dielectric material (such as silicon oxide) on the second dielectric layer 505. A second dielectric layer (ie, a second insulating layer) 506 is formed on the side. In some embodiments, since each of the first dielectric layer 505 and the second dielectric layer 506 includes the same dielectric material (such as silicon oxide), the first dielectric layer 505 and the second dielectric layer 506 The interface between the dielectric layers 506 may become indistinguishable. Therefore, the first dielectric layer 505 and the second dielectric layer 506 may be collectively referred to as a dielectric layer (ie, an insulating layer) 544 after being deposited.

在一些實施例中,如第5K圖中所示,形成垂直地延伸穿過介電層544以與第二半導體層530接觸的背面源極接觸結構546。源極接觸結構546與介電層544的第一介電層505中的通道結構514橫向地間隔開。在一些實施例中,通過以下操作來形成源極接觸結構546:首先使用濕蝕刻和/或乾蝕刻(例如RIE)來蝕刻垂直地延伸穿過介電層544進入第二半導體層530中的開口,之後例如通過使用一或多種薄膜沉積製程(例如PVD、CVD、ALD或其任意組合)沉積TiN來在開口的側壁和底表面之上形成黏合層。隨後可以例如通過使用一或多種薄膜沉積製程(例如PVD、CVD、ALD、電鍍、無電式電鍍、或其任意組合)沉積金屬(例如W)在黏合層之上形成導電層來形成源極接觸結構546。In some embodiments, as shown in FIG. 5K, a backside source contact structure 546 extending vertically through the dielectric layer 544 to contact the second semiconductor layer 530 is formed. The source contact structure 546 is laterally spaced apart from the channel structure 514 in the first dielectric layer 505 of the dielectric layer 544. In some embodiments, the source contact structure 546 is formed by first using wet etching and/or dry etching (such as RIE) to etch the opening extending vertically through the dielectric layer 544 into the second semiconductor layer 530 Then, for example, by using one or more thin film deposition processes (such as PVD, CVD, ALD, or any combination thereof) to deposit TiN to form an adhesion layer on the sidewall and bottom surface of the opening. Then, for example, by using one or more thin film deposition processes (such as PVD, CVD, ALD, electroplating, electroless plating, or any combination thereof) to deposit a metal (such as W) to form a conductive layer on the adhesion layer to form the source contact structure 546.

在一些實施例中,如第5L圖中所示,形成源極接觸結構546,該源極接觸結構546垂直地延伸穿過介電層544以與第二半導體層530接觸以及與通道結構514的鄰接介電層544的第一介電層505的部分接觸。In some embodiments, as shown in FIG. 5L, a source contact structure 546 is formed. The source contact structure 546 extends vertically through the dielectric layer 544 to contact the second semiconductor layer 530 and the channel structure 514. The portion of the first dielectric layer 505 adjacent to the dielectric layer 544 is in contact.

例如,通過首先蝕刻垂直地延伸穿過介電層544進入第二半導體層530中的開口來形成源極接觸結構546。還通過移除記憶體膜516的鄰接第一介電層505的部分來形成源極接觸結構546,以暴露半導體通道518的鄰接第一介電層505的部分以與源極接觸結構546接觸。在一些實施例中,當蝕刻記憶體膜516的一部分時,阻擋層(例如包括氧化矽)、儲存層(例如包括氮化矽)和穿隧層(例如包括氧化矽)的各部分經由通過用於形成源極接觸結構546的開口施加蝕刻劑(例如用於蝕刻氮化矽的磷酸和用於蝕刻氧化矽的氫氟酸)來進行蝕刻。蝕刻可以由半導體通道518停止。即,根據一些實施例,移除記憶體膜516的在第一介電層505內的部分不會影響包括多晶矽的半導體通道518和被半導體通道518包封的覆蓋層520。半導體通道518的剩餘部分因此可以用作停止層,以防止對通道結構514的任何另外蝕刻。For example, the source contact structure 546 is formed by first etching an opening extending vertically through the dielectric layer 544 into the second semiconductor layer 530. The source contact structure 546 is also formed by removing the portion of the memory film 516 adjacent to the first dielectric layer 505 to expose the portion of the semiconductor channel 518 adjacent to the first dielectric layer 505 to contact the source contact structure 546. In some embodiments, when a part of the memory film 516 is etched, the barrier layer (for example, including silicon oxide), the storage layer (for example, including silicon nitride), and the tunneling layer (for example, including silicon oxide) are passed through An etchant (such as phosphoric acid for etching silicon nitride and hydrofluoric acid for etching silicon oxide) is applied to the opening where the source contact structure 546 is formed to perform etching. The etching can be stopped by the semiconductor channel 518. That is, according to some embodiments, removing the portion of the memory film 516 in the first dielectric layer 505 does not affect the semiconductor channel 518 including polysilicon and the cover layer 520 encapsulated by the semiconductor channel 518. The remaining part of the semiconductor channel 518 can therefore be used as a stop layer to prevent any additional etching of the channel structure 514.

