TWI738356B - Holographic display device - Google Patents

Holographic display device Download PDF

Info

Publication number
TWI738356B
TWI738356B TW109117269A TW109117269A TWI738356B TW I738356 B TWI738356 B TW I738356B TW 109117269 A TW109117269 A TW 109117269A TW 109117269 A TW109117269 A TW 109117269A TW I738356 B TWI738356 B TW I738356B
Authority
TW
Taiwan
Prior art keywords
color light
diffraction
light
display device
color
Prior art date
Application number
TW109117269A
Other languages
Chinese (zh)
Other versions
TW202144938A (en
Inventor
簡采毅
曾德恩
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Priority to TW109117269A priority Critical patent/TWI738356B/en
Application granted granted Critical
Publication of TWI738356B publication Critical patent/TWI738356B/en
Publication of TW202144938A publication Critical patent/TW202144938A/en

Links

Images

Abstract

The present disclosure provides a holographic display device, including: a display module for emitting at least a first color light and a second color light, a luminous efficiency of the first color light is higher than that of the second color light; and a diffraction module on exit paths of the first color light and the second color light, the diffraction module is configured to diffract the first color light with a first diffraction efficiency, and diffract the second color light with a second diffraction efficiency, so as to generating a holographic image. The first diffraction efficiency is smaller than the second diffraction efficiency.

Description

全息顯示裝置 Holographic display device

本發明涉及全息顯示領域,尤其涉及一種全息顯示裝置。 The invention relates to the field of holographic display, in particular to a holographic display device.

全息顯示方法結合了全息技術及波導技術,實現了將虛擬圖像以投影的方式及外部場景圖像疊加在一起的目的。 The holographic display method combines holographic technology and waveguide technology to achieve the purpose of superimposing the virtual image with the external scene image in a projection manner.

習知技術中的全息產品包括頭戴式全息顯示器,用戶將其佩戴於頭部,便可看到三維的全息圖像。所述全息顯示器中,藉由繞射結構對各種顏色的光源光進行繞射,從而得到繞射圖像,然,光源光通常包括多種顏色光,各種顏色光的發射效率與繞射結構對各種顏色的光的繞射效率都不同,往往導致最終得到的繞射圖像出現色偏,圖像失真。 The holographic products in the prior art include a head-mounted holographic display, and the user can see a three-dimensional holographic image by wearing it on the head. In the holographic display, light sources of various colors are diffracted by a diffraction structure to obtain a diffracted image. However, the source light usually includes multiple colors of light. The diffraction efficiency of colored light is different, which often results in color shift and image distortion in the finally obtained diffraction image.

本發明一方面提供一種全息顯示裝置,包括:顯示模組,用於出射至少第一顏色光及第二顏色光,所述第一顏色光的發光效率高於所述第二顏色光的發光效率;以及繞射模組,所述繞射模組設置於所述第一顏色光及所述第二顏色光的出射路徑上,用於以第一繞射效率繞射所述第一顏色光,並以第二繞射效率繞射所述第二顏色光,從而生成全息圖像,其中,所述第一繞射效率小於所述第二繞射效率。 One aspect of the present invention provides a holographic display device, including: a display module for emitting at least a first color light and a second color light, the luminous efficiency of the first color light is higher than the luminous efficiency of the second color light And a diffraction module, the diffraction module is arranged on the exit path of the first color light and the second color light for diffracting the first color light with a first diffraction efficiency, The second color light is diffracted with a second diffraction efficiency to generate a holographic image, wherein the first diffraction efficiency is less than the second diffraction efficiency.

上述全息顯示裝置,根據第一顏色光及第二顏色光的發光效率,對應設置繞射模組中第一繞射組件及第二繞射組件的特性及搭配順序,以減小第一顏色光及第二顏色光之間發光強度的差異,有利於改善全息顯示裝置生成的全息圖像的色偏問題,避免全息圖像失真。 According to the above-mentioned holographic display device, according to the luminous efficiency of the first color light and the second color light, the characteristics and matching sequence of the first diffraction element and the second diffraction element in the diffraction module are correspondingly set to reduce the first color light The difference in luminous intensity between the second color light and the second color light is beneficial to improve the color shift problem of the holographic image generated by the holographic display device and avoid the distortion of the holographic image.

