TWI756745B - Methods for forming three-dimensional memory devices - Google Patents

Methods for forming three-dimensional memory devices Download PDF

Info

Publication number
TWI756745B
TWI756745B TW109124523A TW109124523A TWI756745B TW I756745 B TWI756745 B TW I756745B TW 109124523 A TW109124523 A TW 109124523A TW 109124523 A TW109124523 A TW 109124523A TW I756745 B TWI756745 B TW I756745B
Authority
TW
Taiwan
Prior art keywords
layer
polysilicon
polysilicon layer
sacrificial
stop
Prior art date
Application number
TW109124523A
Other languages
Chinese (zh)
Other versions
TW202145529A (en
Inventor
吳林春
張坤
文犀 周
夏志良
Original Assignee
大陸商長江存儲科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/092513 external-priority patent/WO2021208195A1/en
Application filed by 大陸商長江存儲科技有限責任公司 filed Critical 大陸商長江存儲科技有限責任公司
Publication of TW202145529A publication Critical patent/TW202145529A/en
Application granted granted Critical
Publication of TWI756745B publication Critical patent/TWI756745B/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, the method for forming the 3D memory device is disclosed. A stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer and a dielectric stack layer are sequentially formed on a first side of a substrate. A channel structure vertically extending through the dielectric stack layer, the second polysilicon layer, the sacrificial layer and the first polysilicon layer and stopping at the stop layer is formed. An opening extending through the dielectric stack layer and the second polysilicon layer and stopping at the sacrificial layer is formed to expose a part of the sacrificial layer. A third polysilicon layer between the first polysilicon layer and the second polysilicon layer is used to replace the sacrificial layer through the opening. The substrate is removed from a second side of the substrate opposite to the first side and is stopped at the stop layer.

Description

用於形成三維(3D)記憶體裝置的方法 Method for forming a three-dimensional (3D) memory device

相關申請的交叉引用 CROSS-REFERENCE TO RELATED APPLICATIONS

本申請要求於2020年4月14日提交的標題為“THREE-DIMENSIONAL MEMORY DEVICE WITH BACKSIDE SOURCE CONTACT”的國際申請第PCT/CN2020/084600號、於2020年4月14日提交的標題為“METHOD FOR FORMING THREE-DIMENSIONAL MEMORY DEVICE WITH BACKSIDE SOURCE CONTACT”的國際申請第PCT/CN2020/084603號、於2020年4月27日提交的標題為“THREE-DIMENSIONAL MEMORY DEVICE AND METHOD FOR FORMING THE SAME”的國際申請第PCT/CN2020/087295號和於2020年4月27日提交的標題為“three-dimensional memory device and method for forming the same”的國際申請第PCT/CN2020/087296號的優先權的利益,所有這些申請透過引用被全部併入本文中。 This application claims International Application No. PCT/CN2020/084600, filed on April 14, 2020, entitled "THREE-DIMENSIONAL MEMORY DEVICE WITH BACKSIDE SOURCE CONTACT", and entitled "METHOD FOR FORMING THREE-DIMENSIONAL MEMORY DEVICE WITH BACKSIDE SOURCE CONTACT" International Application No. PCT/CN2020/084603, filed on April 27, 2020, entitled "THREE-DIMENSIONAL MEMORY DEVICE AND METHOD FOR FORMING THE SAME" the benefit of priority from PCT/CN2020/087295 and International Application No. PCT/CN2020/087296, filed on April 27, 2020, entitled "three-dimensional memory device and method for forming the same", all of which Incorporated herein by reference in its entirety.

本發明內容的實施方式有關於三維(3D)記憶體裝置及其製造方法。 Embodiments of the present disclosure relate to three-dimensional (3D) memory devices and methods of fabricating the same.

透過改進製程技術、電路設計、編程演算法和製造製程來將平面記憶體單元按比例縮小到較小的尺寸。然而,當記憶體單元的特徵尺寸接近下限時,平面製程和製造技術變得越來越有挑戰性且造價昂貴。因此,平面記憶體單元的記憶體密度接近上限。 Scale down planar memory cells to smaller sizes by improving process technology, circuit design, programming algorithms, and manufacturing processes. However, as the feature size of memory cells approaches the lower limit, planar processes and fabrication techniques become increasingly challenging and expensive. Therefore, the memory density of planar memory cells is approaching the upper limit.

3D記憶體架構可解決在平面記憶體單元中的密度限制。3D記憶體架 構包括記憶體陣列和用於控制去往和來自記憶體陣列的訊號的周邊元件。 3D memory architectures can address density limitations in planar memory cells. 3D memory rack The structure includes a memory array and peripheral components for controlling signals to and from the memory array.

在本文公開了3D記憶體裝置和用於形成其的方法的實施方式。 Embodiments of 3D memory devices and methods for forming the same are disclosed herein.

在一個示例中,公開了用於形成3D記憶體裝置的方法。在基底的第一側處相繼形成停止層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸、在停止層處停止的通道結構。形成穿過介電質疊層和第二多晶矽層垂直地延伸、在犧牲層處停止的開口,以暴露犧牲層的部分。穿過開口利用在第一多晶矽層和第二多晶矽層之間的第三多晶矽層代替犧牲層。從與基底的第一側相對的第二側移除基底,在停止層處停止。 In one example, a method for forming a 3D memory device is disclosed. A stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack are sequentially formed at the first side of the substrate. A channel structure is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, stopping at the stop layer. An opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose portions of the sacrificial layer. The sacrificial layer is replaced by a third polysilicon layer between the first polysilicon layer and the second polysilicon layer through the opening. The substrate is removed from a second side opposite the first side of the substrate, stopping at the stop layer.

在另一示例中,公開了用於形成3D記憶體裝置的方法。在基底的第一側處相繼形成停止層、緩衝層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸到緩衝層內的通道結構。形成穿過介電質疊層和第二多晶矽層垂直地延伸、在犧牲層處停止的開口,以暴露犧牲層的部分。穿過開口利用在第一多晶矽層和第二多晶矽層之間的第三多晶矽層代替犧牲層。從與基底的第一側相對的第二側移除基底,在停止層處停止。 In another example, a method for forming a 3D memory device is disclosed. A stop layer, a buffer layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack are sequentially formed at the first side of the substrate. A channel structure is formed extending vertically into the buffer layer through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer. An opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose portions of the sacrificial layer. The sacrificial layer is replaced by a third polysilicon layer between the first polysilicon layer and the second polysilicon layer through the opening. The substrate is removed from a second side opposite the first side of the substrate, stopping at the stop layer.

在又一示例中,公開了用於形成3D記憶體裝置的方法。在基底的第一側處相繼形成停止層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸、在停止層處停止的通道結構。利用在第一多晶矽層和第二多晶矽層之間的第三多晶矽層代替犧牲層。第一多晶矽層、第二多晶矽層和第三多晶矽層中的至少一者摻雜有N型摻雜劑。在第一多晶矽層、第二多晶矽層和第三多晶矽層中擴散N 型摻雜劑。從與基底的第一側相對的第二側移除基底,在停止層處停止。 In yet another example, a method for forming a 3D memory device is disclosed. A stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack are sequentially formed at the first side of the substrate. A channel structure is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, stopping at the stop layer. The sacrificial layer is replaced with a third polysilicon layer between the first polysilicon layer and the second polysilicon layer. At least one of the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer is doped with an N-type dopant. Diffusion of N in the first polysilicon layer, the second polysilicon layer and the third polysilicon layer type dopant. The substrate is removed from a second side opposite the first side of the substrate, stopping at the stop layer.

100,101,101a,105,107:3D記憶體裝置 100, 101, 101a, 105, 107: 3D memory devices

102,244,350:介電質層 102,244,350: Dielectric Layer

103,303:停止層 103,303: Stop Layer

104:多晶矽層 104: polysilicon layer

106,234,334:記憶體疊層 106,234,334: Memory Stack

108,236,336:堆疊導電層 108,236,336: Stacked Conductive Layers

109:子層 109: Sublayer

110,210,310:堆疊介電質層 110, 210, 310: Stacked Dielectric Layers

112,113,214,314:通道結構 112, 113, 214, 314: Channel Structure

114,216,316:記憶體膜 114, 216, 316: Memory Films

116,218,318:半導體通道 116, 218, 318: Semiconductor Channels

118,220,320:上覆層 118, 220, 320: Overcladding

120,222,322:通道插塞 120, 222, 322: channel plugs

122,242,342:絕緣結構 122,242,342: Insulation structure

124,238,338:閘極介電質層 124,238,338: Gate Dielectric Layer

126,240,340:絕緣體核心 126, 240, 340: Insulator Core

128,130,246,346:源極接觸結構 128, 130, 246, 346: Source Contact Structure

132:源極觸點 132: source contact

134,228,328:隔板 134, 228, 328: Separator

202,302:基底 202,302: Substrate

203:第一停止層 203: First stop layer

205:第二停止層 205: Second stop layer

207,307:第一多晶矽層 207,307: First polysilicon layer

208,308:介電質疊層 208,308: Dielectric Stacks

209,309:第一犧牲層 209,309: First sacrificial layer

211,311:第二犧牲層 211, 311: Second sacrificial layer

212,312:堆疊犧牲層 212,312: Stacked Sacrificial Layers

213,313:第三犧牲層 213,313: The third sacrificial layer

215,315:第二多晶矽層 215,315: Second polysilicon layer

224,324:狹縫 224, 324: Slit

226,326:腔 226, 326: Cavity

230,330:第三多晶矽層 230,330: Third polysilicon layer

305:緩衝層 305: Buffer layer

400,500:方法 400,500: Method

402,404,406,408,410,412,414,416,502,504,506,508,510,512,514,516,518:步驟 402, 404, 406, 408, 410, 412, 414, 416, 502, 504, 506, 508, 510, 512, 514, 516, 518: Steps

x,y:軸 x,y: axis

被併入本文並形成說明書的一部分的圖式示出本發明內容的實施方式,並連同描述一起進一步用來解釋本發明內容的原理並使相關領域中的技術人員能夠製造和使用本發明內容。 The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate embodiments of the disclosure, and together with the description, serve to further explain the principles of the disclosure and enable those skilled in the relevant art to make and use the disclosure.

圖1A-1E示出根據本發明內容的各種實施方式的各種示例性3D記憶體裝置的橫截面的側視圖。 1A-1E illustrate cross-sectional side views of various exemplary 3D memory devices in accordance with various embodiments of this disclosure.

圖2A-2L示出根據本發明內容的一些實施方式的用於形成示例性3D記憶體裝置的製造過程。 2A-2L illustrate a manufacturing process for forming an exemplary 3D memory device according to some embodiments of the present disclosure.

圖3A-3J示出根據本發明內容的一些實施方式的用於形成另一示例性3D記憶體裝置的製造過程。 3A-3J illustrate a fabrication process for forming another exemplary 3D memory device in accordance with some embodiments of this disclosure.

圖4示出根據本發明內容的一些實施方式的用於形成示例性3D記憶體裝置的方法的流程圖。 4 illustrates a flowchart of a method for forming an exemplary 3D memory device in accordance with some embodiments of this disclosure.

圖5示出根據本發明內容的一些實施方式的用於形成另一示例性3D記憶體裝置的方法的流程圖。 5 illustrates a flowchart of a method for forming another exemplary 3D memory device in accordance with some embodiments of this disclosure.

將參考圖式描述本發明內容的實施方式。 Embodiments of the present disclosure will be described with reference to the drawings.

雖然討論了特定的配置和佈置,但應理解的是,這僅為了說明性目的而完成。相關領域中的技術人員將認識到的是,其它配置和佈置可以被使用而不偏離本發明內容的精神和範圍。對相關領域中的技術人員將顯而易見的是,本發明內容也可以在各種其它應用中使用。 While specific configurations and arrangements are discussed, it should be understood that this has been done for illustrative purposes only. Those skilled in the relevant art will recognize that other configurations and arrangements may be used without departing from the spirit and scope of the present disclosure. It will be apparent to those skilled in the relevant art that the present disclosure may also be used in various other applications.

注意,在本說明書中對“一個實施方式”、“實施方式”、“示例實施方式”、“一些實施方式”等的提及指示所描述的實施方式可以包括特定特徵、結構或特性,但每個實施方式可能不一定包括特定特徵、結構或特性。而且,這樣的短語並不一定指同一實施方式。此外,當結合實施方式描述特定特徵、結構或特性時,它將在相關領域中的技術人員的知識內,以結合其它實施方式(不管是否被明確描述)來影響這樣的特徵、結構或特性。 Note that references in this specification to "one embodiment," "an embodiment," "an example embodiment," "some embodiments," etc. indicate that the described embodiment may include the particular feature, structure, or characteristic, but each An implementation may not necessarily include a particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Furthermore, when a particular feature, structure or characteristic is described in connection with an embodiment, it will be within the knowledge of one skilled in the relevant art to affect such feature, structure or characteristic in connection with other embodiments, whether explicitly described or not.

通常,可以至少部分地從在上下文中的用法來理解術語。例如,至少部分地根據上下文,如在本文使用的術語“一個或多個”可以用於在單數意義上描述任何特徵、結構或特性或可以用於在複數意義上描述特徵、結構或特性的組合。類似地,至少部分地根據上下文,術語例如“一(a)”、“一個(an)”和“所述(the)”再次可以被理解為傳達單數用法或傳達複數用法。此外,再次至少部分地根據上下文,術語“基於”可被理解為不一定意欲傳達排他的一組因素,且可替代地允許不一定明確地描述的額外因素的存在。 Generally, terms can be understood, at least in part, from their usage in the context. For example, the term "one or more" as used herein may be used to describe any feature, structure or characteristic in the singular or may be used to describe a combination of features, structures or characteristics in the plural depending at least in part on context . Similarly, terms such as "a", "an", and "the" may again be understood to convey a singular usage or to convey a plural usage, depending at least in part on context. Furthermore, again at least in part depending on context, the term "based on" may be understood as not necessarily intended to convey an exclusive set of factors, and may instead allow for the presence of additional factors not necessarily explicitly described.

應容易理解,在本發明內容中的“在......上”、“在......上面”和“在......之上”的含義應以最廣泛的方式被解釋,使得“在......上”不僅意指“直接在某物上”,而且還包括“在某物上”而在其之間有中間特徵或層的含義,以及“在......上面”或“在......之上”不僅意指“在某物上面”或“在某物之上”的含義,但還可以包括它“在某物上面”或“在某物之上”而在其之間沒有中間特徵或層(即,直接在某物上)的含義。 It should be readily understood that the meanings of "on", "on" and "over" in this summary are to be taken in the broadest sense is interpreted in such a way that "on" means not only "directly on something", but also includes the meaning of "on something" with intervening features or layers, and " On" or "over" not only means "above something" or "over something," but can also include it "over something" The meaning of "on" or "over something" without intervening features or layers (ie, directly on something).

此外,空間相對術語例如“在......下面”、“在......之下”、“下部”、“在......之上”、“上部”等可以在本文為了便於描述而用於描述一個元件或特徵與如在圖式中所示的另外的元件或特徵的關係。除了在圖式中描繪的定向以外,空間相對術語意欲還包括在使用或操作中的設備的不同定向。裝置可以以另外方式被定向(旋轉90度或在其它定向處),且在本文使用的空間相對描述符可以 相應地同樣被解釋。 Additionally, spatially relative terms such as "below", "below", "lower", "above", "upper", etc. may For ease of description, it is used herein to describe the relationship of one element or feature to other elements or features as shown in the figures. In addition to the orientation depicted in the figures, spatially relative terms are intended to include different orientations of the device in use or operation. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may be The same is explained accordingly.

如在本文使用的,術語“基底”指隨後的材料層被添加到其上的材料。基底本身可以被圖案化。在基底的頂部上添加的材料可以被圖案化或可以保持未被圖案化。此外,基底可以包括大量半導體材料(諸如矽、鍺、砷化鎵、磷化銦等)。可選地,基底可以由非導電材料(諸如玻璃、塑膠或藍寶石晶圓)製成。 As used herein, the term "substrate" refers to a material to which subsequent layers of material are added. The substrate itself can be patterned. The material added on top of the substrate may be patterned or may remain unpatterned. Additionally, the substrate may include a number of semiconductor materials (such as silicon, germanium, gallium arsenide, indium phosphide, etc.). Alternatively, the substrate may be made of a non-conductive material such as glass, plastic or sapphire wafer.

如在本文使用的,術語“層”指包括具有一定厚度的區域的材料部分。層可以在整個底層或上覆結構之上延伸,或可以具有比底層或上覆結構的寬度小的寬度。此外,層可以是具有比連續結構的厚度小的厚度的同質或不同質連續結構的區域。例如,層可以位於在連續結構的頂表面和底表面之間或在其處的任何對水平面之間。層可以水平地、垂直地和/或沿著錐形表面延伸。基底可以是層,可以包括在其中的一個或多個層,和/或可以具有在其上、在其之上和/或在其之下的一個或多個層。層可以包括多個層。例如,互連層可以包括一個或多個導體和接觸層(其中形成互連線和/或垂直互連接入(VIA(通孔))觸點)和一個或多個介電質層。 As used herein, the term "layer" refers to a portion of a material that includes a region of thickness. A layer may extend over the entire underlying or overlying structure, or may have a width that is less than the width of the underlying or overlying structure. Furthermore, a layer may be a region of a homogeneous or heterogeneous continuous structure having a thickness less than the thickness of the continuous structure. For example, a layer may be located between the top and bottom surfaces of the continuous structure or between any pair of horizontal planes thereon. The layers may extend horizontally, vertically and/or along a tapered surface. A substrate can be a layer, can include one or more layers therein, and/or can have one or more layers thereon, over it, and/or under it. Layers may include multiple layers. For example, interconnect layers may include one or more conductor and contact layers (in which interconnect lines and/or vertical interconnect access (VIA) contacts are formed) and one or more dielectric layers.

如在本文使用的,術語“名義上/名義上地”指在產品或製程的設計階段期間設置的部件或製程操作的特性或參數的期望或目標值連同高於和/或低於期望值的值的範圍。值的範圍可能是由於在製造製程或容限中的輕微變化。如在本文使用的,術語“大約”指示可以基於與主題半導體元件相關聯的特定技術節點而變化的給定量的值。基於特定技術節點,術語“大約”可以指示在例如值的10-30%(例如,值的±10%、±20%或±30%)內變化的給定量的值。 As used herein, the term "nominal/nominal" refers to a desired or target value for a characteristic or parameter of a component or process operation set during the design phase of a product or process along with values above and/or below the desired value range. The range of values may be due to slight variations in manufacturing process or tolerances. As used herein, the term "about" indicates a given amount of value that may vary based on the particular technology node associated with the subject semiconductor element. Based on the particular technology node, the term "about" may indicate a given amount of value that varies, eg, within 10-30% of the value (eg, ±10%, ±20%, or ±30% of the value).

如在本文使用的,術語“3D記憶體裝置”指具有在橫向定向的基底上的記憶體單元電晶體的垂直定向的串(在本文被稱為“記憶體串”,諸如NAND記憶體串)的半導體元件,使得記憶體串在相對於基底的垂直方向上延伸。如在 本文使用的,術語“垂直/垂直地”意指名義上垂直於基底的橫向表面。 As used herein, the term "3D memory device" refers to vertically oriented strings (referred to herein as "memory strings" such as NAND memory strings) having memory cell transistors on a laterally oriented substrate of semiconductor elements, so that the memory strings extend in a vertical direction relative to the substrate. as in As used herein, the term "perpendicular/perpendicularly" means nominally perpendicular to the lateral surface of the substrate.

在一些3D NAND記憶體裝置中,使半導體插塞選擇性地生長以包圍通道結構的側壁,例如被稱為側壁選擇性磊晶生長(SEG)。與在通道結構的下端處形成的另一類型的半導體插塞(例如底部SEG)比較,側壁SEG的形成避免了在通道孔的底表面處的記憶體膜和半導體通道的蝕刻(也被稱為“SONO”打孔),從而增加製程視窗,特別是當用先進技術製造3D NAND記憶體裝置時,例如具有多疊片架構的96或更多個層級。此外,側壁SEG結構可與背面製程組合以從基底的背面形成源極觸點,以避免在正面源極觸點和字元線之間的漏電流和寄生電容並增加有效設備面積。 In some 3D NAND memory devices, semiconductor plugs are selectively grown to surround the sidewalls of the channel structures, eg, known as sidewall selective epitaxial growth (SEG). The formation of sidewall SEGs avoids etching of the memory film and semiconductor vias at the bottom surface of the via hole (also known as a bottom SEG) compared to another type of semiconductor plug formed at the lower end of the via structure, such as a bottom SEG. "SONO" hole punching), thereby increasing the process window, especially when manufacturing 3D NAND memory devices with advanced technologies, such as 96 or more levels with a multi-die architecture. In addition, sidewall SEG structures can be combined with backside processing to form source contacts from the backside of the substrate to avoid leakage currents and parasitic capacitances between frontside source contacts and word lines and increase effective device area.

然而,因為背面製程需要將基底減薄,它面臨兩個主要挑戰:厚度均勻度難以在減薄過程中在晶圓級處控制,以及在減薄基底(例如具有大於1μm的厚度)中的高濃度摻雜難以實現。這些挑戰限制了具有側壁SEG結構和背面製程的3D NAND記憶體裝置的產量。 However, because the backside process requires thinning of the substrate, it faces two main challenges: thickness uniformity is difficult to control at the wafer level during thinning, and high Concentration doping is difficult to achieve. These challenges limit the yield of 3D NAND memory devices with sidewall SEG structures and backside processes.

