TWI742274B - 氣相層析設備 - Google Patents

氣相層析設備 Download PDF

Info

Publication number
TWI742274B
TWI742274B TW107115325A TW107115325A TWI742274B TW I742274 B TWI742274 B TW I742274B TW 107115325 A TW107115325 A TW 107115325A TW 107115325 A TW107115325 A TW 107115325A TW I742274 B TWI742274 B TW I742274B
Authority
TW
Taiwan
Prior art keywords
gas
detector
item
patent application
gas chromatography
Prior art date
Application number
TW107115325A
Other languages
English (en)
Other versions
TW201947220A (zh
Inventor
莫皓然
薛達偉
黃啟峰
韓永隆
郭俊毅
Original Assignee
研能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研能科技股份有限公司 filed Critical 研能科技股份有限公司
Priority to TW107115325A priority Critical patent/TWI742274B/zh
Publication of TW201947220A publication Critical patent/TW201947220A/zh
Application granted granted Critical
Publication of TWI742274B publication Critical patent/TWI742274B/zh

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

一種氣相層析設備,包含氣路系統、樣品注入系統、分離系統、溫控系統、偵測系統及紀錄系統,其中分離系統包含分離流路,分離流路係由半導體製程製出之複數個流路單元堆疊組成,每個流路單元係由底基材上製出成形層再堆疊上基材所構成,且於該成形層生成出連續延伸環路連通之導氣通路。導氣通路中設置填充材,使得載體氣體及受測樣品於進入分離流路內時被填充材的吸附力所牽引,由於不同的化合物其吸附力也不同,受測樣品所含不同的化合物於分離流路內會產生不同的流速,進而使受測樣品所含不同的化合物於分離流路內逐漸分離。