根據本案內容的一個方面,一種3D記憶體元件包括:絕緣層、半導體層、由交錯的導電層和介電層的儲存堆疊層、源極接觸結構從絕緣層的相對於半導體層的相對側垂直地延伸穿過絕緣層以與半導體層接觸、以及通道結構垂直地延伸穿過儲存堆疊層和半導體層進入絕緣層或源極接觸結構中。According to one aspect of this case, a 3D memory device includes: an insulating layer, a semiconductor layer, a storage stack layer of interlaced conductive layers and dielectric layers, and a source contact structure perpendicular to the opposite side of the insulating layer with respect to the semiconductor layer The ground extends through the insulating layer to contact the semiconductor layer, and the channel structure extends vertically through the storage stack layer and the semiconductor layer into the insulating layer or the source contact structure.

在一些實施例中,通道結構垂直地延伸到絕緣層中並在絕緣層中橫向地與源極接觸結構間隔開。In some embodiments, the channel structure extends vertically into the insulating layer and is spaced laterally from the source contact structure in the insulating layer.

在一些實施例中,通道結構垂直地延伸到源極接觸結構中。In some embodiments, the channel structure extends vertically into the source contact structure.

在一些實施例中,該3D記憶體元件還包括垂直地延伸穿過儲存堆疊層進入半導體層的絕緣結構。In some embodiments, the 3D memory device further includes an insulating structure extending vertically through the storage stack layer into the semiconductor layer.

在一些實施例中,絕緣結構的底表面的至少一部分與絕緣層的頂表面齊平。In some embodiments, at least a portion of the bottom surface of the insulating structure is flush with the top surface of the insulating layer.

在一些實施例中,通道結構包括記憶體膜和半導體通道,並且半導體通道沿通道結構的側壁的部分與半導體層的子層接觸。In some embodiments, the channel structure includes a memory film and a semiconductor channel, and the semiconductor channel is in contact with a sublayer of the semiconductor layer along a portion of the sidewall of the channel structure.

在一些實施例中,半導體層包括多晶矽。In some embodiments, the semiconductor layer includes polysilicon.

在一些實施例中,半導體層包括N型摻雜的多晶矽層。In some embodiments, the semiconductor layer includes an N-type doped polysilicon layer.

根據本案內容的另一方面,一種3D記憶體元件包括:絕緣層、半導體層、具有交錯的導電層的記憶體、垂直地延伸穿過儲存堆疊層和半導體層的通道結構;以及垂直地延伸穿過儲存堆疊層進入半導體層的絕緣結構。通道結構包括記憶體膜和半導體通道,並且半導體通道沿通道結構的側壁的部分與半導體層的子層接觸。該3D記憶體元件還包括垂直地延伸穿過儲存堆疊層進入半導體層的絕緣結構。絕緣結構的底表面與絕緣層的頂表面齊平。According to another aspect of the present case, a 3D memory device includes: an insulating layer, a semiconductor layer, a memory with interlaced conductive layers, a channel structure vertically extending through the storage stack layer and the semiconductor layer; and vertically extending through The insulating structure of the semiconductor layer through the storage stack layer. The channel structure includes a memory film and a semiconductor channel, and the semiconductor channel is in contact with a sublayer of the semiconductor layer along a part of the sidewall of the channel structure. The 3D memory device also includes an insulating structure that extends vertically through the storage stack into the semiconductor layer. The bottom surface of the insulating structure is flush with the top surface of the insulating layer.

在一些實施例中,該3D記憶體元件還包括源極接觸結構,該源極接觸結構從絕緣層的相對於半導體層的相對側垂直地延伸穿過絕緣層以與半導體層接觸。In some embodiments, the 3D memory device further includes a source contact structure that extends vertically through the insulating layer from an opposite side of the insulating layer relative to the semiconductor layer to contact the semiconductor layer.

在一些實施例中,通道結構垂直地延伸到絕緣層中並在絕緣層中橫向地與源極接觸結構間隔開。In some embodiments, the channel structure extends vertically into the insulating layer and is spaced laterally from the source contact structure in the insulating layer.

在一些實施例中,通道結構垂直地延伸到源極接觸結構中。In some embodiments, the channel structure extends vertically into the source contact structure.

在一些實施例中,半導體層包括多晶矽。In some embodiments, the semiconductor layer includes polysilicon.

在一些實施例中,半導體層包括N型摻雜的多晶矽層。In some embodiments, the semiconductor layer includes an N-type doped polysilicon layer.