根據本發明內容的各種實施方式提供改進的3D NAND記憶體裝置及其製造方法。停止層可在基底上形成以自動停止背面減薄過程,使得基底可完全被移除以避免晶圓厚度均勻度控制問題並減小背面製程的製造複雜度。在一些實施方式中,同一停止層或另一停止層用於自動停止通道孔蝕刻,其可更好地控制在不同通道結構之間的鑿槽變化並進一步增加背面製程視窗。而且,所沉積的多晶矽層可代替在所移除的矽基底中的單晶矽以用作側壁SEG。因為所沉積的多晶矽層可以比經減薄的矽基底更容易地被摻雜以達到期望摻雜濃度,背面製程複雜度可進一步減小,且產量可增加。 Various embodiments in accordance with the present disclosure provide improved 3D NAND memory devices and methods of fabricating the same. A stop layer can be formed on the substrate to automatically stop the backside thinning process so that the substrate can be completely removed to avoid wafer thickness uniformity control issues and reduce the fabrication complexity of the backside process. In some embodiments, the same stop layer or another stop layer is used to automatically stop the via hole etch, which can better control gouge variations between different via structures and further increase the backside process window. Also, the deposited polysilicon layer can replace the single crystal silicon in the removed silicon substrate for sidewall SEGs. Because the deposited polysilicon layer can be more easily doped to the desired doping concentration than the thinned silicon substrate, backside process complexity can be further reduced and yield can be increased.

圖1A-1E示出根據本發明內容的各種實施方式的各種示例性3D記憶體裝置的橫截面的側視圖。在一些實施方式中,圖1A中的3D記憶體裝置100包括基底(未示出),其可包括矽(例如單晶矽)、矽鍺(SiGe)、砷化鎵(GaAs)、 鍺(Ge)、絕緣體上矽(SOI)、絕緣體上鍺(GOI)或任何其它適當的材料。在一些實施方式中,基底是透過研磨、蝕刻、化學機械拋光(CMP)或其任何組合而減薄的經減薄的基底(例如半導體層)。注意,在圖1A中包括x和y軸以進一步示出在3D記憶體裝置100中的部件的空間關係。3D記憶體裝置100的基底包括在x方向(即橫向方向)上橫向延伸的兩個橫向表面(例如頂表面和底表面)。 如在本文使用的,當基底位於在y方向上的3D記憶體裝置的最低平面中時,相對於在y方向(即垂直方向)上的3D記憶體裝置的基底來確定一個部件(例如層或設備)是否在3D記憶體裝置(例如3D記憶體裝置100)的另一部件(例如層或設備)“上”、“之上”或“之下”。在整個本發明內容中應用用於描述空間關係的相同概念。 1A-1E illustrate cross-sectional side views of various exemplary 3D memory devices in accordance with various embodiments of this disclosure. In some implementations, the 3D memory device 100 in FIG. 1A includes a substrate (not shown), which may include silicon (eg, monocrystalline silicon), silicon germanium (SiGe), gallium arsenide (GaAs), Germanium (Ge), silicon-on-insulator (SOI), germanium-on-insulator (GOI), or any other suitable material. In some embodiments, the substrate is a thinned substrate (eg, a semiconductor layer) thinned by grinding, etching, chemical mechanical polishing (CMP), or any combination thereof. Note that the x and y axes are included in FIG. 1A to further illustrate the spatial relationship of the components in the 3D memory device 100 . The base of the 3D memory device 100 includes two lateral surfaces (eg, top and bottom surfaces) that extend laterally in the x-direction (ie, the lateral direction). As used herein, a feature (eg, layer or device) is "on," "over," or "under" another component (eg, a layer or device) of a 3D memory device (eg, 3D memory device 100). The same concepts used to describe spatial relationships apply throughout this summary.

在一些實施方式中,3D記憶體裝置100是非單塊3D記憶體裝置的部分,其中部件在不同的基底上分開地形成並接著以面對面方式、面對背方式或背對背方式鍵合。可在不同於記憶體陣列基底的單獨周邊設備基底上形成周邊設備(未示出)(例如用於便於3D記憶體裝置100的操作的任何適當的數位、類比和/或混合訊號周邊電路),圖1A所述的部件在該記憶體陣列基底上形成。應理解,可從3D記憶體裝置100移除記憶體陣列基底,如下面更詳細描述的,且周邊設備基底可成為3D記憶體裝置100的基底。此外應理解,根據周邊設備基底和記憶體陣列元件基底如何被鍵合的方式,記憶體陣列元件(例如在圖1A中示出)可以在原始位置上或可在3D記憶體裝置100中顛倒地翻轉。為了便於參考,圖1A描繪3D記憶體裝置100的狀態,在該狀態中記憶體陣列元件在原始位置上(即,沒有顛倒地翻轉)。然而,應理解,在一些示例中,圖1A所示的記憶體陣列元件可在3D記憶體裝置100中顛倒地翻轉,且它們的相對位置可相應地改變。在整個本發明內容中應用用於描述空間關係的相同概念。 In some embodiments, the 3D memory device 100 is part of a non-monolithic 3D memory device in which components are formed separately on different substrates and then bonded face-to-face, face-to-back, or back-to-back. Peripherals (not shown) (eg, any suitable digital, analog, and/or mixed-signal peripheral circuitry used to facilitate operation of the 3D memory device 100) may be formed on a separate peripheral substrate than the memory array substrate, The components described in FIG. 1A are formed on the memory array substrate. It should be understood that the memory array substrate can be removed from the 3D memory device 100 , as described in more detail below, and the peripheral equipment substrate can become the substrate of the 3D memory device 100 . Furthermore, it should be understood that depending on how the peripheral device substrate and the memory array element substrate are bonded, the memory array elements (eg, as shown in FIG. 1A ) may be in their original position or may be upside-down in the 3D memory device 100 flip. For ease of reference, FIG. 1A depicts the state of the 3D memory device 100 in which the memory array elements are in their original positions (ie, not flipped upside down). It should be understood, however, that in some examples, the memory array elements shown in FIG. 1A may be flipped upside down in 3D memory device 100 and their relative positions may be changed accordingly. The same concepts used to describe spatial relationships apply throughout this summary.

如圖1A所示,3D記憶體裝置100可包括介電質層102和在介電質層 102上的停止層103。介電質層102可包括一個或多個夾層介電質(ILD)層(也被稱為“金屬間介電質(IMD)層”),互連線和VIA觸點可在夾層介電質層中形成。介電質層102的ILD層可包括介電質材料,包括但不限於氧化矽、氮化矽、氮氧化矽、低介電常數(低k)介電質或其任何組合。在一些實施方式中,介電質層102包括氧化矽。停止層103可直接佈置在介電質層102上。在一些實施方式中,停止層103包括高介電常數(高k)介電質層。高k介電質層可包括例如氧化鋁、氧化鉿、氧化鋯或氧化鈦,僅舉幾個示例。在一個示例中,停止層103可包括氧化鋁。如下面更詳細描述的,因為停止層103的功能是停止通道孔的蝕刻,應理解,停止層103可包括相對於在上述層中的材料具有相對高的蝕刻選擇性(例如大於大約5)的任何其它適當的材料。在一些實施方式中,除了具有蝕刻停止層的作用以外,停止層103還具有背面基底減薄停止層的作用,且因此具有除了記憶體陣列基底的材料(例如矽)以外的材料。 As shown in FIG. 1A, the 3D memory device 100 may include a dielectric layer 102 and a Stop layer 103 on 102 . Dielectric layer 102 may include one or more interlayer dielectric (ILD) layers (also referred to as "intermetal dielectric (IMD) layers") in which interconnect lines and VIA contacts may be formed. formed in the layer. The ILD layer of the dielectric layer 102 may include a dielectric material including, but not limited to, silicon oxide, silicon nitride, silicon oxynitride, low-k (low-k) dielectrics, or any combination thereof. In some embodiments, the dielectric layer 102 includes silicon oxide. The stop layer 103 may be disposed directly on the dielectric layer 102 . In some embodiments, stop layer 103 includes a high-k (high-k) dielectric layer. The high-k dielectric layer may include, for example, aluminum oxide, hafnium oxide, zirconium oxide, or titanium oxide, to name a few. In one example, stop layer 103 may include aluminum oxide. As described in more detail below, because the function of stop layer 103 is to stop the etching of the channel holes, it should be understood that stop layer 103 may comprise a relatively high etch selectivity (eg, greater than about 5) with respect to the materials in the layers described above. any other suitable material. In some embodiments, in addition to serving as an etch stop layer, stop layer 103 also serves as a backside substrate thinning stop layer, and thus has a material other than that of the memory array substrate (eg, silicon).

3D記憶體裝置100還可包括在停止層103之上的多晶矽層104。在一些實施方式中,多晶矽層104直接佈置在停止層103上。在一些實施方式中,墊氧化物層(例如氧化矽層)佈置在停止層103和多晶矽層104之間以減輕在多晶矽層104和停止層103(例如氧化鋁層)之間的應力。根據一些實施方式,多晶矽層104包括N型摻雜多晶矽層。也就是說,多晶矽層104可摻雜有貢獻自由電子並增加本徵半導體的傳導性的任何適當的N型摻雜劑,例如磷(P)、砷(Ar)或銻(Sb)。如下面更詳細描述的,由於擴散過程,多晶矽層104可具有在垂直方向上的均勻摻雜濃度分佈。在一些實施方式中,多晶矽層104的摻雜濃度在大約1019cm-3和大約1022cm-3之間,例如在1019cm-3和1022cm-3之間(例如1019cm-3、2×1019cm-3、3×1019cm-3、4×1019cm-3、5×1019cm-3、6×1019cm-3、7×1019cm-3、8×1019cm-3、9×1019cm-3、1020cm-3、2×1020cm-3、3×1020cm-3、4×1020cm-3、5×1020cm-3、6×1020cm-3、7×1020cm-3、8×1020cm-3、9×1020cm-3、1021cm-3、2×1021cm-3、3×1021cm-3、 4×1021cm-3、5×1021cm-3、6×1021cm-3、7×1021cm-3、8×1021cm-3、9×1021cm-3、1022cm-3、由這些值中的任何值作為下端界限的任何範圍或在由這些值中的任兩個值限定的任何範圍中)。雖然圖1A示出多晶矽層104在停止層103之上,如上所述,應理解,停止層103在一些示例中可以在多晶矽層104之上,因為圖1A所示的記憶體陣列元件可顛倒地翻轉,且它們的相對位置可在3D記憶體裝置100中相應地改變。在一些實施方式中,圖1A所示的記憶體陣列元件顛倒地翻轉(在頂部中)並鍵合到在3D記憶體裝置100中的周邊設備(在底部中),使得停止層103在多晶矽層104之上。 The 3D memory device 100 may also include a polysilicon layer 104 over the stop layer 103 . In some embodiments, the polysilicon layer 104 is disposed directly on the stop layer 103 . In some embodiments, a pad oxide layer (eg, a silicon oxide layer) is disposed between the stop layer 103 and the polysilicon layer 104 to relieve stress between the polysilicon layer 104 and the stop layer 103 (eg, an aluminum oxide layer). According to some embodiments, the polysilicon layer 104 includes an N-type doped polysilicon layer. That is, the polysilicon layer 104 may be doped with any suitable N-type dopant that contributes free electrons and increases the conductivity of the intrinsic semiconductor, such as phosphorus (P), arsenic (Ar), or antimony (Sb). As described in more detail below, due to the diffusion process, the polysilicon layer 104 may have a uniform dopant concentration profile in the vertical direction. In some embodiments, the doping concentration of the polysilicon layer 104 is between about 10 19 cm -3 and about 10 22 cm -3 , eg, between 10 19 cm -3 and 10 22 cm -3 (eg, 10 19 cm -3 ) -3 , 2×10 19 cm -3 , 3×10 19 cm -3 , 4×10 19 cm -3 , 5×10 19 cm -3 , 6×10 19 cm -3 , 7×10 19 cm -3 , 8×10 19 cm -3 , 9×10 19 cm -3 , 10 20 cm -3 , 2×10 20 cm -3 , 3×10 20 cm -3 , 4×10 20 cm -3 , 5×10 20 cm -3 , 6×10 20 cm -3 , 7×10 20 cm -3 , 8×10 20 cm -3 , 9×10 20 cm -3 , 1021 cm -3 , 2×10 21 cm -3 , 3 ×10 21 cm -3 , 4×10 21 cm -3 , 5×10 21 cm -3 , 6×10 21 cm -3 , 7×10 21 cm -3 , 8×10 21 cm -3 , 9×10 21 cm -3 , 1022 cm -3 , any range bounded lower by any of these values, or in any range bounded by any two of these values). Although FIG. 1A shows polysilicon layer 104 over stop layer 103, as described above, it should be understood that stop layer 103 may be over polysilicon layer 104 in some examples because the memory array element shown in FIG. 1A may be upside-down flipped, and their relative positions can be changed accordingly in the 3D memory device 100 . In some embodiments, the memory array element shown in FIG. 1A is flipped upside down (in the top) and bonded to peripherals (in the bottom) in the 3D memory device 100 such that the stop layer 103 is in the polysilicon layer 104 and above.

在一些實施方式中,3D記憶體裝置100還包括穿過介電質層102和停止層103從相對於停止層103(即背面)的多晶矽層104的相對側垂直地延伸以與多晶矽層104接觸的源極接觸結構128。應理解,源極接觸結構128延伸到多晶矽層104內的深度可在不同的示例中改變。源極接觸結構可透過多晶矽層104從記憶體陣列基底(被移除)的背面將3D記憶體裝置100的NAND記憶體串的源極電性連接到周邊設備,且因此也可在本文被稱為“背面源極拾取”。源極接觸結構128可包括任何適當類型的觸點。在一些實施方式中,源極接觸結構128包括VIA觸點。在一些實施方式中,源極接觸結構128包括橫向延伸的壁形觸點。源極接觸結構128可包括一個或多個導電層,例如金屬層,例如鎢(W)、鈷(Co)、銅(Cu)或鋁(Al)或由黏合劑層(例如氮化矽(TiN))包圍的矽化物層。 In some embodiments, the 3D memory device 100 also includes extending vertically through the dielectric layer 102 and the stop layer 103 from the opposite side of the polysilicon layer 104 relative to the stop layer 103 (ie, the backside) to contact the polysilicon layer 104 source contact structure 128. It should be understood that the depth to which the source contact structures 128 extend into the polysilicon layer 104 may vary in different examples. The source contact structure can electrically connect the sources of the NAND memory strings of the 3D memory device 100 to peripheral equipment from the backside of the memory array substrate (removed) through the polysilicon layer 104, and may therefore also be referred to herein as for "Backside Source Pickup". The source contact structure 128 may include any suitable type of contact. In some embodiments, the source contact structure 128 includes a VIA contact. In some embodiments, the source contact structures 128 include laterally extending wall contacts. The source contact structure 128 may include one or more conductive layers, such as metal layers, such as tungsten (W), cobalt (Co), copper (Cu), or aluminum (Al) or formed by an adhesive layer such as silicon nitride (TiN). )) surrounded by a silicide layer.

在一些實施方式中,3D記憶體裝置100是NAND快閃記憶體裝置,其中提供以NAND記憶體串的陣列的形式的記憶體單元。每個NAND記憶體串可包括穿過多個對延伸的通道結構112,每對包括堆疊導電層108和堆疊介電質層110(在本文被稱為“導電/介電質層對”)。堆疊的導電/介電質層對在本文也被稱為記憶體疊層106。在記憶體疊層106中的導電/介電質層對的數量(例如32、64、96、128、160、192、224、256等)確定在3D記憶體裝置100中的記憶體單元的 數量。雖然未在圖1A中示出,應理解,在一些實施方式中,記憶體疊層106可具有多疊片架構,例如包括下記憶體疊片和在下記憶體疊片上的上記憶體疊片的雙疊片架構。在每個記憶體疊片中的堆疊導電層108和堆疊介電質層110的對的數量可以是相同的或不同的。 In some implementations, the 3D memory device 100 is a NAND flash memory device in which memory cells are provided in the form of an array of NAND memory strings. Each NAND memory string may include channel structures 112 extending through a plurality of pairs, each pair including stacked conductive layers 108 and stacked dielectric layers 110 (referred to herein as "conductive/dielectric layer pairs"). The stacked conductive/dielectric layer pair is also referred to herein as the memory stack 106 . The number of conductive/dielectric layer pairs (eg, 32, 64, 96, 128, 160, 192, 224, 256, etc.) in the memory stack 106 determines the number of memory cells in the 3D memory device 100 quantity. Although not shown in FIG. 1A , it should be understood that in some embodiments, the memory stack 106 may have a multi-stack architecture, such as one including a lower memory stack and an upper memory stack on the lower memory stack. Double lamination architecture. The number of pairs of stacked conductive layers 108 and stacked dielectric layers 110 in each memory stack may be the same or different.

記憶體疊層106可包括多個交錯的堆疊導電層108和堆疊介電質層110、多晶矽層104。在記憶體疊層106中的堆疊導電層108和堆疊介電質層110可在垂直方向上交替。換句話說,除了在記憶體疊層106的頂部或底部處的層以外,每個堆疊導電層108可由在兩側上的兩個堆疊介電質層110鄰接,以及每個堆疊介電質層110可由在兩側上的兩個堆疊導電層110鄰接。堆疊導電層108可包括導電材料,包括但不限於W、Co、Cu、Al、多晶矽、摻雜矽、矽化物或其任何組合。每個堆疊導電層108可包括由黏合劑層和閘極介電質層124包圍的閘極電極(閘極線)。堆疊導電層108的閘極電極可橫向延伸,作為在記憶體疊層106的一個或多個階梯結構(未示出)處終止的字元線。堆疊介電質層110可包括介電質材料,包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合。 The memory stack 106 may include a plurality of alternating stacked conductive layers 108 and stacked dielectric layers 110 and polysilicon layers 104 . The stacked conductive layers 108 and stacked dielectric layers 110 in the memory stack 106 may alternate in the vertical direction. In other words, except for the layers at the top or bottom of the memory stack 106, each stacked conductive layer 108 may be adjoined by two stacked dielectric layers 110 on both sides, and each stacked dielectric layer 110 may be adjoined by two stacked conductive layers 110 on both sides. The stacked conductive layer 108 may include conductive materials including, but not limited to, W, Co, Cu, Al, polysilicon, doped silicon, silicide, or any combination thereof. Each stacked conductive layer 108 may include a gate electrode (gate line) surrounded by an adhesive layer and a gate dielectric layer 124 . The gate electrodes of the stacked conductive layers 108 may extend laterally as word lines terminating at one or more stepped structures (not shown) of the memory stack 106 . The stacked dielectric layer 110 may include a dielectric material including, but not limited to, silicon oxide, silicon nitride, silicon oxynitride, or any combination thereof.

如圖1A所示,每個通道結構112穿過記憶體疊層106和多晶矽層104垂直地延伸,在停止層103處停止。也就是說,通道結構112可包括兩個部分:由多晶矽層104包圍(即在多晶矽層104和停止層103之間的介面之下)的下部分和由記憶體疊層106包圍(即在多晶矽層104和記憶體疊層106之間的介面之上)的上部分。如在本文使用的,當基底位於3D記憶體裝置100的最低平面中時,部件(例如通道結構112)的“上部分/端部”是在y方向上更遠離基底的部分/端部,以及部件(例如通道結構112)的“下部分/端部”是在y方向上更接近基底的部分/端部。在一些實施方式中,每個通道結構112不更遠地延伸出停止層103之外,因為通道孔的蝕刻由停止層103停止。例如,通道結構112的下端可以在名義上與停止層103的頂表面齊平。作為結果,在通道結構112的陣列當中的鑿槽變化 可由停止層103控制和最小化。 As shown in FIG. 1A , each channel structure 112 extends vertically through the memory stack 106 and the polysilicon layer 104 , stopping at the stop layer 103 . That is, the channel structure 112 may include two parts: a lower part surrounded by the polysilicon layer 104 (ie below the interface between the polysilicon layer 104 and the stop layer 103 ) and a lower part surrounded by the memory stack 106 (ie under the polysilicon layer 103 ) above the interface between layer 104 and memory stack 106 ). As used herein, when the substrate is in the lowest plane of the 3D memory device 100, the "upper portion/end" of a component (eg, channel structure 112) is the portion/end that is further away from the substrate in the y-direction, and The "lower portion/end" of a component (eg, channel structure 112) is the portion/end that is closer to the substrate in the y-direction. In some embodiments, each channel structure 112 does not extend further beyond the stop layer 103 because the etching of the channel holes is stopped by the stop layer 103 . For example, the lower end of the channel structure 112 may be nominally flush with the top surface of the stop layer 103 . As a result, the gouges among the array of channel structures 112 vary Can be controlled and minimized by stop layer 103 .

