TWI739993B - 面源黑體 - Google Patents
面源黑體 Download PDFInfo
- Publication number
- TWI739993B TWI739993B TW107103210A TW107103210A TWI739993B TW I739993 B TWI739993 B TW I739993B TW 107103210 A TW107103210 A TW 107103210A TW 107103210 A TW107103210 A TW 107103210A TW I739993 B TWI739993 B TW I739993B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotubes
- panel
- black body
- black paint
- black
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 147
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 128
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 128
- 239000003973 paint Substances 0.000 claims abstract description 74
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 108010053481 Antifreeze Proteins Proteins 0.000 description 1
- 230000005457 Black-body radiation Effects 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000002238 carbon nanotube film Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
- G01J5/023—Particular leg structure or construction or shape; Nanotubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/52—Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
- G01J5/53—Reference sources, e.g. standard lamps; Black bodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/80—Calibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/08—Aligned nanotubes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Radiation Pyrometers (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本發明涉及一種面源黑體,該面源黑體包括一面板,所述面板具有兩表面,將所述面板的兩個表面分別定義為第一表面和第二表面,其中,所述面板的第一表面設置有一層黑漆和複數奈米碳管,所述複數奈米碳管的一端浸沒在所述黑漆中,另一端遠離所述黑漆,且所述複數奈米碳管的延伸方向基本垂直於所述面板的第一表面。本發明提供的面源黑體具有較高的發射率和較長的使用壽命。
Description
本發明涉及一種黑體輻射源,尤其涉及一種面源黑體。
隨著紅外遙感技術的快速發展,紅外遙感被廣泛應用於軍事領域和地球勘探、天氣預報、環境監測等民用領域。然而所有的紅外探測儀器均需要經過黑體標定後方可使用,黑體作為標準輻射源,其作用日益突出,黑體的發射率越高,其標定紅外探測儀器的精度越高。黑體包括腔式黑體和面源黑體兩種。其中,面源黑體的有效發射率主要取決於面源黑體的面型結構和表面材料的發射率。是以,選擇高發射率的表面材料,對獲得高性能的面源黑體具有重要的意義。
確有必要提供一種面源黑體,該面源黑體的表面材料為奈米碳管材料,該面源黑體具有高的發射率。
一種面源黑體,該面源黑體包括一面板,所述面板具有兩個表面,將所述面板的兩個表面分別定義為第一表面和第二表面,其中,所述面板的第一表面設置有一層黑漆和複數奈米碳管,所述複數奈米碳管的一端浸沒在所述黑漆中,另一端遠離所述黑漆,且所述複數奈米碳管的延伸方向基本垂直於所述面板的第一表面。
與先前技術相比,本發明提供的面源黑體包括一面板,所述面板的表面設置有複數奈米碳管,所述複數奈米碳管之間的微小間隙能夠阻止射進來的光從面板表面反射出去,以奈米碳管材料為標準輻射源材料,該面源黑體具有較高的發射率;此外,所述面板的表面還設置有一層黑漆,所述黑漆既是一種高發射率的材料,能夠進一步提高所述面源黑體的發射率,又可以作為一種粘結劑,將所述複數奈米碳管緊緊地固定於所述面板的表面,提高所述面源黑體的使用壽命。