10:全息顯示裝置 10: Holographic display device

20:顯示模組 20: display module

21:發光組件 21: Light-emitting components

22:色轉換層 22: Color conversion layer

221:第一轉換單元 221: first conversion unit

222:第二轉換單元 222: The second conversion unit

223:透射單元 223: Transmission unit

23:基板 23: substrate

30:繞射模組 30: Diffraction module

31:第一繞射單元 31: The first diffraction unit

311、321:第一繞射組件 311, 321: first diffraction component

312、322:第二繞射組件 312, 322: second diffraction component

313、323:第三繞射組件 313, 323: third diffraction component

32:第二繞射單元 32: The second diffraction unit

40:光波導 40: Optical waveguide

圖1為本發明實施例的全息顯示裝置的結構示意圖。 FIG. 1 is a schematic diagram of the structure of a holographic display device according to an embodiment of the present invention.

圖2為圖1中顯示模組的結構示意圖。 FIG. 2 is a schematic diagram of the structure of the display module in FIG. 1.

本實施例提供一種全息顯示裝置,具體的,該全息顯示裝置為頭戴式全息顯示裝置。該全息顯示裝置被佩戴於用戶頭部時,可向用戶展示三維的全息圖像。 This embodiment provides a holographic display device. Specifically, the holographic display device is a head-mounted holographic display device. When the holographic display device is worn on the user's head, it can show the user a three-dimensional holographic image.

請參閱圖1,本實施例提供的全息顯示裝置10,包括顯示模組20、繞射模組30及設置於顯示模組20與繞射模組30之間的光波導40。顯示模組20用於發射第一顏色光、第二顏色光及第三顏色光。於其他實施例中,顯示模組20用於發射第一顏色光及第二顏色光。繞射模組30被配置為對所述第一顏色光、所述第二顏色光及所述第三顏色光進行繞射後出射。光波導40作為一光傳播介質,設置於所述第一顏色光、所述第二顏色光及所述第三顏色光的發射路徑上,用於引導所述第一顏色光、所述第二顏色光及所述第三顏色光在顯示模組20及繞射模組30之間傳播,並將經繞射模組30繞射後的第一顏色光、第二顏色光及第三顏色光出射。本實施例中,光波導40可採用透明的光學玻璃或光學塑料製成。 Please refer to FIG. 1, the holographic display device 10 provided in this embodiment includes a display module 20, a diffraction module 30, and an optical waveguide 40 arranged between the display module 20 and the diffraction module 30. The display module 20 is used for emitting the first color light, the second color light and the third color light. In other embodiments, the display module 20 is used to emit the first color light and the second color light. The diffraction module 30 is configured to diffract and emit the first color light, the second color light, and the third color light. As a light propagation medium, the optical waveguide 40 is arranged on the emission paths of the first color light, the second color light, and the third color light, and is used to guide the first color light, the second color light, and the second color light. The color light and the third color light propagate between the display module 20 and the diffraction module 30, and combine the first color light, the second color light, and the third color light after being diffracted by the diffraction module 30 Shoot out. In this embodiment, the optical waveguide 40 can be made of transparent optical glass or optical plastic.

請參閱圖2,顯示模組20包括基板23及設置於基板23上同一表面的複數發光組件21,各發光組件21用於發射所述第一顏色光。本實施例中,各發光組件21為微型發光二極體(Micro Light-Emitting Diode,Micro-LED);各發光組件21用於發射藍色光,也即,所述第一顏色光為藍色光。 Referring to FIG. 2, the display module 20 includes a substrate 23 and a plurality of light-emitting elements 21 disposed on the same surface of the substrate 23, and each light-emitting element 21 is used to emit the first color light. In this embodiment, each light-emitting component 21 is a Micro Light-Emitting Diode (Micro-LED); each light-emitting component 21 is used to emit blue light, that is, the first color light is blue light.