通道結構112可包括填充有半導體材料(例如作為半導體通道116)和介電質材料(例如作為記憶體膜114)的通道孔。在一些實施方式中,半導體通道116包括矽,例如非晶形矽、多晶矽或單晶矽。在一個示例中,半導體通道116包括多晶矽。在一些實施方式中,記憶體膜114是包括穿隧層、儲存層(也被稱為“電荷捕獲層”)和阻障層的複合層。通道孔的剩餘空間可以部分地或全部填充有包括介電質材料(例如氧化矽和/或空氣間隙)的上覆層118。通道結構112可具有圓柱體形狀(例如立柱形狀)。根據一些實施方式,上覆層118、半導體通道116、記憶體膜114的穿隧層、儲存層和阻障層以這個順序從立柱的中央朝著外表面徑向佈置。穿隧層可包括氧化矽、氮氧化矽或其任何組合。儲存層可包括氮化矽、氮氧化矽、或其任何組合。阻障層可包括氧化矽、氮氧化矽、高k介電質或其任何組合。在一個示例中,記憶體膜114可包括氧化矽/氮氧化矽/氧化矽(ONO)的複合層。在一些實施方式中,通道結構112還包括在通道結構112的上部分的頂部處的通道插塞120。通道插塞120可包括半導體材料(例如多晶矽)。在一些實施方式中,通道插塞120具有NAND記憶體串的汲極的作用。 The channel structure 112 may include via holes filled with semiconductor material (eg, as semiconductor channel 116 ) and dielectric material (eg, as memory film 114 ). In some embodiments, the semiconductor channel 116 includes silicon, such as amorphous silicon, polysilicon, or monocrystalline silicon. In one example, the semiconductor channel 116 includes polysilicon. In some embodiments, the memory film 114 is a composite layer including a tunneling layer, a storage layer (also referred to as a "charge trapping layer"), and a barrier layer. The remaining space of the via hole may be partially or fully filled with an overlying layer 118 including a dielectric material such as silicon oxide and/or air gaps. The channel structure 112 may have a cylindrical shape (eg, a column shape). According to some embodiments, the overlying layer 118 , the semiconductor channel 116 , the tunneling layer of the memory film 114 , the storage layer, and the barrier layer are radially arranged in this order from the center of the pillar toward the outer surface. The tunneling layer may include silicon oxide, silicon oxynitride, or any combination thereof. The storage layer may include silicon nitride, silicon oxynitride, or any combination thereof. The barrier layer may include silicon oxide, silicon oxynitride, high-k dielectrics, or any combination thereof. In one example, the memory film 114 may include a composite layer of silicon oxide/silicon oxynitride/silicon oxide (ONO). In some embodiments, the channel structure 112 also includes a channel plug 120 at the top of the upper portion of the channel structure 112 . The channel plug 120 may include a semiconductor material (eg, polysilicon). In some embodiments, the channel plug 120 functions as the drain of the NAND memory string.

如圖1A所示,根據一些實施方式,沿著通道結構112的側壁(例如在通道結構112的下部分中)的半導體通道116的部分與多晶矽層104的子層109接觸。也就是說,根據一些實施方式,記憶體膜114在鄰接多晶矽層104的子層109的通道結構112的下部分處分離,暴露半導體通道116以與多晶矽層104的周圍子層109接觸。因此,包圍半導體通道116並與半導體通道116接觸的多晶矽層104的子層109可以用作通道結構112的“側壁SEG”以代替如上所述的“底部SEG”,其可減輕例如覆蓋控制、磊晶層形成和SONO打孔的問題。如下面更詳細描述的,根據一些實施方式,多晶矽層104的子層109與多晶矽層104的其餘部分分開地形成。然而,應理解,多晶矽層104的子層109可具有與多晶矽層104的其餘部分相 同的多晶矽材料,且摻雜濃度在擴散之後在多晶矽層104中可以是均勻的,子層109可以與在3D記憶體裝置100中的多晶矽層104的其餘部分不可區別。然而,子層109指在通道結構112的下部分中的與半導體通道116而不是記憶體膜114接觸的多晶矽層104的部分。 As shown in FIG. 1A , portions of semiconductor channel 116 along sidewalls of channel structure 112 (eg, in a lower portion of channel structure 112 ) are in contact with sublayer 109 of polysilicon layer 104 , according to some embodiments. That is, according to some embodiments, the memory film 114 is separated at the lower portion of the channel structure 112 adjoining the sublayer 109 of the polysilicon layer 104 , exposing the semiconductor channel 116 to contact the surrounding sublayer 109 of the polysilicon layer 104 . Thus, the sub-layer 109 of the polysilicon layer 104 surrounding and in contact with the semiconductor channel 116 may serve as the "side SEG" of the channel structure 112 in place of the "bottom SEG" described above, which may alleviate, eg, coverage control, epitaxy The problem of crystal layer formation and SONO drilling. As described in more detail below, according to some embodiments, the sublayer 109 of the polysilicon layer 104 is formed separately from the remainder of the polysilicon layer 104 . However, it should be understood that the sub-layer 109 of the polysilicon layer 104 may have the same phase as the remainder of the polysilicon layer 104 The same polysilicon material, and the doping concentration may be uniform in the polysilicon layer 104 after diffusion, the sublayer 109 may be indistinguishable from the rest of the polysilicon layer 104 in the 3D memory device 100 . However, the sublayer 109 refers to the portion of the polysilicon layer 104 in the lower portion of the channel structure 112 that is in contact with the semiconductor channel 116 rather than the memory film 114 .

如圖1A所述,3D記憶體裝置100還可包括絕緣結構122,每個絕緣結構穿過記憶體疊層106的交錯的堆疊導電層108和堆疊介電質層110垂直地延伸。根據一些實施方式,不同於穿過多晶矽層104的整個厚度延伸、在停止層103處停止的通道結構112,絕緣結構122延伸到多晶矽層104內,在多晶矽層104的子層109處停止。也就是說,根據一些實施方式,絕緣結構122不穿過多晶矽層104的整個厚度延伸,且不與停止層103接觸。在一些實施方式中,絕緣結構122的下端在名義上與多晶矽層104的子層109的頂表面齊平。每個絕緣結構122也可橫向延伸以將通道結構112分成多個塊。也就是說,記憶體疊層106可由絕緣結構122分成多個記憶體塊,使得通道結構112的陣列可分成每個記憶體塊。不同於在一些3D NAND記憶體裝置中的包括正面源極接觸結構的狹縫結構,根據一些實施方式,絕緣結構122在其中不包括任何觸點(即,不具有源極觸點的作用)且因此不用導電層108(包括字元線)引入寄生電容和漏電流。在一些實施方式中,每個絕緣結構122包括填充有一種或多種介電質材料(包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合)的開口(例如狹縫)。在一個示例中,每個絕緣結構122可填充有作為絕緣體核心126的氧化矽和與閘極介電質層124連接的高k介電質。 As shown in FIG. 1A , the 3D memory device 100 may also include insulating structures 122 each extending vertically through the interleaved stacked conductive layers 108 and stacked dielectric layers 110 of the memory stack 106 . Unlike channel structure 112 , which extends through the entire thickness of polysilicon layer 104 and stops at stop layer 103 , insulating structure 122 extends into polysilicon layer 104 , stopping at sublayer 109 of polysilicon layer 104 , according to some embodiments. That is, according to some embodiments, the insulating structure 122 does not extend through the entire thickness of the polysilicon layer 104 and is not in contact with the stop layer 103 . In some embodiments, the lower end of insulating structure 122 is nominally flush with the top surface of sublayer 109 of polysilicon layer 104 . Each insulating structure 122 may also extend laterally to divide the channel structure 112 into multiple pieces. That is, the memory stack 106 may be divided into a plurality of memory blocks by the insulating structure 122 such that the array of channel structures 112 may be divided into each memory block. Unlike the slit structures in some 3D NAND memory devices, which include front-side source contact structures, according to some embodiments, the insulating structures 122 do not include any contacts therein (ie, do not function as source contacts) and Therefore, no parasitic capacitance and leakage current are introduced into the conductive layer 108 (including word lines). In some implementations, each insulating structure 122 includes an opening (eg, a slit) filled with one or more dielectric materials, including but not limited to silicon oxide, silicon nitride, silicon oxynitride, or any combination thereof. In one example, each insulating structure 122 may be filled with silicon oxide as an insulator core 126 and a high-k dielectric connected to the gate dielectric layer 124 .

在一些實施方式中,透過用N型摻雜劑摻雜多晶矽層104,即消除作為電洞的源的P井,根據一些實施方式,3D記憶體裝置100被配置為當進行擦除操作時產生閘極引發汲極漏電流(GIDL)輔助的體偏壓。在NAND記憶體串的源極選擇閘極周圍的GIDL可產生進入NAND記憶體串內的電洞電流以為了擦除 操作而升高體電位。而且,透過消除作為電洞的源的P井,源極選擇閘極的控制也可在讀操作期間被簡化,因為當由3D記憶體裝置100進行讀操作時不再需要反轉通道。 In some embodiments, by doping the polysilicon layer 104 with N-type dopants, ie, eliminating the P-wells, which are sources of holes, according to some embodiments, the 3D memory device 100 is configured to generate when an erase operation is performed The gate induced drain leakage (GIDL) assisted body bias. GIDL around the source select gate of a NAND string can generate hole current into the NAND string for erasing operation to increase the body potential. Furthermore, by eliminating the P-well as a source of holes, the control of the source select gate can also be simplified during read operations, since the inversion channel is no longer required when a read operation is performed by the 3D memory device 100 .

如上面所述的和下面進一步詳細描述的,根據一些實施方式,從3D記憶體裝置100移除停止層103、多晶矽層104、記憶體疊層106、通道結構112和絕緣結構122形成於其上的記憶體陣列基底,3D記憶體裝置100不包括記憶體陣列基底。在所移除的記憶體陣列基底包括單晶矽的一些實施方式中,每個通道結構112不與單晶矽層接觸,單晶矽層是記憶體陣列基底的部分(例如在減薄之後)。 As described above and described in further detail below, according to some embodiments, the stop layer 103 , the polysilicon layer 104 , the memory stack 106 , the channel structure 112 , and the insulating structure 122 are formed thereon are removed from the 3D memory device 100 . A memory array substrate, the 3D memory device 100 does not include a memory array substrate. In some embodiments in which the removed memory array substrate comprises monocrystalline silicon, each channel structure 112 is not in contact with the monocrystalline silicon layer that is part of the memory array substrate (eg, after thinning) .

應理解,在一些實施方式中,可從3D記憶體裝置的最終產品移除停止層103。例如,如圖1B所示,3D記憶體裝置101可以與3D記憶體裝置100相同,除了3D記憶體裝置101可以不包括在多晶矽層104和介電質層102之間的停止層以外。替代地,多晶矽層104直接佈置在介電質層102上,且源極接觸結構128穿過介電質層102垂直地延伸以與多晶矽層104接觸。類似於3D記憶體裝置100,通道結構112可在多晶矽層104和介電質層102之間的介面處停止,且由於在製造過程期間的停止層103的蝕刻停止效應而不延伸出多晶矽層104之外(即,通道結構112的下端在名義上與多晶矽層104的底表面齊平),多晶矽層104稍後從3D記憶體裝置101移除。應理解,為了便於描述而不重複在3D記憶體裝置101和100中的其它相同結構的細節。 It should be understood that in some embodiments, the stop layer 103 may be removed from the final product of the 3D memory device. For example, as shown in FIG. 1B , 3D memory device 101 may be the same as 3D memory device 100 , except that 3D memory device 101 may not include a stop layer between polysilicon layer 104 and dielectric layer 102 . Alternatively, the polysilicon layer 104 is disposed directly on the dielectric layer 102 , and the source contact structure 128 extends vertically through the dielectric layer 102 to contact the polysilicon layer 104 . Similar to the 3D memory device 100, the channel structure 112 may stop at the interface between the polysilicon layer 104 and the dielectric layer 102 and not extend beyond the polysilicon layer 104 due to the etch stop effect of the stop layer 103 during the fabrication process Outside (ie, the lower end of the channel structure 112 is nominally flush with the bottom surface of the polysilicon layer 104 ), the polysilicon layer 104 is later removed from the 3D memory device 101 . It should be understood that other identical structural details in 3D memory devices 101 and 100 are not repeated for ease of description.

也理解,在一些實施方式中,當製造3D記憶體裝置時,可以首先不形成停止層103。例如,如圖1C所示,3D記憶體裝置101a可以與3D記憶體裝置101相同,除了一個或多個通道結構113延伸出多晶矽層104之外並由於在製造過程期間的停止層103的缺失而貫通到介電質層102內以外。也就是說,根據一些實施方式,一個或多個通道結構113的下端低於多晶矽層104的底表面。應理解, 為了便於描述而不重複在3D記憶體裝置101a和101中的其它相同結構的細節。 It is also understood that in some embodiments, when fabricating a 3D memory device, the stop layer 103 may not be formed in the first place. For example, as shown in FIG. 1C, 3D memory device 101a may be identical to 3D memory device 101, except that one or more channel structures 113 extend out of polysilicon layer 104 and due to the absence of stop layer 103 during the fabrication process penetrates into and out of the dielectric layer 102 . That is, according to some embodiments, the lower end of the one or more channel structures 113 is lower than the bottom surface of the polysilicon layer 104 . It should be understood that Details of other identical structures in 3D memory devices 101a and 101 are not repeated for ease of description.

此外應理解,在一些實施方式中,可以用佈置在記憶體疊層106的同一側處的正面源極接觸結構代替在3D記憶體裝置100、101或101a中的背面源極接觸結構128(例如也被稱為“正面源極拾取”)。也就是說,代替填充有介電質材料的絕緣結構122,狹縫結構可填充有導電材料以變成源極接觸結構。例如,如圖1D所示,3D記憶體裝置105可以與3D記憶體裝置100相同,除了背面源極接觸結構128和絕緣結構122可以用穿過記憶體疊層106垂直地延伸到多晶矽層104內的源極接觸結構130代替以外。在一些實施方式中,源極接觸結構130在多晶矽層104的子層109處停止。應理解,為了便於描述而不重複在3D記憶體裝置105和100中的其它相同結構的細節。 Furthermore, it should be understood that in some embodiments, the backside source contact structures 128 in the 3D memory device 100, 101, or 101a may be replaced with frontside source contact structures disposed at the same side of the memory stack 106 (eg, Also known as "front-side source pickup"). That is, instead of the insulating structure 122 filled with a dielectric material, the slit structure may be filled with a conductive material to become a source contact structure. For example, as shown in FIG. 1D , 3D memory device 105 may be identical to 3D memory device 100 except that backside source contact structure 128 and insulating structure 122 may be used to extend vertically into polysilicon layer 104 through memory stack 106 The source contact structure 130 is replaced outside. In some embodiments, the source contact structure 130 stops at the sublayer 109 of the polysilicon layer 104 . It should be understood that other identical structural details in 3D memory devices 105 and 100 are not repeated for ease of description.

源極接觸結構130也可垂直地延伸(例如在垂直於x和y方向的方向上)以將記憶體疊層106分成多個塊。源極接觸結構130可包括隔板134和源極觸點132,每個穿過記憶體疊層106垂直地延伸到多晶矽層104內。隔板134可包括橫向地在源極觸點132和記憶體疊層106之間的介電質材料(例如氧化矽)以電性分離源極觸點132與記憶體疊層106中的周圍堆疊導電層108。另一方面,隔板134可沿著源極接觸結構130的側壁佈置,但不在源極接觸結構130的底部處,使得源極觸點132可以在多晶矽層104之上並與多晶矽層104接觸以建立與通道結構112的半導體通道116的電連接。在一些實施方式中,源極觸點132包括黏合劑層和由黏合劑層包圍的導電層。黏合劑層可包括在多晶矽層104之上並與多晶矽層104接觸的一種或多種導電材料,例如氮化鈦(TiN)以建立與多晶矽層104的電連接。在一些實施方式中,導電層包括在它的下部分中的多晶矽和在它的上部分中的接觸金屬互連(未示出)的金屬(例如W)。在一些實施方式中,黏合劑層(例如TiN)與多晶矽層104和導電層的金屬(例如W)都接觸以形成在多晶矽層104(例如作為NAND記憶體串的源極)和金屬互連之間的電連接。 The source contact structures 130 may also extend vertically (eg, in directions perpendicular to the x and y directions) to divide the memory stack 106 into blocks. Source contact structure 130 may include spacers 134 and source contacts 132 , each extending vertically into polysilicon layer 104 through memory stack 106 . Spacer 134 may include a dielectric material (eg, silicon oxide) laterally between source contact 132 and memory stack 106 to electrically separate source contact 132 from surrounding stacks in memory stack 106 Conductive layer 108 . On the other hand, the spacers 134 may be arranged along the sidewalls of the source contact structure 130, but not at the bottom of the source contact structure 130, so that the source contact 132 may be over and in contact with the polysilicon layer 104 to An electrical connection to the semiconductor channel 116 of the channel structure 112 is established. In some embodiments, the source contact 132 includes an adhesive layer and a conductive layer surrounded by the adhesive layer. The adhesive layer may include one or more conductive materials, such as titanium nitride (TiN), over and in contact with the polysilicon layer 104 to establish electrical connection with the polysilicon layer 104 . In some embodiments, the conductive layer includes polysilicon in its lower portion and metal (eg, W) in its upper portion that contacts metal interconnects (not shown). In some embodiments, the adhesive layer (eg, TiN) is in contact with both the polysilicon layer 104 and the metal (eg, W) of the conductive layer to form between the polysilicon layer 104 (eg, as the source of the NAND memory strings) and the metal interconnects electrical connection between.

此外應理解,用正面源極接觸結構130代替背面源極接觸結構128和絕緣結構122的設計可類似地應用於沒有停止層103的3D記憶體裝置。例如,如圖1E所示,3D記憶體裝置107可以與3D記憶體裝置105相同,除了3D記憶體裝置107不包括停止層103以外。雖然圖1E示出通道結構112不延伸出多晶矽層104之外,應理解,一個或多個通道結構113(像在圖1C中的3D記憶體裝置101a中一樣)可延伸出多晶矽層104之外並進一步進入介電質層102內。應理解,為了便於描述而不重複在3D記憶體裝置107和105中的其它相同結構的細節。 Furthermore, it should be understood that the design of replacing the backside source contact structure 128 and the insulating structure 122 with the frontside source contact structure 130 can be similarly applied to a 3D memory device without the stop layer 103 . For example, as shown in FIG. 1E , 3D memory device 107 may be the same as 3D memory device 105 , except that 3D memory device 107 does not include stop layer 103 . Although FIG. 1E shows channel structures 112 not extending beyond polysilicon layer 104 , it should be understood that one or more channel structures 113 (like in 3D memory device 101 a in FIG. 1C ) may extend beyond polysilicon layer 104 and further into the dielectric layer 102 . It should be understood that other identical structural details in 3D memory devices 107 and 105 are not repeated for ease of description.

圖2A-2L示出根據本發明內容的一些實施方式的用於形成示例性3D記憶體裝置的製造過程。圖4示出根據本發明內容的一些實施方式的用於形成示例性3D記憶體裝置的方法400的流程圖。在圖2A-2L和圖4中描繪的3D記憶體裝置的示例包括在圖1A和1B中描繪的3D記憶體裝置100。圖2A-2L和圖4將一起被描述。應理解,在方法400中示出的步驟不是排他的,以及其它步驟也可在任一所示步驟之前、之後或之間被進行。此外,一些步驟可同時或以與在圖4中所示的不同的順序被進行。 2A-2L illustrate a manufacturing process for forming an exemplary 3D memory device according to some embodiments of the present disclosure. 4 shows a flowchart of a method 400 for forming an exemplary 3D memory device in accordance with some embodiments of this disclosure. Examples of 3D memory devices depicted in FIGS. 2A-2L and 4 include 3D memory device 100 depicted in FIGS. 1A and 1B . 2A-2L and FIG. 4 will be described together. It should be understood that the steps shown in method 400 are not exclusive, and that other steps may be performed before, after, or between any of the steps shown. Furthermore, some steps may be performed simultaneously or in a different order than that shown in FIG. 4 .

參考圖4,方法400在步驟402開始,在步驟402中在基底的第一側處相繼形成停止層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。基底可以是由任何適當的材料(例如玻璃、藍寶石、塑膠(僅舉幾個示例))製成的矽基底或載體基底,以減小基底的成本。第一側可以是半導體元件形成於其上的基底的正面。在一些實施方式中,為了形成停止層,相繼形成第一停止層和第二停止層。第一停止層可包括氮化矽,以及第二停止層可包括高k介電質。在一些實施方式中,為了形成犧牲層,相繼形成第一犧牲層、第二犧牲層和第三犧牲層。第一犧牲層可包括氮氧化矽,第二犧牲層可包括多晶矽,以及第三犧牲層可包括氮氧化矽。介電質疊層可包括多個交錯的堆疊犧牲層和堆疊介電質層。 4, method 400 begins at step 402 in which a stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack are sequentially formed at a first side of a substrate. The substrate may be a silicon substrate or carrier substrate made of any suitable material such as glass, sapphire, plastic (to name a few) to reduce the cost of the substrate. The first side may be the front side of the substrate on which the semiconductor elements are formed. In some embodiments, to form the stop layer, the first stop layer and the second stop layer are sequentially formed. The first stop layer can include silicon nitride, and the second stop layer can include a high-k dielectric. In some embodiments, to form the sacrificial layer, a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer are sequentially formed. The first sacrificial layer may include silicon oxynitride, the second sacrificial layer may include polysilicon, and the third sacrificial layer may include silicon oxynitride. The dielectric stack may include a plurality of interleaved stacked sacrificial layers and stacked dielectric layers.