根據本案內容的另外又一方面,其公開了一種用於形成3D記憶體元件的方法。在基底的第一側依次形成停止層、第一絕緣層、犧牲層、第一半導體層和介電堆疊層。形成通道結構,該通道結構垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一絕緣層。形成開口,該開口垂直地延伸穿過介電堆疊層和第一半導體層並在犧牲層處停止以暴露犧牲層的一部分。通過開口、用第一半導體層與第一絕緣層之間的第二半導體層來替換犧牲層。從與基底的第一側相對的第二側移除該基底並在停止層處停止。According to another aspect of the content of this case, it discloses a method for forming a 3D memory device. A stop layer, a first insulating layer, a sacrificial layer, a first semiconductor layer, and a dielectric stack layer are sequentially formed on the first side of the substrate. A channel structure is formed that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer. An opening is formed that extends vertically through the dielectric stack layer and the first semiconductor layer and stops at the sacrificial layer to expose a portion of the sacrificial layer. Through the opening, the sacrificial layer is replaced with a second semiconductor layer between the first semiconductor layer and the first insulating layer. Remove the substrate from the second side opposite the first side of the substrate and stop at the stop layer.

在一些實施例中,為了形成通道結構,形成垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一絕緣層的通道孔,並且依次形成沿通道孔的側壁的記憶體膜和半導體通道。In some embodiments, in order to form a channel structure, a channel hole is formed vertically extending through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer, and a memory film along the sidewall of the channel hole is sequentially formed And semiconductor channels.

在一些實施例中,移除停止層,形成與第一絕緣層接觸的第二絕緣層、以及垂直地延伸穿過第一和第二絕緣層以與第二半導體層接觸的源極接觸結構。In some embodiments, the stop layer is removed to form a second insulating layer contacting the first insulating layer, and a source contact structure extending vertically through the first and second insulating layers to contact the second semiconductor layer.

在一些實施例中,源極接觸結構在第一絕緣層中與通道結構間隔開。In some embodiments, the source contact structure is spaced apart from the channel structure in the first insulating layer.

在一些實施例中,為了形成源極接觸結構,移除通道結構的記憶體膜在第一絕緣層中的部分並在通道結構的半導體處停止。In some embodiments, in order to form the source contact structure, the portion of the memory film of the channel structure in the first insulating layer is removed and stopped at the semiconductor of the channel structure.

在一些實施例中,停止層包括氮化矽,並且第一絕緣層包括氧化矽。In some embodiments, the stop layer includes silicon nitride, and the first insulating layer includes silicon oxide.

在一些實施例中,為了形成犧牲層,形成第一犧牲層和第二犧牲層,並且形成開口在第二犧牲層處停止。In some embodiments, in order to form the sacrificial layer, a first sacrificial layer and a second sacrificial layer are formed, and the formation of the opening stops at the second sacrificial layer.

在一些實施例中,第一犧牲層包括多晶矽,並且第二犧牲層包括氮氧化矽。In some embodiments, the first sacrificial layer includes polysilicon, and the second sacrificial layer includes silicon oxynitride.

在一些實施例中,為了用第二半導體層來替換犧牲層,通過開口來移除犧牲層以在第一半導體層與第一絕緣層之間形成空腔。通過開口移除記憶體膜的一部分以暴露半導體通道沿通道孔的側壁的部分,並且通過開口將多晶矽沉積到空腔中以形成第二半導體層。In some embodiments, in order to replace the sacrificial layer with the second semiconductor layer, the sacrificial layer is removed through the opening to form a cavity between the first semiconductor layer and the first insulating layer. A portion of the memory film is removed through the opening to expose a portion of the semiconductor channel along the sidewall of the via hole, and polysilicon is deposited into the cavity through the opening to form a second semiconductor layer.

在一些實施例中,第一半導體層和第二半導體層中的至少一個半導體層摻雜有N型摻質。N型摻質在第一半導體層和第二半導體層中擴散。In some embodiments, at least one of the first semiconductor layer and the second semiconductor layer is doped with N-type dopants. N-type dopants diffuse in the first semiconductor layer and the second semiconductor layer.

在一些實施例中,在移除基底之前,在開口中形成絕緣結構。絕緣結構與第一絕緣層接觸。In some embodiments, before removing the substrate, an insulating structure is formed in the opening. The insulating structure is in contact with the first insulating layer.

根據本案內容的另外又一方面,其公開了一種用於形成3D記憶體元件的方法。在基底上依次形成第一絕緣層、犧牲層、第一半導體層和介電堆疊層。形成通道結構,該通道結構垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一絕緣層。用第一半導體層與第一絕緣層之間的第二半導體層來替換犧牲層。第一半導體層和第二半導體層中的至少一個半導體層摻雜有N型摻質。N型摻質在第一半導體層和第二半導體層中擴散。According to another aspect of the content of this case, it discloses a method for forming a 3D memory device. A first insulating layer, a sacrificial layer, a first semiconductor layer, and a dielectric stack layer are sequentially formed on the substrate. A channel structure is formed that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer. The sacrificial layer is replaced with a second semiconductor layer between the first semiconductor layer and the first insulating layer. At least one of the first semiconductor layer and the second semiconductor layer is doped with N-type dopants. N-type dopants diffuse in the first semiconductor layer and the second semiconductor layer.