10,20,30,40:面源黑體
101,201,301,401:面板
102,202,302,402:第一表面
103,203,303,403:第二表面
104,204,304,404:黑漆
105,205,305,405:奈米碳管
圖1為本發明實施例一提供的面源黑體的剖面結構示意圖。
圖2為本發明實施例二提供的面源黑體的剖面結構示意圖。
圖3為本發明實施例三提供的面源黑體的剖面結構示意圖。
圖4為本發明實施例四採用的面板的剖面結構示意圖。
圖5為本發明實施例四提供的面源黑體的剖面結構示意圖。
以下將結合附圖及具體實施例詳細說明本技術方案所提供的面源黑體。
本發明提供一種面源黑體,所述面源黑體包括一面板,所述面板具有兩個表面,將所述面板的兩個表面分別定義為第一表面和第二表面,其中,所述面板的第一表面設置有一層黑漆和複數奈米碳管,所述複數奈米碳管的一端浸沒在所述黑漆中,另一端遠離所述黑漆,且所述複數奈米碳管的延伸方向基本垂直於所述面板的第一表面。
所述面板由耐高溫、並具有較高發射率的材料製成,具體地,所述面板可以由硬鋁材料、鋁合金材料或無氧銅製成。
所述黑漆選用高發射率的黑漆,如Pyromark 1200黑漆(發射率為0.92)、Nextel Velvet 811-21黑漆(發射率為0.95)等。所述黑漆的厚度不可太小亦不可過大,可以理解,所述黑漆的厚度太小時,所述複數奈米碳管靠近所述黑漆的一端不能浸沒在所述黑漆中,使得所述複數奈米碳管與所述黑漆之間的結合力較弱,所述複數奈米碳管不能牢固地固定於所述面板的第一表面;所述黑漆的厚度過大時,使所述複數奈米碳管包埋在所述黑漆中,從而將破壞所述複數奈米碳管的結構,不能發揮奈米碳管材料高發射率的優良性能。所述黑漆的厚度只需保證所述複數奈米碳管的一端能夠浸沒在所述黑漆中且所述複數奈米碳管的另一端遠離所述黑漆即可,所述黑漆的厚度為1微米~300微米,優選地,所述黑漆的厚度為10微米~150微米。
所述面板的第一表面可以設置有一奈米碳管陣列,該奈米碳管陣列包括複數奈米碳管,且該複數奈米碳管的延伸方向基本垂直於所述面板的第一表面。優選地,該複數奈米碳管遠離所述黑漆的一端均開口。
進一步地,所述面源黑體還包括一加熱組件,所述加熱組件設置於所述面板的第二表面。所述加熱組件可以是先前技術中的用於面源黑體的加熱組件,亦可以是一奈米碳管結構。優選地,所述加熱組件包括一奈米碳管結構及設置於所述奈米碳管結構表面的第一電極及第二電極,所述奈米碳管結構包括至少一奈米碳管膜或至少一奈米碳管長線,所述奈米碳管結構包括複數首尾相連且沿同一擇優取向排列的奈米碳管,該奈米碳管結構中的複數奈米碳管沿著第一電極向第二電極的方向延伸。
藉由第一電極和第二電極給所述奈米碳管結構通電,該奈米碳管結構可以對所述面板進行整體加熱,使得所述面板表面的溫場均勻分佈,可提
高面源黑體的溫度穩定性和均勻性;所述奈米碳管結構具有較低的電阻,且奈米碳管的電熱轉換效率高,熱阻率低,採用奈米碳管結構加熱所述面板具有升溫迅速、熱滯後小、熱交換速度快的特點;奈米碳管材料密度小、重量輕,採用該奈米碳管結構為加熱組件,可使面源黑體具有更輕的重量,使用方便;奈米碳管材料具有較好的韌性,採用該奈米碳管結構為加熱組件的面源黑體具有較長的使用壽命。
請一併參閱圖1,本發明實施例一提供一種面源黑體10,該面源黑體包括一面板101,所述面板101具有兩表面,將所述面板101的兩個表面分別定義為第一表面102和第二表面103,其中,所述面板101的第一表面102設置有一層黑漆104和複數奈米碳管105,所述複數奈米碳管105的一端浸沒在所述黑漆104中,另一端遠離所述黑漆,且該複數奈米碳管105的延伸方向基本垂直於所述面板101的第一表面102。
所述面板101鋁合金材料製成。所述黑漆104選用Nextel Velvet 811-21黑漆,所述黑漆的厚度為150微米。所述複數奈米碳管105遠離所述黑漆104的一端均開口。所述面源黑體10還包括一加熱組件(圖未示),所述加熱組件設置於所述面板101的第二表面103,所述加熱組件包括一奈米碳管結構及設置於所述奈米碳管結構表面的第一電極和第二電極。
本發明實施例一還提供一種所述面源黑體10的製備方法,其具體包括以下步驟:S11,提供一面板101,所述面板101具有第一表面102和第二表面103;S12,在所述面板101的第一表面102上塗上一層黑漆104;
S13,在所述面板101的第一表面102形成複數奈米碳管105,使所述複數奈米碳管105的一端浸沒在所述黑漆104中,另一端遠離所述黑漆104,且所述複數奈米碳管的延伸方向基本垂直於所述面板101的第一表面102。
在步驟S11中,所述面板101的材料為鋁合金材料。
在步驟S12中,可以採用噴塗、旋塗或刮塗的方式在所述面板101的第一表面102形成一層黑漆104。所述黑漆104選用Nextel Velvet 811-21黑漆,所述黑漆的厚度為150微米。
在步驟S13中,可以採用轉移法在所述面板101的第一表面102形成複數奈米碳管105,具體包括以下步驟:S131,提供一基底,所述基底表面生長有一奈米碳管陣列;S132,將所述奈米碳管陣列轉移至所述面板101的第一表面102。