如圖2A所示,第一停止層203、第二停止層205、第一多晶矽層207、第一犧牲層209、第二犧牲層211、第三犧牲層213和第二多晶矽層215在基底的正面處相繼形成。基底202可以是由任何適當的材料(例如玻璃、藍寶石、塑膠(僅舉幾個示例))製成的矽基底或載體基底。第一停止層203和第二停止層205可在本文被共同稱為停止層。在一些實施方式中,第一停止層203和第二停止層205分別包括氮化矽和高k介電質,例如氧化鋁。如下面詳細描述的,第一停止層203可充當在從背面移除基底202時的停止層,且因此可包括除了基底202的材料以外的任何其它適當的材料。類似地,第二停止層205可充當在從正面蝕刻通道孔時的停止層,且因此可包括相對於多晶矽(在第二停止層205上的第一多晶矽層207的材料)具有高蝕刻選擇性(例如大於大約5)的任何其它適當的材料。 應理解,在一些示例中,第一停止層203和第二停止層205中的一個可被跳過,意味著第一停止層203和第二停止層205中的另一個可充當用於背面減薄和正面蝕刻的停止層。例如,停止層可以僅包括高k介電質層,例如氧化鋁層。也應理解,在一些實施方式中,墊氧化物層(例如氧化矽層)可在基底202和第一停止層203之間和/或在第一停止層203和第二停止層205之間形成以減輕在不同層之間的應力。類似地,另一墊氧化物層可在第二停止層205和第一多晶矽層207之間形成以減輕在其之間的應力。 As shown in FIG. 2A, the first stop layer 203, the second stop layer 205, the first polysilicon layer 207, the first sacrificial layer 209, the second sacrificial layer 211, the third sacrificial layer 213 and the second polysilicon layer 215 are formed successively at the front side of the substrate. Substrate 202 may be a silicon substrate or carrier substrate made of any suitable material such as glass, sapphire, plastic, to name a few. The first stop layer 203 and the second stop layer 205 may be collectively referred to herein as stop layers. In some embodiments, the first stop layer 203 and the second stop layer 205 include silicon nitride and a high-k dielectric, such as aluminum oxide, respectively. As described in detail below, the first stop layer 203 can act as a stop layer when the substrate 202 is removed from the backside, and thus can include any other suitable material other than the material of the substrate 202 . Similarly, the second stop layer 205 can act as a stop layer when etching via holes from the front side, and thus can include a high etch relative to polysilicon (the material of the first polysilicon layer 207 on the second stop layer 205 ) Any other suitable material of selectivity (eg greater than about 5). It should be understood that in some examples, one of the first stop layer 203 and the second stop layer 205 may be skipped, meaning that the other of the first stop layer 203 and the second stop layer 205 may serve as a source for backside reduction Thin and front etched stop layers. For example, the stop layer may include only a high-k dielectric layer, such as an aluminum oxide layer. It should also be understood that in some embodiments, a pad oxide layer (eg, a silicon oxide layer) may be formed between the substrate 202 and the first stop layer 203 and/or between the first stop layer 203 and the second stop layer 205 to relieve the stress between the different layers. Similarly, another pad oxide layer can be formed between the second stop layer 205 and the first polysilicon layer 207 to relieve stress therebetween.

第一犧牲層209、第二犧牲層211和第三犧牲層213可在本文被共同稱為犧牲層。在一些實施方式中,第一犧牲層209、第二犧牲層211和第三犧牲層213分別包括氮氧化矽、多晶矽和氮氧化矽。如下面更詳細描述的,第三犧牲層213可充當在從正面蝕刻狹縫開口時的停止層,並可稍後被選擇性地移除,且因此可包括相對於多晶矽(在第三犧牲層213上的第二多晶矽層215的材料)具有高蝕刻選擇性(例如大於大約5)的任何其它適當的材料。第二犧牲層211可稍後被選擇性地移除且因此可包括相對於介電質(例如多晶矽或碳)具有高蝕刻 選擇性(例如大於大約5)的任何其它適當的材料。第一犧牲層209可充當在蝕刻第二犧牲層211時的停止層,並可稍後被選擇性地移除,且因此可包括相對於多晶矽(第二犧牲層211和第一多晶矽層207的材料)具有高蝕刻選擇性(例如大於大約5)的任何其它適當的材料。 The first sacrificial layer 209, the second sacrificial layer 211, and the third sacrificial layer 213 may be collectively referred to herein as sacrificial layers. In some embodiments, the first sacrificial layer 209, the second sacrificial layer 211, and the third sacrificial layer 213 include silicon oxynitride, polysilicon, and silicon oxynitride, respectively. As described in more detail below, the third sacrificial layer 213 can act as a stop layer when etching the slit openings from the front side, and can be selectively removed later, and thus can be included relative to polysilicon (in the third sacrificial layer material of the second polysilicon layer 215 on 213) any other suitable material with a high etch selectivity (eg, greater than about 5). The second sacrificial layer 211 can be selectively removed later and thus can include high etch relative to dielectrics such as polysilicon or carbon Any other suitable material of selectivity (eg greater than about 5). The first sacrificial layer 209 may act as a stop layer when etching the second sacrificial layer 211 and may be selectively removed later, and thus may include relative 207) any other suitable material with high etch selectivity (eg, greater than about 5).

第一停止層203、第二停止層205、第一多晶矽層207、第一犧牲層209、第二犧牲層211、第三犧牲層213和第二多晶矽層215(或在其之間的任何其它層)可以以這個順序在多個迴圈中透過使用一種或多種薄膜沉積製程(包括但不限於化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、電鍍、無電沉積、任何其它適當的沉積製程或其任何組合)沉積相應的材料來相繼形成。在一些實施方式中,第一多晶矽層207和第二多晶矽層215中的至少一個摻雜有N型摻雜劑,例如P、As或Sb。在一個示例中,可在沉積多晶矽材料之後使用離子佈植過程來摻雜第一多晶矽層207和第二多晶矽層215中的至少一個。在另一示例中,當沉積多晶矽以形成第一多晶矽層207和第二多晶矽層215中的至少一個時,可進行N型摻雜劑的原位摻雜。應理解,在一些示例中,第一多晶矽層207和第二多晶矽層215中沒有一個在這個階段被摻雜有N型摻雜劑。 The first stop layer 203, the second stop layer 205, the first polysilicon layer 207, the first sacrificial layer 209, the second sacrificial layer 211, the third sacrificial layer 213, and the second polysilicon layer 215 (or among them) Any other layers in between) can be in this order in multiple loops by using one or more thin film deposition processes (including but not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD) ), electroplating, electroless deposition, any other suitable deposition process, or any combination thereof) depositing the corresponding materials to form successively. In some embodiments, at least one of the first polysilicon layer 207 and the second polysilicon layer 215 is doped with an N-type dopant, such as P, As, or Sb. In one example, at least one of the first polysilicon layer 207 and the second polysilicon layer 215 may be doped using an ion implantation process after depositing the polysilicon material. In another example, in-situ doping of N-type dopants may be performed when polysilicon is deposited to form at least one of the first polysilicon layer 207 and the second polysilicon layer 215 . It should be appreciated that in some examples, neither the first polysilicon layer 207 nor the second polysilicon layer 215 are doped with N-type dopants at this stage.

如圖2A所示,在第二多晶矽層215上形成包括多對第一介電質層(被稱為“堆疊犧牲層212”)和第二介電質層(被稱為“堆疊介電質層210”)的介電質疊層208。根據一些實施方式,介電質疊層208包括交錯的堆疊犧牲層212和堆疊介電質層210。堆疊介電質層210和堆疊犧牲層212可交替地沉積在第二多晶矽層215上以形成介電質疊層208。在一些實施方式中,每個堆疊介電質層210包括一層氧化矽,且每個堆疊犧牲層212包括一層氮化矽。可透過一種或多種薄膜沉積製程(包括但不限於CVD、PVD、ALD或其任何組合)來形成介電質疊層208。 在一些實施方式中,在第二多晶矽層215和介電質疊層208之間形成墊氧化物層(例如未示出的氧化矽層)。 As shown in FIG. 2A , a plurality of pairs of a first dielectric layer (referred to as a “stacked sacrificial layer 212 ”) and a second dielectric layer (referred to as a “stacked dielectric layer”) are formed on the second polysilicon layer 215 The dielectric stack 208 of the dielectric layer 210"). According to some embodiments, the dielectric stack 208 includes a stacked sacrificial layer 212 and a stacked dielectric layer 210 that are staggered. Stacked dielectric layers 210 and stacked sacrificial layers 212 may be alternately deposited on second polysilicon layer 215 to form dielectric stack 208 . In some embodiments, each stacked dielectric layer 210 includes a layer of silicon oxide, and each stacked sacrificial layer 212 includes a layer of silicon nitride. Dielectric stack 208 may be formed by one or more thin film deposition processes, including but not limited to CVD, PVD, ALD, or any combination thereof. In some embodiments, a pad oxide layer (eg, a silicon oxide layer not shown) is formed between the second polysilicon layer 215 and the dielectric stack 208 .

方法400繼續進行到如圖4所示的步驟404,其中形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸的、在停止層處停止的通道結構。在一些實施方式中,為了形成通道結構,形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸的通道孔,以及沿著通道孔的側壁相繼形成記憶體膜和半導體通道。在一些實施方式中,形成在半導體通道之上並與半導體通道接觸的通道插塞。 The method 400 proceeds to step 404 as shown in FIG. 4 in which a stop at stop layer is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer and the first polysilicon layer channel structure. In some embodiments, to form the channel structure, a via hole is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, and along sidewalls of the via hole A memory film and a semiconductor channel are formed successively. In some embodiments, a channel plug is formed over and in contact with the semiconductor channel.

如圖2A所示,通道孔是穿過介電質疊層208、第二多晶矽層215、犧牲層213、211和209以及第一多晶矽層207垂直地延伸的、在第二停止層205處停止的開口。在一些實施方式中,形成多個開口,使得每個開口變成用於在以後的過程中使單獨通道結構214生長的位置。在一些實施方式中,用於形成通道結構214的通道孔的製造過程包括濕式蝕刻和/或乾式蝕刻製程,例如深離子反應蝕刻(DRIE)。根據一些實施方式,通道孔的蝕刻繼續,直到由於在第二停止層205(例如氧化鋁)和第一多晶矽層207(例如多晶矽)的材料之間的蝕刻選擇性而由第二停止層205(例如高k介電質層(例如氧化鋁層))停止為止。在一些實施方式中,蝕刻條件(例如蝕刻速率和時間)可被控制以確保每個通道孔到達第二停止層205並由第二停止層205停止,以使得在通道孔和在其中形成的通道結構214當中的鑿槽變化最小化。應理解,根據特定的蝕刻選擇性,一個或多個通道孔可在小範圍上延伸到第二停止層205內,這在本發明內容中仍然被視為由第二停止層205停止,並使它的下端在名義上與第二停止層205的頂表面齊平。 As shown in FIG. 2A, via holes extend vertically through the dielectric stack 208, the second polysilicon layer 215, the sacrificial layers 213, 211, and 209, and the first polysilicon layer 207, at a second stop The opening that stops at layer 205. In some embodiments, multiple openings are formed such that each opening becomes a location for growing individual channel structures 214 in a later process. In some embodiments, the fabrication process used to form the channel holes of the channel structure 214 includes wet etching and/or dry etching processes, such as deep ion reactive etching (DRIE). According to some embodiments, the etching of the via hole continues until the second stop layer 205 (eg, aluminum oxide) and the material of the first polysilicon layer 207 (eg, polysilicon) are blocked by the second stop layer due to the etch selectivity between the materials of the first polysilicon layer 207 (eg, polysilicon). 205 (eg, a high-k dielectric layer (eg, an aluminum oxide layer)) until it stops. In some embodiments, the etch conditions (eg, etch rate and time) can be controlled to ensure that each via hole reaches and is stopped by the second stop layer 205 such that the via hole and the via formed therein Gouge variation among structures 214 is minimized. It should be understood that, depending on the particular etch selectivity, one or more via holes may extend to a small extent into the second stop layer 205, which is still considered to be stopped by the second stop layer 205 in the context of the present disclosure, and enables the Its lower end is nominally flush with the top surface of the second stop layer 205 .

如圖2A所示,記憶體膜216(包括阻障層、儲存層和穿隧層)和半導體通道218以這個順序沿著通道孔的側壁和底表面相繼形成。在一些實施方式中,記憶體膜216首先沿著通道孔的側壁和底表面沉積,且半導體通道218然後沉積在記憶體膜216之上。阻障層、儲存層和穿隧層可隨後以這個順序使用一種或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其它適當的製程或其任何 組合)來沉積以形成記憶體膜216。然後可透過使用一種或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其它適當的製程或其任何組合)在記憶體膜216的穿隧層之上沉積半導體材料(例如多晶矽)來形成半導體通道218。在一些實施方式中,第一氧化矽層、氮化矽層、第二氧化矽層和多晶矽層(“SONO”結構)隨後被沉積以形成記憶體膜216和半導體通道218。 As shown in FIG. 2A, a memory film 216 (including a barrier layer, a storage layer, and a tunneling layer) and a semiconductor channel 218 are sequentially formed in this order along the sidewalls and bottom surfaces of the channel holes. In some embodiments, the memory film 216 is first deposited along the sidewalls and bottom surfaces of the via holes, and the semiconductor channel 218 is then deposited over the memory film 216 . The barrier, storage, and tunneling layers may then be in this order using one or more thin film deposition processes (eg, ALD, CVD, PVD, any other suitable process, or any combination) to deposit to form the memory film 216. The semiconductor channel may then be formed by depositing a semiconductor material (eg, polysilicon) over the tunneling layer of the memory film 216 using one or more thin film deposition processes (eg, ALD, CVD, PVD, any other suitable process, or any combination thereof) 218. In some embodiments, a first silicon oxide layer, a silicon nitride layer, a second silicon oxide layer, and a polysilicon layer (“SONO” structure) are subsequently deposited to form the memory film 216 and the semiconductor channel 218 .

如圖2A所示,上覆層220在通道孔中和半導體通道218之上形成以完全或部分地填充通道孔(例如在沒有或具有空氣間隙的情況下)。可透過使用一種或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其它適當的製程或其任何組合)沉積介電質材料(例如氧化矽)來形成上覆層220。然後可在通道孔的上部分中形成通道插塞222。在一些實施方式中,在介電質疊層208的頂表面上的記憶體膜216、半導體通道218和上覆層220的部分被移除並透過CMP、濕式蝕刻和/或乾式蝕刻製程被平面化。然後可透過濕式蝕刻和/或乾式蝕刻在通道孔的上部分中的半導體通道218和上覆層220的部分在通道孔的上部分中形成凹槽。 然後可透過經由一種或多種薄膜沉積製程(例如CVD、PVD、ALD或其任何組合)將半導體材料(例如多晶矽)沉積到凹槽內來形成通道插塞222。根據一些實施方式,通道結構214因此穿過介電質疊層208、第二多晶矽層215、犧牲層213、211和209以及第一多晶矽層207而形成,在第二停止層205處停止。 As shown in FIG. 2A, an overcladding layer 220 is formed in the via hole and over the semiconductor via 218 to fully or partially fill the via hole (eg, without or with an air gap). Overlay 220 may be formed by depositing a dielectric material (eg, silicon oxide) using one or more thin film deposition processes (eg, ALD, CVD, PVD, any other suitable process, or any combination thereof). A channel plug 222 may then be formed in the upper portion of the channel hole. In some embodiments, portions of the memory film 216 , semiconductor channels 218 , and overlying layer 220 on the top surface of the dielectric stack 208 are removed and removed by a CMP, wet etch, and/or dry etch process Flatten. Recesses may then be formed in the upper portion of the via hole by wet etching and/or dry etching portions of the semiconductor channel 218 and overlying layer 220 in the upper portion of the via hole. The channel plug 222 may then be formed by depositing a semiconductor material (eg, polysilicon) into the recess through one or more thin film deposition processes (eg, CVD, PVD, ALD, or any combination thereof). According to some embodiments, the channel structure 214 is thus formed through the dielectric stack 208 , the second polysilicon layer 215 , the sacrificial layers 213 , 211 and 209 and the first polysilicon layer 207 , at the second stop layer 205 . stop there.

方法400繼續進行到如圖4所示的步驟406,其中形成穿過介電質疊層和第二多晶矽層垂直地延伸、在犧牲層處停止的開口,以暴露犧牲層的部分。 在一些實施方式中,形成在第三犧牲層處停止的開口。 The method 400 proceeds to step 406 as shown in FIG. 4 in which an opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose portions of the sacrificial layer. In some embodiments, an opening is formed that stops at the third sacrificial layer.

如圖2B所示,狹縫224是穿過介電質疊層208和第二多晶矽層215垂直地延伸、在第三犧牲層213處停止的所形成的開口,其暴露第三犧牲層213的部分。在一些實施方式中,用於形成狹縫224的製造過程包括濕式蝕刻和/或乾式蝕刻製程,例如DRIE。在一些實施方式中,首先蝕刻介電質疊層208的堆疊介電質 層210和堆疊犧牲層212。介電質疊層208的蝕刻可以不在第二多晶矽層215的頂表面處停止,且以各種深度(即鑿槽變化)更遠地延伸到第二多晶矽層215內。 因此,可進行第二蝕刻過程(有時被稱為後蝕刻處理)以蝕刻第二多晶矽層215,直到由於在第三犧牲層213(例如氮氧化矽層)和第二多晶矽層215(例如多晶矽)的材料之間的蝕刻選擇性而由第三犧牲層213(例如氮氧化矽層)停止為止。 As shown in FIG. 2B, slit 224 is an opening formed vertically extending through dielectric stack 208 and second polysilicon layer 215, stopping at third sacrificial layer 213, exposing the third sacrificial layer Section 213. In some embodiments, the fabrication process used to form the slits 224 includes a wet etch and/or dry etch process, such as DRIE. In some embodiments, the stack dielectric of dielectric stack 208 is first etched layer 210 and stacked sacrificial layer 212 . Etching of the dielectric stack 208 may not stop at the top surface of the second polysilicon layer 215 and extend further into the second polysilicon layer 215 at various depths (ie, gouge variations). Therefore, a second etch process (sometimes referred to as a post-etch process) may be performed to etch the second polysilicon layer 215 until the third sacrificial layer 213 (eg, silicon oxynitride layer) and the second polysilicon layer are The etch selectivity between materials 215 (eg, polysilicon) is stopped by a third sacrificial layer 213 (eg, a silicon oxynitride layer).

方法400繼續進行到如圖4所示的步驟408,其中穿過開口利用在第一和第二多晶矽層之間的第三多晶矽層代替犧牲層。在一些實施方式中,為了利用第三多晶矽層代替犧牲層,穿過開口移除犧牲層以形成在第一和第二多晶矽層之間的腔,穿過開口移除記憶體膜的部分以暴露沿著通道孔的側壁的半導體通道的部分,以及穿過開口將多晶矽沉積到腔內以形成第三多晶矽層。在一些實施方式中,第一、第二和第三多晶矽層中的至少一個摻雜有N型摻雜劑。可在第一、第二和第三多晶矽層中擴散N型摻雜劑。 The method 400 proceeds to step 408 as shown in FIG. 4 in which the sacrificial layer is replaced by a third polysilicon layer between the first and second polysilicon layers through the opening. In some embodiments, to replace the sacrificial layer with the third polysilicon layer, the sacrificial layer is removed through the opening to form a cavity between the first and second polysilicon layers, the memory film is removed through the opening to expose portions of the semiconductor channel along the sidewalls of the channel hole, and polysilicon is deposited into the cavity through the opening to form a third polysilicon layer. In some embodiments, at least one of the first, second, and third polysilicon layers is doped with an N-type dopant. N-type dopants may be diffused in the first, second and third polysilicon layers.

如圖2C所示,透過沿著狹縫224的側壁沉積一種或多種介電質(例如高k介電質)來沿著狹縫224的側壁形成隔板228。可使用濕式蝕刻和/或乾式蝕刻製程來打開隔板228的底表面(和在狹縫224中的第三犧牲層213的部分,如果仍然保留)以暴露第二犧牲層211的部分(在圖2B中示出,例如多晶矽層)。在一些實施方式中,然後透過濕式蝕刻和/或乾式蝕刻來移除犧牲層211以形成腔226。在一些實施方式中,第二犧牲層211包括多晶矽,隔板228包括高k介電質,第一犧牲層209和第三犧牲層213各自包括氮氧化矽,以及第二犧牲層211透過穿過狹縫224塗敷四甲基氫氧化銨(TMAH)蝕刻劑而被蝕刻,該蝕刻可由高k介電質的隔板228以及氮氧化矽的第一犧牲層209和第三犧牲層213停止。也就是說,根據一些實施方式,第二犧牲層211的移除不影響介電質疊層208和分別由隔板228以及第一犧牲層209和第三犧牲層213保護的第一多晶矽層207和第二多晶矽層215。 Spacers 228 are formed along the sidewalls of the slits 224 by depositing one or more dielectrics (eg, high-k dielectrics) along the sidewalls of the slits 224 as shown in FIG. 2C . A wet etch and/or dry etch process may be used to open the bottom surface of the spacer 228 (and the portion of the third sacrificial layer 213 in the slit 224, if still remaining) to expose the portion of the second sacrificial layer 211 (in the slit 224). 2B, eg a polysilicon layer). In some embodiments, the sacrificial layer 211 is then removed by wet etching and/or dry etching to form the cavity 226 . In some embodiments, the second sacrificial layer 211 includes polysilicon, the spacer 228 includes a high-k dielectric, the first sacrificial layer 209 and the third sacrificial layer 213 each include silicon oxynitride, and the second sacrificial layer 211 penetrates through Slot 224 is etched by applying tetramethylammonium hydroxide (TMAH) etchant, which is stopped by high-k dielectric spacer 228 and first sacrificial layer 209 and third sacrificial layer 213 of silicon oxynitride. That is, according to some embodiments, the removal of the second sacrificial layer 211 does not affect the dielectric stack 208 and the first polysilicon protected by the spacer 228 and the first and third sacrificial layers 209 and 213, respectively layer 207 and second polysilicon layer 215.