在一些實施例中,在用第二半導體層替換犧牲層之前,形成開口,該開口垂直地延伸穿過介電堆疊層和第一半導體層並在犧牲層處停止以暴露犧牲層的一部分,以使得犧牲層通過該開口被替換為第二半導體層。In some embodiments, before replacing the sacrificial layer with the second semiconductor layer, an opening is formed that extends vertically through the dielectric stack layer and the first semiconductor layer and stops at the sacrificial layer to expose a portion of the sacrificial layer to The sacrificial layer is replaced with a second semiconductor layer through the opening.

在一些實施例中,為了形成通道結構,形成垂直地延伸穿過介電堆疊層、第一半導體層和犧牲層進入第一絕緣層的通道孔。依次形成沿通道孔的側壁的記憶體膜和半導體通道。In some embodiments, to form a channel structure, a channel hole is formed that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer. The memory film and the semiconductor channel along the sidewall of the channel hole are sequentially formed.

在一些實施例中,形成基底與第一絕緣層之間的停止層。從基底的相對於停止層的相對側移除該基底並在停止層處停止。In some embodiments, a stop layer between the substrate and the first insulating layer is formed. Remove the substrate from the opposite side of the substrate from the stop layer and stop at the stop layer.

在一些實施例中,在移除基底之後,移除停止層,並形成與第一絕緣層接觸的第二絕緣層。形成源極接觸結構,該第二源極接觸結構垂直地延伸穿過第一絕緣層和第二絕緣層以與第二半導體層接觸。In some embodiments, after removing the substrate, the stop layer is removed, and a second insulating layer in contact with the first insulating layer is formed. A source contact structure is formed, and the second source contact structure vertically extends through the first insulating layer and the second insulating layer to contact the second semiconductor layer.

在一些實施例中,源極接觸結構在第一絕緣層中與通道結構間隔開。In some embodiments, the source contact structure is spaced apart from the channel structure in the first insulating layer.

在一些實施例中,為了形成源極接觸結構,移除通道結構的記憶體膜在第一絕緣層中的部分並在通道結構的半導體處停止。In some embodiments, in order to form the source contact structure, the portion of the memory film of the channel structure in the first insulating layer is removed and stopped at the semiconductor of the channel structure.

在一些實施例中,在移除基底之前,通過第二半導體層在開口中形成絕緣結構。絕緣結構與第一絕緣層接觸。In some embodiments, before removing the substrate, an insulating structure is formed in the opening through the second semiconductor layer. The insulating structure is in contact with the first insulating layer.

在一些實施例中,停止層包括氮化矽。In some embodiments, the stop layer includes silicon nitride.

在一些實施例中,為了形成犧牲層,依次形成第一犧牲層和第二犧牲層。形成在第二犧牲層處停止的開口。In some embodiments, in order to form the sacrificial layer, the first sacrificial layer and the second sacrificial layer are sequentially formed. An opening that stops at the second sacrificial layer is formed.

在一些實施例中,第一犧牲層包括多晶矽或氮化矽,並且第二犧牲層包括氮氧化矽。In some embodiments, the first sacrificial layer includes polysilicon or silicon nitride, and the second sacrificial layer includes silicon oxynitride.

在一些實施例中,為了用第二半導體層來替換犧牲層,通過開口來移除犧牲層以在第一半導體層與第一絕緣層之間形成空腔。通過開口移除記憶體膜的一部分以暴露半導體通道沿通道孔的側壁的部分。通過開口將多晶矽沉積到空腔中以形成第二半導體層。In some embodiments, in order to replace the sacrificial layer with the second semiconductor layer, the sacrificial layer is removed through the opening to form a cavity between the first semiconductor layer and the first insulating layer. A portion of the memory film is removed through the opening to expose a portion of the semiconductor channel along the sidewall of the via hole. Polysilicon is deposited into the cavity through the opening to form a second semiconductor layer.

在一些實施例中,第一和第二半導體層中的每個半導體層包括多晶矽。In some embodiments, each of the first and second semiconductor layers includes polysilicon.

對特定實施例的上述說明因此將揭示本案的一般性質,使得他人能夠通過運用本領域技術範圍內的知識容易地對這種特定實施例進行修改和/或調整以用於各種應用,而不需要過度實驗,且不脫離本案的一般概念。因此,基於本文呈現的教導和指導,這種調整和修改旨在處於所公開的實施例的等同物的含義和範圍內。應當理解,本文中的措辭或術語是用於說明的目的,而不是為了進行限制,從而本說明書的術語或措辭將由技術人員按照所述教導和指導進行解釋。The above description of the specific embodiment will therefore reveal the general nature of the case, so that others can easily modify and/or adjust this specific embodiment for various applications by using knowledge within the technical scope of the art, without the need Excessive experimentation, and does not deviate from the general concept of the case. Therefore, based on the teachings and guidance presented herein, such adjustments and modifications are intended to be within the meaning and scope of equivalents of the disclosed embodiments. It should be understood that the terms or terms in this document are used for illustrative purposes, not for limitation, so that the terms or terms in this specification will be interpreted by the skilled person in accordance with the teaching and guidance.