Description

氣相層析設備
本案關於一種氣相層析設備,尤指一種在有機化學中對易於揮發而不發生分解的化合物進行分離與分析之氣相層析設備。
氣相層析(gas chromatography,GC)在有機化學中,是一種用於分離、純化易揮發、熱穩定性佳化合物的技術,都是藉由動相(mobile phase)和靜相(stationary phase)互相作用,使混合物所含成份在系統內有不同的流速,而達到分離的目的。
然而,目前氣相層析儀型號及種類很多,雖其外形及構造有所不同,但通常由下列6個基本系統所組成:(1)氣路系統、(2)樣品注入系統、(3)分離系統、(4)溫控系統、(5)偵測系統以及(6)紀錄系統,如此構成體積較大的儀器設備,此乃由於在分離系統中需要靠一層析管柱(column)來進行樣品各成份的分離。層析管柱是氣體層析儀的心臟,是因為層析管柱效率與管柱長度、內徑與膜厚有關。管柱之長度越長、內徑與膜厚越小,分析效果越好,所以一般氣相層析儀之層析管柱是採用非常長的設置。然由於層析管柱需放置於溫控系統中以保持恆溫操作,如此層析管柱長度就會影響到溫控系統體積設置,所以目前層析管柱採以多個繞環圈之設置以縮減長度,盡量縮 小溫控系統體積之設置。然而,目前氣相層析儀之層析管柱設置還是相當龐大佔空間。
有鑑於此,要如何解決氣相層析儀之層析管柱長度設置問題,又要有效達到氣體層析分離之目的,實為本案所要研發之課題。
本案之主要目的係提供一種氣相層析設備,透過以半導體製程製出分離系統,而分離系統由多個流路單元所架構出連續延伸環路之導氣通路,且導氣通路內設置填充材,藉以使具有大量化合物的受測樣品在通過導氣通路時,利用填充材對於受測樣品不同成份的化合物的吸附力不同,吸附力高的化合物流速會越來越慢,吸附力較低的化合物流速降低的趨勢較小,不同的流速將使得不同的化合物逐漸分離,達到氣體層析分離的目的,再透過偵測器分析已分離之各受測樣品的成份及濃度。如此透過微小化的半導體製程,將分離系統微型化,再透過微型的泵浦提升受測樣品的分離速度,可提升檢測效果及效率。
本案之一廣義實施態樣為一種氣相層析設備,包含:一氣路系統,由一載體氣體供應源及一穩壓恆流裝置透過一管路連接而導出流速穩定之載體氣體;一樣品注入系統,由一注入裝置透過該氣路系統之該管路連接而導出受測樣品;一分離系統,包含一分離流路及一填充材,該分離流路連通該氣路系統之該管路,且該分離流路係由半導體製程製出之複數個流路單元堆疊組成,每個流路單元係由一底基材上製出一成形層再堆疊一上基材所構成,且於該成形層生成出一連續延伸環路連通之導氣通路,該上基材並生成出一導氣入 口,連通於該導氣通路一端,以及該底基材生成一導氣出口,連通於該導氣通路另一端,且該底層之流路單元堆疊該上層之流路單元,以位於該上層之流路單元之該導氣出口連通位於該底層之流路單元之該導氣通路,促使堆疊的每個流路單元之該導氣通路得以相互連通,以及該填充材設置於該分離流路之該導氣通路中;一溫控系統,供該分離系統置設其中,以對該分離系統維持一操作溫度,並控制在一定溫度下進行該受測樣品之分離操作。一偵測系統,該偵測系統包含一偵測腔室及一偵測器,該偵測腔室連接該分離系統之該導氣出口,該偵測器設置於該偵測腔室內;一紀錄系統,該紀錄系統連接該偵測系統之該偵測器,供以收集該偵測器之訊號進行氣體層相處理分析;藉此,該氣路系統之該載體氣體及該樣品注入系統所注入之該受測樣品由該管路導出,再由該導氣入口導入並流通於該分離流路之該導氣通路中,該受測樣品中之各成份化合物受該導氣通路中之該填充材吸附,造成該受測樣品之各成份化合物以不同速度導出於該導氣出口並進入該偵測系統之該偵測腔室中,以該偵測系統之該偵測器對該受測樣品以不同速度導出之各成份化合物作偵測,最後由該紀錄系統收集該偵測器之訊號進行該受測樣品之測定分析與紀錄。