如圖2D所示,移除在腔226中暴露的記憶體膜216的部分以暴露沿著通道結構214的側壁的半導體通道218的部分。在一些實施方式中,透過穿過狹縫224和腔226塗敷蝕刻劑(例如用於蝕刻氮化矽的磷酸和用於蝕刻氧化矽的氫氟酸)來蝕刻阻障層(例如包括氧化矽)、儲存層(例如包括氮化矽)和穿隧層(例如包括氧化矽)的部分。蝕刻可由隔板228和半導體通道218停止。也就是說,根據一些實施方式,在腔226中暴露的記憶體膜216的部分的移除不影響介電質疊層208(由隔板228保護)和包括多晶矽的半導體通道218和由半導體通道218圍住的上覆層220。在一些實施方式中,第一犧牲層209和第三犧牲層213(包括氮氧化矽)也透過相同的蝕刻製程被移除。 As shown in FIG. 2D , the portion of the memory film 216 exposed in the cavity 226 is removed to expose the portion of the semiconductor channel 218 along the sidewalls of the channel structure 214 . In some embodiments, the barrier layer (eg, including silicon oxide) is etched by applying an etchant (eg, phosphoric acid for etching silicon nitride and hydrofluoric acid for etching silicon oxide) through slit 224 and cavity 226 ), the storage layer (for example comprising silicon nitride) and the tunneling layer (for example comprising silicon oxide). Etching can be stopped by spacer 228 and semiconductor channel 218 . That is, according to some embodiments, the removal of the portion of the memory film 216 exposed in the cavity 226 does not affect the dielectric stack 208 (protected by the spacer 228 ) and the semiconductor channel 218 including polysilicon and the semiconductor channel 218 , which is protected by the spacer 228 The upper cladding 220 surrounded by 218. In some embodiments, the first sacrificial layer 209 and the third sacrificial layer 213 (including silicon oxynitride) are also removed by the same etching process.

如圖2E所示,在第一多晶矽層207和第二多晶矽層215之間形成第三多晶矽層230。在一些實施方式中,透過使用一種或多種薄膜沉積製程(例如CVD、PVD、ALD或其任何組合)穿過狹縫224將多晶矽沉積到腔226(在圖2D中示出)內來形成第三多晶矽層230。在一些實施方式中,當沉積多晶矽以形成第三多晶矽層230時,進行N型摻雜劑(例如P、As或Sb的原位摻雜。第三多晶矽層230可填充腔226以與通道結構214的半導體通道218的被暴露部分接觸。應理解,第三多晶矽層230可以是摻雜的或非摻雜的,取決於第一多晶矽層207和第二多晶矽層215中的至少一個是否摻雜有N型摻雜劑,因為第一多晶矽層207、第二多晶矽層215和第三多晶矽層230中的至少一個可能需要摻雜有N型摻雜劑。在一些實施方式中,在第一多晶矽層207、第二多晶矽層215和第三多晶矽層230中的至少一個中的N型摻雜劑被擴散在第一多晶矽層207、第二多晶矽層215和第三多晶矽層230中,以使用熱擴散製程(例如退火)來在第一多晶矽層207、第二多晶矽層215和第三多晶矽層230當中在垂直方向上實現均勻摻雜濃度分佈。例如,摻雜濃度在擴散之後可以在1019cm-3和1022cm-3之間。如上所述,在第一多晶矽層207、第二多晶矽層215和第三多晶矽層230之間的介面可變得不 可區別,因為第一多晶矽層207、第二多晶矽層215和第三多晶矽層230中的每一者包括具有在名義上相同的摻雜濃度的相同多晶矽材料。因此,第一多晶矽層207、第二多晶矽層215和第三多晶矽層230可在擴散之後共同被視為多晶矽層。 As shown in FIG. 2E , a third polysilicon layer 230 is formed between the first polysilicon layer 207 and the second polysilicon layer 215 . In some embodiments, the third film is formed by depositing polysilicon through slit 224 into cavity 226 (shown in FIG. 2D ) using one or more thin film deposition processes (eg, CVD, PVD, ALD, or any combination thereof) Polysilicon layer 230 . In some embodiments, when the polysilicon is deposited to form the third polysilicon layer 230 , in-situ doping of N-type dopants such as P, As, or Sb is performed. The third polysilicon layer 230 may fill the cavity 226 to contact the exposed portion of the semiconductor channel 218 of the channel structure 214. It should be understood that the third polysilicon layer 230 may be doped or undoped, depending on the first polysilicon layer 207 and the second polysilicon layer Whether at least one of the silicon layers 215 is doped with N-type dopants, because at least one of the first polysilicon layer 207 , the second polysilicon layer 215 and the third polysilicon layer 230 may need to be doped with N-type dopant. In some embodiments, the N-type dopant in at least one of the first polysilicon layer 207, the second polysilicon layer 215, and the third polysilicon layer 230 is diffused in the In the first polysilicon layer 207, the second polysilicon layer 215 and the third polysilicon layer 230, a thermal diffusion process (such as annealing) is used to form the first polysilicon layer 207, the second polysilicon layer A uniform dopant concentration profile is achieved in the vertical direction among the third polysilicon layer 215 and the third polysilicon layer 230. For example, the dopant concentration after diffusion may be between 10 19 cm -3 and 10 22 cm -3 . As described above, in The interfaces between the first polysilicon layer 207, the second polysilicon layer 215 and the third polysilicon layer 230 may become indistinguishable because the first polysilicon layer 207, the second polysilicon layer 215 and the Each of the third polysilicon layers 230 includes the same polysilicon material with nominally the same doping concentration. Thus, the first polysilicon layer 207, the second polysilicon layer 215, and the third polysilicon layer Layer 230 may collectively be considered a polysilicon layer after diffusion.

方法400繼續進行到如圖4所示的步驟410,其中使用所謂的“閘極更換過程”穿過開口利用記憶體疊層代替介電質疊層。如圖2F所示,使用濕式蝕刻和/或乾式蝕刻來移除沿著狹縫224(在圖2E中示出)的側壁形成的第三多晶矽層230和任何剩餘隔板228的部分,以穿過狹縫224暴露介電質疊層208的堆疊犧牲層212。蝕刻過程可被控制(例如透過控制蝕刻速率和/或時間),使得第三多晶矽層230將保留在第一多晶矽層207和第二多晶矽層215之間並與通道結構214的半導體通道218接觸。 The method 400 proceeds to step 410 as shown in FIG. 4, wherein the dielectric stack is replaced with a memory stack through the opening using a so-called "gate replacement process". As shown in Figure 2F, wet and/or dry etching is used to remove portions of the third polysilicon layer 230 and any remaining spacers 228 formed along the sidewalls of the slits 224 (shown in Figure 2E) , to expose the stacked sacrificial layer 212 of the dielectric stack 208 through the slit 224 . The etch process can be controlled (eg, by controlling the etch rate and/or time) such that the third polysilicon layer 230 will remain between the first polysilicon layer 207 and the second polysilicon layer 215 and with the channel structure 214 The semiconductor channel 218 contacts.

如圖2G所示,可透過閘極更換過程(即,利用堆疊導電層236代替堆疊犧牲層212)來形成記憶體疊層234。記憶體疊層234因此可包括在第二多晶矽層215上的交錯的堆疊導電層236和堆疊介電質層210。在一些實施方式中,為了形成記憶體疊層234,透過穿過狹縫224塗敷蝕刻劑來移除堆疊犧牲層212,以形成多個橫向凹槽。可接著透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)沉積一種或多種導電材料來將堆疊導電層236沉積到橫向凹槽內。根據一些實施方式,通道結構214因此穿過記憶體疊層234和包括第一多晶矽層207、第二多晶矽層215和第三多晶矽層230的多晶矽層垂直地延伸,在第二停止層205處停止。 As shown in FIG. 2G, the memory stack 234 may be formed through a gate replacement process (ie, using the stacked conductive layer 236 in place of the stacked sacrificial layer 212). The memory stack 234 may thus include alternating stacked conductive layers 236 and stacked dielectric layers 210 on the second polysilicon layer 215 . In some embodiments, to form the memory stack 234, the stack sacrificial layer 212 is removed by applying an etchant through the slits 224 to form a plurality of lateral grooves. The stacked conductive layer 236 may then be deposited into the lateral grooves by depositing one or more conductive materials using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof). According to some embodiments, the channel structure 214 thus extends vertically through the memory stack 234 and the polysilicon layer including the first polysilicon layer 207, the second polysilicon layer 215 and the third polysilicon layer 230, at the The second stop layer 205 stops.

方法400繼續進行到如圖4所示的步驟412,其中在開口中形成絕緣結構。在一些實施方式中,為了形成絕緣結構,將一種或多種介電質材料沉積到開口內以填充開口。如圖2H所示,在狹縫224(在圖2G中示出)中形成絕緣結構242。可透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)將一種或多種介電質材料(例如高k介電質)(也作為閘極介電質層238) 和作為絕緣體核心240的氧化矽沉積到狹縫224內,以在具有或沒有空氣間隙的情況下完全或部分地填充狹縫224來形成絕緣結構242。 The method 400 proceeds to step 412 as shown in FIG. 4 where insulating structures are formed in the openings. In some embodiments, to form insulating structures, one or more dielectric materials are deposited into the openings to fill the openings. As shown in FIG. 2H, insulating structures 242 are formed in slits 224 (shown in FIG. 2G). One or more dielectric materials (eg, high-k dielectrics) (also serving as gate dielectric layer 238 ) may be deposited using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof) and silicon oxide as an insulator core 240 is deposited into the slits 224 to completely or partially fill the slits 224 with or without air gaps to form insulating structures 242 .

方法400繼續進行到如圖4所示的步驟414,其中從與基底的第一側相對的第二側移除基底,其在停止層處停止。第二側可以是基底的背面。如圖2I所示,從背面移除基底202(在圖2H中示出)。雖然未在圖2I中示出,應理解,在圖2H中的中間結構可顛倒地翻轉以具有在中間結構的頂部上的基底202。在一些實施方式中,使用CMP、研磨、濕式蝕刻和/或乾式蝕刻來完全移除基底202,直到由第一停止層203(例如氮化矽層)停止為止。在一些實施方式中,使用矽CMP來移除基底202(矽基底),其在到達具有除了矽以外的材料(即,充當背面CMP停止層)的第一停止層203時自動停止。在一些實施方式中,使用濕式蝕刻透過TMAH來移除基底202(矽基底),其在到達具有除了矽以外的材料(即,充當背面蝕刻停止層)的第一停止層203時自動停止。如上所述,在一些實施方式中,停止層可包括可充當正面蝕刻停止層和背面CMP/蝕刻停止層的單個層(例如第一停止層203或第二停止層205)。然而,包括第一停止層203和/或第二停止層205的停止層可確保基底202的完全移除,而沒有關係到在減薄之後的厚度均勻性。 The method 400 proceeds to step 414 as shown in FIG. 4, wherein the substrate is removed from a second side opposite the first side of the substrate, which stops at the stop layer. The second side may be the backside of the substrate. As shown in Figure 2I, the substrate 202 (shown in Figure 2H) is removed from the backside. Although not shown in Figure 2I, it should be understood that the intermediate structure in Figure 2H may be flipped upside down to have the substrate 202 on top of the intermediate structure. In some embodiments, the substrate 202 is completely removed using CMP, grinding, wet etching, and/or dry etching until stopped by the first stop layer 203 (eg, a silicon nitride layer). In some embodiments, the substrate 202 (silicon substrate) is removed using silicon CMP, which automatically stops upon reaching the first stop layer 203 having a material other than silicon (ie, serving as a backside CMP stop layer). In some implementations, the substrate 202 (silicon substrate) is removed through TMAH using a wet etch that automatically stops upon reaching the first stop layer 203 having a material other than silicon (ie, serving as a backside etch stop layer). As described above, in some embodiments, the stop layer may include a single layer (eg, first stop layer 203 or second stop layer 205) that may function as a front side etch stop layer and a back side CMP/etch stop layer. However, the stop layer including the first stop layer 203 and/or the second stop layer 205 can ensure complete removal of the substrate 202 regardless of thickness uniformity after thinning.

方法400繼續進行到如圖4所示的步驟416,其中穿過停止層垂直地延伸的源極接觸結構被形成為與第一多晶矽層接觸。如圖2J所示,使用濕式蝕刻和/或乾式蝕刻來移除第一停止層203以暴露第二停止層205。可透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)將介電質材料(例如氧化矽)沉積在第二停止層205的頂部上來在第二停止層205上形成介電質層244。 The method 400 proceeds to step 416 as shown in FIG. 4, wherein a source contact structure extending vertically through the stop layer is formed in contact with the first polysilicon layer. As shown in FIG. 2J , the first stop layer 203 is removed using wet etching and/or dry etching to expose the second stop layer 205 . A dielectric material may be formed on the second stop layer 205 by depositing a dielectric material (eg, silicon oxide) on top of the second stop layer 205 using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof) Electrical layer 244 .

如圖2K所示,形成穿過介電質層244和第二停止層205垂直地延伸以與第一多晶矽層207接觸的背面源極接觸結構246。在一些實施方式中,首先透 過使用濕式蝕刻和/或乾式蝕刻(例如RIE)蝕刻穿過介電質層244和第二停止層205垂直地延伸到第一多晶矽層207內的開口、接著透過在開口的側壁和底表面之上形成黏合劑層(例如透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)沉積TiN)來形成源極接觸結構246。然後可透過在黏合劑層之上形成導電層(例如透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD、電鍍、無電鍍或其任何組合)沉積金屬(例如W))來形成源極接觸結構246。 As shown in FIG. 2K , a backside source contact structure 246 is formed extending vertically through the dielectric layer 244 and the second stop layer 205 to contact the first polysilicon layer 207 . In some embodiments, the first The openings extending vertically into the first polysilicon layer 207 are etched through the dielectric layer 244 and the second stop layer 205 by using wet etching and/or dry etching (eg, RIE), and then through the sidewalls and An adhesive layer is formed over the bottom surface (eg, by depositing TiN using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof)) to form source contact structures 246 . The source can then be formed by forming a conductive layer over the adhesive layer (eg, by depositing a metal (eg, W) using one or more thin film deposition processes (eg, PVD, CVD, ALD, electroplating, electroless plating, or any combination thereof)) Contact structure 246 .

應理解,在不同於圖4中的步驟416的一些示例中,可在移除基底之後移除停止層,使得源極接觸結構穿過介電質層但不是停止層垂直地延伸,以與第一多晶矽層接觸。在一些實施方式中,在移除基底之後停止層被移除,形成與第一多晶矽層接觸的介電質層,以及穿過介電質層垂直地延伸的源極接觸結構被形成為與第一多晶矽層接觸。 It should be understood that in some examples other than step 416 in FIG. 4, the stop layer may be removed after the substrate is removed such that the source contact structure extends perpendicularly through the dielectric layer but not the stop layer to A polysilicon layer contacts. In some embodiments, the stop layer is removed after the substrate is removed, a dielectric layer is formed in contact with the first polysilicon layer, and a source contact structure extending vertically through the dielectric layer is formed as in contact with the first polysilicon layer.

如圖2L所示,使用濕式蝕刻和/或乾式蝕刻移除第一停止層203和第二停止層205兩者以暴露第一多晶矽層207。可透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)將介電質材料(例如氧化矽)沉積在第一多晶矽層207的頂部上來在第一多晶矽層207上形成介電質層244。 As shown in FIG. 2L , both the first stop layer 203 and the second stop layer 205 are removed using wet and/or dry etching to expose the first polysilicon layer 207 . The first polysilicon layer may be formed by depositing a dielectric material (eg, silicon oxide) on top of the first polysilicon layer 207 using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof) A dielectric layer 244 is formed on 207 .

如圖2L所示,形成穿過介電質層244垂直地延伸以與第一多晶矽層207接觸的背面源極接觸結構246。在一些實施方式中,透過首先使用濕式蝕刻和/或乾式蝕刻(例如RIE)蝕刻穿過介電質層244垂直地延伸到第一多晶矽層207內的開口、接著透過在開口的側壁和底表面之上形成黏合劑層(例如透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)沉積TiN)來形成源極接觸結構246。然後可透過在黏合劑層之上形成導電層(例如透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD、電鍍、無電鍍或其任何組合)沉積金屬(例如W))來形成源極接觸結構246。 As shown in FIG. 2L , a backside source contact structure 246 is formed extending vertically through the dielectric layer 244 to contact the first polysilicon layer 207 . In some embodiments, openings extending vertically into first polysilicon layer 207 through dielectric layer 244 are first etched using wet and/or dry etching (eg, RIE), and then through the sidewalls of the openings. The source contact structure 246 is formed by forming an adhesive layer (eg, by depositing TiN using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof)) over the bottom surface. The source can then be formed by forming a conductive layer over the adhesive layer (eg, by depositing a metal (eg, W) using one or more thin film deposition processes (eg, PVD, CVD, ALD, electroplating, electroless plating, or any combination thereof)) Contact structure 246 .

雖然現在被示出,應理解在一些示例中,在移除基底之前,可透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)將一種或多種導電材料沉積在開口中來在開口(例如狹縫224)中形成正面源極接觸結構。正面源極接觸結構可代替背面源極接觸結構(例如源極接觸結構246)和正面絕緣結構(例如絕緣結構242)。 Although now shown, it should be understood that in some examples, one or more conductive materials may be deposited in the openings by using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof) prior to removal of the substrate to form front-side source contact structures in openings such as slits 224 . Front-side source contact structures may replace back-side source contact structures (eg, source contact structures 246 ) and front-side insulating structures (eg, insulating structures 242 ).

圖3A-3J示出根據本發明內容的一些實施方式的用於形成另一示例性3D記憶體裝置的製造過程。圖5示出根據本發明內容的一些實施方式的用於形成另一示例性3D記憶體裝置的方法500的流程圖。在圖3A-3J和圖5中描繪的3D記憶體裝置的示例包括在圖1C中描繪的3D記憶體裝置101a。將一起描述圖3A-3J和圖5。應理解,在方法500中示出的步驟不是排他的,以及其它步驟也可在任一所示步驟之前、之後或之間進行。此外,一些步驟可同時或以與在圖5中所示的不同的循序執行。 3A-3J illustrate a fabrication process for forming another exemplary 3D memory device in accordance with some embodiments of this disclosure. 5 illustrates a flowchart of a method 500 for forming another exemplary 3D memory device in accordance with some embodiments of this disclosure. Examples of 3D memory devices depicted in Figures 3A-3J and Figure 5 include 3D memory device 101a depicted in Figure 1C. 3A-3J and FIG. 5 will be described together. It should be understood that the steps shown in method 500 are not exclusive, and that other steps may be performed before, after, or between any of the steps shown. Furthermore, some steps may be performed concurrently or in a different order than that shown in FIG. 5 .

參考圖5,方法500在步驟502處開始,在步驟502中,在基底的第一側處相繼形成停止層、緩衝層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。基底可以是由任何適當的材料(例如玻璃、藍寶石、塑膠(僅舉幾個示例))製成的矽基底或載體基底,以減小基底的成本。第一側可以是半導體元件被形成於其上的基底的正面。在一些實施方式中,停止層包括氮化矽,以及緩衝層包括氧化矽。在一些實施方式中,為了形成犧牲層,相繼形成第一犧牲層、第二犧牲層和第三犧牲層。第一犧牲層可包括氮氧化矽,第二犧牲層可包括多晶矽,以及第三犧牲層可包括氮氧化矽。介電質疊層可包括多個交錯的堆疊犧牲層和堆疊介電質層。 Referring to FIG. 5, method 500 begins at step 502 in which a stop layer, a buffer layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric layer are sequentially formed at a first side of the substrate. Electric stack. The substrate may be a silicon substrate or carrier substrate made of any suitable material such as glass, sapphire, plastic (to name a few) to reduce the cost of the substrate. The first side may be the front side of the substrate on which the semiconductor elements are formed. In some embodiments, the stop layer includes silicon nitride, and the buffer layer includes silicon oxide. In some embodiments, to form the sacrificial layer, a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer are sequentially formed. The first sacrificial layer may include silicon oxynitride, the second sacrificial layer may include polysilicon, and the third sacrificial layer may include silicon oxynitride. The dielectric stack may include a plurality of interleaved stacked sacrificial layers and stacked dielectric layers.

如圖3A所示,停止層303、緩衝層305、第一多晶矽層307、第一犧牲層309、第二犧牲層311、第三犧牲層313和第二多晶矽層315在基底302的正面處相繼形成。基底302可以是由任何適當的材料(例如玻璃、藍寶石、塑膠(僅舉 幾個示例))製成的矽基底或載體基底。在一些實施方式中,停止層303和緩衝層305分別包括氮化矽和氧化矽。如下面詳細描述的,停止層303可充當在從背面移除基底302時的停止層,且因此可包括除了基底302的材料以外的任何其它適當的材料。應理解,在一些實施方式中,墊氧化物層(例如氧化矽層)可在基底302和停止層303之間形成以減輕在其之間的應力。 As shown in FIG. 3A , the stop layer 303 , the buffer layer 305 , the first polysilicon layer 307 , the first sacrificial layer 309 , the second sacrificial layer 311 , the third sacrificial layer 313 and the second polysilicon layer 315 are formed on the substrate 302 formed successively on the front. Substrate 302 can be made of any suitable material (eg, glass, sapphire, plastic (just to name a few). Several examples)) made of silicon substrates or carrier substrates. In some embodiments, stop layer 303 and buffer layer 305 include silicon nitride and silicon oxide, respectively. As described in detail below, stop layer 303 may serve as a stop layer when substrate 302 is removed from the backside, and thus may comprise any other suitable material in addition to the material of substrate 302 . It should be understood that in some embodiments, a pad oxide layer (eg, a silicon oxide layer) may be formed between the substrate 302 and the stop layer 303 to relieve stress therebetween.