上文已經借助於功能構建塊描述了本案的實施例,功能構建塊例示了指定功能及其關係的實施方式。在本文中出於方便描述的目的任意地定義了這些功能構建塊的邊界。可以定義替代的邊界,只要適當執行指定的功能及其關係即可。The embodiments of this case have been described above with the help of functional building blocks, which exemplify the implementation of specified functions and their relationships. In this article, the boundaries of these functional building blocks are arbitrarily defined for the purpose of convenience of description. It is possible to define alternative boundaries, as long as the specified functions and their relationships are appropriately performed.

發明內容和摘要部分可以闡述發明人所設想的本案的一或多個示例性實施例,但未必是所有示例性實施例,並且因此,並非旨在通過任何方式限制本案公開內容和所附之申請專利範圍。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The summary and abstract section may describe one or more exemplary embodiments of the case envisaged by the inventor, but not all exemplary embodiments, and therefore, are not intended to limit the disclosure of the case and the attached application in any way Patent scope. The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:3D記憶體元件 101:塊儲存區 102:基底 103:指儲存區 104:半導體層 104-1:頂部半導體層 104-2:犧牲層 104-3:底部半導體層 112:通道結構 122:縫隙結構 123:支撐結構 202:重疊部分 300:3D記憶體元件 302:介電層 304:半導體層 306:儲存堆疊層 308:堆疊導電層 309:子層 310:堆疊介電層 312:通道結構 314:記憶體膜 316:半導體通道 318:覆蓋層 320:通道插塞 322:絕緣結構 323:支撐結構 324:閘極介電層 326:絕緣體芯 328:源極接觸結構 402:重疊部分 502:基底 503:停止層 505:第一介電層 506:第二介電層 507:(第一)犧牲層 508:介電堆疊層 509:(第二)犧牲層 510:堆疊介電層 511:第一半導體層 512:堆疊犧牲層 514:通道結構 516:記憶體膜 518:半導體通道 520:覆蓋層 522:通道插塞 524:縫隙 526:空腔 528:間隔物 530:第二半導體層 534:儲存堆疊層 536:堆疊導電層 538:閘極介電層 540:絕緣芯 542:絕緣結構 544:介電層 546:源極接觸結構 600:方法 602,604,606,608,610,612,614,616:操作100: 3D memory device 101: block storage area 102: Base 103: Refers to the storage area 104: semiconductor layer 104-1: Top semiconductor layer 104-2: Sacrifice layer 104-3: bottom semiconductor layer 112: Channel structure 122: gap structure 123: Supporting structure 202: Overlap 300: 3D memory device 302: Dielectric layer 304: semiconductor layer 306: Storage Stack Layer 308: Stacked conductive layers 309: sublayer 310: stacked dielectric layer 312: Channel Structure 314: Memory Film 316: Semiconductor channel 318: Overlay 320: channel plug 322: Insulation structure 323: support structure 324: gate dielectric layer 326: Insulator core 328: Source contact structure 402: Overlap 502: Base 503: stop layer 505: first dielectric layer 506: second dielectric layer 507: (First) Sacrificial Layer 508: Dielectric stack layer 509: (Second) Sacrifice Layer 510: stacked dielectric layer 511: first semiconductor layer 512: Stacked Sacrificial Layer 514: Channel Structure 516: Memory Film 518: Semiconductor channel 520: Overlay 522: channel plug 524: gap 526: cavity 528: Spacer 530: second semiconductor layer 534: Storage Stack Layer 536: Stacked conductive layers 538: gate dielectric layer 540: Insulating core 542: Insulation Structure 544: Dielectric layer 546: source contact structure 600: method 602,604,606,608,610,612,614,616: Operation