請參閱圖2,顯示模組20還包括色轉換層22,色轉換層22設置於所述第一顏色光的出射路徑上,用於將部分所述第一顏色光轉換為所述第二顏色光,將部分所述第一顏色光轉換為所述第三顏色光,並用於直接透射其餘的第一顏色光。本實施例中,所述第二顏色光為綠色光,所述第三顏色光為紅色光。本實施例中,色轉換層22為量子點層,色轉換層22包括複數第一轉換單元221、複數第二轉換單元222及複數透射單元223,第一轉換單元221與第二轉換單元222中包含不同類型的量子點,透射單元223不包含量子點,每一第一轉換單元221用於將部分所述第一顏色光轉換為所述第二顏色光,每一第二轉換 單元222用於將部分所述第二顏色光轉換為所述第三顏色光,每一透射單元223用於直接透射未被轉換的其餘的第一顏色光。 Referring to FIG. 2, the display module 20 further includes a color conversion layer 22, which is disposed on the exit path of the first color light, and is used to convert part of the first color light into the second color The light converts part of the first color light into the third color light, and is used to directly transmit the remaining first color light. In this embodiment, the second color light is green light, and the third color light is red light. In this embodiment, the color conversion layer 22 is a quantum dot layer. The color conversion layer 22 includes a plurality of first conversion units 221, a plurality of second conversion units 222, and a plurality of transmission units 223. Contains different types of quantum dots, the transmission unit 223 does not include quantum dots, each first conversion unit 221 is used to convert part of the first color light into the second color light, and each second conversion unit 221 The unit 222 is used to convert part of the second color light into the third color light, and each transmission unit 223 is used to directly transmit the remaining first color light that is not converted.

從色轉換層22出射的第一顏色光、第二顏色光及第三顏色光中,所述第一顏色光未經色轉換層22直接從透射單元223出射,未經過顏色轉換,所述第二顏色光及所述第三顏色光由各發光組件21發射的第一顏色光經顏色轉換得到,則從色轉換層22出射的第一顏色光、第二顏色光及第三顏色光中,第一顏色光的發光效率高於第二顏色光及第三顏色光的發光效率。根據不同類型量子點的性質,每一第一轉換單元221中的量子點的顏色轉換效率高於每一第二轉換單元222中的量子點的顏色轉換效率,是故第二顏色光的發光效率高於第三顏色光的發光效率。 Among the first color light, the second color light, and the third color light emitted from the color conversion layer 22, the first color light is directly emitted from the transmission unit 223 without the color conversion layer 22 without undergoing color conversion. The second color light and the third color light are obtained by color conversion of the first color light emitted by each light-emitting component 21, and then among the first color light, the second color light, and the third color light emitted from the color conversion layer 22, The luminous efficiency of the first color light is higher than the luminous efficiency of the second color light and the third color light. According to the properties of different types of quantum dots, the color conversion efficiency of the quantum dots in each first conversion unit 221 is higher than the color conversion efficiency of the quantum dots in each second conversion unit 222, so the luminous efficiency of the second color light Higher than the luminous efficiency of the third color light.

以一預設驅動電壓驅動各發光組件21發光時,測得的從色轉換層22出射的第一顏色光的發光強度為A1,第二顏色光的發光強度為A2,第三顏色光的發光強度為A3,發光效率與發光強度成正比,則A1>A2>A3。由於第一顏色光、第二顏色光及第三顏色光的發光效率不同,也即發光強度不同,易造成全息顯示裝置10生成的全息圖像出現色偏現象,影響圖像顯示效果。 When the light-emitting components 21 are driven to emit light with a preset driving voltage, the measured luminous intensity of the first color light emitted from the color conversion layer 22 is A 1 , the luminous intensity of the second color light is A 2 , and the third color light The luminous intensity of is A 3 , and the luminous efficiency is proportional to the luminous intensity, then A 1 >A 2 >A 3 . Since the luminous efficiency of the first color light, the second color light and the third color light are different, that is, the luminous intensity is different, it is easy to cause color shift in the holographic image generated by the holographic display device 10, which affects the image display effect.

本實施例中,藉由繞射模組30改善上述的色偏問題。 In this embodiment, the above-mentioned color shift problem is improved by the diffraction module 30.