第一犧牲層309、第二犧牲層311和第三犧牲層313可在本文被共同稱為犧牲層。在一些實施方式中,第一犧牲層309、第二犧牲層311和第三犧牲層313分別包括氮氧化矽、多晶矽和氮氧化矽。如下面更詳細描述的,第三犧牲層313可充當在從正面蝕刻狹縫開口時的停止層,並可稍後被選擇性地移除,且因此可包括相對於多晶矽(在第三犧牲層313上的第二多晶矽層315的材料)具有高蝕刻選擇性(例如大於大約5)的任何其它適當的材料。第二犧牲層311可稍後被選擇性地移除,且因此可包括相對於介電質(例如多晶矽或碳)具有高蝕刻選擇性(例如大於大約5)的任何其它適當的材料。第一犧牲層309可充當在蝕刻第二犧牲層311時的停止層,並可稍後被選擇性地移除,且因此可包括相對於多晶矽(第二犧牲層311和第一多晶矽層307的材料)具有高蝕刻選擇性(例如大於大約5)的任何其它適當的材料。 The first sacrificial layer 309, the second sacrificial layer 311, and the third sacrificial layer 313 may be collectively referred to herein as sacrificial layers. In some embodiments, the first sacrificial layer 309, the second sacrificial layer 311, and the third sacrificial layer 313 include silicon oxynitride, polysilicon, and silicon oxynitride, respectively. As described in more detail below, the third sacrificial layer 313 can act as a stop layer when etching the slit openings from the front side, and can be selectively removed later, and thus can include relative to polysilicon (in the third sacrificial layer The material of the second polysilicon layer 315 on 313) is any other suitable material with a high etch selectivity (eg, greater than about 5). The second sacrificial layer 311 may be selectively removed later, and thus may comprise any other suitable material with a high etch selectivity (eg, greater than about 5) relative to a dielectric (eg, polysilicon or carbon). The first sacrificial layer 309 can act as a stop layer when etching the second sacrificial layer 311 and can be selectively removed later, and thus can include relative to polysilicon (second sacrificial layer 311 and first polysilicon layer 307) any other suitable material with high etch selectivity (eg, greater than about 5).

停止層303、緩衝層305、第一多晶矽層307、第一犧牲層309、第二犧牲層311、第三犧牲層313和第二多晶矽層315(或在其之間的任何其它層)可以以該順序在多個迴圈中透過使用一種或多種薄膜沉積製程(包括但不限於CVD、PVD、ALD、電鍍、無電沉積、任何其它適當的沉積製程或其任何組合)沉積相應的材料來相繼形成。在一些實施方式中,第一多晶矽層307和第二多晶矽層315中的至少一個摻雜有N型摻雜劑,例如P、As或Sb。在一個示例中,可在沉積多晶矽材料之後,使用離子佈植過程來摻雜第一多晶矽層307和第二多晶矽層315中的至少一個。在另一示例中,當沉積多晶矽以形成第一多晶矽層307 和第二多晶矽層315中的至少一個時,可進行N型摻雜劑的原位摻雜。應理解,在一些示例中,第一多晶矽層307和第二多晶矽層315中沒有一個在該階段被摻雜有N型摻雜劑。 stop layer 303, buffer layer 305, first polysilicon layer 307, first sacrificial layer 309, second sacrificial layer 311, third sacrificial layer 313, and second polysilicon layer 315 (or any other in between) layer) can be deposited in multiple loops in this order by using one or more thin film deposition processes (including but not limited to CVD, PVD, ALD, electroplating, electroless deposition, any other suitable deposition process, or any combination thereof) to deposit the corresponding materials are formed successively. In some embodiments, at least one of the first polysilicon layer 307 and the second polysilicon layer 315 is doped with an N-type dopant, such as P, As, or Sb. In one example, at least one of the first polysilicon layer 307 and the second polysilicon layer 315 may be doped using an ion implantation process after the polysilicon material is deposited. In another example, when polysilicon is deposited to form the first polysilicon layer 307 and at least one of the second polysilicon layer 315, in-situ doping of N-type dopants may be performed. It should be understood that in some examples, neither the first polysilicon layer 307 nor the second polysilicon layer 315 are doped with N-type dopants at this stage.

如圖3A所示,在第二多晶矽層315上形成包括多對第一介電質層(被稱為“堆疊犧牲層312”)和第二介電質層(被稱為“堆疊介電質層310”)的介電質疊層308。根據一些實施方式,介電質疊層308包括交錯的堆疊犧牲層312和堆疊介電質層310。堆疊介電質層310和堆疊犧牲層312可交替地沉積在第二多晶矽層315上,以形成介電質疊層308。在一些實施方式中,每個堆疊介電質層310包括一層氧化矽,且每個堆疊犧牲層312包括一層氮化矽。可透過一種或多種薄膜沉積製程(包括但不限於CVD、PVD、ALD或其任何組合)來形成介電質疊層308。在一些實施方式中,墊氧化物層(例如未示出的氧化矽層)在第二多晶矽層315和介電質疊層308之間形成。 As shown in FIG. 3A , a plurality of pairs of a first dielectric layer (referred to as a “stacked sacrificial layer 312 ”) and a second dielectric layer (referred to as a “stacked dielectric layer”) are formed on the second polysilicon layer 315 The dielectric stack 308 of the dielectric layer 310"). According to some embodiments, the dielectric stack 308 includes a stacked sacrificial layer 312 and a stacked dielectric layer 310 that are staggered. Stacked dielectric layers 310 and stacked sacrificial layers 312 may be alternately deposited on second polysilicon layer 315 to form dielectric stack 308 . In some embodiments, each stacked dielectric layer 310 includes a layer of silicon oxide, and each stacked sacrificial layer 312 includes a layer of silicon nitride. Dielectric stack 308 may be formed by one or more thin film deposition processes, including but not limited to CVD, PVD, ALD, or any combination thereof. In some embodiments, a pad oxide layer (eg, a silicon oxide layer not shown) is formed between the second polysilicon layer 315 and the dielectric stack 308 .

方法500繼續進行到如圖5所示的步驟504,其中形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸到緩衝層內的通道結構。在一些實施方式中,為了形成通道結構,形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸到緩衝層內的通道孔,以及沿著通道孔的側壁相繼形成記憶體膜和半導體通道。在一些實施方式中,形成在半導體通道之上並與半導體通道接觸的通道插塞。 The method 500 proceeds to step 504 as shown in FIG. 5 in which a channel structure is formed extending vertically into the buffer layer through the dielectric stack, the second polysilicon layer, the sacrificial layer and the first polysilicon layer . In some embodiments, to form the channel structure, a channel hole is formed extending vertically into the buffer layer through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, and along the The sidewalls of the via holes successively form memory films and semiconductor vias. In some embodiments, a channel plug is formed over and in contact with the semiconductor channel.

如圖3A所示,通道孔是穿過介電質疊層308、第二多晶矽層315、犧牲層313、311和309以及第一多晶矽層307垂直地延伸到緩衝層305內的開口。在一些實施方式中,形成多個開口,使得每個開口變成用於在以後的過程中使單獨通道結構314生長的位置。在一些實施方式中,用於形成通道結構314的通道孔的製造過程包括濕式蝕刻和/或乾式蝕刻製程(例如DRIE)。通道孔的蝕刻可以不在第一多晶矽層307的底表面處停止,且以各種深度(即,鑿槽變化)更遠 地延伸到緩衝層305內。也就是說,緩衝層305可適應在通道孔之間的鑿槽變化,以確保每個通道孔穿過第一多晶矽層307延伸。 As shown in FIG. 3A, via holes extend vertically into buffer layer 305 through dielectric stack 308, second polysilicon layer 315, sacrificial layers 313, 311 and 309, and first polysilicon layer 307 Open your mouth. In some embodiments, multiple openings are formed such that each opening becomes a location for growing individual channel structures 314 in a later process. In some embodiments, the fabrication process used to form the channel holes of the channel structure 314 includes a wet etch and/or dry etch process (eg, DRIE). The etching of the via holes may not stop at the bottom surface of the first polysilicon layer 307 and further at various depths (ie, gouge variations) The ground extends into the buffer layer 305 . That is, the buffer layer 305 can accommodate gouge variations between via holes to ensure that each via hole extends through the first polysilicon layer 307 .

如圖3A所示,記憶體膜316(包括阻障層、儲存層和穿隧層)和半導體通道318以該順序沿著通道孔的側壁和底表面相繼形成。在一些實施方式中,記憶體膜316首先沿著通道孔的側壁和底表面沉積,且半導體通道318然後沉積在記憶體膜316之上。阻障層、儲存層和穿隧層可隨後以該順序使用一種或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其它適當的製程或其任何組合)來沉積,以形成記憶體膜316。然後可透過使用一種或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其它適當的製程或其任何組合)在記憶體膜316的穿隧層之上沉積半導體材料(例如多晶矽)來形成半導體通道318。在一些實施方式中,第一氧化矽層、氮化矽層、第二氧化矽層和多晶矽層(“SONO”結構)隨後被沉積,以形成記憶體膜316和半導體通道318。 As shown in FIG. 3A, a memory film 316 (including a barrier layer, a storage layer, and a tunneling layer) and a semiconductor channel 318 are sequentially formed in this order along the sidewalls and bottom surfaces of the channel holes. In some embodiments, the memory film 316 is first deposited along the sidewalls and bottom surfaces of the via holes, and the semiconductor channel 318 is then deposited over the memory film 316 . The barrier, storage, and tunneling layers may then be deposited in that order using one or more thin film deposition processes (eg, ALD, CVD, PVD, any other suitable process, or any combination thereof) to form memory film 316 . The semiconductor channel may then be formed by depositing a semiconductor material (eg, polysilicon) over the tunneling layer of the memory film 316 using one or more thin film deposition processes (eg, ALD, CVD, PVD, any other suitable process, or any combination thereof) 318. In some embodiments, a first silicon oxide layer, a silicon nitride layer, a second silicon oxide layer, and a polysilicon layer (“SONO” structure) are subsequently deposited to form the memory film 316 and the semiconductor channel 318 .

如圖3A所示,上覆層320在通道孔中和半導體通道318之上形成,以完全或部分地填充通道孔(例如在沒有或具有空氣間隙的情況下)。可透過使用一種或多種薄膜沉積製程(例如ALD、CVD、PVD、任何其它適當的製程或其任何組合)沉積介電質材料(例如氧化矽)來形成上覆層320。通道插塞322然後可在通道孔的上部分中形成。在一些實施方式中,在介電質疊層308的頂表面上的記憶體膜316、半導體通道318和上覆層320的部分被移除,並透過CMP、濕式蝕刻和/或乾式蝕刻製程被平面化。然後可透過濕式蝕刻和/或乾式蝕刻在通道孔的上部分中的半導體通道318和上覆層320的部分在通道孔的上部分中形成凹槽。然後可透過經由一種或多種薄膜沉積製程(例如CVD、PVD、ALD或其任何組合)將半導體材料(例如多晶矽)沉積到凹槽內來形成通道插塞322。根據一些實施方式,因此穿過介電質疊層308、第二多晶矽層315、犧牲層313、311和309以及第一多晶矽層307將通道結構314形成到緩衝層305內。 As shown in FIG. 3A, an overlying layer 320 is formed in the via hole and over the semiconductor via 318 to fully or partially fill the via hole (eg, without or with air gaps). Overlay 320 may be formed by depositing a dielectric material (eg, silicon oxide) using one or more thin film deposition processes (eg, ALD, CVD, PVD, any other suitable process, or any combination thereof). A channel plug 322 may then be formed in the upper portion of the channel hole. In some embodiments, portions of the memory film 316, semiconductor channels 318, and overlying layer 320 on the top surface of the dielectric stack 308 are removed and subjected to a CMP, wet etch, and/or dry etch process is flattened. Recesses may then be formed in the upper portion of the via hole by wet etching and/or dry etching portions of the semiconductor channel 318 and overlying layer 320 in the upper portion of the via hole. The channel plug 322 may then be formed by depositing a semiconductor material (eg, polysilicon) into the recess through one or more thin film deposition processes (eg, CVD, PVD, ALD, or any combination thereof). Channel structure 314 is thus formed into buffer layer 305 through dielectric stack 308 , second polysilicon layer 315 , sacrificial layers 313 , 311 and 309 and first polysilicon layer 307 according to some embodiments.

方法500繼續進行到如圖5所示的步驟506,其中形成穿過介電質疊層和第二多晶矽層垂直地延伸、在犧牲層處停止的開口以暴露犧牲層的部分。在一些實施方式中,形成在第三犧牲層處停止的開口。 The method 500 proceeds to step 506 as shown in FIG. 5, wherein an opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose portions of the sacrificial layer. In some embodiments, an opening is formed that stops at the third sacrificial layer.

如圖3B所示,狹縫324是穿過介電質疊層308和第二多晶矽層315垂直地延伸、在第三犧牲層313處停止的所形成的開口,其暴露第三犧牲層313的部分。在一些實施方式中,用於形成狹縫324的製造過程包括濕式蝕刻和/或乾式蝕刻製程(例如DRIE)。在一些實施方式中,首先蝕刻介電質疊層308的堆疊介電質層310和堆疊犧牲層312。介電質疊層308的蝕刻可以不在第二多晶矽層315的頂表面處停止,且以各種深度(即,鑿槽變化)更遠地延伸到第二多晶矽層315內。因此,可進行第二蝕刻過程(有時被稱為後蝕刻處理)以蝕刻第二多晶矽層315,直到由於在第三犧牲層313(例如氮氧化矽層)和第二多晶矽層315(例如多晶矽)的材料之間的蝕刻選擇性而由第三犧牲層313(例如氮氧化矽層)停止為止。 As shown in FIG. 3B, slit 324 is an opening formed vertically extending through dielectric stack 308 and second polysilicon layer 315, stopping at third sacrificial layer 313, exposing the third sacrificial layer Section 313. In some embodiments, the fabrication process used to form the slits 324 includes a wet etch and/or dry etch process (eg, DRIE). In some embodiments, the stacked dielectric layer 310 and the stacked sacrificial layer 312 of the dielectric stack 308 are first etched. Etching of the dielectric stack 308 may not stop at the top surface of the second polysilicon layer 315 and extend further into the second polysilicon layer 315 at various depths (ie, gouge variations). Therefore, a second etch process (sometimes referred to as a post-etch process) may be performed to etch the second polysilicon layer 315 until the third sacrificial layer 313 (eg, silicon oxynitride layer) and the second polysilicon layer are The etch selectivity between materials 315 (eg, polysilicon) is stopped by a third sacrificial layer 313 (eg, a silicon oxynitride layer).

方法500繼續進行到如圖5所示的步驟508,其中穿過開口利用在第一和第二多晶矽層之間的第三多晶矽層代替犧牲層。在一些實施方式中,為了利用第三多晶矽層代替犧牲層,穿過開口移除犧牲層以形成在第一和第二多晶矽層之間的腔,穿過開口移除記憶體膜的部分以暴露沿著通道孔的側壁的半導體通道的部分,以及穿過開口將多晶矽沉積到腔內以形成第三多晶矽層。在一些實施方式中,第一、第二和第三多晶矽層中的至少一個摻雜有N型摻雜劑。可在第一、第二和第三多晶矽層中擴散N型摻雜劑。 The method 500 proceeds to step 508 as shown in FIG. 5, wherein the sacrificial layer is replaced by a third polysilicon layer between the first and second polysilicon layers through the opening. In some embodiments, to replace the sacrificial layer with the third polysilicon layer, the sacrificial layer is removed through the opening to form a cavity between the first and second polysilicon layers, the memory film is removed through the opening to expose portions of the semiconductor channel along the sidewalls of the channel hole, and polysilicon is deposited into the cavity through the opening to form a third polysilicon layer. In some embodiments, at least one of the first, second, and third polysilicon layers is doped with an N-type dopant. N-type dopants may be diffused in the first, second and third polysilicon layers.

如圖2C所示,透過沿著狹縫324的側壁沉積一種或多種介電質(例如高k介電質)來沿著狹縫324的側壁形成隔板328。可使用濕式蝕刻和/或乾式蝕刻製程來打開隔板328的底表面(和在狹縫324中的第三犧牲層313的部分,如果仍然保留)以暴露第二犧牲層311的部分(在圖3B中示出,例如多晶矽層)。在一 些實施方式中,然後透過濕式蝕刻和/或乾式蝕刻來移除犧牲層311以形成腔326。在一些實施方式中,第二犧牲層311包括多晶矽,隔板328包括高k介電質,第一犧牲層309和第三犧牲層313各自包括氮氧化矽,以及第二犧牲層311透過穿過狹縫324塗敷TMAH蝕刻劑而被蝕刻,該蝕刻可由高k介電質的隔板328以及氮氧化矽的第一犧牲層309和第三犧牲層313停止。也就是說,根據一些實施方式,第二犧牲層311的移除不影響介電質疊層308和由隔板328以及分別第一犧牲層309和第三犧牲層313保護的第一多晶矽層307和第三多晶矽層315。 Spacers 328 are formed along the sidewalls of the slits 324 by depositing one or more dielectrics (eg, high-k dielectrics) along the sidewalls of the slits 324 as shown in FIG. 2C . A wet etch and/or dry etch process may be used to open the bottom surface of the spacer 328 (and the portion of the third sacrificial layer 313 in the slit 324, if still remaining) to expose the portion of the second sacrificial layer 311 (in the slit 324). 3B, eg a polysilicon layer). In a In some embodiments, the sacrificial layer 311 is then removed by wet etching and/or dry etching to form the cavity 326 . In some embodiments, the second sacrificial layer 311 includes polysilicon, the spacer 328 includes a high-k dielectric, the first sacrificial layer 309 and the third sacrificial layer 313 each include silicon oxynitride, and the second sacrificial layer 311 penetrates through Slot 324 is etched by applying TMAH etchant, which is stopped by high-k dielectric spacer 328 and first sacrificial layer 309 and third sacrificial layer 313 of silicon oxynitride. That is, according to some embodiments, the removal of the second sacrificial layer 311 does not affect the dielectric stack 308 and the first polysilicon protected by the spacer 328 and the first sacrificial layer 309 and the third sacrificial layer 313, respectively layer 307 and third polysilicon layer 315.

如圖3D所示,移除在腔326中所暴露的記憶體膜316的部分以暴露沿著通道結構314的側壁的半導體通道318的部分。在一些實施方式中,透過穿過狹縫324和腔326塗敷蝕刻劑(例如用於蝕刻氮化矽的磷酸和用於蝕刻氧化矽的氫氟酸)來蝕刻阻障層(例如包括氧化矽)、儲存層(例如包括氮化矽)和穿隧層(例如包括氧化矽)的部分。蝕刻可由隔板328和半導體通道318停止。也就是說,根據一些實施方式,在腔326中所暴露的記憶體膜316的部分的移除不影響介電質疊層308(由隔板328保護)和包括多晶矽的半導體通道318和由半導體通道318圍住的上覆層320。在一些實施方式中,第一犧牲層309和第三犧牲層313(包括氮氧化矽)也透過相同的蝕刻製程被移除。 As shown in FIG. 3D , the portion of the memory film 316 exposed in the cavity 326 is removed to expose the portion of the semiconductor channel 318 along the sidewalls of the channel structure 314 . In some embodiments, the barrier layer (eg, including silicon oxide) is etched by applying an etchant (eg, phosphoric acid for etching silicon nitride and hydrofluoric acid for etching silicon oxide) through slit 324 and cavity 326 ), the storage layer (for example comprising silicon nitride) and the tunneling layer (for example comprising silicon oxide). Etching can be stopped by spacer 328 and semiconductor channel 318 . That is, according to some embodiments, removal of the exposed portion of memory film 316 in cavity 326 does not affect dielectric stack 308 (protected by spacer 328 ) and semiconductor channel 318 comprising polysilicon and by semiconductor Overlay 320 surrounded by channel 318 . In some embodiments, the first sacrificial layer 309 and the third sacrificial layer 313 (including silicon oxynitride) are also removed by the same etching process.