1:氣路系統
11:載體氣體供應源
12:穩壓恆流裝置
121:壓力調節器
122:流量控制閥
13:管路
14:泵浦
141:噴氣孔片
141a:支架
141b:懸浮片
141c:中空孔洞
142:腔體框架
143:致動體
143a:壓電載板
143b:調整共振板
143c:壓電板
144:絕緣框架
145:導電框架
146:共振腔室
147:氣流腔室
2:樣品注入系統
3:分離系統
P:分離流路
31:流路單元
311:底基材
311a:導氣出口
312:成形層
313:上基材
313a:導氣入口
314:導氣通路
32:填充材
32A:多孔聚合物
32B:分子篩材料
32C:固定液膜
32D:填充載體
4:溫控系統
5:偵測系統
51:偵測腔室
52:偵測器
6:紀錄系統
第1圖為本案氣相層析設備之示意圖。
第2A圖為第1圖之分離系統剖面示意圖。
第2B圖為第1圖之分離系統之流體單元示意圖。
第3圖至第5圖為本案分離系統之填充材設置於導氣通路中不同實施示意圖。
第6圖為本案分離系統之層析分離示意圖。
第7圖為本案氣相層析設備之泵浦分解示意圖。
第8A圖為第7圖之泵浦的剖面示意圖。
第8B圖、第8C圖為第8A圖之泵浦的作動示意圖。
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非用以限制本案。
第1圖為本案氣相層析設備之示意圖。如第1圖所示,本案提供一種氣相層析設備,包含一氣路系統1、一樣品注入系統2、一分離系統3、一溫控系統4、一偵測系統5及一紀錄系統6。本案為了使分離系統3之設置能夠微型化,且不至於影響到整個設備儀器之體積設置,本案乃將分離系統3以半導體製程製出,以解決習知氣相層析儀之層析管柱長度設置問題,又能要達到氣體層析分離之目的,下面將會予以說明。
上述之氣路系統1包含一載體氣體供應源11、一穩壓恆流裝置12、一管路13及一泵浦14,載體氣體供應源11為提供載體氣體之來源,泵浦14設置於管路13中,而載體氣體供應源11及穩壓恆流裝置12透過管路13連接,再由連接在管路13上之泵浦14導出載體氣體供應源11所提供之載體氣體,其中載體氣體供應源11所提供之載體氣體必 須是化學惰性,常用載體氣體為氮(N2)、氬(Ar)、氦(He)、氫(H2)及二氧化碳(CO2)等。至於選用何種載體氣體通常由偵測系統5之偵測器52來決定,而載體氣體供應源11一般為高壓鋼瓶,由於載體氣體的流速是影響層析分離及定性分析的重要參數之一,因此為要求載體氣流的流速穩定,載體氣體供應源11需要使用穩壓恆流裝置12來減壓及恆流保持流速穩定。穩壓恆流裝置12包含一壓力調節器121及一流量控制閥122,以調節載體氣體供應源11所提供載體氣體在管路13中保持流速穩定,再由連接在管路13上泵浦14導出流速穩定之載體氣體。於本實施例中,載體氣體供應源11、穩壓恆流裝置12、泵浦14、樣品注入系統2及分離系統3透過管路13相互連接,且泵浦14設置於穩壓恆流裝置12、樣品注入系統2及分離系統3之間。
第7圖為本案氣相層析設備之泵浦分解示意圖。請參閱第7圖,本案氣相層析設備之特色為能縮減分離系統3之體積,其中之一原因係由於上述之泵浦14採用一微型化之泵浦14,此泵補14為一氣體泵浦,包含有依序堆疊之噴氣孔片141、腔體框架142、致動體143、絕緣框架144及導電框架145。