在步驟S131中,可以預先採用化學氣相沉積法在所述基底的表面生長一奈米碳管陣列,所述奈米碳管陣列包括複數奈米碳管105,所述奈米碳管陣列靠近所述基底的一端為所述奈米碳管陣列的頂端,所述奈米碳管陣列遠離所述基底的一端為所述奈米碳管陣列的底端。
在步驟S132中,將所述表面生長有奈米碳管陣列的基底倒置,使所述奈米碳管陣列的頂端與所述面板101表面的黑漆104接觸,並緩慢地浸沒在黑漆104中,然後輕輕按壓所述基底,並移動所述基底或所述面板101中的至少一方,使所述基底與所述面板101相遠離,從而將所述奈米碳管陣列轉移至所述面板101的第一表面102。
在轉移所述奈米碳管陣列的過程中,所述奈米碳管陣列的底端與所述基底分離而開口,使得所述奈米碳管陣列中的複數奈米碳管105遠離所述黑漆104的一端開口。
待在所述面板101的第一表面102形成複數奈米碳管105後,可以採用自然晾乾的方法使所述黑漆104固化,將所述複數奈米碳管105緊緊地固定於所述面板101的第一表面102,所述面板101、所述黑漆104及所述複數奈米碳管105形成一個穩定的整體結構。
請一併參閱圖2,本發明實施例二提供一種面源黑體20。本發明實施例二提供的面源黑體20與本發明實施例一提供的面源黑體10基本相同,其區別在於,本發明實施例二提供的面源黑體20中,所述複數奈米碳管205在所述面板201的第一表面202的分佈形成一圖案。
所述複數奈米碳管205在所述面板表面的分佈形成一圖案,即所述面板201第一表面202的部分區域設置有所述複數奈米碳管205,且該複數奈米碳管205的延伸方向基本垂直於所述面板201的第一表面202。所述圖案的形狀和位置不限。將所述設置有複數奈米碳管205的區域的面積與未設置有複數奈米碳管205的區域的面積之比定義為占空比,所述占空比可為1:9~9:1。
本發明實施例二還提供一種所述面源黑體20的製備方法,其具體包括以下步驟:S21,提供一面板201,所述面板201具有第一表面202和第二表面203;S22,在所述面板201的第一表面塗上一層黑漆204;S23,在所述面板201的第一表面202的部分區域形成複數奈米碳管205,所述複數奈米碳管205的一端浸沒在所述黑漆204中,另一端遠離所述黑漆204。
步驟S21的具體操作方法與步驟S11相同,在此不作詳述。
步驟S22的具體操作方法與步驟S12相同,在此不作詳述。
在步驟S23中,採用轉移法在所述面板201的第一表面202的部分區域形成複數奈米碳管205,其具體包括以下步驟:S231,提供一基底,所述基底表面生長有一圖案化的奈米碳管陣列;S232,將所述圖案化的奈米碳管陣列轉移至所述面板201的第一表面202。
在步驟S231中,所述圖案化的奈米碳管陣列,即奈米碳管陣列中的複數奈米碳管在所述基底表面呈一圖案分佈。所述圖案化的奈米碳管陣列的製備方法包括:預先在所述基底的表面上形成一具有預定圖案的掩膜,該掩膜使所述基底的表面的部分區域暴露;在該暴露的區域沉積催化劑,得到一具有預定圖案的催化劑薄膜;並利用化學氣相沉積法在所述具有預定圖案的催化劑薄膜上生長一奈米碳管陣列,所述奈米碳管陣列中的複數奈米碳管按該預定圖案分佈。
步驟S232的具體操作方法與步驟S132相同,在此不作詳述。
請一併參閱圖3,本發明實施例三提供一種面源黑體30。本發明實施例三提供的面源黑體30與本發明實施例一提供的面源黑體10基本相同,其區別在於,本發明實施例三提供的面源黑體30中,所述複數奈米碳管305遠離所述黑漆304的一端形成所述複數奈米碳管305的頂表面,所述複數奈米碳管305的頂表面形成複數微結構。
所述複數微結構為複數微形槽,所述微形槽可以是環形槽、條形槽或點狀槽,所述微形槽的橫截面形狀不限,可為倒三角形、矩形、梯形等。
所述複數奈米碳管305的頂表面形成有複數微結構,相當於增加了面源黑體表面的粗糙度,可進一步增強所述面源黑體的發射率,獲得高性能的面源黑體。
本發明實施例三還提供一種所述面源黑體30的製備方法,其具體包括以下步驟:S31,提供一面板301,所述面板301具有第一表面302和第二表面303;S32,在所述面板301的第一表面302上塗上一層黑漆304;S33,在所述面板301的第一表面302形成複數奈米碳管305,使所述複數奈米碳管305的一端浸沒在所述黑漆304中,另一端遠離所述黑漆304,且所述複數碳奈米305管的延伸方向基本垂直於所述面板301的第一表面302;S34,在所述複數奈米碳管305的頂表面形成複數微結構。
步驟S31、S32、S33的具體操作方法分別與步驟S11、S12、S13相同,在此不作詳述。
在步驟S34中,可以採用一雷射照射所述複數奈米碳管305的頂表面,從而在所述複數奈米碳管305的頂表面形成複數微結構。所述雷射光束入射的方向可以與所述複數奈米碳管305的表面垂直,亦可以與所述複數奈米碳管305的頂表面成一定的角度,優選地,所述雷射光束入射的方向與所述複數奈米碳管的頂表面形成的角度為55度~90度。