併入本文並且形成說明書的一部分的附圖示出了本案公開內容的實施例,並且與說明書一起進一步用於解釋本案公開內容的原理並且使得相關領域技術人員能夠實現和使用本案公開內容。 第1圖示出了根據本案內容的各個實施例中位於塊儲存區之間具有縫隙結構的3D記憶體元件的平面圖。 第2圖示出了在第1圖中3D記憶體元件的製造期間中間結構的截面圖。 第3A圖和第3B圖示出了根據本案內容的各個實施例中各個示例性的3D記憶體元件的截面圖。 第4圖示出了根據本案內容的各個實施例中位於塊儲存區之間具有絕緣結構的示例性3D記憶體元件的截面圖。 第5A圖至第5L圖示出了根據本案內容的一些實施例中用於形成示例性的3D記憶體元件的製造流程。 第6圖示出了根據本案內容的一些實施例中用於形成示例性3D記憶體元件的方法的流程圖。 後文中將參考附圖來描述本案內容的實施例。 The drawings incorporated herein and forming a part of the specification illustrate embodiments of the disclosure of the case, and together with the specification are further used to explain the principle of the disclosure of the case and enable those skilled in the relevant art to implement and use the disclosure of the case. FIG. 1 shows a plan view of a 3D memory device with a gap structure between block storage areas in various embodiments according to the content of the present application. FIG. 2 shows a cross-sectional view of the intermediate structure during the manufacture of the 3D memory device in FIG. 1. FIG. Figures 3A and 3B show cross-sectional views of various exemplary 3D memory devices in various embodiments according to the content of the present case. FIG. 4 shows a cross-sectional view of an exemplary 3D memory device with an insulating structure located between block storage areas in various embodiments according to the content of the present case. Figures 5A to 5L show a manufacturing process for forming an exemplary 3D memory device in some embodiments according to the content of the present case. FIG. 6 shows a flowchart of a method for forming an exemplary 3D memory device in some embodiments according to the content of the present case. Hereinafter, embodiments of the content of this case will be described with reference to the drawings.

300:3D記憶體元件 300: 3D memory device

302:介電層 302: Dielectric layer

304:半導體層 304: semiconductor layer

306:儲存堆疊層 306: Storage Stack Layer

308:堆疊導電層 308: Stacked conductive layers

309:子層 309: sublayer

310:堆疊介電層 310: stacked dielectric layer

312:通道結構 312: Channel Structure

314:記憶體膜 314: Memory Film

316:半導體通道 316: Semiconductor channel

318:覆蓋層 318: Overlay

320:通道插塞 320: channel plug

322:絕緣結構 322: Insulation structure

324:閘極介電層 324: gate dielectric layer

326:絕緣體芯 326: Insulator core

328:源極接觸結構 328: Source contact structure

Claims (20)