其中噴氣孔片141包含了複數個支架141a、一懸浮片141b及一中空孔洞141c,懸浮片141b可彎曲振動,複數個支架141a鄰接於懸浮片141b的周緣,本實施例中,支架141a其數量為4個,分別鄰接於懸浮片141b的4個角落,但不此以為限,而中空孔洞141c形成於懸浮片141b的中心位置;腔體框架142承載疊置於懸浮片141b上,致動體143承載疊置於腔體框架142上,並包含了一壓電載板143a、一調整共振板143b、一壓電板143c,其中,壓電載板143a承載疊置於腔體框架142上,調整共振板143b承載疊置於壓電載板143a上,壓電板143c承載疊置於調整共振板143b上, 供施加電壓後發生形變以帶動壓電載板143a及調整共振板143b進行往復式彎曲振動;絕緣框架144則是承載疊置於致動體143之壓電載板143a上,導電框架145承載疊置於絕緣框架144上,其中,致動體143、腔體框架142及該懸浮片141b之間形成一共振腔室146,其中,調整共振板143b的厚度大於壓電載板143a的厚度。
再請參閱第8A圖至第8C圖,第8A圖為第7圖之泵浦的剖面示意圖,第8B圖、第8C圖為第8A圖所示之本案之泵浦14之作動示意圖。請先參閱第8A圖,泵浦14透過支架141a使泵浦14設置於管路13中,噴氣孔片141與管路13兩者之間形成氣流腔室147;請再參閱第8B圖,當施加電壓於致動體143之壓電板143c時,壓電板143c因壓電效應開始產生形變並同步帶動調整共振板143b與壓電載板143a,此時,噴氣孔片141會因亥姆霍茲共振(Helmholtz resonance)原理一起被帶動,使得致動體143向上移動。由於致動體143向上位移,使得噴氣孔片141與管路13之間的氣流腔室147的容積增加,其內部氣壓形成負壓,於泵浦14外的氣體將因為壓力梯度由噴氣孔片141的支架141a與管路13之間的空隙進入氣流腔室147並進行集壓;最後請參閱第8C圖,氣體不斷地進入氣流腔室147內,使氣流腔室147內的氣壓形成正壓,此時,致動體143受電壓驅動向下移動,壓縮氣流腔室147的容積,並且推擠氣流腔室147內氣體,使氣體得以開始輸送。
上述泵浦14為一氣體泵浦,當然本案之泵浦14也可為透過微機電製程的方式所製出的微機電系統氣體泵浦,其中,噴氣孔片141、腔體框架142、致動體143、絕緣框架144及導電框架145皆可透過面型微加工技術製成,以縮小泵浦14的體積。
上述之樣品注入系統2,由一注入裝置(未圖示,為一般常見微量注入埠(含氣化室),故在此不多贅述)透過氣路系統1之管路13連接而將樣品定量地快速注入,並瞬時氣化,以利載體氣體攜帶受測樣品進入分離系統3。受測樣品係指欲注入本案氣相層析設備以進行分離及測定之多成份化合物。
再請參閱第2A圖及第2B圖,第2A圖為第1圖之分離系統剖面示意圖,第2B圖為第1圖之分離系統之流體單元示意圖。如第2A及第2B圖所示,上述之分離系統3包含一分離流路P,由半導體製出複數個流路單元31堆疊組成,每個流路單元31係由一底基材311上製出一成形層312再堆疊一上基材313所構成,且於成形層312生成出一連續延伸環路連通之導氣通路314,上基材313並生成出一導氣入口313a,連通於導氣通路314一端,以及底基材311生成一導氣出口311a,連通於導氣通路314另一端,且底層之流路單元31堆疊上層之流路單元31,以位於上層之流路單元31之導氣出口311a連通位於底層之流路單元31之導氣入口313a,促使堆疊的每個流路單元31之導氣通路314得以相互連通,以構成該分離流路P,而分離流路P中包含一填充材32,定置於導氣通路314中,以構成一氣體層析流路。