雷射照射過程中,由於雷射光束所具有的高能量被奈米碳管吸收,產生的高溫將處於雷射照射路徑處的奈米碳管全部或部分燒蝕,從而在所述複數奈米碳管305遠離所述面板的頂表面形成預定深度和寬度的凹槽。該雷射光束的掃描路線可預先由電腦設定,從而得到精確控制,在所述複數奈米碳管305的頂表面形成複雜的蝕刻圖案。
請一併參閱圖4和圖5,本發明實施例四提供一種面源黑體40。本發明實施例四提供的面源黑體40與本發明實施例一提供的面源黑體10基本
相同,其區別在於,本發明實施例四提供的面源黑體40中,所述面板401的第一表面402形成有複數相互間隔的凹槽。
所述凹槽可為條形凹槽、環形凹槽或點狀凹槽,所述凹槽的橫截面形狀為矩形、梯形,所述凹槽可藉由鑄造或蝕刻所述面板401的方法形成。本實施例中,所述凹槽為條形凹槽,所述凹槽的橫截面形狀為矩形。
所述凹槽具有一底表面,所述凹槽的底表面和相鄰凹槽之間的區域均設置有一層黑漆404和複數奈米碳管405,所述複數奈米碳管405的一端浸沒在所述黑漆404中,另一端遠離所述黑漆404,且所述複數奈米碳管404的延伸方向基本垂直於所述面板401的第一表面402。
所述凹槽的側表面可以塗有所述黑漆,亦可以不塗有所述黑漆。本實施例中,所述凹槽的側表面未塗有所述黑漆。
本發明實施例四還提供一種所述面源黑體40的製備方法,其具體包括以下步驟:S41,提供一面板401,所述面板401具有第一表面402和第二表面403,所述面板401的第一表面402形成有複數相互間隔的凹槽;S42,分別在所述凹槽的底表面和相鄰凹槽之間的區域塗上一層黑漆404;S43,分別在所述凹槽的底表面和相鄰凹槽之間的區域形成複數奈米碳管405,並使所述複數奈米碳管405的一端浸沒在所述黑漆404中,另一端遠離所述黑漆404,且所述複數奈米碳管404的延伸方向基本垂直於所述面板401的第一表面402。
在步驟S41中,所述凹槽為條形凹槽,所述凹槽的橫截面形狀為矩形。
在步驟S42中,所述塗上一層黑漆404的方法為旋塗法、噴塗法或刮塗法。
在步驟S43中,可以採用轉移法分別在所述凹槽的底表面和相鄰凹槽之間的區域形成複數奈米碳管405,具體包括以下步驟:S431,提供一基底,所述基底的表面形成有複數相互間隔的凸起,所述凸起的形狀、尺寸、位置與所述面板401上的凹槽的形狀、尺寸、位置相吻合,所述凸起的頂表面和相鄰凸起之間的區域分別形成有複數奈米碳管,且所述複數奈米碳管的延伸方向基本垂直於所述基底的表面;S432,將所述複數奈米碳管轉移至所述面板401的第一表面402。
在步驟S431中,可以採用化學氣相沉積法在所述凸起的頂表面和相鄰凸起之間的區域生長複數奈米碳管。
在步驟S432中,將所述凸起頂表面上的複數奈米碳管轉移至所述凹槽底表面,將相鄰凸起之間區域上的複數奈米碳管轉移至所述相鄰凹槽之間的區域。
本發明提供的面源黑體,具有以下優點:其一,奈米碳管是目前世界上最黑的材料,奈米碳管陣列中的奈米碳管之間的微小間隙能夠阻止入射進來的光從陣列表面反射出去,經測量,奈米碳管陣列的發射率高達99.6%,遠遠大於目前面源黑體表面材料(如Nextel Velvet 81-21黑漆的發射率為96%)的發射率;其二,奈米碳管可由高溫條件下碳源氣化學氣相沉積製備,原材料價廉易得;其三,奈米碳管具有優異的熱傳導性能,採用奈米碳管陣列為面源黑體表面材料,可以提高面源黑體的溫度均勻性和穩定性;其四,奈米碳管具有優異的力學性能,利用奈米碳管材料製備面源黑體將會增加面源黑體的穩定性,使得星載面源黑體在惡劣的環境下不易損壞;其五,本發明提供的面源黑體中,所述面源黑體的表面還設置有一層黑漆,所述黑漆既是一種高發射率的
材料,又可以充當粘結劑將所述複數奈米碳管固定在所述面源黑體的表面,可進一步增強所述面源黑體的穩定性,延長所述面源黑體的使用壽命,提高所述面源黑體的發射率。
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。
10:面源黑體
101:面板
102:第一表面
103:第二表面
104:黑漆
105:奈米碳管
Claims (9)
- 一種面源黑體,該面源黑體包括一面板,所述面板具有兩表面,將所述面板的兩個表面分別定義為第一表面和第二表面,其中,所述面板的第一表面設置有一層高發射率的黑漆和複數奈米碳管,所述複數奈米碳管的一端浸沒在所述黑漆中,另一端遠離所述黑漆,且所述複數奈米碳管的延伸方向基本垂直於所述面板的第一表面,所述複數奈米碳管遠離所述黑漆的一端均開口。
- 如請求項1所述的面源黑體,其中,所述面板的第一表面的部分區域形成有所述複數奈米碳管,且所述複數奈米碳管在所述面板的第一表面按一圖案分佈。
- 如請求項1所述的面源黑體,其中,所述複數奈米碳管遠離所述黑漆的一端形成所述複數奈米碳管的頂表面,所述複數奈米碳管的頂表面形成有複數微結構。
- 如請求項3所述的面源黑體,其中,所述複數微結構為複數微形槽。
- 如請求項4所述的面源黑體,其中,所述微形槽為環形槽、條形槽或點狀槽,所述微形槽的橫截面形狀為倒三角形、矩形或梯形。
- 如請求項1所述的面源黑體,其中,所述黑漆的厚度為1微米~300微米。
- 如請求項1所述的面源黑體,其中,所述面板的第一表面形成有複數相互間隔的凹槽,所述凹槽的底表面和相鄰凹槽之間的區域均設置有所述黑漆和所述複數奈米碳管。