請再參閱圖1,繞射模組30設置於光波導40上遠離顯示模組20的一側。繞射模組30包括相互分隔設置的第一繞射單元31及第二繞射單元32。第一繞射單元31用於對第一顏色光、第二顏色光及第三顏色光進行第一次繞射,第二繞射單元32用於對第一顏色光、第二顏色光及第三顏色光進行第二次繞射,以生成所述全息圖像,光波導40用於引導第一顏色光、第二顏色光、及第三顏色光在顯示模組20、第一繞射單元31及第二繞射單元32之間傳播。 Please refer to FIG. 1 again, the diffraction module 30 is disposed on the side of the optical waveguide 40 away from the display module 20. The diffraction module 30 includes a first diffraction unit 31 and a second diffraction unit 32 spaced apart from each other. The first diffracting unit 31 is used to diffract the first color light, the second color light, and the third color light for the first time, and the second diffracting unit 32 is used to diffract the first color light, the second color light, and the first color light. The three-color light is diffracted for the second time to generate the holographic image. The optical waveguide 40 is used to guide the first color light, the second color light, and the third color light in the display module 20 and the first diffraction unit. 31 and the second diffraction unit 32 propagate between.

請繼續參閱圖1,第一繞射單元31包括第一繞射組件311、第二繞射組件312及第三繞射組件313。本實施例中,第一繞射組件311、第二繞射組件312及第三繞射組件313為繞射光柵。第一繞射組件311、第二繞射組件312及第三繞射組件313為依次層疊設置。第一繞射組件311用於繞射第一顏色光,第二繞射組件312用於繞射第二顏色光,第三繞射組件313用於繞射第三顏色光。 Please continue to refer to FIG. 1, the first diffraction unit 31 includes a first diffraction element 311, a second diffraction element 312, and a third diffraction element 313. In this embodiment, the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 are diffraction gratings. The first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 are stacked in sequence. The first diffractive component 311 is used to diffract the first color light, the second diffractive component 312 is used to diffract the second color light, and the third diffractive component 313 is used to diffract the third color light.

應當理解,本實施例中,第一繞射組件311主要用於繞射第一顏色光,然第二顏色光及第三顏色光皆經過第一繞射組件311,是故第一繞射組件 311對第二顏色光及第三顏色光也具有一定的繞射作用,然第一繞射組件311對第一顏色光的繞射作用遠大於對第二顏色光及對第三顏色光的繞射作用。同理的,第二繞射組件312主要用於繞射第二顏色光,第二繞射組件312對第二顏色光的繞射作用遠大於對第一顏色光及對第三顏色光的繞射作用;第三繞射組件313主要用於繞射第三顏色光,第三繞射組件313對第三顏色光的繞射作用遠大於對第一顏色光及對第二顏色光的繞射作用。 It should be understood that in this embodiment, the first diffractive element 311 is mainly used to diffract the first color light, but the second color light and the third color light both pass through the first diffractive element 311, so the first diffractive element 311 311 also has a certain diffracting effect on the second color light and the third color light, but the diffracting effect of the first diffractive component 311 on the first color light is much greater than that of the second color light and the third color light. Shooting effect. Similarly, the second diffractive component 312 is mainly used to diffract the second color light, and the diffracting effect of the second diffractive component 312 on the second color light is much greater than that on the first color light and the third color light. The third diffractive component 313 is mainly used to diffract the third color light, and the third diffractive component 313 has a much greater diffracting effect on the third color light than on the first color light and the second color light effect.

也即,第一顏色光、第二顏色光及第三顏色光皆被第一繞射單元31中的第一繞射組件311、第二繞射組件312及第三繞射組件313。定義第一繞射組件311、第二繞射組件312及第三繞射組件313對第一顏色光的總的繞射效率為第一繞射單元31對第一顏色光的繞射效率;定義第一繞射組件311、第二繞射組件312及第三繞射組件313對第二顏色光的總的繞射效率為第一繞射單元31對第二顏色光的繞射效率;定義第一繞射組件311、第二繞射組件312及第三繞射組件313對第三顏色光的總的繞射效率為第一繞射單元31對第三顏色光的繞射效率。 That is, the first color light, the second color light, and the third color light are all absorbed by the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 in the first diffraction unit 31. Define the total diffraction efficiency of the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 for the first color light as the diffraction efficiency of the first diffraction unit 31 for the first color light; Definition The total diffraction efficiency of the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 for the second color light is the diffraction efficiency of the first diffraction unit 31 for the second color light; The total diffraction efficiency of the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 for the third color light is the diffraction efficiency of the first diffraction unit 31 for the third color light.

