TWI737469B - 跨物種抗潛伏性TGF-β1抗體及使用方法 - Google Patents

跨物種抗潛伏性TGF-β1抗體及使用方法 Download PDF

Info

Publication number
TWI737469B
TWI737469B TW109129510A TW109129510A TWI737469B TW I737469 B TWI737469 B TW I737469B TW 109129510 A TW109129510 A TW 109129510A TW 109129510 A TW109129510 A TW 109129510A TW I737469 B TWI737469 B TW I737469B
Authority
TW
Taiwan
Prior art keywords
antibody
sequence
tgf
latent tgf
hvr
Prior art date
Application number
TW109129510A
Other languages
English (en)
Other versions
TW202122422A (zh
Inventor
嶋田英輝
金森正和
幸兒 古
Original Assignee
日商中外製藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商中外製藥股份有限公司 filed Critical 日商中外製藥股份有限公司
Publication of TW202122422A publication Critical patent/TW202122422A/zh
Application granted granted Critical
Publication of TWI737469B publication Critical patent/TWI737469B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/32Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)

Abstract

本發明的目的是提供跨物種之抑制蛋白酶介導的潛伏性TGF-β1的活化而不抑制整合素介導的潛伏性TGF-β1的活化的抗潛伏性TGF-β1抗體。為了獲得本發明的抗潛伏性TGF-β1抗體,篩選了抑制蛋白酶介導的潛伏性TGF-β1的活化而不抑制整合素介導的潛伏性TGF-β1的活化的抗潛伏性TGF-β1抗體,然後將其人源化和進一步最佳化。本發明亦提供了包含抗潛伏性TGF-β1抗體和一或多種免疫檢查點抑制劑,較佳為PD-1軸結合拮抗劑的組合療法。

Description

跨物種抗潛伏性TGF-β1抗體及使用方法
本發明係關於抗潛伏性TGF-β1抗體及其使用方法。
乙型轉化生長因子(Transforming growth factor-β或transforming growth factor β,TGF-β)是細胞激素的TGF-β超家族的成員,此超家族由TGF-β同型異構物(isoform)、活化素(activin)、抑制素(inhibin)、節點(Nodal)、骨成形蛋白(bone morphogenetic protein,BMP)、抗穆勒氏荷爾蒙(anti-Mullerian hormone,AMH)以及生長分化因子(growth and differentiation factor,GDF)所組成。此超家族的成員是具有保守結構的二聚體蛋白,且在體外和體內具有多效性功能(非專利文獻1、2)。TGF- β同型異構物參與許多細胞過程,包含生長抑制、細胞遷移、侵入、上皮-間質細胞轉化(epithelial-mesenchymal transition,EMT)、細胞外基質(extracellular matrix,ECM)重塑和免疫抑制(非專利文獻3)。然而,雖然TGF-β同型異構物通常會受到動態調控且參與組織恆定的維持,但其通常在包含癌症、纖維化和發炎的疾病狀態下長期過度表現,且TGF-β的這種過量產生藉由調節細胞生長、遷移或表現型,來驅動疾病進展。
已在哺乳類中鑑定出三種個別的TGF-β同型異構物(TGF-β1、TGF-β2和TGF-β3),且在胺基酸水準上共享有70-82%的同源性(非專利文獻4)。所有這三種TGF-β同型異構物均以同質二聚體(其活性形式)結合至TGF-β受體第2型(TGF-βreceptor type 2,TGFR2)結合;然後TGFR2募集且活化TGF-β受體第1型(TGF-βreceptor type 1,TGFR1),以活化受體訊息傳遞(非專利文獻5)。然而,這三種同型異構物的表現程度取決於組織而變化(非專利文獻6),且其功能是不同的,如基因剔除小鼠的表現型所展示(非專利文獻7-11)。
像TGF-β超家族的其他成員一樣,TGF-β被合成為前驅蛋白,其形成與其潛伏期相關胜肽(latency-associated peptide,LAP)和潛伏性TGF-β結合蛋白(latent TGF-β-binding protein,LTBP)交互作用的同質二聚體,以形成稱為大型潛伏性複合體(large latent complex,LLC)的較大複合體。TGF-β基因編碼由訊息胜肽、以前蛋白轉化酶(proprotein convertase,PPC)切割位結尾的前胜肽、及成熟的TGF-β序列所組成的前原蛋白(preproprotein)序列。弗林蛋白酶水解PPC切割位,從而產生個別的TGF-β和前胜肽衍生的同質二聚體。這兩個同質二聚體保持非共價性結合且分泌。此潛伏性複合體使TGF-β處於無法結合至其受體的非活性形式(非專利文獻12、13)。TGF-β活化過程涉及從ECM釋放LLC,然後進一步將LAP蛋白裂解,以將活性TGF-β釋放至其受體(非專利文獻3)。可藉由包含纖溶酶(plasmin,PLN)、血漿激肽釋放酶(plasma kallikrein,PLK)、基質金屬蛋白酶(matrix metalloproteinase,MMP)2和MMP9(非專利文獻14)的多種蛋白酶和藉由血小板反應蛋白1 (thrombospondin 1,TSP-1),將潛伏性TGF-β切割,以釋放出活性TGF-β(非專利文獻15)。不希望受到任何理論的束縛,MMP2以及MMP9蛋白裂解地切割潛伏性TGF-β1,且從潛伏性形式釋放出成熟TGF-β1。MMP2和MMP9兩者都被合成為非活性的前MMP。藉由膜第1型MMP (MT1-MMP/MMP14)和金屬蛋白酶2的組織抑制劑(tissue inhibitor of metalloproteinase 2,TIMP-2)的複合體,來活化前MMP2。透過涉及纖溶酶和基質分解素1(stromelysin 1) (MMP-3)的交互作用蛋白酶級聯反應,來活化前MMP9。纖溶酶從其酶原產生活性MMP-3。活性MMP-3從92-kDa 前MMP-9切割前胜肽,產生82-kDa的酶活性酵素。MMPs的切割位沒有具體確定;然而,據報導MMP3特異性地切割在潛伏性TGF-β的79 Ala和80 Leu之間的位點,以活化TGF-β(WO2005/023870)。或者,機械性拉伸時,整合素可藉由結合至存在於LAP中的RGD基序,以誘導成熟的TGF-β從其潛伏性複合體中釋放,來活化TGF-β(非專利文獻16、17)。
活化後,二聚體TGF-β配體結合至第I型和第II型受體的胞外域,且誘導緊密接近,使受體的胞內絲胺酸/蘇胺酸激酶域處於促進第I型受體的磷酸化和之後的活化的構型中。此第 I型受體的活化導致藉由至少兩個看似獨立的途徑的訊息傳播:SMAD依賴性經典路徑和SMAD非依賴性或非經典路徑。在SMAD依賴性路徑中,TGFR1(也稱為ALK5)的活化導致SMAD蛋白的磷酸化。 SMAD2和SMAD3是TGFR1的受質。一被受體磷酸化後,SMAD以及共同介導者(common mediator) SMAD4一起轉位(translocate)至細胞核,在細胞核中它們與其他轉錄因子交互作用,以調控轉錄反應(非專利文獻18)。在非經典路徑中,活化的TGF-β受體複合體透過其他因子例如腫瘤壞死因子(tumor necrosis factor,TNF)受體相關因子4(receptor-associated factor 4,TRAF4)、TRAF6、由TGF-β活化的激酶1(TGF-β-activated kinase 1,TAK1也稱為MAP3K7)、由p38絲裂原活化的蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)、RHO、磷酸肌醇3激酶(phosphoinositide 3-kinase,PI3K)、AKT(也稱為蛋白激酶B)、胞外訊息調控激酶(extracellular signal-regulated kinase,ERK)、JUN N端激酶(JUN N-terminal kinase,JNK)或核因子- κ B (nuclear factor-κ B,NF- κ B),來傳遞訊息。因此,對TGF-β訊息傳遞的細胞反應是由經典和非經典訊息傳遞級聯的動態組合所產生的。
纖維化或構成疤痕組織的ECM分子的累積是慢性組織損傷的常見特徵。肺纖維化、腎纖維化和肝硬化在較常見的纖維化疾病中,其整體代表了巨大的未滿足的臨床需求。TGF-β強烈促進間質細胞的胞外基質的生成,其同時抑制上皮細胞的生長,這有助於硬化性疾病的發病。TGF-β1的活性形式在轉基因小鼠的肝臟中的過度表現,足以在多個器官中誘導纖維化疾病(非專利文獻19)。另一方面,TGF-β在維持我們的健康中也扮演重要角色。例如,TGF-β抑制了肺中蛋白酶的過量生成,且預防了導致肺氣腫(emphysema)的肺組織的破壞。而且,刪除TGF-β1的小鼠顯示出產前致死性(交配後10.5天約有50%),或其後代在出生後不久死亡,其中在許多器官中看見大量發炎性病變,包含肺(血管炎(vasculitis)、圍管現象(perivascular cuffing)和間質性肺炎(interstitial pneumonia))和心臟(心內膜炎(endocarditis)和心肌炎(myocarditis)),這暗示了TGF-β1在維持免疫恆定上扮演至關重要的角色(非專利文獻7)。
使用對TGF-β的中和抗體及動物模型的研究的結果顯示出,可藉由抑制TGF-β的作用來預防或治愈硬化性疾病。由於TGF-β是作為前驅蛋白產生的,所以有幾種經報導的預防潛伏形式的活化的方法。預防從潛伏形式活化的另一方法是使用結合至潛伏性TGF-β的抑制劑或抗體,以阻斷藉由蛋白酶例如PLK和PLN的切割。使用此抑制TGF-β活化的方法的幾種抗體據報導為可預防或治療肝纖維化/肝硬化(專利文獻1)。此外,已經有一些文件提到用於治療癌症的抗LAP抗體(專利文獻2)、和用於治療TGF-β1相關的失調的TGF β1結合免疫球蛋白(專利文獻3)。 [引用列表] [專利文獻]
[專利文獻1] WO 2011102483 [專利文獻2] WO 2016115345 [專利文獻3] WO 2017156500
[非專利文獻1] McCartney-Francis, N. L. et al. Int. Rev. Immunol. 16, 553-580 (1998) [非專利文獻2] Massague, J. Annu. Rev. Biochem. 67, 753-791 (1998) [非專利文獻3] Derynck, R. & Miyazono, K. Cold Spring Harbor Press (2008) [非專利文獻4] Yu, L. et al. Kidney Int. 64, 844-856 (2003). [非專利文獻5] Xu, P., Liu, J. & Derynck, R. et al. FEBS Lett. 586, 1871-1884 (2012). [非專利文獻6] Millan, F. A. et al. Development 111, 131-143 (1991). [非專利文獻7] Kulkarni, A. B. et al. Proc. Natl Acad. Sci. USA 90, 770-774 (1993). [非專利文獻8] Shull, M. M. et al. Nature 359, 693-699 (1992). [非專利文獻9] Dickson, M. C. et al. Development 121, 1845-1854 (1995). [非專利文獻10] Sanford, L. P. et al. Development 124, 2659-2670 (1997). [非專利文獻11] Proetzel, G. et al. Nature Genet. 11, 409-414 (1995). [非專利文獻12] Dubois, C. M.et al. J. Biol. Chem. 270, 10618-10624 (1995) [非專利文獻13] Nunes, I. et al. J. Am. Optom. Assoc. 69, 643-648 (1998) [非專利文獻14] Annes, J. et al. J. Cell Sci. 116, 217-224 (2003). [非專利文獻15] Schultz-Cherry, S. et al. J. Biol. Chem. 269, 26775-26782 (1994). [非專利文獻16] Munger, J. S. et al. Cell 96, 319-328 (1999). [非專利文獻17] Shi, M. et al. Nature 474, 343-349 (2011). [非專利文獻18] Shi, Y. & Massague, et al. Cell 113, 685-700 (2003). [非專利文獻19] Sanderson, N. et al. Proc. Natl Acad. Sci.USA 92, 2572-2576 (1995).