- 如請求項7所述的面源黑體,其中,所述凹槽為環形凹槽、條形凹槽或點狀凹槽,所述凹槽的橫截面形狀為矩形或梯形。
- 如請求項1所述的面源黑體,其中,所述面源黑體包括一加熱組件,所述加熱組件設置於所述面板的第二表面。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810026973.0A CN110031104A (zh) | 2018-01-11 | 2018-01-11 | 面源黑体 |
CN201810026973.0 | 2018-01-11 | ||
??201810026973.0 | 2018-01-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201932406A TW201932406A (zh) | 2019-08-16 |
TWI739993B true TWI739993B (zh) | 2021-09-21 |
Family
ID=67234709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107103210A TWI739993B (zh) | 2018-01-11 | 2018-01-30 | 面源黑體 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11047740B2 (zh) |
CN (1) | CN110031104A (zh) |
TW (1) | TWI739993B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116147783B (zh) * | 2023-04-21 | 2023-07-25 | 清华大学 | 结构黑体和黑体装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101409961A (zh) * | 2007-10-10 | 2009-04-15 | 清华大学 | 面热光源,其制备方法及应用其加热物体的方法 |
US20100068461A1 (en) * | 2006-06-30 | 2010-03-18 | University Of Wollongong | Nanostructured composites |
TW201250720A (en) * | 2011-06-09 | 2012-12-16 | Shih Hua Technology Ltd | Method for making pattern conductive element |
JP2017024942A (ja) * | 2015-07-22 | 2017-02-02 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ被膜部材とその製造方法 |
CN107014494A (zh) * | 2017-03-10 | 2017-08-04 | 北京振兴计量测试研究所 | 一种真空低温条件下应用的高精度面源黑体辐射源装置 |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2622629Y (zh) | 2003-02-27 | 2004-06-30 | 徐卫河 | 集热器全谱辐射热存积的宏观微结构 |
US7354877B2 (en) * | 2003-10-29 | 2008-04-08 | Lockheed Martin Corporation | Carbon nanotube fabrics |
JP2007115854A (ja) * | 2005-10-19 | 2007-05-10 | Bussan Nanotech Research Institute Inc | 電磁波吸収体 |
US7465605B2 (en) * | 2005-12-14 | 2008-12-16 | Intel Corporation | In-situ functionalization of carbon nanotubes |
WO2007124477A2 (en) * | 2006-04-21 | 2007-11-01 | William Marsh Rice University | Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them |
US7927666B2 (en) * | 2006-06-30 | 2011-04-19 | The University Of Akron | Aligned carbon nanotube-polymer materials, systems and methods |
US8846143B2 (en) * | 2006-07-10 | 2014-09-30 | California Institute Of Technology | Method for selectively anchoring and exposing large numbers of nanoscale structures |