第3圖至第5圖為本案分離系統之填充材設置於導氣通路中不同實施示意圖。如第3圖所示,上述之填充材32可為具有吸附性之多孔聚合物32A,或是填充材32可為具有吸附性之分子篩材料32B,並以填充的方式設置於導氣通路314中。此外,如第4圖所示,填充材32亦可為一填充載體32D上覆蓋均勻具有吸附功能之固定液膜32C,填充載體32D填充設置於導氣通路314中,此填充載體32D可為矽的氧化物,其表面具有羥基(-OH)得將固定液膜32C植上。以及 如第5圖所示,填充材32也可為固定液膜32C經由塗佈(coating)方式設置於導氣通路314的內壁表面而附著,或者可為以濺鍍(sputtering)方式設置於導氣通路314的內壁表面而附著。
上述之溫控系統4,供分離系統3置設其中,以對分離系3統維持一操作溫度,並控制在一定溫度下進行受測樣品之分離操作。此外,亦可透過溫控系統4於氣體分離動作時,採用逐步升溫的動作,如將溫度將由20℃逐漸升溫至200℃,來提升分離氣體的效果。
上述之偵測系統5包含一偵測腔室51及一偵測器52,偵測腔室51係連接分離系統3之導氣出口311a。
上述之紀錄系統6連接偵測系統5之偵測器52,供以收集偵測器52之訊號以進行氣體層相處理分析。
第6圖為本案分離系統之層析分離示意圖。由上述說明得知,本案之氣相層析設備乃將分離系統3採以半導體製程來製出,氣路系統1將載體氣體以穩定流速導入管路13中,以及樣品注入系統2將受測樣品定量快速注入管路13中,而管路13連接到分離系統3之導氣入口313a中,並由泵浦14輸送載體氣體及受測樣品導入導氣入口313a流通於導氣通路314中。如第6圖所示,受測樣品及載體氣體之混合氣體將(於沿著如圖所示箭頭之方向流動時)受導氣通路314上填充材32之吸附,由於填充材32對於受測樣品中的每種化合物的吸附力皆不同,因此不同的化合物於導氣通路314內的速度會產生差異,吸附力較大的化合物其速度較慢,吸附力較小的化合物其速度較快,因此受測樣品內所包含的各成份化合物於導氣通路314流動時,會因受到填充材32之吸附而逐漸分離開來,使得受測樣品內所包含的各成份之化合物以不同速率導出於導氣出口311a,並進入偵測系 統5之偵測腔室51中,再以偵測系統5之偵測器52對受測樣品之各成份化合物之不同導出速率作偵測,最後由紀錄系統6收集偵測器52之訊號進行受測樣品之氣相層析處理之測定分析與紀錄,以便將已分離之氣體做檢測,分析受測樣品中各氣體中所包含之氣體成份及濃度。如此分離系統3採以半導體製程來製出,不僅可微小化,解決習知氣相層析儀之層析管柱長度設置問題、取代層析管柱,又能達到氣體層析分離之目的,供產業上利用。
上述之偵測器52可以是一熱傳導偵測器(TCD)、火焰離子化偵測器(FID)、電子捕獲偵測器(ECD)、火焰光量偵測器(FPD)、熱離化偵測器(TSD)、紅外線偵測器(IR)、質譜儀(MS)或是核磁共振波譜儀(NMR)等其中任一種,可將分離系統3所流出之受測樣品分離成份和濃度變化等資料轉變成可測量的電子信號,作為定性及定量分析的資訊。
綜上所述,本案所提供之氣相層析設備,利用半導體製程製出分離系統,分離系統係由多個流路單元所架構出連續延伸環路之導氣通路,且導氣通路內設置填充材,得以使具有大量化合物的受測樣品在通過導氣通路時,藉由填充材對於受測樣品所含不同成份的化合物的吸附力不同,即吸附力高的化合物流速會越來越慢,吸附力較低的化合物流速降低的趨勢較小,不同的流速將使得不同的化合物逐漸分離,而達到氣體層析分離的目的,再透過偵測器分析已相互分離之各受測樣品成份及其濃度。如此透過微小化的半導體製程,將分離系統微型化,再透過微型的泵浦提升受測樣品的分離速度,可提升檢測效果及效率。
本案得由熟知此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。
3‧‧‧分離系統
31‧‧‧流路單元
311‧‧‧底基材
311a‧‧‧導氣出口
312‧‧‧成形層
313‧‧‧上基材
313a‧‧‧導氣入口
314‧‧‧導氣通路
32‧‧‧填充材