[技術問題]
本發明的目的是提供抑制蛋白酶介導的潛伏性TGF-β1的活化而不抑制整合素介導的潛伏性TGF-β1的活化的跨物種、人源化和最佳化的抗潛伏性TGF-β1抗體。本發明亦提供包含抗潛伏性TGF-β1抗體和一或多種免疫檢查點抑制劑的組合療法。 [問題的解決方法]
本發明人已在如上所述的情況下進行了認真的研究,且因此創建了抑制蛋白酶介導的潛伏性TGF-β1的活化而不抑制整合素介導的潛伏性TGF-β1的活化的跨物種、人源化和最佳化的抗潛伏性TGF-β1抗體。再者,當與一或多種免疫檢查點抑制劑組合投予時,抗潛伏性TGF-β1抗體顯示出抗腫瘤效果。
本發明提供: A1. 一種抗潛伏性TGF-β1抗體,其包含: (a) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:20、21和22的胺基酸序列; (b) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:26、27和28的胺基酸序列; (c) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:32、33和34的胺基酸序列;和 (d) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:38、39和40的胺基酸序列。 A2. 如A1所述的抗潛伏性TGF-β1抗體,其更包含: (a) HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:23、24和25的胺基酸序列; (b) HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:29、30和31的胺基酸序列; (c) HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:35、36和37的胺基酸序列;和 (d) HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:41、42和43的胺基酸序列。 A3. 一種抗潛伏性TGF-β1抗體,其包含: (a) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:20、21和22的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:23、24和25的胺基酸序列; (b) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:26、27和28的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:29、30和31的胺基酸序列; (c) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:32、33和34的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:35、36和37的胺基酸序列;或 (d) HVR-H1、HVR-H2和HVR-H3,其分別包含序列辨識號:38、39和40的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包含序列辨識號:41、42和43的胺基酸序列。 A4. 如A1至A3中任一者所述的抗潛伏性TGF-β1抗體,其包含: (a) (i)與序列辨識號:12的胺基酸序列具有至少95%序列相同度的VH序列,(ii)與序列辨識號:13的胺基酸序列具有至少95%序列相同度的VL序列,或(iii) 如(i)中的VH序列和如(ii)中的VL序列; (b) (i)與序列辨識號:14的胺基酸序列具有至少95%序列相同度的VH序列,(ii)與序列辨識號:15的胺基酸序列具有至少95%序列相同度的VL序列,或(iii) 如(i)中的VH序列和如(ii)中的VL序列; (c) (i)與序列辨識號:16的胺基酸序列具有至少95%序列相同度的VH序列,(ii)與序列辨識號:17的胺基酸序列具有至少95%序列相同度的VL序列,或(iii) 如(i)中的VH序列和如(ii)中的VL序列;或 (d) (i)與序列辨識號:18的胺基酸序列具有至少95%序列相同度的VH序列,(ii)與序列辨識號:19的胺基酸序列具有至少95%序列相同度的VL序列,或(iii) 如(i)中的VH序列和如(ii)中的VL序列。 A5. 如A4所述的抗潛伏性TGF-β1抗體,其包含序列辨識號:12、14、16或18的VH序列。 A6. 如A4或A5所述的抗潛伏性TGF-β1抗體,其包含序列辨識號:13、15、17或19的VH序列。 A7. 如A4至A6中任一者所述的抗潛伏性TGF-β1抗體,其包含: (a) 序列辨識號:12的VH序列和序列辨識號:13的VL序列; (b) 序列辨識號:14的VH序列和序列辨識號:15的VL序列; (c) 序列辨識號:16的VH序列和序列辨識號:17的VH序列;或 (d) 序列辨識號:18的VH序列和序列辨識號:19的VH序列。 A8. 一種抗潛伏性TGF-β1抗體,其包含: (a) 序列辨識號:12的VH序列和序列辨識號:13的VL序列; (b) 序列辨識號:14的VH序列和序列辨識號:15的VL序列; (c) 序列辨識號:16的VH序列和序列辨識號:17的VL序列;或 (d) 序列辨識號:18的VH序列和序列辨識號:19的VL序列。 A9. 如A1至A8中任一者所述的抗潛伏性TGF-β1抗體,其為人類、人源化或嵌合抗體。 A10. 如A1至A9中任一者所述的抗潛伏性TGF-β1抗體,其為全長IgG抗體,較佳為全長IgG1抗體。 A11. 如A1至A9中任一者所述的抗潛伏性TGF-β1抗體,其為雙特異性抗體。 A12. 如A1至A11中任一者所述的抗潛伏性TGF-β1抗體, 其中與野生型IgG1 Fc區相比,此抗潛伏性TGF-β1抗體包含具有減弱的效應子功能的經修飾的IgG1 Fc區。 A13. 如A12所述的抗潛伏性TGF-β1抗體,其中此經修飾的IgG1 Fc區根據EU索引,在EU235和/或EU236的位置包含胺基酸取代。 A14. 如A12或A13所述的抗潛伏性TGF-β1抗體,其中此經修飾的IgG1 Fc區根據EU索引,包含L235R和G236R的胺基酸取代。 A15. 如A12至A14中任一者所述的抗潛伏性TGF-β1抗體, 其中與野生型IgG1 Fc區相比,此經修飾的IgG1 Fc區更具有對FcRn增強的結合活性。 A16. 如A15所述的抗潛伏性TGF-β1抗體,其中此經修飾的IgG1 Fc區根據EU索引,在選自由EU428、EU434、EU438和EU440所組成的群組的位置包含一或多個胺基酸取代。 A17. 如A15或A16所述的抗潛伏性TGF-β1抗體,其中此經修飾的IgG1 Fc區包含M428L、N434A、Q438R和S440E的胺基酸取代。 A18. 如A1至A11中任一者所述的抗潛伏性TGF-β1抗體,其中此抗潛伏性TGF-β1抗體包含經修飾的IgG1 Fc區,其中此經修飾的IgG1 Fc區包含K214R、L235R和G236R的胺基酸取代。 A19. 如A1至A11中任一者所述的抗潛伏性TGF-β1抗體, 其中此抗潛伏性TGF-β1抗體包含經修飾的IgG1 Fc區,其中此經修飾的IgG1 Fc區包含K214R、L235R、G236R、M428L、N434A、Q438R和S440E的胺基酸取代。 A20. 如A1至A11中任一者所述的抗潛伏性TGF-β1抗體,其為抗體片段。 A21. 一種抗潛伏性TGF-β1抗體,其包含: (a) 序列辨識號:47的全長重鏈序列和序列辨識號:60的全長輕鏈序列; (b) 序列辨識號:48的全長重鏈序列和序列辨識號:61的全長輕鏈序列; (c) 序列辨識號:49的全長重鏈序列和序列辨識號:62的全長輕鏈序列; (d) 序列辨識號:50的全長重鏈序列和序列辨識號:63的全長輕鏈序列; (e) 序列辨識號:51的全長重鏈序列和序列辨識號:64的全長輕鏈序列; (f) 序列辨識號:52的全長重鏈序列和序列辨識號:65的全長輕鏈序列; (g) 序列辨識號:53的全長重鏈序列和序列辨識號:66的全長輕鏈序列;或 (h) 序列辨識號:54的全長重鏈序列和序列辨識號:67的全長輕鏈序列。 A22. 如A1至A21中任一者所述的抗潛伏性TGF-β1抗體,其中此潛伏性TGF-β1為人類潛伏性TGF-β1、小鼠潛伏性TGF-β1或食蟹猴(cynomolgus monkey)潛伏性TGF-β1。 A23. 如A1至A22中任一者所述的抗潛伏性TGF-β1抗體,其中此潛伏性TGF-β1抗體結合至人類潛伏性TGF-β1、小鼠潛伏性TGF-β1或食蟹猴潛伏性TGF-β1。 A24. 如A1至A23中任一者所述的抗潛伏性TGF-β1抗體,其中此抗潛伏性TGF- β1抗體結合至潛伏性TGF-β1的潛伏期相關胜肽(latency-associated peptide,LAP)區。 A25. 一種免疫偶聯物,其包含如A1至A24中任一者所述的抗潛伏性TGF-β1抗體和細胞毒殺劑。 A26. 一種單離核酸,其編碼如A1至A24中任一者所述的抗潛伏性TGF-β1抗體。 A27. 一種載體,其包含如A26所述的核酸。 A28. 一種宿主細胞,其包含如A26所述的核酸或如A27所述的載體。 A29. 一種產生抗潛伏性TGF-β1抗體的方法,其包含培養如A28所述的宿主細胞,以產生此抗體。 A30. 如A29所述的方法,更包含從此宿主細胞回收此抗體。 B1. 如A1至A24中任一者所述的抗潛伏性TGF-β1抗體或如A25所述的免疫偶聯物用作藥物。 B2. 如A1至A24中任一者所述的抗潛伏性TGF-β1抗體或如A25所述的免疫偶聯物用於治療纖維化或癌症。 B3. 如A1至A24中任一者所述的抗潛伏性TGF-β1抗體或如A25所述的免疫偶聯物於製備用於治療纖維化或癌症的藥物中的用途。 B4. 如A1至A24中任一者所述的抗潛伏性TGF-β1抗體或如A25所述的免疫偶聯物與額外的治療劑,較佳為免疫檢查點抑制劑組合使用,以用於治療癌症。 B5. 如B4所述的抗潛伏性TGF-β1抗體或免疫偶聯物,其中此免疫檢查點抑制劑是PD-1軸結合拮抗劑,較佳為抗PD-1抗體或抗PD-L1抗體。 B6. 如B4所述的抗潛伏性TGF-β1抗體或免疫偶聯物,其中此免疫檢查點抑制劑是抗PD-L1抗體。 B7. 如B4至B6中任一者所述的抗潛伏性TGF-β1抗體或免疫偶聯物,其中此免疫檢查點抑制劑與此抗潛伏性TGF-β1抗體或此免疫偶聯物同時投予。 B8. 如B4至B6中任一者所述的抗潛伏性TGF-β1抗體或免疫偶聯物,其中在此抗潛伏性TGF-β1抗體或此免疫偶聯物的投予之前或之後,投予此免疫檢查點抑制劑。 C1. 一種醫藥製劑,其包含如A1至A24中任一者所述的抗潛伏性TGF β-1抗體或如A25所述的免疫偶聯物、和一醫藥上可接受的載體。 C2. 如C1所述的醫藥製劑,其更包含額外治療劑,較佳為免疫檢查點抑制劑。 C3. 如C2所述的醫藥製劑,其中免疫檢查點抑制劑是PD-1軸結合拮抗劑,較佳為抗PD-1抗體或抗PD-L1抗體。 C4. 如C2所述的醫藥製劑,其中免疫檢查點抑制劑是抗PD-L1抗體。