TWI312861B (en) | 2007-02-13 | 2009-08-01 | Ind Tech Res Inst | Standard radiation source |
CN101400198B (zh) | 2007-09-28 | 2010-09-29 | 北京富纳特创新科技有限公司 | 面热光源,其制备方法及应用其加热物体的方法 |
US20100126985A1 (en) | 2008-06-13 | 2010-05-27 | Tsinghua University | Carbon nanotube heater |
US20100021736A1 (en) * | 2008-07-25 | 2010-01-28 | Slinker Keith A | Interface-infused nanotube interconnect |
TWI486090B (zh) | 2008-08-01 | 2015-05-21 | Hon Hai Prec Ind Co Ltd | 空心熱源 |
CN102056353A (zh) | 2009-11-10 | 2011-05-11 | 清华大学 | 加热器件及其制备方法 |
TWI420954B (zh) | 2010-01-15 | 2013-12-21 | Hon Hai Prec Ind Co Ltd | 加熱器件及其製備方法 |
US8518472B2 (en) | 2010-03-04 | 2013-08-27 | Guardian Industries Corp. | Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same |
WO2011116469A1 (en) * | 2010-03-25 | 2011-09-29 | Xiaowu Shirley Tang | Carbon nanotube coatings for visible and ir camouflage |
US8853856B2 (en) * | 2010-06-22 | 2014-10-07 | International Business Machines Corporation | Methodology for evaluation of electrical characteristics of carbon nanotubes |
CN101871818B (zh) | 2010-06-25 | 2012-05-23 | 清华大学 | 红外探测器 |
TWI410615B (zh) | 2010-07-05 | 2013-10-01 | Hon Hai Prec Ind Co Ltd | 紅外探測器 |
CN102452647B (zh) | 2010-10-27 | 2013-06-19 | 北京富纳特创新科技有限公司 | 碳纳米管膜承载结构及其使用方法 |
CN102092670B (zh) * | 2010-12-27 | 2013-04-17 | 清华大学 | 碳纳米管复合结构及其制备方法 |
US8741422B2 (en) | 2011-04-12 | 2014-06-03 | Hsin Yuan MIAO | Carbon nanotube plate layer and application thereof |
US9394165B2 (en) * | 2011-06-15 | 2016-07-19 | Georgia Tech Research Corporation | Carbon nanotube array bonding |
US9505615B2 (en) * | 2011-07-27 | 2016-11-29 | California Institute Of Technology | Method for controlling microstructural arrangement of nominally-aligned arrays of carbon nanotubes |
US20130190442A1 (en) * | 2012-01-23 | 2013-07-25 | King Fahd University Of Petroleum And Minerals | Linear low density polyethylene nanocomposite fibers and method of making the same |
DE102012203792A1 (de) * | 2012-03-12 | 2013-09-12 | Siemens Aktiengesellschaft | Infrarotsensor, Wärmebildkamera und Verfahren zum Herstellen einer Mikrostruktur aus thermoelektrischen Sensorstäben |