Claims (19)

  1. 一種氣相層析設備,包含:一氣路系統,由一載體氣體供應源及一穩壓恆流裝置透過一管路連接而導出流速穩定之一載體氣體,且該氣路系統更包含一泵浦,該泵浦為一微機電系統泵浦,其包含一噴氣孔片、一腔體框架、一致動體、一絕緣框架及一導電框架,設置於該管路中;一樣品注入系統,由一注入裝置透過該氣路系統之該管路連接而導出一受測樣品;一分離系統,包含一分離流路及一填充材,該分離流路連通該氣路系統之該管路,且該分離流路係由半導體製程製出之複數個流路單元堆疊組成,每個流路單元係由一底基材上製出一成形層再堆疊一上基材所構成,且於該成形層生成出一連續延伸環路連通之導氣通路,該上基材並生成出一導氣入口,連通於該導氣通路一端,以及該底基材生成一導氣出口,連通於該導氣通路另一端,且底層之該流路單元堆疊上層之該流路單元,以位於上層之該流路單元之該導氣出口連通位於底層之該流路單元之該導氣通路,促使堆疊的每個流路單元之該導氣通路得以相互連通,以及該填充材設置於該分離流路之該導氣通路中;一溫控系統,供該分離系統置設其中,以對該分離系統維持一操作溫度,並控制在一定溫度下進行該受測樣品之分離操作;一偵測系統,該偵測系統包含一偵測腔室及一偵測器,該偵測腔室連接該分離系統之該導氣出口,該偵測器設置於該偵測腔室內;一紀錄系統,該紀錄系統連接該偵測系統之該偵測器,供以收集該偵測器之訊號進行氣體層相處理分析;其中,該載體氣體供應源、該穩壓恆流裝置、該泵浦、該樣品注入系統及該分離系統透過該管路相互連接,且該泵浦設置於該穩壓恆流裝 置、該樣品注入系統及該分離系統之間,藉此,該氣路系統之該載體氣體及該樣品注入系統所注入之該受測樣品由該管路導出,再由該導氣入口導入並流通於該分離流路之該導氣通路中,該受測樣品中之各成份化合物受該導氣通路中之該填充材吸附,造成該受測樣品之各成份化合物以不同速度導出於該導氣出口並進入該偵測系統之該偵測腔室中,以該偵測系統之該偵測器對該受測樣品以不同速度導出之各成份化合物作偵測,最後由該紀錄系統收集該偵測器之訊號進行該受測樣品之測定分析與紀錄。
  2. 如申請專利範圍第1項所述之氣相層析設備,其中該填充材為具有吸附性之多孔聚合物,填充設置於該導氣通路中。
  3. 如申請專利範圍第1項所述之氣相層析設備,其中該填充材為具有吸附性之分子篩材料,填充設置於該導氣通路中。
  4. 如申請專利範圍第1項所述之氣相層析設備,其中該填充材為填充載體上覆蓋均勻具有吸附功能之固定液膜,填充設置於該導氣通路中。
  5. 如申請專利範圍第4項所述之氣相層析設備,其中該填充載體為矽的氧化物,表面具有烴基供以將該固定液膜植上。
  6. 如申請專利範圍第1項所述之氣相層析設備,其中該填充材為固定液膜直接塗佈在該分離流路之該導氣通路之內壁表面附著。
  7. 如申請專利範圍第1項所述之氣相層析設備,其中該填充材為固定液膜直接濺鍍在該分離流路之該導氣通路之內壁表面附著。
  8. 如申請專利範圍第1項所述之氣相層析設備,其中該注入系統之該注入裝置係供以將該受測樣品定量地快速注入並瞬時氣化。
  9. 如申請專利範圍第1項所述之氣相層析設備,其中該泵浦為一氣體泵浦,其包含:該噴氣孔片,包含複數個支架、一懸浮片及一中空孔洞,該懸浮片 可彎曲振動,該複數個支架鄰接於該懸浮片周緣並提供該懸浮片彈性支撐,而該中空孔洞形成於懸浮片的中心位置,該噴氣孔片透過複數個支架設置定位該管路中,並與該導氣入口之間形成一氣流腔室,且該複數個支架及該懸浮片之間形成至少一空隙;該腔體框架,承載疊置於該懸浮片上;該致動體,承載疊置於該腔體框架上,以接受電壓而產生往復式地彎曲振動;該絕緣框架,承載疊置於該致動體上;以及該導電框架,承載疊設置於該絕緣框架上;其中,該致動體、該腔體框架及該懸浮片之間形成一共振腔室,透過驅動該致動體以帶動該噴氣孔片產生共振,使該噴氣孔片之該懸浮片產生往復式地振動位移,以造成該載體氣體及該受測樣品通過該至少一空隙進入該氣流腔室,實現該載體氣體及該受測樣品之傳輸流動。
  10. 如申請專利範圍第9項所述之氣相層析設備,其中該致動體包含:一壓電載板,承載疊置於該腔體框架上;一調整共振板,承載疊置於該壓電載板上;以及一壓電板,承載疊置於該調整共振板上,以接受電壓而驅動該壓電載板及該調整共振板產生往復式地彎曲振動。
  11. 如申請專利範圍第10項所述之氣相層析設備,其中該調整共振板之厚度大於該壓電載板之厚度。
  12. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為熱傳導偵測器。
  13. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為火焰離子化偵測器。
  14. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為電子 捕獲偵測器。
  15. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為火焰光量偵測器。
  16. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為熱離化偵測器。
  17. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為紅外線偵測器。
  18. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為質譜儀。
  19. 如申請專利範圍第1項所述之氣相層析設備,其中該偵測器為核磁共振波譜儀。
TW107115325A 2018-05-04 2018-05-04 氣相層析設備 TWI742274B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107115325A TWI742274B (zh) 2018-05-04 2018-05-04 氣相層析設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107115325A TWI742274B (zh) 2018-05-04 2018-05-04 氣相層析設備