如圖3E所示,在第一多晶矽層307和第二多晶矽層315之間形成第三多晶矽層330。在一些實施方式中,透過使用一種或多種薄膜沉積製程(例如CVD、PVD、ALD或其任何組合)穿過狹縫324將多晶矽沉積到腔326(在圖3D中示出)內來形成第三多晶矽層330。在一些實施方式中,當沉積多晶矽以形成第三多晶矽層330時,進行N型摻雜劑(例如P、As或Sb)的原位摻雜。第三多晶矽層330可填充腔326以與通道結構314的半導體通道318的被暴露部分接觸。 應理解,第三多晶矽層330可以是摻雜的或非摻雜的,取決於第一多晶矽層307和第二多晶矽層315中的至少一個是否摻雜有N型摻雜劑,因為第一多晶矽層 307、第二多晶矽層315和第三多晶矽層330中的至少一個可能需要摻雜有N型摻雜劑。在一些實施方式中,在第一多晶矽層307、第二多晶矽層315和第三多晶矽層330中的至少一個中的N型摻雜劑被擴散在第一多晶矽層307、第二多晶矽層315和第三多晶矽層330中,以使用熱擴散製程(例如退火)來在第一多晶矽層307、第二多晶矽層315和第三多晶矽層330當中在垂直方向上實現均勻摻雜濃度分佈。例如,摻雜濃度在擴散之後可以在1019cm-3和1022cm-3之間。如上所述,在第一多晶矽層307、第二多晶矽層315和第三多晶矽層330之間的介面可變得不可區別,因為第一多晶矽層307、第二多晶矽層315和第三多晶矽層330中的每一者包括具有在名義上相同的摻雜濃度的相同多晶矽材料。因此,第一多晶矽層307、第二多晶矽層315和第三多晶矽層330可在擴散之後共同被視為多晶矽層。 As shown in FIG. 3E , a third polysilicon layer 330 is formed between the first polysilicon layer 307 and the second polysilicon layer 315 . In some embodiments, the third film is formed by depositing polysilicon through slit 324 into cavity 326 (shown in FIG. 3D ) using one or more thin film deposition processes (eg, CVD, PVD, ALD, or any combination thereof) Polysilicon layer 330 . In some embodiments, when the polysilicon is deposited to form the third polysilicon layer 330, in-situ doping of an N-type dopant (eg, P, As, or Sb) is performed. The third polysilicon layer 330 may fill the cavity 326 to contact the exposed portion of the semiconductor channel 318 of the channel structure 314 . It should be understood that the third polysilicon layer 330 may be doped or undoped, depending on whether at least one of the first polysilicon layer 307 and the second polysilicon layer 315 is doped with N-type doping dopant, since at least one of the first polysilicon layer 307, the second polysilicon layer 315, and the third polysilicon layer 330 may need to be doped with an N-type dopant. In some embodiments, the N-type dopant in at least one of the first polysilicon layer 307, the second polysilicon layer 315, and the third polysilicon layer 330 is diffused in the first polysilicon layer 307. In the second polysilicon layer 315 and the third polysilicon layer 330, a thermal diffusion process (eg, annealing) is used to A uniform doping concentration distribution in the vertical direction is realized in the silicon layer 330 . For example, the doping concentration may be between 10 19 cm -3 and 10 22 cm -3 after diffusion. As described above, the interfaces between the first polysilicon layer 307, the second polysilicon layer 315, and the third polysilicon layer 330 may become indistinguishable because the first polysilicon layer 307, the second polysilicon layer 307, the second polysilicon layer Each of the crystalline silicon layer 315 and the third polycrystalline silicon layer 330 includes the same polycrystalline silicon material with nominally the same doping concentration. Therefore, the first polysilicon layer 307, the second polysilicon layer 315, and the third polysilicon layer 330 may be collectively regarded as polysilicon layers after diffusion.

方法500繼續進行到如圖5所示的步驟510,其中使用所謂的“閘極更換過程”穿過開口利用記憶體疊層代替介電質疊層。如圖3F所示,使用濕式蝕刻和/或乾式蝕刻來移除沿著狹縫324(在圖3E中示出)的側壁形成的第三多晶矽層330和任何剩餘隔板328的部分,以穿過狹縫324暴露介電質疊層308的堆疊犧牲層312。蝕刻過程可被控制(例如透過控制蝕刻速率和/或時間),使得第三多晶矽層330將保留在第一多晶矽層307和第二多晶矽層315之間並與通道結構314的半導體通道318接觸。 The method 500 proceeds to step 510 as shown in FIG. 5, where the dielectric stack is replaced with a memory stack through the opening using a so-called "gate replacement process". As shown in Figure 3F, wet and/or dry etching is used to remove portions of the third polysilicon layer 330 and any remaining spacers 328 formed along the sidewalls of the slits 324 (shown in Figure 3E) , to expose the stacked sacrificial layer 312 of the dielectric stack 308 through the slit 324 . The etch process can be controlled (eg, by controlling the etch rate and/or time) such that the third polysilicon layer 330 will remain between the first polysilicon layer 307 and the second polysilicon layer 315 and with the channel structure 314 The semiconductor channel 318 contacts.

如圖3G所示,可透過閘極更換過程(即,利用堆疊導電層336代替堆疊犧牲層312)來形成記憶體疊層334。記憶體疊層334因此可包括在第二多晶矽層315上的交錯的堆疊導電層336和堆疊介電質層310。在一些實施方式中,為了形成記憶體疊層334,透過穿過狹縫324塗敷蝕刻劑來移除堆疊犧牲層312以形成多個橫向凹槽。可接著透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)沉積一種或多種導電材料來將堆疊導電層336沉積到橫向凹槽內。根據一些實施方式,通道結構314因此穿過記憶體疊層334和包括第一多 晶矽層307、第二多晶矽層315和第三多晶矽層330的多晶矽層垂直地延伸到緩衝層305內。 As shown in FIG. 3G, the memory stack 334 may be formed through a gate replacement process (ie, using a stacked conductive layer 336 in place of the stacked sacrificial layer 312). The memory stack 334 may thus include staggered stacked conductive layers 336 and stacked dielectric layers 310 on the second polysilicon layer 315 . In some embodiments, to form memory stack 334, stack sacrificial layer 312 is removed by applying an etchant through slit 324 to form a plurality of lateral grooves. A stacked conductive layer 336 may then be deposited into the lateral grooves by depositing one or more conductive materials using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof). According to some embodiments, the channel structure 314 thus passes through the memory stack 334 and includes the first multiple The polysilicon layers of the crystalline silicon layer 307 , the second polysilicon layer 315 and the third polysilicon layer 330 extend vertically into the buffer layer 305 .

方法500繼續進行到如圖5所示的步驟512,其中在開口中形成絕緣結構。在一些實施方式中,為了形成絕緣結構,將一種或多種介電質材料沉積到開口內以填充開口。如圖3H所示,在狹縫324(在圖3G中示出)中形成絕緣結構342。可透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)將一種或多種介電質材料(例如高k介電質(也作為閘極介電質層338))和作為絕緣體核心340的氧化矽沉積到狹縫324內,以在具有或沒有空氣間隙的情況下完全或部分地填充狹縫324來形成絕緣結構342。 The method 500 proceeds to step 512 as shown in FIG. 5, wherein insulating structures are formed in the openings. In some embodiments, to form insulating structures, one or more dielectric materials are deposited into the openings to fill the openings. As shown in FIG. 3H, insulating structures 342 are formed in slits 324 (shown in FIG. 3G). One or more dielectric materials (eg, a high-k dielectric (also serving as gate dielectric layer 338 )) and as a Silicon oxide of insulator core 340 is deposited into slit 324 to completely or partially fill slit 324 with or without air gaps to form insulating structure 342 .

方法500繼續進行到如圖5所示的步驟514,其中從與基底的第一側相對的第二側移除基底,其在停止層處停止。第二側可以是基底的背面。如圖3I所示,從背面移除基底302(在圖3H中示出)。雖然未在圖3I中示出,應理解,在圖3H中的中間結構可顛倒地翻轉以具有在中間結構的頂部上的基底302。在一些實施方式中,使用CMP、研磨、濕式蝕刻和/或乾式蝕刻來完全移除基底302,直到由停止層303(例如氮化矽層)停止為止。在一些實施方式中,使用矽CMP來移除基底302(矽基底),其在到達具有除了矽以外的材料(即,充當背面CMP停止層)的停止層303時自動停止。在一些實施方式中,使用濕式蝕刻透過TMAH來移除基底302(矽基底),其在到達具有除了矽以外的材料(即,充當背面蝕刻停止層)的停止層303時自動停止。停止層303可確保基底302的完全移除而沒有關係到在減薄之後的厚度均勻性。 The method 500 proceeds to step 514 as shown in FIG. 5, wherein the substrate is removed from a second side opposite the first side of the substrate, which stops at the stop layer. The second side may be the backside of the substrate. As shown in Figure 3I, the substrate 302 (shown in Figure 3H) is removed from the backside. Although not shown in Figure 3I, it should be understood that the intermediate structure in Figure 3H could be flipped upside down to have the substrate 302 on top of the intermediate structure. In some embodiments, the substrate 302 is completely removed using CMP, grinding, wet etching, and/or dry etching until stopped by a stop layer 303 (eg, a silicon nitride layer). In some implementations, silicon CMP is used to remove substrate 302 (silicon substrate), which automatically stops upon reaching stop layer 303 having a material other than silicon (ie, serving as a backside CMP stop layer). In some implementations, substrate 302 (silicon substrate) is removed through TMAH using a wet etch, which automatically stops upon reaching stop layer 303 having a material other than silicon (ie, serving as a backside etch stop). The stop layer 303 can ensure complete removal of the substrate 302 regardless of thickness uniformity after thinning.

方法500繼續進行到如圖5所示的步驟516,其中移除停止層,並形成與第一多晶矽層接觸的介電質層。如圖3J所示,使用濕式蝕刻和/或乾式蝕刻來移除停止層303以暴露緩衝層305。可透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)將介電質材料(例如氧化矽)沉積在緩衝層 305的頂部上,來在緩衝層305上形成介電質層350。在緩衝層305包括與介電質層350相同的材料(例如氧化矽)的一些實施方式中,緩衝層305變成與第一多晶矽層307接觸的介電質層350的部分。在一些實施方式中,不形成額外的介電質層,且緩衝層305本身變成與第一多晶矽層307接觸的介電質層350。 The method 500 proceeds to step 516 as shown in FIG. 5, where the stop layer is removed and a dielectric layer is formed in contact with the first polysilicon layer. As shown in FIG. 3J, the stop layer 303 is removed to expose the buffer layer 305 using wet etching and/or dry etching. Dielectric materials such as silicon oxide can be deposited on the buffer layer by using one or more thin film deposition processes such as PVD, CVD, ALD, or any combination thereof On top of the buffer layer 305, a dielectric layer 350 is formed. In some embodiments where buffer layer 305 includes the same material as dielectric layer 350 (eg, silicon oxide), buffer layer 305 becomes the portion of dielectric layer 350 that is in contact with first polysilicon layer 307 . In some embodiments, no additional dielectric layers are formed, and the buffer layer 305 itself becomes the dielectric layer 350 in contact with the first polysilicon layer 307 .

方法500繼續進行到如圖5所示的步驟518,其中穿過介電質層垂直地延伸的源極接觸結構被形成為與第一多晶矽層接觸。如圖3J所示,形成穿過介電質層350垂直地延伸以與第一多晶矽層307接觸的背面源極接觸結構346。在一些實施方式中,透過首先使用濕式蝕刻和/或乾式蝕刻(例如RIE)蝕刻穿過介電質層350垂直地延伸到第一多晶矽層307內的開口、接著透過在開口的側壁和底表面之上形成黏合劑層(例如透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)沉積TiN)來形成源極接觸結構346。然後可透過在黏合劑層之上形成導電層(例如透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD、電鍍、無電鍍或其任何組合)沉積金屬(例如W))來形成源極接觸結構346。 The method 500 proceeds to step 518 as shown in FIG. 5, wherein a source contact structure extending vertically through the dielectric layer is formed in contact with the first polysilicon layer. As shown in FIG. 3J , a backside source contact structure 346 is formed extending vertically through the dielectric layer 350 to contact the first polysilicon layer 307 . In some embodiments, openings extending vertically into the first polysilicon layer 307 are etched through the dielectric layer 350 by first etching through the dielectric layer 350 using wet and/or dry etching (eg, RIE), and then through the sidewalls of the openings. The source contact structure 346 is formed by forming an adhesive layer (eg, by depositing TiN using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof)) over the bottom surface and the bottom surface. The source can then be formed by forming a conductive layer over the adhesive layer (eg, by depositing a metal (eg, W) using one or more thin film deposition processes (eg, PVD, CVD, ALD, electroplating, electroless plating, or any combination thereof)) Contact structure 346 .

雖然現在被示出,應理解在一些示例中,在移除基底之前,可透過使用一種或多種薄膜沉積製程(例如PVD、CVD、ALD或其任何組合)將一種或多種導電材料沉積在開口中來在開口(例如狹縫324)中形成正面源極接觸結構。正面源極接觸結構可代替背面源極接觸結構(例如源極接觸結構346)和正面絕緣結構(例如絕緣結構342)。 Although now shown, it should be understood that in some examples, one or more conductive materials may be deposited in the openings by using one or more thin film deposition processes (eg, PVD, CVD, ALD, or any combination thereof) prior to removal of the substrate to form front-side source contact structures in openings such as slits 324 . Front-side source contact structures may replace back-side source contact structures (eg, source contact structures 346 ) and front-side insulating structures (eg, insulating structures 342 ).

根據本發明內容的一個方面,公開了用於形成3D記憶體裝置的方法。在基底的第一側處相繼形成停止層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸、在停止層處停止的通道結構。形成穿過介電質疊層和第二多晶矽層垂直地延伸、在犧牲層處停止的開口,以暴露犧牲層的部分。穿過開口利 用在第一多晶矽層和第二多晶矽層之間的第三多晶矽層代替犧牲層。從與基底的第一側相對的第二側移除基底,在停止層處停止。 According to one aspect of this disclosure, a method for forming a 3D memory device is disclosed. A stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack are sequentially formed at the first side of the substrate. A channel structure is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, stopping at the stop layer. An opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose portions of the sacrificial layer. through the opening The sacrificial layer is replaced with a third polysilicon layer between the first polysilicon layer and the second polysilicon layer. The substrate is removed from a second side opposite the first side of the substrate, stopping at the stop layer.

在一些實施方式中,在移除基底之前,在開口中形成絕緣結構。 In some embodiments, insulating structures are formed in the openings prior to removing the substrate.

在一些實施方式中,穿過開口利用記憶體疊層代替介電質疊層。 In some embodiments, a memory stack is used instead of a dielectric stack through the opening.

在一些實施方式中,在移除基底之後,形成穿過停止層垂直地延伸的源極接觸結構,以與第一多晶矽層接觸。 In some embodiments, after removing the substrate, a source contact structure extending vertically through the stop layer is formed to contact the first polysilicon layer.

在一些實施方式中,在移除基底之後,移除停止層,形成與第一多晶矽層接觸的介電質層,以及形成穿過介電質層垂直地延伸的源極接觸結構,以與第一多晶矽層接觸。 In some embodiments, after removing the substrate, removing the stop layer, forming a dielectric layer in contact with the first polysilicon layer, and forming a source contact structure extending vertically through the dielectric layer to in contact with the first polysilicon layer.

在一些實施方式中,為了形成停止層,相繼形成第一停止層和第二停止層。在一些實施方式中,第一停止層包括氮化矽,以及第二停止層包括高k介電質。在一些實施方式中,形成通道結構在第二停止層處停止,以及移除基底在第一停止層處停止。 In some embodiments, to form the stop layer, the first stop layer and the second stop layer are sequentially formed. In some embodiments, the first stop layer includes silicon nitride, and the second stop layer includes a high-k dielectric. In some embodiments, forming the channel structure stops at the second stop layer, and removing the substrate stops at the first stop layer.

在一些實施方式中,為了形成犧牲層,相繼形成第一犧牲層、第二犧牲層和第三犧牲層。在一些實施方式中,第一犧牲層包括氮氧化矽,第二犧牲層包括多晶矽,以及第三犧牲層包括氮氧化矽。在一些實施方式中,形成開口在第三犧牲層處停止。 In some embodiments, to form the sacrificial layer, a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer are sequentially formed. In some embodiments, the first sacrificial layer includes silicon oxynitride, the second sacrificial layer includes polysilicon, and the third sacrificial layer includes silicon oxynitride. In some embodiments, forming the opening stops at the third sacrificial layer.

在一些實施方式中,為了形成通道結構,形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸的通道孔,以及沿著通道孔的側壁相繼形成記憶體膜和半導體通道。 In some embodiments, to form the channel structure, a via hole is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, and along sidewalls of the via hole A memory film and a semiconductor channel are successively formed.

在一些實施方式中,為了利用第三多晶矽層代替犧牲層,穿過開口移除犧牲層以形成在第一多晶矽層和第二多晶矽層之間的腔,穿過開口移除記憶體膜的部分以暴露沿著通道孔的側壁的半導體通道的部分,以及穿過開口將多晶矽沉積到腔內以形成第三多晶矽層。 In some embodiments, to replace the sacrificial layer with the third polysilicon layer, the sacrificial layer is removed through the opening to form a cavity between the first polysilicon layer and the second polysilicon layer, and the sacrificial layer is removed through the opening to form a cavity between the first polysilicon layer and the second polysilicon layer. Portions of the memory film are removed to expose portions of the semiconductor channels along the sidewalls of the via holes, and polysilicon is deposited into the cavity through the openings to form a third polysilicon layer.

在一些實施方式中,第一多晶矽層、第二多晶矽層和第三多晶矽層中的至少一者摻雜有N型摻雜劑。在第一多晶矽層、第二多晶矽層和第三多晶矽層中擴散N型摻雜劑。 In some implementations, at least one of the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer is doped with an N-type dopant. An N-type dopant is diffused in the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer.

在一些實施方式中,在移除基底之前,在開口中形成源極接觸結構。 In some embodiments, source contact structures are formed in the openings prior to removing the substrate.

根據本發明內容的另一方面,公開了用於形成3D記憶體裝置的方法。在基底的第一側處相繼形成停止層、緩衝層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸到緩衝層內的通道結構。形成穿過介電質疊層和第二多晶矽層垂直地延伸、在犧牲層處停止的開口,以暴露犧牲層的部分。穿過開口利用在第一多晶矽層和第二多晶矽層之間的第三多晶矽層代替犧牲層。從與基底的第一側相對的第二側移除基底,在停止層處停止。 According to another aspect of this disclosure, a method for forming a 3D memory device is disclosed. A stop layer, a buffer layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack are sequentially formed at the first side of the substrate. A channel structure is formed extending vertically into the buffer layer through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer. An opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose portions of the sacrificial layer. The sacrificial layer is replaced by a third polysilicon layer between the first polysilicon layer and the second polysilicon layer through the opening. The substrate is removed from a second side opposite the first side of the substrate, stopping at the stop layer.

在一些實施方式中,在移除基底之前,在開口中形成絕緣結構。 In some embodiments, insulating structures are formed in the openings prior to removing the substrate.

在一些實施方式中,穿過開口利用記憶體疊層代替介電質疊層。 In some embodiments, a memory stack is used instead of a dielectric stack through the opening.

在一些實施方式中,在移除基底之後,移除停止層,形成與第一多晶矽層接觸的介電質層,以及形成穿過介電質層垂直地延伸的源極接觸結構,以與第一多晶矽層接觸。 In some embodiments, after removing the substrate, removing the stop layer, forming a dielectric layer in contact with the first polysilicon layer, and forming a source contact structure extending vertically through the dielectric layer to in contact with the first polysilicon layer.

在一些實施方式中,第一停止層包括氮化矽,以及第二停止層包括高k介電質。 In some embodiments, the first stop layer includes silicon nitride, and the second stop layer includes a high-k dielectric.

在一些實施方式中,為了形成犧牲層,相繼形成第一犧牲層、第二犧牲層和第三犧牲層。在一些實施方式中,第一犧牲層包括氮氧化矽,第二犧牲層包括多晶矽,以及第三犧牲層包括氮氧化矽。在一些實施方式中,形成開口在第三犧牲層處停止。 In some embodiments, to form the sacrificial layer, a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer are sequentially formed. In some embodiments, the first sacrificial layer includes silicon oxynitride, the second sacrificial layer includes polysilicon, and the third sacrificial layer includes silicon oxynitride. In some embodiments, forming the opening stops at the third sacrificial layer.

在一些實施方式中,為了形成通道結構,形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸到緩衝層內的通道孔,以及沿 著通道孔的側壁相繼形成記憶體膜和半導體通道。 In some embodiments, to form the channel structure, a channel hole is formed extending vertically into the buffer layer through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, and along the A memory film and a semiconductor channel are successively formed along the sidewalls of the via hole.

在一些實施方式中,為了利用第三多晶矽層代替犧牲層,穿過開口移除犧牲層以形成在第一多晶矽層和第二多晶矽層之間的腔,穿過開口移除記憶體膜的部分,以暴露沿著通道孔的側壁的半導體通道的部分,以及穿過開口將多晶矽沉積到腔內以形成第三多晶矽層。 In some embodiments, to replace the sacrificial layer with the third polysilicon layer, the sacrificial layer is removed through the opening to form a cavity between the first polysilicon layer and the second polysilicon layer, and the sacrificial layer is removed through the opening to form a cavity between the first polysilicon layer and the second polysilicon layer. A portion of the memory film is removed to expose portions of the semiconductor channel along the sidewalls of the via hole, and polysilicon is deposited into the cavity through the opening to form a third polysilicon layer.

在一些實施方式中,第一多晶矽層、第二多晶矽層和第三多晶矽層中的至少一者摻雜有N型摻雜劑。在第一多晶矽層、第二多晶矽層和第三多晶矽層中擴散N型摻雜劑。 In some implementations, at least one of the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer is doped with an N-type dopant. An N-type dopant is diffused in the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer.

根據本發明內容的又一方面,公開了用於形成3D記憶體裝置的方法。在基底的第一側處相繼形成停止層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層。形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸、在停止層處停止的通道結構。利用在第一多晶矽層和第二多晶矽層之間的第三多晶矽層代替犧牲層。第一多晶矽層、第二多晶矽層和第三多晶矽層中的至少一者摻雜有N型摻雜劑。在第一多晶矽層、第二多晶矽層和第三多晶矽層中擴散N型摻雜劑。從與基底的第一側相對的第二側移除基底,在停止層處停止。 According to yet another aspect of this disclosure, a method for forming a 3D memory device is disclosed. A stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack are sequentially formed at the first side of the substrate. A channel structure is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, stopping at the stop layer. The sacrificial layer is replaced with a third polysilicon layer between the first polysilicon layer and the second polysilicon layer. At least one of the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer is doped with an N-type dopant. An N-type dopant is diffused in the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer. The substrate is removed from a second side opposite the first side of the substrate, stopping at the stop layer.