CN103382023B (zh) | 2012-05-04 | 2015-07-01 | 清华大学 | 碳纳米管结构及其制备方法 |
US9656246B2 (en) * | 2012-07-11 | 2017-05-23 | Carbice Corporation | Vertically aligned arrays of carbon nanotubes formed on multilayer substrates |
HU230781B1 (en) * | 2013-09-03 | 2018-05-02 | Jkm Pronat Kft | Removable multilayer body-colour system on heat sensitive support and an apparatus and a process for thermal transfer printing of a support with the aforementioned paint |
CN103602132A (zh) | 2013-10-28 | 2014-02-26 | 北京卫星环境工程研究所 | 高光吸收材料及其制备方法 |
JP6388784B2 (ja) | 2014-04-11 | 2018-09-12 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ標準黒体炉装置 |
US9834318B2 (en) * | 2014-04-25 | 2017-12-05 | Rohr, Inc. | Lightning strike protection for composite components |
JP6527340B2 (ja) * | 2014-06-12 | 2019-06-05 | 国立研究開発法人産業技術総合研究所 | 光学部材とその製造方法 |
CN105271105B (zh) * | 2014-06-13 | 2017-01-25 | 清华大学 | 碳纳米管阵列的转移方法及碳纳米管结构的制备方法 |
CN105197875B (zh) | 2014-06-19 | 2017-02-15 | 清华大学 | 图案化碳纳米管阵列的制备方法及碳纳米管器件 |
TWI684002B (zh) | 2014-11-19 | 2020-02-01 | 美商瑞西恩公司 | 用於產生黑體光譜的裝置、薄膜及方法 |
ES2575746B1 (es) | 2014-12-31 | 2017-04-19 | Abengoa Research, S.L. | Estructura selectiva solar con autolimpieza resistente a altas temperaturas |
JP6755011B2 (ja) | 2015-06-15 | 2020-09-16 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ標準黒体炉装置及び標準黒体炉装置用の空洞 |
LU92758B1 (en) * | 2015-06-29 | 2016-12-30 | Luxembourg Inst Of Science And Tech (List) | Carbon-nanotube-based composite coating and production method thereof |
US20170029275A1 (en) * | 2015-07-27 | 2017-02-02 | Northrop Grumman Systems Corporation | Visible/infrared absorber vertically aligned carbon nanotube nanocomposite applique |
CN105562307B (zh) | 2015-12-21 | 2019-10-18 | 北京振兴计量测试研究所 | 一种辐射板、制备工艺及红外标准辐射装置 |
US10619246B2 (en) * | 2016-03-31 | 2020-04-14 | The Boeing Company | Interwoven Carbon Nanotube Mats |
CN105675143B (zh) | 2016-04-13 | 2018-10-30 | 中国计量科学研究院 | 一种真空黑体辐射源 |
KR102144867B1 (ko) * | 2016-06-10 | 2020-08-14 | 린텍 오브 아메리카, 인크. | 나노섬유 시트 |
US10260953B2 (en) * | 2016-08-11 | 2019-04-16 | The Boeing Company | Applique and method for thermographic inspection |