Publications (2)

Publication Number Publication Date
TW201947220A TW201947220A (zh) 2019-12-16
TWI742274B true TWI742274B (zh) 2021-10-11

Family

ID=69582809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115325A TWI742274B (zh) 2018-05-04 2018-05-04 氣相層析設備

Country Status (1)

Country Link
TW (1) TWI742274B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524084A (en) * 1994-12-30 1996-06-04 Hewlett-Packard Company Method and apparatus for improved flow and pressure measurement and control
CN1419123A (zh) * 2002-12-05 2003-05-21 清华大学 微型气相色谱柱、气相色谱系统以及在样品中分析组分的方法
JP2010266331A (ja) * 2009-05-14 2010-11-25 Yokogawa Electric Corp ガスクロマトグラフ用カラム
TW201111775A (en) * 2009-09-16 2011-04-01 Nat Pingtung University Of Science & Technolog Y A gas chromatograph
TWI403311B (zh) * 2008-06-17 2013-08-01 Tricorntech Corp 隨身可及的醫療診斷、檢查及監測之手持式氣體分析系統
TWM553762U (zh) * 2017-08-31 2018-01-01 Microjet Technology Co Ltd 氣體輸送裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524084A (en) * 1994-12-30 1996-06-04 Hewlett-Packard Company Method and apparatus for improved flow and pressure measurement and control
CN1419123A (zh) * 2002-12-05 2003-05-21 清华大学 微型气相色谱柱、气相色谱系统以及在样品中分析组分的方法
TWI403311B (zh) * 2008-06-17 2013-08-01 Tricorntech Corp 隨身可及的醫療診斷、檢查及監測之手持式氣體分析系統
JP2010266331A (ja) * 2009-05-14 2010-11-25 Yokogawa Electric Corp ガスクロマトグラフ用カラム
TW201111775A (en) * 2009-09-16 2011-04-01 Nat Pingtung University Of Science & Technolog Y A gas chromatograph
TWM553762U (zh) * 2017-08-31 2018-01-01 Microjet Technology Co Ltd 氣體輸送裝置

Also Published As

Publication number Publication date
TW201947220A (zh) 2019-12-16

Similar Documents

Publication Publication Date Title
US7530257B2 (en) Phased micro analyzer VIII
Akbar et al. GC-on-chip: integrated column and photoionization detector
US20050063865A1 (en) Phased VII micro fluid analyzer having a modular structure
JP5815533B2 (ja) イオン移動度センサーに供給するサンプルを調製する装置
CN102539589B (zh) 用于气相色谱仪的氦保存装置
US20110011156A1 (en) Natural gas analyzer on a micro-chip
TWI742274B (zh) 氣相層析設備
TWI677682B (zh) 氣相層析設備之分離系統
TWM568367U (zh) 氣相層析設備之分離系統
CN109406691B (zh) 气体采样分离系统及气相色谱仪
CN208621567U (zh) 气相层析设备
CN110441408B (zh) 气相层析设备
US20230417711A1 (en) Microscale Collector-Injector Technologies For Passive Environmental Vapor Sampling And Focused Injection
CN110441101B (zh) 气相层析设备的分离系统
US7815798B2 (en) Discrete drop dispensing device and method of use
TWM568366U (zh) 氣相層析設備
US10048222B2 (en) Miniaturized helium photoionization detector
US7367216B2 (en) Phased micro analyzer V, VI
US11906490B2 (en) Micro gas chromatography system
CN106290546A (zh) 离子迁移谱仪
CN209372772U (zh) 气体采样分离系统及气相色谱仪
CN109884156B (zh) 一种快速分析全氟丙烷中多种杂质的检测装置及方法
CN206638634U (zh) 在线便携式气相色谱仪和环境监测装置
KR101620281B1 (ko) 탄소 폼을 구비한 가스 농축 장치 및 이의 동작 방법
JP2002005912A (ja) ガスクロマトグラフを用いたガス分析システム