C5.如C1至C4中任一者所述的醫藥製劑用於纖維化或癌症的治療。
C6.如C1至C4中任一者所述的醫藥製劑與額外治療劑,較佳為免疫檢查點抑制劑組合使用,以用於癌症的治療。
C7.如C6所述的醫藥製劑,其中此免疫檢查點抑制劑是PD-1軸結合拮抗劑,較佳為抗PD-1抗體或抗PD-L1抗體。
C8.如C6所述的醫藥製劑,其中此免疫檢查點抑制劑是抗PD-L1抗體。
C9.如C6至C8中任一者所述的醫藥製劑,其中此免疫檢查點抑制劑與此醫藥製劑同時投予。
C10.如C6至C8中任一者所述的醫藥製劑,其中在此醫藥製劑的投予之前或之後,投予此免疫檢查點抑制劑。
D1.一種包含免疫檢查點抑制劑和醫藥上可接受的載劑的醫藥製劑,其與A1至A24中任一者所述的抗潛伏性TGF β-1抗體或A25所述的免疫偶聯物組合使用,以用於癌症的治療。
D2.如D1所述的醫藥製劑,其中此免疫檢查點抑制劑是PD-1軸結合拮抗劑,較佳為抗PD-1抗體或抗PD-L1抗體。
D3.如D1所述的醫藥製劑,其中此免疫檢查點抑制劑是抗PD-L1抗體。
D4.如D1至D3中任一者所述的醫藥製劑,其中此抗潛伏性TGF-β1抗體或此免疫偶聯物與此醫藥製劑同時投予。
D5.如D1至D3中任一者所述的醫藥製劑,其中在此醫藥製劑的投予之前或之後,投予此抗潛伏性TGF-β1抗體或此免疫偶聯物。
E1.一種具有纖維化或癌症的個體的治療方法,其包含對個體投予有效量之如A1至A24中任一者所述的抗潛伏性TGF β-1抗體或如A25所述的免疫偶聯物。
E2.如E1所述的治療方法,更包含對個體投予額外治療劑,較佳為免疫檢查點抑制劑。 E3. 如E1或E2所述的治療方法,其中此免疫檢查點抑制劑是PD-1軸結合拮抗劑,較佳為抗PD-1抗體或抗PD-L1抗體。 E4. 如E3所述的治療方法,其中此免疫檢查點抑制劑是抗PD-L1抗體。 E5. 如E1至E4中任一者所述的治療方法,其中此免疫檢查點抑制劑與此抗潛伏性TGF-β1抗體或此免疫偶聯物同時投予。 E6. 如E1至E4中任一者所述的治療方法,其中在此抗潛伏性TGF-β1抗體或此免疫偶聯物的投予之前或之後,投予此免疫檢查點抑制劑。
I. 定義 就本文的目的而言,「受體人類框架(acceptor human framework)」是包含衍生自人類免疫球蛋白框架或人類共有框架的輕鏈可變域(variable domain,VL)框架或重鏈可變域(variable domain,VH)框架的胺基酸序列的框架,如下所定義。「衍生自(derived from)」人類免疫球蛋白框架或人類共有框架的受體人類框架可包含與其相同的胺基酸序列,或它可含有胺基酸序列改變。在一些實施例中,胺基酸改變的數目是10或更少、9或更少、8或更少、7或更少、6或更少、5或更少、4或更少、3或更少、或2或更少。在一些實施例中,VL受體人類框架與VL人類免疫球蛋白框架序列或人類共有框架序列在序列上相同。
術語「結合活性(binding activity)」是指分子(例如抗體)的一或多個結合位與其結合配偶體(例如抗原)之間的非共價交互作用的總和的強度。在本文中,「結合活性」不嚴格限制於結合對的成員(例如抗體和抗原)之間的1:1交互作用。例如,當結合對的成員反應出單價1:1交互作用時,結合活性特別稱為內在結合親和力(親和力)。當結合對的一成員既能單價結合又能多價結合時,結合活性是每個結合強度的總和。分子X對其配偶體Y的結合活性通常可用解離常數(dissociation constant,KD)或「每單位配體量的分析物的結合量」(本文以下可稱為「結合量」)表示。本發明所屬技術領域中具有通常知識者會理解的是,一般來說,解離常數(KD)越低意味著結合活性越高,且「每單位配體量的分析物的結合量」或「結合量」越高意味著結合活性越高。可藉由本發明所屬技術領域中已知的常規方法,包含本文所述的那些,來測量結合活性。後續描述用於測量結合活性的具體說明性和示例性實施例。
「結合活性成熟(binding activity-matured)」、「親和力成熟(affinity-matured)」的抗原結合分子或抗體、「結合活性增加(增強)(binding activity-increased(enhanced))」或「親和力增加(增強)(affinity-increased(enhanced))」的抗原結合分子或抗體是指,與不攜帶這種改變的親本抗原結合分子或親本抗體相比,在一或多個高度可變區(hypervariable region,HVR)中具有一或多個改變(例如取代),這種改變導致抗原結合分子或抗體對抗原的結合活性改善。
術語「抗潛伏性TGF-β1抗體」和「可結合至潛伏性TGF-β1的抗體」是指能夠以足夠的結合活性結合潛伏性TGF-β1的抗體,使此抗體於靶向潛伏性TGF-β1中作為診斷和/或治療劑是有用的。在一實施例中,「可結合至潛伏性TGF-β1的抗體」是特異性結合至潛伏性TGF-β1的抗體。在一實施例中,如藉由放射免疫測定法(radioimmunoassay,RIA)所測量地,抗潛伏性TGF-β1抗體對不相關的非潛伏性TGF-β1蛋白的結合活性的程度比此抗體對潛伏性TGF-β1的結合活性的約10%還低。在某些實施例中,可結合至TGF-β1的抗體具有1微莫耳或更低、100 nM或更低、10 nM或更低、1n M或更低、0.1 nM或更低、0.01 nM或更低、0.001 nM或更低(例如10 -8M或更少,例如10 -8M至10 -13M、例如10 -9至10 -13M)的解離常數(KD)。在某些實施例中,抗潛伏性TGF-β1抗體結合至潛伏性TGF-β1之在來自不同物種的潛伏性TGF-β1中是保守的抗原決定基。
本文中的術語「抗體」以最廣義使用,且涵蓋各種抗體結構,包含但不限於單株抗體、多株抗體、多特異性抗體(例如雙特異性抗體)和抗體片段,只要它們展現出期望的抗原結合活性。術語「抗體」亦包括包含免疫球蛋白的可變重鏈和/或可變輕鏈結構的任何抗原結合分子。
「抗體片段」是指除完整抗體以外,包含完整抗體之結合至抗原的部分的分子。抗體片段的範例包含但不限於Fv、Fab、Fab’、Fab’-SH、F(ab’) 2;雙抗體(diabody);線性抗體(linear antibody);單鏈抗體分子(例如scFv);和由抗體片段形成的多特異性抗體。
與參考抗體「結合至相同的抗原決定基的抗體」是指在競爭測定法中將參考抗體與其抗原的結合阻斷50%或更多的抗體,反之,在競爭測定法中參考抗體阻斷抗體與其抗原的結合50%或更多。本文提供了示例性競爭測定法。
術語「癌症」和「癌性(cancerous)」是指或描述哺乳類中通常以失控的細胞生長/增生為特徵的生理狀況。癌症的範例包含但不限於癌腫(carcinoma)、淋巴瘤(lymphoma)(例如霍奇金氏(Hodgkin’s)淋巴瘤和非霍奇金氏(non-Hodgkin’s)淋巴瘤)、胚細胞瘤(blastoma)、肉瘤(sarcoma)和白血病(leukemia)。更多此種癌症的特定範例包含鱗狀細胞癌(squamous cell cancer)、小細胞肺癌(small-cell lung cancer)、非小細胞肺癌(non-small cell lung cancer)、肺腺癌(adenocarcinoma of the lung)、肺鱗狀癌(quamous carcinoma of the lung)、腹膜癌(cancer of the peritoneum)、肝細胞癌(hepatocellular cancer)、胃腸癌(gastrointestinal cancer)、胰腺癌(pancreatic cancer)、神經膠瘤(glioma)、子宮頸癌(cervical cancer)、卵巢癌(ovarian cancer)、肝癌(liver cancer)、膀胱癌(bladder cancer)、肝癌(hepatoma)、乳腺癌(breast cancer)、大腸癌(colon cancer)、結腸直腸癌(colorectal cancer)、子宮內膜或子宮癌、唾液腺癌(salivary gland carcinoma)、腎癌(kidney cancer)、肝癌(liver cancer)、前列腺癌(prostate cancer)、外陰癌(vulval cancer)、甲狀腺癌(thyroid cancer)、肝癌(hepatic carcinoma)、白血病和其他淋巴增生性失調和各種類型的頭頸癌。在一範例中,癌症對免疫檢查點抑制劑有抗性和/或對免疫檢查點抑制劑顯示出有限反應。
術語「嵌合(chimeric)」抗體是指其中重鏈和/或輕鏈的一部分是衍生自特定來源或物種,而重鏈和/或輕鏈的其餘部分衍生自不同來源或物種的抗體。
抗體的「類別(class)」是指其重鏈所擁有的恆定域或恆定區的類型。抗體有五種主要類別:IgA、IgD、IgE、IgG和IgM,且其中一些可進一步分為亞類別(同型),例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2。對應至不同類別的免疫球蛋白的重鏈恆定域分別稱為alpha、delta、epsilon、gamma和mu。