光經第一繞射單元31繞射後的發光強度為其入射至第一繞射單元31之前的發光強度與第一繞射單元31的繞射效率的乘積。定義第一繞射單元31對第一顏色光的繞射效率為η1%,第一顏色光經第一繞射單元31繞射後的發光強度為A11;定義第一繞射單元31對第二顏色光的繞射效率為η2%,第二顏色光經第一繞射單元31繞射後的發光強度為A22;定義第一繞射單元31對第三顏色光的繞射效率為η3%,第三顏色光經第一繞射單元31繞射後的發光強度為A33。則:A11=A11%,A22=A22%,A33=A33%。 The luminous intensity after light is diffracted by the first diffractive unit 31 is the product of the luminous intensity before the light is incident on the first diffractive unit 31 and the diffraction efficiency of the first diffractive unit 31. Define the diffraction efficiency of the first diffraction unit 31 for the first color light as η 1 %, and the luminous intensity of the first color light after being diffracted by the first diffraction unit 31 is A 11 ; define the first diffraction unit 31 pair The diffraction efficiency of the second color light is η 2 %, and the luminous intensity of the second color light after being diffracted by the first diffraction unit 31 is A 22 ; defines the diffraction efficiency of the first diffraction unit 31 for the third color light Is η 3 %, and the luminous intensity of the third color light after being diffracted by the first diffracting unit 31 is A 33 . Then: A 11 =A 11 %, A 22 =A 22 %, A 33 =A 33 %.

本實施例中,第一繞射組件311、第二繞射組件312及第三繞射組件313之間的堆疊順序對第一繞射單元31對第一顏色光、第二顏色光及第三顏色光的繞射效率有影響。是故藉由調節第一繞射組件311、第二繞射組件312及第三繞射組件313之間的堆疊順序,可調節第一繞射單元31對第一顏色光、第二顏色光及第三顏色光的繞射效率。本實施例中,第一繞射組件311、第二繞射組件312及第三繞射組件313之間的堆疊順序根據第一顏色光、第二顏色光及第三顏色光的發光效率確定,也即,第一繞射組件311、第二繞射組件312及第三繞射組件313之間的堆疊順序根據第一顏色光、第二顏色光及第三顏色光的發 光強度確定。具體的,A1>A2>A3時,調整第一繞射組件311、第二繞射組件312及第三繞射組件313之間的堆疊順序使得η1%<η2%<η3%。 In this embodiment, the stacking sequence among the first diffractive element 311, the second diffractive element 312, and the third diffractive element 313 affects the first diffractive unit 31 for the first color light, the second color light, and the third diffractive element. The diffraction efficiency of color light has an influence. Therefore, by adjusting the stacking sequence among the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313, the first diffraction unit 31 can adjust the first color light, the second color light, and the Diffraction efficiency of the third color light. In this embodiment, the stacking sequence among the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 is determined according to the luminous efficiency of the first color light, the second color light, and the third color light. That is, the stacking order among the first diffractive element 311, the second diffractive element 312, and the third diffractive element 313 is determined according to the luminous intensity of the first color light, the second color light, and the third color light. Specifically, when A 1 >A 2 >A 3 , adjust the stacking order among the first diffraction component 311, the second diffraction component 312, and the third diffraction component 313 so that η 1 %<η 2 %<η 3 %.

由於A1>A2>A3,η1%<η2%<η3%,則第一顏色光、第二顏色光、第三顏色光分別經第一繞射組件311、第二繞射組件312及第三繞射組件313繞射後,發光強度A11、A22及A33之間的差異小於發光強度A1、A2及A3之間的差異。 Since A 1 >A 2 >A 3 and η 1 %<η 2 %<η 3 %, the first color light, the second color light, and the third color light pass through the first diffraction component 311 and the second diffraction element After the component 312 and the third diffraction component 313 are diffracted, the difference between the luminous intensities A 11 , A 22 and A 33 is smaller than the difference between the luminous intensities A 1 , A 2 and A 3 .