一種三維(3D)記憶體元件,包括: 絕緣層; 半導體層; 包括交錯的導電層和介電層的儲存堆疊層; 源極接觸結構,所述源極接觸結構從所述絕緣層的相對於所述半導體層的相對側垂直地延伸穿過所述絕緣層以與所述半導體層接觸;以及 通道結構,所述通道結構垂直地延伸穿過所述儲存堆疊層和所述半導體層進入所述絕緣層或所述源極接觸結構中。 A three-dimensional (3D) memory device including: Insulation; Semiconductor layer Storage stacks including interlaced conductive layers and dielectric layers; A source contact structure extending perpendicularly through the insulating layer from an opposite side of the insulating layer with respect to the semiconductor layer to be in contact with the semiconductor layer; and A channel structure, which extends vertically through the storage stack layer and the semiconductor layer into the insulating layer or the source contact structure. 根據申請專利範圍第1項所述的3D記憶體元件,其中所述通道結構垂直地延伸到所述絕緣層中並在所述絕緣層中橫向地與所述源極接觸結構間隔開。The 3D memory device according to claim 1, wherein the channel structure extends vertically into the insulating layer and is laterally spaced apart from the source contact structure in the insulating layer. 根據申請專利範圍第1項所述的3D記憶體元件,其中所述通道結構垂直地延伸到所述源極接觸結構中。The 3D memory device according to claim 1, wherein the channel structure extends vertically into the source contact structure. 根據申請專利範圍第1項所述的3D記憶體元件,還包括絕緣結構,所述絕緣結構垂直地延伸穿過所述儲存堆疊層進入所述半導體層中。The 3D memory device according to item 1 of the scope of patent application further includes an insulating structure that extends vertically through the storage stack layer into the semiconductor layer. 根據申請專利範圍第4項所述的3D記憶體元件,其中所述絕緣結構的底表面與所述絕緣層的頂表面齊平。The 3D memory device according to claim 4, wherein the bottom surface of the insulating structure is flush with the top surface of the insulating layer. 根據申請專利範圍第1項所述的3D記憶體元件,其中所述通道結構包括記憶體膜和半導體通道,並且所述半導體通道的沿所述通道結構的側壁的部分與所述半導體層的子層接觸。The 3D memory device according to item 1 of the scope of patent application, wherein the channel structure includes a memory film and a semiconductor channel, and a portion of the semiconductor channel along the sidewall of the channel structure and the semiconductor layer Layer contact. 根據申請專利範圍第1項所述的3D記憶體元件,其中所述半導體層包括多晶矽。The 3D memory device according to the first item of the scope of patent application, wherein the semiconductor layer includes polysilicon. 一種三維(3D)記憶體元件,包括: 絕緣層; 半導體層; 包括交錯的導電層和介電層的儲存堆疊層; 通道結構,所述通道結構垂直地延伸穿過所述儲存堆疊層和所述半導體層,其中所述通道結構包括記憶體膜和半導體通道,並且所述半導體通道的沿所述通道結構的側壁的部分與所述半導體層的子層接觸;以及 絕緣結構,所述絕緣結構垂直地延伸穿過所述儲存堆疊層進入所述半導體層中,其中所述絕緣結構的底表面與所述絕緣層的頂表面齊平。 A three-dimensional (3D) memory device including: Insulation; Semiconductor layer Storage stacks including interlaced conductive layers and dielectric layers; Channel structure, the channel structure vertically extends through the storage stack layer and the semiconductor layer, wherein the channel structure includes a memory film and a semiconductor channel, and the semiconductor channel along the sidewall of the channel structure Partially in contact with the sublayer of the semiconductor layer; and An insulating structure that extends vertically through the storage stack layer into the semiconductor layer, wherein the bottom surface of the insulating structure is flush with the top surface of the insulating layer. 根據申請專利範圍第8項所述的3D記憶體元件,還包括源極接觸結構,所述源極接觸結構從所述絕緣層的相對於所述半導體層的相對側垂直地延伸穿過所述絕緣層以與所述半導體層接觸。The 3D memory device according to item 8 of the scope of patent application, further comprising a source contact structure extending vertically from the opposite side of the insulating layer with respect to the semiconductor layer through the The insulating layer is in contact with the semiconductor layer. 根據申請專利範圍第9項所述的3D記憶體元件,其中所述通道結構垂直地延伸到所述絕緣層中並在所述絕緣層中橫向地與所述源極接觸結構間隔開。The 3D memory device according to the 9th patent application, wherein the channel structure extends vertically into the insulating layer and is laterally spaced apart from the source contact structure in the insulating layer. 根據申請專利範圍第9項所述的3D記憶體元件,其中所述通道結構垂直地延伸到所述源極接觸結構中。The 3D memory device according to item 9 of the scope of patent application, wherein the channel structure extends vertically into the source contact structure. 根據申請專利範圍第8項所述的3D記憶體元件,還包括絕緣結構,所述絕緣結構垂直地延伸穿過所述儲存堆疊層進入所述半導體層中,其中所述絕緣結構的底表面與所述絕緣層的頂表面齊平。The 3D memory device according to item 8 of the scope of patent application, further includes an insulating structure that extends vertically through the storage stack layer into the semiconductor layer, wherein the bottom surface of the insulating structure is connected to The top surface of the insulating layer is flush. 根據申請專利範圍第8項所述的3D記憶體元件,其中所述半導體層包括多晶矽。The 3D memory device according to item 8 of the scope of patent application, wherein the semiconductor layer includes polysilicon. 一種用於形成三維(3D)記憶體元件的方法,包括: 在基底的第一側依次形成停止層、第一絕緣層、犧牲層、第一半導體層和介電堆疊層; 形成通道結構,所述通道結構垂直地延伸穿過所述介電堆疊層、所述第一半導體層和所述犧牲層進入所述第一絕緣層中; 形成開口,所述開口垂直地延伸穿過所述介電堆疊層和所述第一半導體層並在所述犧牲層處停止以暴露所述犧牲層的一部分; 通過所述開口、用第二半導體層來替換所述第一半導體層與所述第一絕緣層之間的所述犧牲層;以及 從與所述基底的所述第一側相對的第二側移除所述基底並在所述停止層處停止。 A method for forming three-dimensional (3D) memory devices, including: Sequentially forming a stop layer, a first insulating layer, a sacrificial layer, a first semiconductor layer, and a dielectric stack layer on the first side of the substrate; Forming a channel structure that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer; Forming an opening that extends vertically through the dielectric stack layer and the first semiconductor layer and stops at the sacrificial layer to expose a portion of the sacrificial layer; Replacing the sacrificial layer between the first semiconductor layer and the first insulating layer with a second semiconductor layer through the opening; and The substrate is removed from the second side opposite to the first side of the substrate and stopped at the stop layer. 根據申請專利範圍第14項所述的用於形成3D記憶體元件的方法,其中形成所述通道結構包括: 形成通道孔,所述通道孔垂直地延伸穿過所述介電堆疊層、所述第一半導體層和所述犧牲層進入所述第一絕緣層中;以及 沿所述通道孔的側壁依次形成記憶體膜和半導體通道。 The method for forming a 3D memory device according to item 14 of the scope of patent application, wherein forming the channel structure includes: Forming a via hole that extends vertically through the dielectric stack layer, the first semiconductor layer, and the sacrificial layer into the first insulating layer; and A memory film and a semiconductor channel are sequentially formed along the sidewall of the channel hole. 根據申請專利範圍第15項所述的用於形成3D記憶體元件的方法,還包括,在移除所述基底之後: 移除所述停止層; 形成與所述第一絕緣層接觸的第二絕緣層;以及 形成源極接觸結構,所述源極接觸結構垂直地延伸穿過所述第一絕緣層和所述第二絕緣層以與所述第二半導體層接觸。 The method for forming a 3D memory device according to item 15 of the scope of patent application further includes, after removing the substrate: Remove the stop layer; Forming a second insulating layer in contact with the first insulating layer; and A source contact structure is formed that extends vertically through the first insulating layer and the second insulating layer to contact the second semiconductor layer. 根據申請專利範圍第16項所述的用於形成3D記憶體元件的方法,其中所述源極接觸結構在所述第一絕緣層中與所述通道結構間隔開。The method for forming a 3D memory device according to the 16th patent application, wherein the source contact structure is spaced apart from the channel structure in the first insulating layer. 根據申請專利範圍第16項所述的用於形成3D記憶體元件的方法,其中形成所述源極接觸結構還包括:移除所述通道結構的所述記憶體膜在所述第一絕緣層中的部分並在所述通道結構的所述半導體通道處停止。The method for forming a 3D memory device according to the 16th patent application, wherein forming the source contact structure further includes: removing the memory film of the channel structure on the first insulating layer The part in the channel structure stops at the semiconductor channel of the channel structure. 根據申請專利範圍第14項所述的用於形成3D記憶體元件的方法,還包括:在移除所述基底之前,在通過所述第二半導體層在所述開口中形成絕緣結構,其中所述絕緣結構與所述第一絕緣層接觸。The method for forming a 3D memory device according to item 14 of the scope of patent application further includes: before removing the substrate, forming an insulating structure in the opening through the second semiconductor layer, wherein The insulating structure is in contact with the first insulating layer. 根據申請專利範圍第14項所述的用於形成3D記憶體元件的方法,其中所述第一半導體層和所述第二半導體層中的每個半導體層包括多晶矽。The method for forming a 3D memory device according to the 14th patent application, wherein each of the first semiconductor layer and the second semiconductor layer includes polysilicon.
TW109137088A 2020-09-04 2020-10-26 Three-dimensional memory devices and method for forming the same TWI746228B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2020/113464 2020-09-04
PCT/CN2020/113464 WO2021208337A1 (en) 2020-04-14 2020-09-04 Three-dimensional memory devices and methods for forming the same