如本文所使用地,術語「細胞毒殺劑」是指抑制或阻止細胞功能和/或導致細胞死亡或破壞的物質。細胞毒殺劑包含但不限於放射性同位素(例如 211At、 131I、 125I、 90Y、 186Re、 188Re、 153Sm、 212Bi、 32P、 212Pb和Lu的放射性同位素);化療劑或藥物(例如甲胺蝶呤(methotrexate)、阿黴素(adriamycin)、長春花生物鹼(vinca alkaloid)(長春新鹼(vincristine)、長春鹼(vinblastine)、依妥普賽(etoposide))、多柔比星(doxorubicin)、黴法蘭(melphalan)、絲裂黴素C(mitomycin C)、氯芥苯丁酸(chlorambucil)、道諾黴素(daunorubicin)或其他嵌入劑);生長抑制劑;酵素及其片段例如溶核酶(nucleolytic enzyme);抗生素;毒素例如細菌、真菌、植物或動物來源的小分子毒素或酵素活性毒素,包含其片段和/或變異體;及以下揭露的各種抗腫瘤劑或抗癌劑。
「效應子功能(effector function)」是指可歸因於抗體的Fc區的那些生物活性,其隨抗體同型而變化。抗體效應子功能的範例包含:C1q結合和補體依賴性細胞毒殺性(complement dependent cytotoxicity,CDC); Fc受體結合;抗體依賴性之細胞介導的細胞毒殺性(antibody-dependent cell-mediated cytotoxicity,ADCC);胞噬作用(phagocytosis);細胞表面受體(例如B細胞受體)的下調;和B細胞活化。
試劑例如醫藥製劑的「有效量」是指在所需的劑量和時間段內有效達到期望的治療或預防結果的量。
本文中的術語「 Fc區」用於定義含有恆定區的至少一部分的免疫球蛋白重鏈的C端區。此術語包含天然序列Fc區和變異Fc區。在一實施例中,人類IgG重鏈Fc區從Cys226或從Pro230延伸至重鏈的羧基端。然而,Fc區的C端離胺酸(Lys447)或甘胺酸-離胺酸(殘基446-447)可存在或可不存在。除非本文另有說明,否則Fc區或恆定區中的胺基酸殘基的編號是根據EU編號系統,亦稱為EU索引,如Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, 1991中所述。
「框架(framework)」或「FR」是指高度可變區(hypervariable region,HVR)殘基之外的可變域殘基。可變域的FR通常由四個FR域組成:FR1、FR2、FR3和FR4。因此,HVR和FR序列通常依以下順序出現於VH(或VL)中:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
術語「全長抗體(full length antibody)」、「完整抗體(intact antibody)」和「全抗體(whole antibody)」在本文中可互換使用,是指具有與天然抗體結構大抵上相似的結構或具有含有本文定義的Fc區的重鏈的抗體。
術語「宿主細胞(host cell)」、「宿主細胞株(host cell line)」和「宿主細胞培養物(host cell culture)」可互換使用,且是指已將外源核酸導入至其中的細胞,包含此種細胞的後代(progency)。宿主細胞包含「轉形株(transformant)」和「轉形細胞(transformed cell)」,其包含初代轉形細胞和從其衍生的後代,而與繼代次數無關。後代的核酸含量可能不與親代細胞完全相同,但可能含有突變。具有與在原始轉形細胞中所篩選或選擇的功能或生物活性相同的功能或生物活性的突變後代包含在本文中。
「人類抗體」是一種擁有對應至由人類或人類細胞所產生或衍生自人類抗體庫或其他人類抗體編碼序列的非人類來源的抗體的胺基酸序列的抗體。人類抗體的此定義具體地排除了包含非人類抗原結合殘基的人源化抗體。
「人類共有框架(human consensus framework)」是代表在選擇的人類免疫球蛋白VL或VH框架序列中,最常出現的胺基酸殘基的框架。通常,選擇的人類免疫球蛋白VL或VH序列是來自可變域序列的子群(subgroup)。通常,序列的子群是如Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda MD (1991), vols. 1-3中的子群。在一實施例中,對於VL,子群是如上文Kabat等人中的子群κ I。在一實施例中,對於VH,子群是如上文Kabat等人中的子群III。
「人源化(humanized)」抗體是指包含來自非人類HVR的胺基酸殘基和來自人類FR的胺基酸殘基的嵌合抗體。在某些實施例中,人源化抗體將包含至少一個且通常是兩個可變域的大抵上全部,其中所有或大抵上所有的HVR(例如CDR)都對應至非人類抗體的那些,且所有或基本上所有的FR都對應至人類抗體的那些。人源化抗體可視需要而定地包含衍生自人類抗體的抗體恆定區的至少一部分。抗體例如非人類抗體的「人源化形式」是指已接受人源化的抗體。
如本文所使用地,術語「高度可變區(hypervariable region)」或「HVR」是指抗體可變域之序列上高度可變(「互補決定區(complementarity determining regions)」或「CDRs」)和/或形成結構上定義的環(「高度可變環(hypervariable loops)」)和/或含有抗原接觸殘基(「抗原接觸」)的每個區域。通常,抗體包含六個HVR:VH中三個(H1、H2、H3)和VL中三個(L1、L2、L3)。本文中的示例性HVR包含: (a) 出現在胺基酸殘基26-32 (L1)、50-52 (L2)、91-96 (L3)、26-32 (H1)、53-55 (H2)和96-101 (H3)的高度可變環 (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987)); (b) 出現在胺基酸殘基24-34 (L1)、50-56 (L2)、89-97 (L3)、31-35b (H1)、50-65 (H2)和95-102 (H3)的CDR (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991)); (c) 出現在胺基酸殘基27c-36 (L1)、46-55 (L2)、89-96 (L3)、30-35b (H1)、47-58 (H2)和93-101 (H3)的抗原接觸(MacCallum et al. J. Mol. Biol. 262: 732-745 (1996));及 (d) (a)、(b)和/或(c)的組合,包含HVR胺基酸殘基46-56 (L2)、47-56 (L2)、48-56 (L2)、49-56 (L2)、26-35 (H1)、26-35b (H1)、49-65 (H2)、93-102 (H3)和94-102 (H3)。 除非另有說明,否則可變域中的HVR殘基和其他殘基(例如FR殘基)在本文中是根據上述之Kabat等人來編號。
「免疫偶聯物(immunoconjugate)」是偶聯至一或多個異源分子的抗體,包含但不限於細胞毒殺劑。
「個體(individual)」或「對象(subject)」是哺乳類。哺乳類包含但不限於馴化動物(例如牛、綿羊、貓、狗和馬)、靈長類(例如人類和非人類之靈長類例如猴)、兔和囓齒類(例如小鼠和大鼠)。在某些實施例中,個體或對象為人類。
「單離(isolated)」抗體是已經從其天然環境的組成中分離出來的抗體。在一些實施例中,將抗體純化至大於95%或99%的純度,其藉由例如電泳(例如SDS-PAGE、等電聚焦(isoelectric focusing,IEF)、毛細管電泳(capillary electrophoresis))或層析法(例如離子交換或逆相HPLC)來確定。對於抗體純度的評價(assessment)方法的回顧,參閱例如,Flatman et al., J. Chromatogr. B 848:79-87 (2007)。
「單離」核酸分子是已經從其天然環境的組成中分離的核酸分子。單離核酸分子包含通常含有此核酸分子的細胞中所含有的核酸分子,但此核酸分子存在於染色體外或在不同於其天然染色體位置的染色體位置。
「編碼抗潛伏性TGF-β1抗體的單離核酸」或「編碼抗潛伏性TGF-β1抗體的核酸」是指編碼抗體重鏈和輕鏈(或其片段)的一或多種核酸分子,包含在單一載體或個別的載體中的此種核酸分子,及存在於宿主細胞中一或多個位置的此種核酸分子。
如本文所使用的術語「單株抗體」是指從大抵上均質的抗體,亦即除了例如含有天然存在的突變或在單株抗體製品(preparation)的生產過程中所產生的可能的變異抗體之外,構成此群體的各個抗體是相同和/或結合相同的抗原決定基,中獲得的抗體,這種變異體通常以少量存在。與通常包含針對不同決定基(抗原決定基)的不同抗體的多株抗體製品對比,單株抗體製品中的每個單株抗體是針對抗原上的單一決定基。因此,修飾語「單株」指出抗體的特性為大抵上同質的抗體群體中獲得,而不應視為要求藉由任何特定方法來生產抗體。例如,可藉由多種技術包含但不限於融合瘤方法、重組DNA方法、噬菌體展示方法及利用含有全部或部分的人類免疫球蛋白基因座的轉基因動物的方法,來製造根據本發明使用的單株抗體,本文描述了這些方法和其他製造單株抗體的示例性方法。
「裸抗體(naked antibody)」是指未偶聯至異源部分(例如細胞毒殺部分)或放射性標記的抗體。裸抗體可存在於醫藥製劑中。
「天然抗體(native antibody)」是指具有變化結構的天然存在的免疫球蛋白分子。例如,天然IgG抗體是約150,000道耳頓(dalton)、由以雙硫鍵結合的兩條相同的輕鏈和兩條相同的重鏈所構成的異質四聚體糖蛋白。從N至C端,每條重鏈都具有可變區(VH),也稱為可變重域或重鏈可變域,接著是三個恆定域(CH1、CH2和CH3)。類似地,從N至C端,每個輕鏈都具有可變區(VL),也稱為可變輕域或輕鏈可變域,接著是恆定輕(CL)域。可基於其恆定域的胺基酸序列,抗體的輕鏈可分配至兩種類型之一,稱為κ (κ)和lambda (lambda)。
術語「仿單(package insert)」用於指通常包含於治療產品的商業包裝中的指示,其含有關於使用此類治療產品的適應症(indication)、用法、劑量、投予、組合療法、禁忌症(contraindication)和/或警告的資訊。
相對於參考多肽序列的「胺基酸序列相同度百分比(%)」定義為在比對序列且若有必要的話,則將間隙導入以達到最大的序列相同度百分比,且不將任何保守取代視為序列相同度的一部分後,候選序列中與參考多肽序列的胺基酸殘基相同的胺基酸殘基的百分比。可用本發明所屬領域技術內的各種方式,來實現用於確定胺基酸序列相同度百分比的比對,例如,使用公開可用的電腦軟體例如BLAST、BLAST-2、ALIGN、Megalign(DNASTAR)軟體或GENETYX(註冊商標)(Genetyx Co., Ltd.)。本發明所屬技術領域中具有通常知識者可確定用於比對序列的合適參數,包含在所比較的序列的全長上實現最大比對所需的任何演算法。