是故本實施例提供的全息顯示裝置10,根據第一顏色光、第二顏色光及第三顏色光的發光效率,設置繞射模組30中第一繞射組件311、第二繞射組件312及第三繞射組件313之間的層疊順序,以調整第一繞射組件311、第二繞射組件312及第三繞射組件313對第一顏色光、第二顏色光及第三顏色光的繞射效率,從而調整經第一繞射組件311、第二繞射組件312及第三繞射組件313繞射後的第一顏色光、第二顏色光及第三顏色光的發光強度,以減小第一顏色光、第二顏色光及第三顏色光之間發光強度的差異,有利於改善全息顯示裝置10生成的全息圖像的色偏問題,避免圖像失真。 Therefore, in the holographic display device 10 provided in this embodiment, according to the luminous efficiency of the first color light, the second color light, and the third color light, the first diffraction component 311 and the second diffraction component in the diffraction module 30 are arranged 312 and the third diffractive component 313 are stacked in order to adjust the first diffractive component 311, the second diffractive component 312 and the third diffractive component 313 to the first color light, the second color light and the third color The diffraction efficiency of light, so as to adjust the luminous intensity of the first color light, the second color light, and the third color light after being diffracted by the first diffraction element 311, the second diffraction element 312, and the third diffraction element 313 In order to reduce the difference in luminous intensity between the first color light, the second color light, and the third color light, it is beneficial to improve the color shift of the holographic image generated by the holographic display device 10 and avoid image distortion.

請繼續參閱圖1,第二繞射單元32包括第一繞射組件321、第二繞射組件322及第三繞射組件323。第一繞射組件321、第二繞射組件322及第三繞射組件323之間的堆疊順序與第一繞射單元31中的堆疊順序相同。於其他實施例中,第一繞射組件321、第二繞射組件322及第三繞射組件323之間的堆疊順序可與第一繞射單元31中的堆疊順序不同。第一繞射組件321用於繞射從第一繞射單元31出射的第一顏色光,第二繞射組件322用於繞射從第一繞射單元31出射的第二顏色光,第三繞射組件323用於繞射從第一繞射單元31出射的第三顏色光。藉由第二繞射單元32中第一繞射組件321、第二繞射組件322及第三繞射組件323的層疊順序的設置,可進一步地減小從第二繞射單元32出射的第一顏色光、第二顏色光及第三顏色光之間發光強度的差異,有利於進一步改善全息顯示裝置10生成的全息圖像的色偏問題。此處不再贅述。 Please continue to refer to FIG. 1, the second diffraction unit 32 includes a first diffraction element 321, a second diffraction element 322 and a third diffraction element 323. The stacking sequence among the first diffraction component 321, the second diffraction component 322 and the third diffraction component 323 is the same as the stacking sequence in the first diffraction unit 31. In other embodiments, the stacking sequence among the first diffraction element 321, the second diffraction element 322 and the third diffraction element 323 may be different from the stacking sequence in the first diffraction unit 31. The first diffractive component 321 is used to diffract the first color light emitted from the first diffractive unit 31, the second diffractive component 322 is used to diffract the second color light emitted from the first diffractive unit 31, and the third The diffractive component 323 is used to diffract the third color light emitted from the first diffractive unit 31. By arranging the stacking sequence of the first diffraction element 321, the second diffraction element 322, and the third diffraction element 323 in the second diffraction unit 32, the first diffraction element emitted from the second diffraction unit 32 can be further reduced. The difference in luminous intensity between the first color light, the second color light, and the third color light is beneficial to further improve the color shift of the holographic image generated by the holographic display device 10. I won't repeat them here.

本技術領域之普通技術人員應當認識到,以上之實施方式僅是用來說明本發明,而並非用作為對本發明之限定,只要於本發明之實質精神範圍之內,對以上實施例所作之適當改變及變化均落於本發明要求保護之範圍之內。 Those of ordinary skill in the art should realize that the above embodiments are only used to illustrate the present invention, and not to limit the present invention. As long as they fall within the essential spirit of the present invention, the above embodiments are appropriately made. Changes and changes fall within the scope of protection of the present invention.