Publications (2)

Publication Number Publication Date
TWI746228B true TWI746228B (en) 2021-11-11
TW202211447A TW202211447A (en) 2022-03-16

Family

ID=79907498

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109137088A TWI746228B (en) 2020-09-04 2020-10-26 Three-dimensional memory devices and method for forming the same

Country Status (1)

Country Link
TW (1) TWI746228B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117219614A (en) * 2022-05-31 2023-12-12 长鑫存储技术有限公司 Semiconductor structure and manufacturing method thereof
TWI847848B (en) * 2023-08-22 2024-07-01 旺宏電子股份有限公司 Memory device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201640652A (en) * 2015-05-12 2016-11-16 旺宏電子股份有限公司 Method for forming a semiconductor structure
TW201921249A (en) * 2017-08-28 2019-06-01 美商美光科技公司 Memory array reset read operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201640652A (en) * 2015-05-12 2016-11-16 旺宏電子股份有限公司 Method for forming a semiconductor structure
TW201921249A (en) * 2017-08-28 2019-06-01 美商美光科技公司 Memory array reset read operation

Also Published As

Publication number Publication date
TW202211447A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
TW202139437A (en) 3d memory device with back source contact
US11393844B2 (en) Methods for forming three-dimensional memory devices
TWI753488B (en) Method for fabricating 3d memory device
US12114498B2 (en) Three-dimensional memory devices
TWI809312B (en) Semiconductor device and method of forming the same
TWI742886B (en) Three-dimensional memory device with stable structure between storage blocks and method for forming the same
TWI762227B (en) Three-dimensional memory devices with supporting structure for staircase region and spacer structure for contact structure and methods for forming the same
TWI746228B (en) Three-dimensional memory devices and method for forming the same
US12048148B2 (en) Three-dimensional memory devices and methods for forming the same
TWI746024B (en) Three-dimensional memory device and method for forming the same
TWI773086B (en) Method for forming three-dimensional memory device
CN112437983B (en) Three-dimensional memory device and method for forming three-dimensional memory device
TWI756745B (en) Methods for forming three-dimensional memory devices
US11488977B2 (en) Three-dimensional memory devices and methods for forming the same
CN113366638B (en) Three-dimensional memory device and method for forming the same
WO2021208337A1 (en) Three-dimensional memory devices and methods for forming the same
WO2021208418A1 (en) Three-dimensional memory devices and methods for forming the same
TWI746071B (en) Three-dimensional memory devices