ALIGN-2序列比較電腦程式由Genentech, Inc.編寫,且來源碼已與用戶文件一起歸檔(file)於U.S. Copyright Office, Washington D.C., 20559中,且註冊於美國版權註冊號TXU510087中。ALIGN-2程式可從Genentech, Inc., South San Francisco, California公開獲得,或也可從來源碼中進行編譯。ALIGN-2程式應編譯為在UNIX操作系統(包含數位UNIX V4.0D)上使用。所有序列比較參數均由ALIGN-2程式設置,且沒有改變。在使用ALIGN-2進行胺基酸序列比較的情況下,給定的胺基酸序列A對、和或及給定的胺基酸序列B (可替代地表示為具有或包含對、和或及給定的胺基酸序列B某百分比的胺基酸序列相同的給定的胺基酸序列A)胺基酸序列相同度百分比的計算如下: 分數X/Y的100倍 其中X是在此程式的A和B的比對中被序列比對程式ALIGN-2計為相同匹配的胺基酸殘基的數目,且其中Y是B中胺基酸殘基的總數目。應理解的是,若胺基酸序列A的長度不等於胺基酸序列B的長度,則A對B的胺基酸序列相同度%將不等於B對A的胺基酸序列相同度%。除非另有具體說明,否則如前一段落所述,使用ALIGN-2電腦程式,來獲得本文使用的所有胺基酸序列相同度%同一性值。
術語「醫藥製劑」是指形式為使其中所含活性成分的生物活性有效,且不含有對此製劑所投予的對象有不可接受地毒性的額外成分的製品。
「醫藥上可接受的載劑」是指醫藥製劑中除活性成分以外,對對象無毒的成分。醫藥上可接受的載劑包含但不限於緩衝劑、賦形劑、穩定劑或防腐劑。
除非另有說明,否則本文所用的術語「TGF-β1」是指來自任何脊椎動物來源的任何天然TGF-β1,包含哺乳類,例如靈長類(例如人類)和囓齒類(例如小鼠和大鼠)。此術語涵蓋「全長」未加工的TGF-β1以及在細胞中加工產生的任何形式的TGF-β1。此術語亦涵蓋天然存在的TGF-β1的變異體,例如剪接變異體或等位基因變異體。於序列辨識號:68 (NCBI參考序列:NP_000651.3)中顯示出示例性人類TGF-β1前原蛋白的胺基酸序列,而於序列辨識號:69中顯示出編碼示例性人類TGF-β1的核酸序列(NCBI參考序列:NM_000660.6)。於序列辨識號:70 (NCBI參考序列:NP_035707.1)中顯示示例性小鼠TGF-β1前原蛋白的胺基酸序列,而於序列辨識號:71。 (NCBI參考序列:NM_011577.2)中顯示編碼例示性小鼠TGF-β1的核酸序列示。於序列辨識號:72 (NCBI參考序列:XP_005589396.1)中顯示示例性食蟹猴TGF-β1前原蛋白的胺基酸序列,而序列辨識號:73 (NCBI參考序列:XM_005589339.2)中顯示編碼示例性食蟹猴TGF-β1的核酸序列。術語「 TGF-β1」涵蓋潛伏性TGF-β1和成熟TGF-β1。
如本文所用,術語「潛伏性TGF-β1」是指形成潛伏性TGF-β1複合體(「細胞表面潛伏性TGF-β1」、LLC或SLC(參見下文))和/或不能結合至其受體的任何TGF-β1。轉化生長因子-β1(Transforming growth factor-β1,TGF-β1)是TGF-β的成員,其為TGF-β超家族的成員。如同TGF- β超家族的其他成員,TGF- β作為前驅蛋白合成,其形成與其潛伏期相關胜肽(latency-associated peptide,LAP)和潛伏性TGF- β結合蛋白(latent TGF-β-binding protein,LTBP)交互作用的同質二聚體,形成稱為大型潛伏性複合體(large latent complex,LLC)之更大的複合體。示例性潛伏性人類TGF-β1的胺基酸序列(TGF-β同質二聚體及其LAP)是序列辨識號:68的胺基酸30-390。示例性小鼠潛伏性TGF-β1 (TGF-β同質二聚體及其LAP)的胺基酸序列為序列辨識號:70的胺基酸30-390。示例性潛食獼猴TGF-β1的胺基酸序列TGF-β1 (TGF-β同質二聚體及其LAP)為序列辨識號:72的胺基酸30-390。
由TGF-β同質二聚體及其LAP所形成的複合體稱為小型潛伏性複合體(Small Latent Complex,SLC)。此潛伏性複合體使TGF-β處於非活性形式,無法結合至其受體。SLC可共價連接至額外蛋白,潛伏性TGF-β結合蛋白(LTBP),而形成大型潛伏性複合體(LLC)。已知有四種不同的LTBP同型異構物LTBP-1、LTBP-2、LTBP-3和LTBP-4。據報導,LTBP-1、LTBP-3和LTBP-4結合至SLC (請參閱,例如Rifkin et al., J Biol Chem. 2005 Mar 4;280(9):7409-12)。 SLC亦可共價連接至其他額外蛋白,例如醣蛋白A為主的重複序列(glycoprotein A repetitions predominant,GARP)或含有富含白胺酸的重複序列蛋白33(leucine-rich repeat-containing protein 33,LRRC33)。GARP和LRRC具有跨膜域且與細胞表面上的LAP相連(參閱,例如Wang et al., Mol Biol Cell. 2012 Mar;23(6):1129-39)。至於LLC,據報導LLC經由LTBP的N端與細胞外基質(ECM)共價相連(參閱,例如Saharinen et al., Cytokine Growth Factor Rev. 1999 Jun;10(2):99-117)。在一些實施例中,與細胞表面上的ECM相連的潛伏性TGF-β1被稱為「細胞表面潛伏性TGF-β1」。
如本文所使用地,術語「活性TGF-β1」、「成熟TGF-β1」或「活性成熟TGF-β1」是指不形成潛伏性TGF-β1複合體(LLC或SLC),且能夠結合至其受體的任何TGF-β1同質二聚體。TGF-β1活化過程涉及從ECM中釋放LLC,接著進一步將LAP蛋白水解,以將活性TGF-β釋放至其受體。多種蛋白酶包含纖溶酶(PLN)、前激肽釋放酶(prekallikrein,PLK)、基質金屬蛋白酶(MMP) 2、MMP9、MMP13、MMP14、凝血酶(Thrombin)、類胰蛋白酶(Tryptase)和鈣蛋白酶(Calpain)已知會切割潛伏性TGF-β且釋放活性TGF-β。在本發明的上下文中,這些蛋白酶可統稱為「(潛伏性)TGF-β切割蛋白酶」或「(潛伏性)TGF-β1切割蛋白酶」。除蛋白酶外,血小板反應素1 (thrombospondin 1,TSP-1)、神經菌素1 (Neuropilin-1,Nrp1)、具有血小板反應素基序的脫整合素和金屬蛋白酶1 (ADAMSTS1)和受質反應蛋白(F-spondin)也活化潛伏性TGF-β。或者,在機械拉伸時,整合素(較佳為整合素alpha V β8和/或整合素alpha V β6)可藉由結合至存在於LAP中的RGD基序和誘導成熟TGF-β從其潛伏性複合體形式中釋放,來活化TGF-β。
如本文所使用地,「治療」(及其文法變化例如「治療(treat)」或「治療(treating)」)是指試圖改變被治療個體的自然病程的臨床干預,且可於預防或在臨床病理過程的期間執行。期待的治療效果包含但不限於,疾病的發生或復發的預防、症狀的緩和(alleviation)、疾病的任何直接或間接病理後果的減少(diminishment)、預防轉移、降低疾病進展的速度、疾病狀態的緩解(amelioration)或減輕(palliation)、和趨緩(remission)或預後(prognosis)改善。在一些實施例中,本發明的抗體用於延遲疾病的發展或減慢疾病的進展。
術語「可變區」或「可變域」是指涉及使抗體結合至抗原的抗體重或輕鏈的結構域。天然抗體的重鏈和輕鏈的可變域(分別為VH和VL)通常具有相似的結構,其中每個結構域均包含四個保守框架區(framework region,FR)和三個高度可變區(hypervariable region,HVR)。(請參閱例如,Kindt et al. Kuby Immunology, 6 thed., W.H. Freeman and Co., page 91 (2007)。)單一VH或VL域可能足以賦予抗原結合特異性。再者,可使用來自結合抗原的抗體的VH或VL域,來單離結合特定抗原的抗體,以分別篩選互補的VL或VH域的資料庫(library)。請參閱例如,Portolano et al., J. Immunol.150:880-887 (1993); Clarkson et al., Nature352:624-628 (1991)。
如本文所使用地,術語「載體(vector)」是指能夠繁殖與其連接的另一核酸的核酸分子。此術語包含作為自我複製核酸結構的載體,以及合併至已導入至宿主細胞的基因組中的載體。某些載體能夠引導與其可操作連接的核酸的表現。這樣的載體在本文中稱為「表現載體(expression vector)」。