10:全息顯示裝置 10: Holographic display device

20:顯示模組 20: display module

30:繞射模組 30: Diffraction module

31:第一繞射單元 31: The first diffraction unit

311、321:第一繞射組件 311, 321: first diffraction component

312、322:第二繞射組件 312, 322: second diffraction component

313、323:第三繞射組件 313, 323: third diffraction component

32:第二繞射單元 32: The second diffraction unit

40:光波導 40: Optical waveguide

Claims (9)

一種全息顯示裝置,其改良在於,包括:顯示模組,用於出射至少第一顏色光及第二顏色光,所述第一顏色光的發光效率高於所述第二顏色光的發光效率;以及繞射模組,所述繞射模組設置於所述第一顏色光及所述第二顏色光的出射路徑上,用於以第一繞射效率繞射所述第一顏色光,並以第二繞射效率繞射所述第二顏色光,從而生成全息圖像,其中,所述第一繞射效率小於所述第二繞射效率;所述顯示模組包括:複數發光組件,用於發射所述第一顏色光;以及色轉換層,設置於所述第一顏色光的出射路徑上,用於將部分所述第一顏色光至少轉換為所述第二顏色光。 A holographic display device, which is improved by comprising: a display module for emitting at least a first color light and a second color light, the luminous efficiency of the first color light is higher than the luminous efficiency of the second color light; And a diffraction module, which is arranged on the exit paths of the first color light and the second color light, and is used to diffract the first color light with the first diffraction efficiency, and The second color light is diffracted with a second diffraction efficiency to generate a holographic image, wherein the first diffraction efficiency is lower than the second diffraction efficiency; the display module includes: a plurality of light-emitting components, For emitting the first color light; and a color conversion layer, arranged on the exit path of the first color light, for converting part of the first color light into at least the second color light. 如請求項1所述的全息顯示裝置,其中,所述顯示模組還用於出射第三顏色光,所述繞射模組還用於以第三繞射效率繞射所述第三顏色光;所述第二顏色光的發光效率高於所述第三顏色光的發光效率,所述第二繞射效率小於所述第三繞射效率。 The holographic display device according to claim 1, wherein the display module is also used to emit a third color light, and the diffraction module is also used to diffract the third color light with a third diffraction efficiency The luminous efficiency of the second color light is higher than the luminous efficiency of the third color light, and the second diffraction efficiency is lower than the third diffraction efficiency. 如請求項2所述的全息顯示裝置,其中,所述繞射模組包括依次層疊設置的第一繞射組件、第二繞射組件及第三繞射組件;所述第一繞射組件用於繞射所述第一顏色光,所述第二繞射組件用於繞射所述第二顏色光,所述第三繞射組件用於繞射所述第三顏色光。 The holographic display device according to claim 2, wherein the diffraction module includes a first diffraction element, a second diffraction element, and a third diffraction element that are sequentially stacked; the first diffraction element is used for To diffract the first color light, the second diffractive element is used to diffract the second color light, and the third diffractive element is used to diffract the third color light. 如請求項3所述的全息顯示裝置,其中,所述全息顯示裝置包括相互獨立的第一繞射單元及第二繞射單元,所述第一繞射單元及所述第二繞射單元各包括一所述第一繞射組件、一所述第二繞射組件及一所述第三繞射組件;所述第一顏色光、所述第二顏色光及所述第三顏色光經所述第一繞射單元進行第一次繞射,再經所述第二繞射單元進行第二次繞射以生成所述全息圖像。 The holographic display device according to claim 3, wherein the holographic display device includes a first diffraction unit and a second diffraction unit that are independent of each other, and each of the first diffraction unit and the second diffraction unit It includes a first diffractive component, a second diffractive component, and a third diffractive component; the first color light, the second color light, and the third color light pass through the The first diffraction unit performs the first diffraction, and then the second diffraction unit performs the second diffraction to generate the holographic image. 如請求項4所述的全息顯示裝置,其中,所述全息顯示裝置還包括光波導,所述光波導設置於所述顯示模組及所述繞射模組之間,用於引導 所述第一顏色光、所述第二顏色光、及所述第三顏色光在所述顯示模組、所述第一繞射單元及所述第二繞射單元之間傳播。 The holographic display device according to claim 4, wherein the holographic display device further includes an optical waveguide disposed between the display module and the diffraction module for guiding The first color light, the second color light, and the third color light propagate between the display module, the first diffraction unit, and the second diffraction unit. 如請求項3所述的全息顯示裝置,其中,所述第一繞射組件、所述第二繞射組件及所述第三繞射組件均為繞射光柵。 The holographic display device according to claim 3, wherein the first diffraction element, the second diffraction element, and the third diffraction element are all diffraction gratings. 如請求項1所述的全息顯示裝置,其中,所述色轉換層還用於將部分的所述第一顏色光轉換為第三顏色光。 The holographic display device according to claim 1, wherein the color conversion layer is also used to convert part of the first color light into a third color light. 如請求項7所述的全息顯示裝置,其中,所述第一顏色光為藍色光,所述第二顏色光為綠色光,所述第三顏色光為紅色光。 The holographic display device according to claim 7, wherein the first color light is blue light, the second color light is green light, and the third color light is red light. 如請求項1所述的全息顯示裝置,其中,所述色轉換層為量子點層。 The holographic display device according to claim 1, wherein the color conversion layer is a quantum dot layer.
TW109117269A 2020-05-22 2020-05-22 Holographic display device TWI738356B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109117269A TWI738356B (en) 2020-05-22 2020-05-22 Holographic display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109117269A TWI738356B (en) 2020-05-22 2020-05-22 Holographic display device