US11753189B2 (en) * | 2017-05-30 | 2023-09-12 | Arianegroup Gmbh | Heater apparatus and method for heating a component of a spacecraft, and spacecraft comprising a heater apparatus |
CN110031114A (zh) * | 2018-01-11 | 2019-07-19 | 清华大学 | 面源黑体 |
JP6764898B2 (ja) * | 2018-06-12 | 2020-10-07 | 吉田 英夫 | ワークの炭素皮膜被覆方法 |
-
2018
- 2018-01-11 CN CN201810026973.0A patent/CN110031104A/zh active Pending
- 2018-01-30 TW TW107103210A patent/TWI739993B/zh active
-
2019
- 2019-01-10 US US16/244,449 patent/US11047740B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100068461A1 (en) * | 2006-06-30 | 2010-03-18 | University Of Wollongong | Nanostructured composites |
CN101409961A (zh) * | 2007-10-10 | 2009-04-15 | 清华大学 | 面热光源,其制备方法及应用其加热物体的方法 |
TW201250720A (en) * | 2011-06-09 | 2012-12-16 | Shih Hua Technology Ltd | Method for making pattern conductive element |
JP2017024942A (ja) * | 2015-07-22 | 2017-02-02 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ被膜部材とその製造方法 |
CN107014494A (zh) * | 2017-03-10 | 2017-08-04 | 北京振兴计量测试研究所 | 一种真空低温条件下应用的高精度面源黑体辐射源装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110031104A (zh) | 2019-07-19 |
US20200025621A1 (en) | 2020-01-23 |
TW201932406A (zh) | 2019-08-16 |
US11047740B2 (en) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI709493B (zh) | 面源黑體 | |
TWI688471B (zh) | 黑體輻射源及黑體輻射源的製備方法 | |
US20050077285A1 (en) | Device for homogeneous heating of an object | |
TWI694050B (zh) | 腔式黑體輻射源以及腔式黑體輻射源的製備方法 | |
US20050231806A1 (en) | Method for making large scale multilayer dielectric diffraction gratings on thick substrates using reactive ion etching | |
TWI690696B (zh) | 腔式黑體輻射源 | |
TWI700509B (zh) | 黑體輻射源的製備方法 | |
CN106044759B (zh) | 一种调控石墨烯带隙方法 | |
TWI739993B (zh) | 面源黑體 | |
CN105241568A (zh) | 一种挠性温度传感器的制造方法 | |
TWI739994B (zh) | 面源黑體 | |
TWI706130B (zh) | 黑體輻射源及黑體輻射源的製備方法 | |
CN106129167A (zh) | 一种石墨烯太赫兹探测器及其制备方法 | |
TW201932287A (zh) | 腔式黑體輻射源以及腔式黑體輻射源的製備方法 | |
TWI674190B (zh) | 黑體輻射源及黑體輻射源的製備方法 | |
TWI690695B (zh) | 黑體輻射源 | |
TWI670228B (zh) | 面源黑體以及面源黑體的製備方法 | |
CN105502281B (zh) | 一种金属图形化方法 | |
TW201936485A (zh) | 腔式黑體輻射源以及腔式黑體輻射源的製備方法 | |
CN207636088U (zh) | 跨尺度的金属微纳电极阵列 | |
NL2020206B1 (nl) | Thermo-elektrisch element en werkwijze voor het vervaardigen daarvan | |
TW202416766A (zh) | 石墨烯加熱晶片及其製備方法 |