II. 組合物及方法 於一面向中,本發明部分基於抗潛伏性TGF-β1抗體及其用途。在某些實施例中,提供了結合至TGF-β1的抗體。本發明的抗體例如對診斷或治療纖維化是有用的,較佳為心肌纖維化(myocardial fibrosis)、肺纖維化(pulmonary fibrosis)、肝纖維化(liver fibrosis)、腎纖維化(renal fibrosis)、皮膚纖維化(skin fibrosis)、眼纖維化(ocular fibrosis)和骨髓纖維化(myelofibrosis)。本發明的抗體也對例如診斷或治療癌症是有用的。癌症的範例包含但不限於癌腫(carcinoma)、淋巴瘤(lymphoma)(例如霍奇金氏(Hodgkin’s)淋巴瘤和非霍奇金氏(non-Hodgkin’s)淋巴瘤、胚細胞瘤(blastoma)、肉瘤(sarcoma)和白血病(leukemia)。此種癌症的更具體的範例包含鱗狀細胞癌(squamous cell cancer)、小細胞肺癌(small-cell lung cancer)、非小細胞肺癌(non-small cell lung cancer)、肺腺癌(adenocarcinoma of the lung)、肺鱗狀癌(quamous carcinoma of the lung)、腹膜癌(cancer of the peritoneum)、肝細胞癌(hepatocellular cancer)、胃腸癌(gastrointestinal cancer)、胰腺癌(pancreatic cancer)、神經膠瘤(glioma)、子宮頸癌(cervical cancer)、卵巢癌(ovarian cancer)、肝癌(liver cancer)、膀胱癌(bladder cancer)、肝癌(hepatoma)、乳腺癌(breast cancer)、大腸癌(colon cancer)、結腸直腸癌(colorectal cancer)、子宮內膜或子宮癌、唾液腺癌(salivary gland carcinoma)、腎癌(kidney cancer)、肝癌(liver cancer)、前列腺癌(prostate cancer)、外陰癌(vulval cancer)、甲狀腺癌(thyroid cancer)、肝癌(hepatic carcinoma)、白血病和其他淋巴增生性失調和各種類型的頭頸癌。
A. 示例性抗潛伏性TGF-β1抗體 於一面向中,本發明提供了結合至潛伏性TGF-β1的單離抗體。在又一些實施例中,抗潛伏性TGF-β1抗體結合至潛伏性TGF-β1的潛伏期相關胜肽(LAP)區。LAP區的範例包含人類TGF-β1前原蛋白(序列辨識號:1)的胺基酸30-278。如上所述,LAP是潛伏性TGF-β1的組成之一。在一些實施例中,抗潛伏性TGF-β1抗體以10 -8nM或更小、10 -9nM或更小或10 -10nM或更小的解離常數(KD)結合至潛伏性TGF-β1。
於一面向中,抗潛伏性TGF-β1抗體結合至形成潛伏性TGF-β1的LLC,和/或以GARP或LRRC33結合至形成潛伏性TGF-β1的複合體。在某些實施例中,抗潛伏性TGF-β1抗體結合至細胞表面潛伏性TGF-β1,其是與細胞表面上的細胞外基質(ECM)相關的潛伏性TGF-β1。於另一面向中,抗潛伏性TGF-β1抗體結合至潛伏性TGF-β1,其中潛伏性TGF-β1的LAP區不連接至LTBP,形成小型潛伏性複合體(SLC)。在某些實施例中,SLC以可溶形式存在。在一些實施例中,抗潛伏性TGF-β1抗體以10 -8nM或更小、10 -9nM或更小、或10 -10nM或更小的解離常數(KD)結合至潛伏性TGF-β1 (細胞表面潛伏性TGF-β1、LLC或SLC)。
於一面向中,抗潛伏性TGF-β1抗體抑制潛伏性TGF-β1的活化。如本文所使用地,術語潛伏性TGF-β1的「活化」是指成熟TGF-β1從是潛伏性TGF-β1的組成之一的LAP中釋放出的任何過程。可例如藉由使用本發明所屬技術領域中已知或本文所述的各種技術,來測量成熟TGF-β1和/或測量成熟TGF-β1活性,以檢測潛伏性TGF-β1的活化。在一些實施例中,抗潛伏性TGF-β1抗體抑制成熟TGF-β1從潛伏性TGF-β1的釋放。如上所述,據報導,藉由例如蛋白酶、整合素和其他非蛋白酶活化劑的活化劑,使成熟TGF-β1從潛伏性TGF-β1釋放。活化潛伏性TGF-β1的蛋白酶的非限制性範例包含纖溶酶(PLN)、前激肽釋放酶(PLK)、基質金屬蛋白酶(MMP)2和MMP9。在一些實施例中,抗潛伏性TGF-β1抗體抑制蛋白酶介導和/或整合素介導之成熟TGF-β1從潛伏性TGF-β1的釋放。如上所述,蛋白酶切割潛伏性TGF-β1的LAP區,導致成熟TGF-β1的釋放。在一些實施例中,PLN和/或PLK的切割位位於由LAP多肽的胺基酸56-59所組成的片段內。
於一面向中,抗潛伏性TGF-β1抗體抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放,而不抑制蛋白酶介導的潛伏性TGF-β1的LAP部的切割。在一些實施例中,抗潛伏性TGF-β1抗體抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放,並允許蛋白酶切割LAP區,而抗潛伏性TGF-β1抗體結合至潛伏性TGF-β1的LAP區。在一些實施例中,抗潛伏性TGF-β1抗體不阻擋蛋白酶接近潛伏性TGF-β1,尤其是不阻擋接近PLN和/或PLK的切割位。在另一些實施例中,抗潛伏性TGF-β1抗體不結合至潛伏性TGF-β1的LAP部的蛋白酶切割位,尤其是PLN和/或PLK的切割位。
在一些實施例中,抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放的抗潛伏性TGF-β1抗體是(i)抑制由一或多種蛋白酶介導之LAP區的切割,但(ii)不抑制由其他蛋白酶介導之LAP區的切割。例如,抗潛伏性TGF-β1抗體(1-i)藉由抑制MMP2和/或MMP9介導的潛伏性TGF-β1的LAP部的切割,來抑制MMP2和/或MMP9介導的成熟TGF-β1的釋放,且 (1-ii)抑制PLN和/或PLK介導的成熟TGF-β1的釋放,而不抑制PLN和/或PLK介導的潛伏性TGF-β1的LAP部的切割。或者,抗潛伏性TGF-β1抗體(2-i)藉由抑制PLN和/或PLK介導的潛伏性TGF-β1的LAP部的切割,來抑制PLN和/或PLK介導的成熟TGF-β1的釋放,且(2-ii)抑制MMP2和/或MMP9介導的成熟TGF-β1的釋放,而不抑制MMP2和/或MMP9介導的潛伏性TGF-β1的LAP部的切割。或者,抗潛伏性TGF-β1抗體(3-i)抑制PLN和/或PLK介導的成熟TGF-β1的釋放,而不會抑制PLN和/或PLK介導的潛伏性TGF-β1的LAP部的切割,且(3-ii)抑制MMP2和/或MMP9介導的成熟TGF-β1的釋放,而不會抑制MMP2和/或MMP9介導的潛伏性TGF-β1的LAP部的切割。
在一些實施例中,「抑制潛伏性TGF-β1的活化」的抗體包含導致TGF-β1的活化減少至少5%、10%、15%、20%、25%、30%、35%或40%或更多的抗體。在另一些實施例中,「抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放的抗體」包含導致蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放減少至少5%、10%、15%、20%、25%、30%、35%或40%或更多的抗體。在另一些實施例中,抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放,「而不會抑制蛋白酶介導的潛伏性TGF-β1的LAP區的切割」的抗體包含導致蛋白酶介導的潛伏性TGF-β1的LAP區的切割減少50%或更少、45%或更少、減少40%或更少、35%或更少、30%或更少、25%或更少、20%或更少、15%或更少、10%或更少、5%或更少的抗體。
在一些實施例中,抗潛伏性TGF-β1抗體穩定了潛伏性TGF-β1的LAP區的結構,而不抑制蛋白酶介導的潛伏性TGF-β1的LAP區的切割。當抗潛伏性TGF-β1抗體「穩定」 LAP區的結構時,如本文所使用地,抗潛伏性TGF-β1抗體所結合的LAP區處於成熟TGF-β1無法從其中釋放的某結構。在又一些實施例中,可藉由整合素(較佳為整合素alpha V β8和/或整合素alpha V β6),來活化被抗潛伏性TGF-β1抗體穩定的潛伏性TGF-β1。在某些實施例中,被抗潛伏性TGF-β1抗體穩定的LAP區已被蛋白酶切割或未被蛋白酶切割。在一些實施例中,抗潛伏性TGF-β1抗體穩定潛伏性TGF-β1的LAP區的結構,並允許蛋白酶切割LAP區,同時抗潛伏性TGF-β1抗體結合至潛伏性TGF-β1的LAP區。在一些實施例中,抗潛伏性TGF-β1抗體穩定潛伏性TGF-β1的LAP區的結構,而不會阻擋蛋白酶接近潛伏性TGF-β1,尤其是不阻擋接近PLN和/或PLK的切割位。在另一些實施例中,抗潛伏性TGF-β1抗體穩定潛伏性TGF-β1的LAP區的結構,而不會阻擋蛋白酶接近潛伏性TGF-β1,尤其是不阻擋接近PLN和/或PLK的切割位。
在一面向中,抗潛伏性TGF-β1抗體不結合至成熟TGF-β1。在一些實施例中,抗潛伏性TGF-β1抗體以比成熟TGF-β1更高的結合活性,來結合至潛伏性TGF-β1。在某些實施例中,本發明的抗體以比結合至成熟TGF-β1的結合活性還多至少2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、200、400、1000、10000或更多倍的結合活性,來結合至潛伏性TGF-β1。
在一面向中,抗潛伏性TGF-β1抗體不會或不顯著地抑制整合素介導的TGF-β1的活化,即整合素介導的成熟TGF-β1從潛伏性TGF-β1的釋放。本文的整合素較佳為整合素alpha V β8和/或整合素alpha V β6。在一些實施例中,「不會或不顯著地抑制整合素介導的TGF-β1的活化」的抗體包含導致整合素介導的TGF-β1的活化,即整合素介導之成熟TGF-β1從潛伏性TGF-β1的釋放減少50%或更少、45%或更少、40%或更少、35%或更少、30%或更少、25%或更少、20%或更低、15%或更少、10%或更低、5%或更低的抗體。 在一面向中,抗潛伏性TGF-β1抗體導致與抗TGF-β1拮抗劑相關之毒性和/或副作用減弱或更少。在一些實施例中,與引起對成熟TGF-β1的活性的試劑或引起對潛伏性TGF-β1的活性但同時抑制蛋白酶和整合素介導的潛伏性TGF-β1的活化的試劑相比,抗潛伏性TGF-β1抗體,例如本文所述的那些,具有優異的安全性特徵。在一些實施例中,本揭露的抗潛伏性TGF-β1抗體具有減弱的心臟毒性,同時具有比抗成熟TGF-β1抗體更好或可比的功效。不受任何理論的束縛,本揭露的抗潛伏性TGF-β1抗體不會或不顯著地抑制整合素介導的TGF-β1活化,因此具有減弱或更少毒性和/或不良作用,其中那些毒性是由以下所述導致的:(i)整合素介導的TGF-β1活化或(ii)在TGF-β1被整合素活化的位置的TGF-β1訊號抑制。因此,本揭露的抗潛伏性TGF-β1抗體可以治療上有效劑量投予至需要其的對象,而不會導致不良反應,特別是心臟毒性。因此,這種方法將加大可在患者中實現的功效和安全性/耐受性的劑量範圍。因此,本發明提供了藉由對受試者投予有效量的抗潛伏性TGF-β1抗體,前述抗潛伏性TGF-β1抗體不會或不顯著地抑制整合素介導的TGF-β1活化,來治療與TGF-β1訊號傳遞相關的疾病的方法。本發明涵蓋抗潛伏性TGF-β1抗體之減少受試者中與TGF-β1抑制相關的毒性和/或不良反應的用途。在一些實施例中,毒性和/或不良反應可包含心血管毒性、胃腸毒性、免疫毒性、骨/軟骨毒性、生殖毒性和腎毒性。在一些實施例中,心血管毒性包含但不限於:心臟瓣膜損傷,例如出血、發炎、瓣膜間隙細胞(valvular interstitial cell)的退化和增殖。在一些實施例中,毒性和/或不良反應可包含流血。在一些實施例中,毒性和/或不良反應可包含皮膚損傷或腫瘤。在一些實施例中,毒性和/或不良反應可包含腫瘤進程。