在一些實施方式中,在用第三多晶矽層代替犧牲層之前,形成穿過介電質疊層和第二多晶矽層垂直地延伸、在犧牲層處停止的開口,以暴露犧牲層的部分,使得穿過開口利用第三多晶矽層代替犧牲層。 In some embodiments, before replacing the sacrificial layer with the third polysilicon layer, an opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose the sacrificial layer part so that the sacrificial layer is replaced by a third polysilicon layer through the opening.

在一些實施方式中,在移除基底之前,在開口中形成絕緣結構。 In some embodiments, insulating structures are formed in the openings prior to removing the substrate.

在一些實施方式中,穿過開口利用記憶體疊層代替介電質疊層。 In some embodiments, a memory stack is used instead of a dielectric stack through the opening.

在一些實施方式中,在移除基底之後,形成穿過停止層垂直地延伸的源極接觸結構,以與第一多晶矽層接觸。 In some embodiments, after removing the substrate, a source contact structure extending vertically through the stop layer is formed to contact the first polysilicon layer.

在一些實施方式中,在移除基底之後,移除停止層,形成與第一多 晶矽層接觸的介電質層,以及形成穿過介電質層垂直地延伸的源極接觸結構,以與第一多晶矽層接觸。 In some embodiments, after removing the substrate, the stop layer is removed to form a A dielectric layer in contact with the crystalline silicon layer, and a source contact structure extending vertically through the dielectric layer is formed to be in contact with the first polycrystalline silicon layer.

在一些實施方式中,為了形成停止層,相繼形成第一停止層和第二停止層。在一些實施方式中,第一停止層包括氮化矽,以及第二停止層包括高k介電質。在一些實施方式中,形成通道結構在第二停止層處停止,以及移除基底在第一停止層處停止。 In some embodiments, to form the stop layer, the first stop layer and the second stop layer are sequentially formed. In some embodiments, the first stop layer includes silicon nitride, and the second stop layer includes a high-k dielectric. In some embodiments, forming the channel structure stops at the second stop layer, and removing the substrate stops at the first stop layer.

在一些實施方式中,為了形成犧牲層,相繼形成第一犧牲層、第二犧牲層和第三犧牲層。在一些實施方式中,第一犧牲層包括氮氧化矽,第二犧牲層包括多晶矽,以及第三犧牲層包括氮氧化矽。在一些實施方式中,形成開口在第三犧牲層處停止。 In some embodiments, to form the sacrificial layer, a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer are sequentially formed. In some embodiments, the first sacrificial layer includes silicon oxynitride, the second sacrificial layer includes polysilicon, and the third sacrificial layer includes silicon oxynitride. In some embodiments, forming the opening stops at the third sacrificial layer.

在一些實施方式中,為了形成通道結構,形成穿過介電質疊層、第二多晶矽層、犧牲層和第一多晶矽層垂直地延伸的通道孔,以及沿著通道孔的側壁相繼形成記憶體膜和半導體通道。 In some embodiments, to form the channel structure, a via hole is formed extending vertically through the dielectric stack, the second polysilicon layer, the sacrificial layer, and the first polysilicon layer, and along sidewalls of the via hole A memory film and a semiconductor channel are successively formed.

在一些實施方式中,為了利用第三多晶矽層代替犧牲層,穿過開口移除犧牲層,以形成在第一多晶矽層和第二多晶矽層之間的腔,穿過開口移除記憶體膜的部分以暴露沿著通道孔的側壁的半導體通道的部分,以及穿過開口將多晶矽沉積到腔內,以形成第三多晶矽層。 In some embodiments, to replace the sacrificial layer with the third polysilicon layer, the sacrificial layer is removed through the opening to form a cavity between the first polysilicon layer and the second polysilicon layer, through the opening Portions of the memory film are removed to expose portions of the semiconductor vias along the sidewalls of the via holes, and polysilicon is deposited into the cavity through the openings to form a third polysilicon layer.

特定實施方式的前述描述將如此揭露本領域技術人員透過應用在本領域的技術內的知識可以在不過度實驗的基礎上,容易修改和/或為各種應用改變這樣的特定實施方式的本發明內容的一般性質,而不偏離本發明內容的一般概念。因此,基於在本文提出的教導和指導,這樣的改變和修改旨在所公開的實施方式的等效物的含義和範圍內。應理解的是,本文的用語或術語是為了描述而不是限制的目的,使得本說明書的術語或用語應由技術人員按照教導和指導來解釋。 The foregoing descriptions of specific embodiments will thus reveal that those skilled in the art, by applying knowledge within the skill in the art, can readily modify and/or alter the invention of such specific embodiments for various applications without undue experimentation. general nature without departing from the general concept of the present disclosure. Therefore, such changes and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not limitation so that the terminology or phraseology of this specification should be interpreted by a skilled artisan in accordance with the teaching and guidance.

上面已經借助於說明所指定的功能及其關係的實現方式的功能構建塊描述本發明內容的實施方式。為了便於描述,這些功能構建塊的界限在本文被任意限定。可限定可選的界限,只要所指定的功能及其關係被適當地進行。 Embodiments of the present disclosure have been described above with the aid of functional building blocks that illustrate the implementation of the specified functions and relationships thereof. The boundaries of these functional building blocks are arbitrarily defined herein for ease of description. Alternate boundaries may be defined so long as the specified functions and relationships are properly performed.

概述和摘要章節可以闡述如發明人設想的本發明內容的一個或多個但不是全部示例性實施方式,且因此並不意欲以任何方式限制本發明內容和所附申請專利範圍。 The Summary and Abstract sections may set forth one or more, but not all, exemplary embodiments of the present disclosure as contemplated by the inventors, and are therefore not intended to limit the disclosure and the scope of the appended claims in any way.

本發明內容的廣度和範圍不應由上面所述的示例性實施方式中的任一者限制,但應僅根據所附申請專利範圍及其等效物所限定。 The breadth and scope of this disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents.

202:基底 202: Substrate

203:第一停止層 203: First stop layer

205:第二停止層 205: Second stop layer

207:第一多晶矽層 207: First polysilicon layer

208:介電質疊層 208: Dielectric Stack

209:第一犧牲層 209: First sacrificial layer

211:第二犧牲層 211: Second sacrificial layer

212:堆疊犧牲層 212: Stacked Sacrificial Layers

213:第三犧牲層 213: The third sacrificial layer

214:通道結構 214: Channel Structure

215:第二多晶矽層 215: Second polysilicon layer

216:記憶體膜 216: Memory Film

218:半導體通道 218: Semiconductor channel

220:上覆層 220: Overlay

222:通道插塞 222: Channel Plug

x,y:軸 x,y: axis

Claims (20)

一種用於形成三維(3D)記憶體裝置的方法,包括:在基底的第一側處相繼形成停止層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層,其中,形成所述停止層包括相繼形成第一停止層和第二停止層,且所述第一停止層與所述第二停止層包括不同的材料;形成穿過所述介電質疊層、所述第二多晶矽層、所述犧牲層和所述第一多晶矽層垂直地延伸、在所述第二停止層處停止的通道結構;形成穿過所述介電質疊層和所述第二多晶矽層垂直地延伸、在所述犧牲層處停止的開口,以暴露所述犧牲層的部分;穿過所述開口利用在所述第一多晶矽層和所述第二多晶矽層之間的第三多晶矽層代替所述犧牲層;以及從與所述基底的所述第一側相對的第二側移除所述基底,在所述第一停止層處停止。 A method for forming a three-dimensional (3D) memory device comprising sequentially forming a stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack at a first side of a substrate , wherein forming the stop layer comprises sequentially forming a first stop layer and a second stop layer, and the first stop layer and the second stop layer comprise different materials; forming through the dielectric stack , the second polysilicon layer, the sacrificial layer and the first polysilicon layer extending vertically, stopping at the second stop layer, a channel structure; forming through the dielectric stack an opening extending perpendicular to the second polysilicon layer and stopping at the sacrificial layer to expose portions of the sacrificial layer; utilizing the first polysilicon layer and the sacrificial layer through the opening a third polysilicon layer between second polysilicon layers replaces the sacrificial layer; and removing the substrate from a second side opposite the first side of the substrate, at the first stop stop at the layer. 根據請求項1所述的方法,還包括:在移除所述基底之前,在所述開口中形成絕緣結構。 The method of claim 1, further comprising: forming an insulating structure in the opening before removing the substrate. 根據請求項1所述的方法,還包括:在移除所述基底之後,形成穿過所述停止層垂直地延伸的源極接觸結構,以與所述第一多晶矽層接觸。 The method of claim 1, further comprising forming a source contact structure extending vertically through the stop layer to contact the first polysilicon layer after removing the substrate. 根據請求項1所述的方法,還包括:在移除所述基底之後:移除所述停止層;形成與所述第一多晶矽層接觸的介電質層;以及形成穿過所述介電質層垂直地延伸的源極接觸結構,以與所述第一多晶矽 層接觸。 The method of claim 1, further comprising: after removing the substrate: removing the stop layer; forming a dielectric layer in contact with the first polysilicon layer; and forming a dielectric layer through the a source contact structure with a dielectric layer extending vertically to connect with the first polysilicon layer contact. 根據請求項1所述的方法,其中,所述第二停止層包括相對於多晶矽具有蝕刻選擇性的材料。 The method of claim 1, wherein the second stop layer comprises a material having an etch selectivity with respect to polysilicon. 根據請求項5所述的方法,其中,所述第一停止層包括氮化矽,並且所述第二停止層包括高介電常數(高k)介電質。 The method of claim 5, wherein the first stop layer comprises silicon nitride and the second stop layer comprises a high-k (high-k) dielectric. 根據請求項1所述的方法,其中,形成所述犧牲層包括相繼形成第一犧牲層、第二犧牲層和第三犧牲層;以及形成所述開口在所述第三犧牲層處停止。 The method of claim 1, wherein forming the sacrificial layer includes sequentially forming a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer; and forming the opening stops at the third sacrificial layer. 根據請求項7所述的方法,其中,所述第一犧牲層包括氮氧化矽,所述第二犧牲層包括多晶矽,並且所述第三犧牲層包括氮氧化矽。 The method of claim 7, wherein the first sacrificial layer comprises silicon oxynitride, the second sacrificial layer comprises polysilicon, and the third sacrificial layer comprises silicon oxynitride. 根據請求項1所述的方法,其中,形成所述通道結構包括:形成穿過所述介電質疊層、所述第二多晶矽層、所述犧牲層和所述第一多晶矽層垂直地延伸的通道孔;以及沿著所述通道孔的側壁相繼形成記憶體膜和半導體通道。 The method of claim 1 wherein forming the channel structure comprises forming through the dielectric stack, the second polysilicon layer, the sacrificial layer and the first polysilicon layer vertically extending via holes; and sequentially forming memory films and semiconductor vias along sidewalls of the via holes. 根據請求項9所述的方法,其中,利用所述第三多晶矽層代替所述犧牲層包括:穿過所述開口移除所述犧牲層,以形成在所述第一多晶矽層和所述第二多晶矽層之間的腔; 穿過所述開口移除所述記憶體膜的部分,以暴露沿著所述通道孔的所述側壁的所述半導體通道的部分;以及穿過所述開口將多晶矽沉積到所述腔內,以形成所述第三多晶矽層。 The method of claim 9, wherein replacing the sacrificial layer with the third polysilicon layer comprises removing the sacrificial layer through the opening to form on the first polysilicon layer and the cavity between the second polysilicon layer; removing portions of the memory film through the openings to expose portions of the semiconductor channels along the sidewalls of the via holes; and depositing polysilicon into the cavity through the openings, to form the third polysilicon layer. 根據請求項1所述的方法,其中,所述第一多晶矽層、所述第二多晶矽層和所述第三多晶矽層中的至少一者摻雜有N型摻雜劑,並且所述方法還包括:在所述第一多晶矽層、所述第二多晶矽層和所述第三多晶矽層中擴散所述N型摻雜劑。 The method of claim 1, wherein at least one of the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer is doped with an N-type dopant , and the method further includes: diffusing the N-type dopant in the first polysilicon layer, the second polysilicon layer and the third polysilicon layer. 一種用於形成三維(3D)記憶體裝置的方法,包括:在基底的第一側處相繼形成停止層、緩衝層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層,其中所述停止層與所述緩衝層包括不同的材料;形成穿過所述介電質疊層、所述第二多晶矽層、所述犧牲層和所述第一多晶矽層垂直地延伸到所述緩衝層內的通道結構;形成穿過所述介電質疊層和所述第二多晶矽層垂直地延伸、在所述犧牲層處停止的開口,以暴露所述犧牲層的部分;穿過所述開口利用在所述第一多晶矽層和所述第二多晶矽層之間的第三多晶矽層代替所述犧牲層;以及從與所述基底的所述第一側相對的第二側移除所述基底,在所述停止層處停止。 A method for forming a three-dimensional (3D) memory device comprising sequentially forming a stop layer, a buffer layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric at a first side of a substrate a dielectric stack, wherein the stop layer and the buffer layer comprise different materials; formed through the dielectric stack, the second polysilicon layer, the sacrificial layer and the first poly A silicon layer extends vertically into a channel structure within the buffer layer; an opening is formed extending vertically through the dielectric stack and the second polysilicon layer, stopping at the sacrificial layer to expose a portion of the sacrificial layer; replacing the sacrificial layer with a third polysilicon layer between the first polysilicon layer and the second polysilicon layer through the opening; and A second side of the substrate opposite the first side removes the substrate, stopping at the stop layer. 根據請求項12所述的方法,還包括:在移除所述基底之前,在所述開口中形成絕緣結構。 The method of claim 12, further comprising forming an insulating structure in the opening before removing the substrate. 根據請求項12所述的方法,還包括:在移除所述基底之後:移除所述停止層;形成與所述第一多晶矽層接觸的介電質層;以及形成穿過所述介電質層垂直地延伸的源極接觸結構,以與所述第一多晶矽層接觸。 The method of claim 12, further comprising: after removing the substrate: removing the stop layer; forming a dielectric layer in contact with the first polysilicon layer; and forming through the A source contact structure with a dielectric layer extending vertically to contact the first polysilicon layer. 根據請求項12所述的方法,其中,所述停止層包括氮化矽,並且所述緩衝層包括氧化矽。 The method of claim 12, wherein the stop layer comprises silicon nitride and the buffer layer comprises silicon oxide. 根據請求項12所述的方法,其中,形成所述犧牲層包括相繼形成第一犧牲層、第二犧牲層和第三犧牲層;以及形成所述開口在所述第三犧牲層處停止。 The method of claim 12, wherein forming the sacrificial layer comprises sequentially forming a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer; and forming the opening stops at the third sacrificial layer. 根據請求項12所述的方法,其中,形成所述通道結構包括:形成穿過所述介電質疊層、所述第二多晶矽層、所述犧牲層和所述第一多晶矽層垂直地延伸到所述緩衝層內的通道孔;以及沿著所述通道孔的側壁相繼形成記憶體膜和半導體通道。 The method of claim 12, wherein forming the channel structure comprises forming through the dielectric stack, the second polysilicon layer, the sacrificial layer and the first polysilicon The layer extends vertically to a via hole in the buffer layer; and a memory film and a semiconductor channel are sequentially formed along sidewalls of the via hole. 根據請求項17所述的方法,其中,利用所述第三多晶矽層代替所述犧牲層包括:穿過所述開口移除所述犧牲層,以形成在所述第一多晶矽層和所述第二多晶矽層之間的腔;穿過所述開口移除所述記憶體膜的部分,以暴露沿著所述通道孔的所述側壁的所述半導體通道的部分;以及 穿過所述開口將多晶矽沉積到所述腔內,以形成所述第三多晶矽層。 The method of claim 17, wherein replacing the sacrificial layer with the third polysilicon layer comprises removing the sacrificial layer through the opening to form on the first polysilicon layer a cavity between the second polysilicon layer and the second polysilicon layer; removing portions of the memory film through the openings to expose portions of the semiconductor vias along the sidewalls of the via holes; and Polysilicon is deposited into the cavity through the opening to form the third polysilicon layer. 根據請求項12所述的方法,其中,所述第一多晶矽層、所述第二多晶矽層和所述第三多晶矽層中的至少一者摻雜有N型摻雜劑,並且所述方法還包括:在所述第一多晶矽層、所述第二多晶矽層和所述第三多晶矽層中擴散所述N型摻雜劑。 The method of claim 12, wherein at least one of the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer is doped with an N-type dopant , and the method further includes: diffusing the N-type dopant in the first polysilicon layer, the second polysilicon layer and the third polysilicon layer. 一種用於形成三維(3D)記憶體裝置的方法,包括:在基底的第一側處相繼形成停止層、第一多晶矽層、犧牲層、第二多晶矽層和介電質疊層,其中,形成所述停止層包括相繼形成第一停止層和第二停止層,且所述第一停止層與所述第二停止層包括不同的材料;形成穿過所述介電質疊層、所述第二多晶矽層、所述犧牲層和所述第一多晶矽層垂直地延伸、在所述第二停止層處停止的通道結構;利用在所述第一多晶矽層和所述第二多晶矽層之間的第三多晶矽層代替所述犧牲層,其中,所述第一多晶矽層、所述第二多晶矽層和所述第三多晶矽層中的至少一者摻雜有N型摻雜劑;在所述第一多晶矽層、所述第二多晶矽層和所述第三多晶矽層中擴散所述N型摻雜劑;以及從與所述基底的所述第一側相對的第二側移除所述基底,在所述第一停止層處停止。 A method for forming a three-dimensional (3D) memory device comprising sequentially forming a stop layer, a first polysilicon layer, a sacrificial layer, a second polysilicon layer, and a dielectric stack at a first side of a substrate , wherein forming the stop layer comprises sequentially forming a first stop layer and a second stop layer, and the first stop layer and the second stop layer comprise different materials; forming through the dielectric stack , the second polysilicon layer, the sacrificial layer and the first polysilicon layer extend vertically and stop at the second stop layer of the channel structure; using the first polysilicon layer A third polysilicon layer between the second polysilicon layer and the sacrificial layer replaces the sacrificial layer, wherein the first polysilicon layer, the second polysilicon layer and the third polysilicon layer at least one of the silicon layers is doped with an N-type dopant; diffusing the N-type dopant in the first polysilicon layer, the second polysilicon layer, and the third polysilicon layer a dopant; and removing the substrate from a second side opposite the first side of the substrate, stopping at the first stop layer.
TW109124523A 2020-05-27 2020-07-21 Methods for forming three-dimensional memory devices TWI756745B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2020/092513 2020-05-27
PCT/CN2020/092513 WO2021208195A1 (en) 2020-04-14 2020-05-27 Methods for forming three-dimensional memory devices

Publications (2)

Publication Number Publication Date
TW202145529A TW202145529A (en) 2021-12-01
TWI756745B true TWI756745B (en) 2022-03-01

Family

ID=80783942

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109124523A TWI756745B (en) 2020-05-27 2020-07-21 Methods for forming three-dimensional memory devices

Country Status (1)

Country Link
TW (1) TWI756745B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742081A (en) * 2019-01-02 2019-05-10 长江存储科技有限责任公司 Memory and forming method thereof
CN109817633A (en) * 2017-11-21 2019-05-28 三星电子株式会社 Vertical memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817633A (en) * 2017-11-21 2019-05-28 三星电子株式会社 Vertical memory device
CN109742081A (en) * 2019-01-02 2019-05-10 长江存储科技有限责任公司 Memory and forming method thereof

Also Published As

Publication number Publication date
TW202145529A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
TWI706542B (en) Interconnect structure of three-dimensional memory device
CN111788687B (en) Method for forming three-dimensional memory device
TW202139437A (en) 3d memory device with back source contact
TWI793427B (en) Three-dimensional memory device and method for forming the same
TW202010109A (en) Three-dimensional memory device with through array contact and forming method thereof
TWI787541B (en) Interconnect structure of three-dimensional memory devices
TWI753488B (en) Method for fabricating 3d memory device
TW202145519A (en) Method for forming three-dimensional memory device
CN111801802B (en) Three-dimensional memory device
TW202145522A (en) Three-dimensional memory device
TWI809312B (en) Semiconductor device and method of forming the same
CN111788686B (en) Three-dimensional memory device and method for forming the same
CN112437983B (en) Three-dimensional memory device and method for forming three-dimensional memory device
TWI756745B (en) Methods for forming three-dimensional memory devices
TWI746071B (en) Three-dimensional memory devices
TWI773086B (en) Method for forming three-dimensional memory device
WO2021208195A1 (en) Methods for forming three-dimensional memory devices
CN113366638B (en) Three-dimensional memory device and method for forming the same
US11488977B2 (en) Three-dimensional memory devices and methods for forming the same
TWI746228B (en) Three-dimensional memory devices and method for forming the same
US20210320115A1 (en) Three-dimensional memory devices and methods for forming the same
TWI779318B (en) Three-dimensional memory device and method for forming the same
WO2021208337A1 (en) Three-dimensional memory devices and methods for forming the same
TW202203380A (en) Three-dimensional memory device