Publications (2)

Publication Number Publication Date
TWI738356B true TWI738356B (en) 2021-09-01
TW202144938A TW202144938A (en) 2021-12-01

Family

ID=78777854

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109117269A TWI738356B (en) 2020-05-22 2020-05-22 Holographic display device

Country Status (1)

Country Link
TW (1) TWI738356B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151562A (en) * 2005-04-04 2008-03-26 米拉茨创新有限公司 Multi-plane optical apparatus
WO2011001787A1 (en) * 2009-07-02 2011-01-06 コニカミノルタオプト株式会社 Video display device, hmd, and hud
TW201339637A (en) * 2012-03-26 2013-10-01 Seiko Epson Corp Virtual image display apparatus
CN104777535A (en) * 2015-03-25 2015-07-15 东南大学 Multiplexed volume holographic grating
CN107003528A (en) * 2014-11-27 2017-08-01 索尼公司 Optical devices and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151562A (en) * 2005-04-04 2008-03-26 米拉茨创新有限公司 Multi-plane optical apparatus
WO2011001787A1 (en) * 2009-07-02 2011-01-06 コニカミノルタオプト株式会社 Video display device, hmd, and hud
TW201339637A (en) * 2012-03-26 2013-10-01 Seiko Epson Corp Virtual image display apparatus
CN107003528A (en) * 2014-11-27 2017-08-01 索尼公司 Optical devices and display device
CN104777535A (en) * 2015-03-25 2015-07-15 东南大学 Multiplexed volume holographic grating

Also Published As

Publication number Publication date
TW202144938A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP2017173487A (en) Image display device and optical element
TWI539209B (en) Backlight module
US20150002528A1 (en) Display efficiency optimization by color filtering
CN108369300A (en) It is imaged using multiple and different narrow band lights with corresponding different emission peak
WO2020177522A1 (en) Near-eye display device and near-eye display system
JP2008536283A (en) Illumination system with 2DLED stack
US20120080998A1 (en) Complementary Color Light Source Device
JP2007529035A (en) Light engine, system, and driving method for frame sequential color projection display system having monochromatic light source
TWI738356B (en) Holographic display device
JP2016046266A (en) Wavelength conversion device, illumination unit, liquid crystal module and illumination method
JP6066810B2 (en) Surface light source device and liquid crystal display device
JPWO2019209961A5 (en)
CN113900264A (en) Holographic display device
US20130229448A1 (en) Display device for displaying stereoscopic images
US10955735B2 (en) Colour projector with two emissive displays
US11409164B2 (en) Light conversion member
CN108565676B (en) Laser light source and display device
JP2014164834A (en) Surface light source device and liquid crystal display device
TWI748529B (en) Holographic display device
CN111007589A (en) Waveguide module, display module based on waveguide and near-to-eye display equipment
EP3306392B1 (en) Illumination system and projection apparatus
US11644672B2 (en) Holographic display device
TWI735202B (en) Backlight module and holographic display device
JP7307031B2 (en) Virtual image projection device
JP2018045799A (en) Light emitting element, light source device and image projection device