在一些實施例中,本發明的抗潛伏性TGF-β1抗體: 結合至潛伏性TGF-β1; 結合至形成潛伏性TGF-β1的SLC; 結合至形成潛伏性TGF-β1的LLC; 以GARP或LRRC33結合至形成潛伏性TGF-β1的複合體; 結合至細胞表面潛伏性TGF-β1; 結合至潛伏性TGF-β1的LAP區; 結合至LAP; 以10 -8nM或更小、10 -9nM或更小、或10 -10nM或更小的解離常數(KD)結合至潛伏性TGF-β1結合至latent TGF-β1; 抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放; 不會抑制蛋白酶介導的潛伏性TGF-β1的LAP區的切割; 不會或不顯著地抑制整合素介導之成熟TGF-β1從潛伏性TGF-β1的釋放;和/或 導致與抗TGF-β1拮抗劑(例如抗成熟TGF-β1抗體)相關的毒性和/或不良反應的減弱或更少。 在又一些實施例中,本發明的抗潛伏性TGF-β1抗體是: 單株抗體; 人類、人源化或嵌合抗體; 全長IgG抗體;和/或 抗體片段。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含至少一、二、三、四、五或六個選自以下的HVR: (a) 包含序列辨識號:20的胺基酸序列的HVR-H1; (b) 包含序列辨識號:21的胺基酸序列的HVR-H2; (c) 包含序列辨識號:22的胺基酸序列的HVR-H3; (d) 包含序列辨識號:23的胺基酸序列的HVR-L1; (e) 包含序列辨識號:24的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:25的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含至少一、二、三、四、五或六個選自以下的HVR: (a) 包含序列辨識號:26的胺基酸序列的HVR-H1; (b) 包含序列辨識號:27的胺基酸序列的HVR-H2; (c) 包含序列辨識號:28的胺基酸序列的HVR-H3; (d) 包含序列辨識號:29的胺基酸序列的HVR-L1; (e) 包含序列辨識號:30的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:31的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含至少一、二、三、四、五或六個選自以下的HVR: (a) 包含序列辨識號:32的胺基酸序列的HVR-H1; (b) 包含序列辨識號:33的胺基酸序列的HVR-H2; (c) 包含序列辨識號:34的胺基酸序列的HVR-H3; (d) 包含序列辨識號:35的胺基酸序列的HVR-L1; (e) 包含序列辨識號:36的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:37的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含至少一、二、三、四、五或六個選自以下的HVR: (a) 包含序列辨識號:38的胺基酸序列的HVR-H1; (b) 包含序列辨識號:39的胺基酸序列的HVR-H2; (c) 包含序列辨識號:40的胺基酸序列的HVR-H3; (d) 包含序列辨識號:41的胺基酸序列的HVR-L1; (e) 包含序列辨識號:42的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:43的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:20的胺基酸序列的HVR-H1; (b) 包含序列辨識號:21的胺基酸序列的HVR-H2; (c) 包含序列辨識號:22的胺基酸序列的HVR-H3; (d) 包含序列辨識號:23的胺基酸序列的HVR-L1; (e) 包含序列辨識號:24的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:25的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:26的胺基酸序列的HVR-H1; (b) 包含序列辨識號:27的胺基酸序列的HVR-H2; (c) 包含序列辨識號:28的胺基酸序列的HVR-H3; (d) 包含序列辨識號:29的胺基酸序列的HVR-L1; (e) 包含序列辨識號:30的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:31的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:32的胺基酸序列的HVR-H1; (b) 包含序列辨識號:33的胺基酸序列的HVR-H2; (c) 包含序列辨識號:34的胺基酸序列的HVR-H3; (d) 包含序列辨識號:35的胺基酸序列的HVR-L1; (e) 包含序列辨識號:36的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:37的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:38的胺基酸序列的HVR-H1; (b) 包含序列辨識號:39的胺基酸序列的HVR-H2; (c) 包含序列辨識號:40的胺基酸序列的HVR-H3; (d) 包含序列辨識號:41的胺基酸序列的HVR-L1; (e) 包含序列辨識號:42的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:43的胺基酸序列的HVR-L3。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含序列辨識號:12所示的VH序列的HVR-H1、HVR-H2和HVR-H3,和序列辨識號:13所示的VL序列的HVR-L1、HVR-L2和HVR-L3,其中HVR由(a) Chothia;(b) Kabat;(c) MacCallum;或(d) (a)、(b)和/或(c)的組合所定義。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含序列辨識號:14所示的VH序列的HVR-H1、HVR-H2和HVR-H3,和序列辨識號:15所示的VL序列的HVR-L1、HVR-L2和HVR-L3,其中HVR由(a) Chothia;(b) Kabat;(c) MacCallum;或(d) (a)、(b)和/或(c)的組合所定義。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含序列辨識號:16所示的VH序列的HVR-H1、HVR-H2和HVR-H3,和序列辨識號:17所示的VL序列的HVR-L1、HVR-L2和HVR-L3,其中HVR由(a) Chothia;(b) Kabat;(c) MacCallum;或(d) (a)、(b)和/或(c)的組合所定義。
在一面向中,本發明提供一種抗潛伏性TGF-β1抗體,其包含序列辨識號:18所示的VH序列的HVR-H1、HVR-H2和HVR-H3,和序列辨識號:19所示的VL序列的HVR-L1、HVR-L2和HVR-L3,其中HVR由(a) Chothia;(b) Kabat;(c) MacCallum;或(d) (a)、(b)和/或(c)的組合所定義。
在以上任何實施例中,抗潛伏性TGF-β1抗體是人源化的。在一實施例中,抗潛伏性TGF-β1抗體包含如以上任何實施例中的HVR,且更包含受體人類框架,例如人類免疫球蛋白框架或人類共有框架。
在另一面向中,抗潛伏性TGF-β1抗體包含與序列識別號:12、14、16或18的胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的序列相同度的重鏈可變域(VH)。在某些實施例中,相對於參考序列,具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的相同度的VH序列包含取代(例如保守取代)、插入或缺失,但包含那序列的抗潛伏性TGF-β1抗體保留了結合至潛伏性TGF-β1的能力。在某些實施例中,在序列辨識號:12、14、16或18中,總共有1至10個胺基酸被取代、插入和/或缺失。在某些實施例中,在HVR之外的區域中(即在FR中)發生取代、插入或缺失。視需要而定地,抗潛伏性TGF-β1抗體包含序列辨識號:12、14、16或18中的VH序列,其包含那序列的轉譯後修飾。在一特定實施例中,VH包含一、二或三個選自以下的HVR:(a) 包含序列辨識號:20、26、32或38的胺基酸序列的HVR-H1、(b) 包含序列辨識號:21、27、33或39的胺基酸序列的HVR-H2,以及(c) 包含序列辨識號:22、28、34或40的胺基酸序列的HVR-H3。轉譯後修飾包含但不限於藉由焦穀胺醯化將重鏈或輕鏈的N-末端的麩醯胺酸(glutamine)或麩胺酸(glutamate)修飾為焦麩胺酸(pyroglutamic acid)。
在另一面向中,提供一種抗潛伏性TGF-β1抗體,其中抗體包含與序列識別號:13、15、17或19的胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的序列相同度的輕鏈可變域(VL)。在某些實施例中,相對於參考序列,具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的相同度的VL序列包含取代(例如保守取代)、插入或缺失,但包含那序列的抗潛伏性TGF-β1抗體保留了結合至潛伏性TGF-β1的能力。在某些實施例中,在序列辨識號:13、15、17或19中,總共有1至10個胺基酸被取代、插入和/或缺失。在某些實施例中,在HVR之外的區域中(即在FR中)發生取代、插入或缺失。視需要而定地,抗潛伏性TGF-β1抗體包含序列辨識號:13、15、17或19中的VL序列,包含那序列的轉譯後修飾。在一特定實施例中,VL包含一、二或三個選自以下的HVR:(a) 包含序列辨識號:23、29、35或41的胺基酸序列的HVR-L1、(b) 包含序列辨識號:24、30、36或42的胺基酸序列的HVR-L2,以及(c) 包含序列辨識號:25、31、37或43的胺基酸序列的HVR-L3。轉譯後修飾包含但不限於藉由焦穀胺醯化將重鏈或輕鏈的N-末端的麩醯胺酸或麩胺酸修飾為焦麩胺酸。
在另一面向中,提供一種抗潛伏性TGF-β1抗體,其中抗體包含如上文提供的任何實施例中的VH和如上文提供的任何實施例中的VL。在一實施例中,抗體包含分別在序列辨識號:12和序列辨識號:13中所示的VH和VL序列,其包含那些序列的轉譯後修飾。轉譯後修飾包含但不限於藉由焦穀胺醯化將重鏈或輕鏈的N-末端的麩醯胺酸或麩胺酸修飾為焦麩胺酸。
在一實施例中,抗體包含分別在序列辨識號:14和序列辨識號:15中所示的VH和VL序列,其包含那些序列的轉譯後修飾。轉譯後修飾包含但不限於藉由焦穀胺醯化將重鏈或輕鏈的N-末端的麩醯胺酸或麩胺酸修飾為焦麩胺酸。
在一實施例中,抗體包含分別在序列辨識號:16和序列辨識號:17中所示的VH和VL序列,其包含那些序列的轉譯後修飾。轉譯後修飾包含但不限於藉由焦穀胺醯化將重鏈或輕鏈的N-末端的麩醯胺酸或麩胺酸修飾為焦麩胺酸。
在一實施例中,抗體包含分別在序列辨識號:18和序列辨識號:19中所示的VH和VL序列,其包含那些序列的轉譯後修飾。轉譯後修飾包含但不限於藉由焦穀胺醯化將重鏈或輕鏈的N-末端的麩醯胺酸或麩胺酸修飾為焦麩胺酸。
在又一面向中,本發明提供了與本文提供的抗潛伏性TGF-β1抗體結合至相同的抗原決定基的抗體。例如,在某些實施例中,提供與以下結合至相同的抗原決定基的抗體: (1) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:20的胺基酸序列的HVR-H1; (b) 包含序列辨識號:21的胺基酸序列的HVR-H2; (c) 包含序列辨識號:22的胺基酸序列的HVR-H3; (d) 包含序列辨識號:23的胺基酸序列的HVR-L1; (e) 包含序列辨識號:24的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:25的胺基酸序列的HVR-L3; (2) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:26的胺基酸序列的HVR-H1; (b) 包含序列辨識號:27的胺基酸序列的HVR-H2; (c) 包含序列辨識號:28的胺基酸序列的HVR-H3; (d) 包含序列辨識號:29的胺基酸序列的HVR-L1; (e) 包含序列辨識號:30的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:31的胺基酸序列的HVR-L3; (3)一種抗潛伏性TGF-β1抗體,其包含:(a)包含序列辨識號:32的胺基酸序列的HVR-H1;(b)包含序列辨識號:33的胺基酸序列的HVR-H2;(c)包含序列辨識號:34的胺基酸序列的HVR-H3;(d)包含序列辨識號:35的胺基酸序列的HVR-L1;(e)包含序列辨識號:36的胺基酸序列的HVR-L2;和(f)包含序列辨識號:37的胺基酸序列的HVR-L3;或(4)一種抗潛伏性TGF-β1抗體,其包含:(a)包含序列辨識號:38的胺基酸序列的HVR-H1;(b)包含序列辨識號:39的胺基酸序列的HVR-H2;(c)包含序列辨識號:40的胺基酸序列的HVR-H3;(d)包含序列辨識號:41的胺基酸序列的HVR-L1;(e)包含序列辨識號:42的胺基酸序列的HVR-L2;和(f)包含序列辨識號:43的胺基酸序列的HVR-L3。
在又一面向中,本發明提供了結合至人類、猴、小鼠和/或大鼠的潛伏性TGF-β1的抗體。在某些實施例中,本發明提供了結合至人類、猴和小鼠的潛伏性TGF-β1的抗體。在某些實施例中,本發明提供了結合至人類、猴和小鼠之形成潛伏性TGF-β1的SLC的抗體。在某些實施例中,本發明提供了結合至人類、猴和小鼠之形成潛伏性TGF-β1的LLC的抗體。在某些實施例中,本發明提供了以人類、猴和小鼠的GARP或LRRC33結合至形成潛伏性TGF-β1的複合體的抗體。在某些實施例中,本發明提供了結合至與人類、猴和小鼠的細胞表面潛伏性TGF-β1的抗體。
在又一面向中,本發明提供了與本文提供的抗潛伏性TGF-β1抗體中的任一者結合至相同的抗原決定基的抗體。此抗原決定基可存在於人類、猴、小鼠和/或大鼠的TGF-β1上。例如,在某些實施例中,本發明提供了與參考抗體結合相同的抗原決定基的抗體,其中參考抗體為: (1) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:20的胺基酸序列的HVR-H1; (b) 包含序列辨識號:21的胺基酸序列的HVR-H2; (c) 包含序列辨識號:22的胺基酸序列的HVR-H3; (d) 包含序列辨識號:23的胺基酸序列的HVR-L1; (e) 包含序列辨識號:24的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:25的胺基酸序列的HVR-L3; (2) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:26的胺基酸序列的HVR-H1; (b) 包含序列辨識號:27的胺基酸序列的HVR-H2; (c) 包含序列辨識號:28的胺基酸序列的HVR-H3; (d) 包含序列辨識號:29的胺基酸序列的HVR-L1; (e) 包含序列辨識號:30的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:31的胺基酸序列的HVR-L3; (3) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:32的胺基酸序列的HVR-H1; (b) 包含序列辨識號:33的胺基酸序列的HVR-H2; (c) 包含序列辨識號:34的胺基酸序列的HVR-H3; (d) 包含序列辨識號:35的胺基酸序列的HVR-L1; (e) 包含序列辨識號:36的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:37的胺基酸序列的HVR-L3;或 (4) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:38的胺基酸序列的HVR-H1; (b) 包含序列辨識號:39的胺基酸序列的HVR-H2; (c) 包含序列辨識號:40的胺基酸序列的HVR-H3; (d) 包含序列辨識號:41的胺基酸序列的HVR-L1; (e) 包含序列辨識號:42的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:43的胺基酸序列的HVR-L3。
在又一面向中,本發明提供了與本文提供的抗潛伏性TGF-β1抗體競爭結合至人類、猴、小鼠和/或大鼠的TGF-β1的抗體。例如,在某些實施例中,提供了競爭結合至人類、猴、小鼠和/或大鼠的TGF-β1的抗體: (1) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:20的胺基酸序列的HVR-H1; (b) 包含序列辨識號:21的胺基酸序列的HVR-H2; (c) 包含序列辨識號:22的胺基酸序列的HVR-H3; (d) 包含序列辨識號:23的胺基酸序列的HVR-L1; (e) 包含序列辨識號:24的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:25的胺基酸序列的HVR-L3; (2) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:26的胺基酸序列的HVR-H1; (b) 包含序列辨識號:27的胺基酸序列的HVR-H2; (c) 包含序列辨識號:28的胺基酸序列的HVR-H3; (d) 包含序列辨識號:29的胺基酸序列的HVR-L1; (e) 包含序列辨識號:30的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:31的胺基酸序列的HVR-L3; (3) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:32的胺基酸序列的HVR-H1; (b) 包含序列辨識號:33的胺基酸序列的HVR-H2; (c) 包含序列辨識號:34的胺基酸序列的HVR-H3; (d) 包含序列辨識號:35的胺基酸序列的HVR-L1; (e) 包含序列辨識號:36的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:37的胺基酸序列的HVR-L3;或 (4) 一種抗潛伏性TGF-β1抗體,其包含: (a) 包含序列辨識號:38的胺基酸序列的HVR-H1; (b) 包含序列辨識號:39的胺基酸序列的HVR-H2; (c) 包含序列辨識號:40的胺基酸序列的HVR-H3; (d) 包含序列辨識號:41的胺基酸序列的HVR-L1; (e) 包含序列辨識號:42的胺基酸序列的HVR-L2;和 (f) 包含序列辨識號:43的胺基酸序列的HVR-L3。
在本發明的又一面向中,如上述實施例中任一者的抗潛伏性TGF-β1抗體是單株抗體,其包含嵌合、人源化或人類抗體。在一實施例中,抗潛伏性TGF-β1抗體是抗體片段,例如Fv、Fab、Fab’、scFv、雙抗體或F(ab’) 2片段。在另一實施例中,抗體是全長抗體,例如完整IgG1、IgG2、IgG3或IgG4抗體或本文定義的其他抗體類型或同型。在又一面向中,抗潛伏性TGF-β1抗體亦包括包含免疫球蛋白的可變重鏈和/或可變輕鏈結構的任何抗原結合分子。
在又一面向中,根據任何上述實施例的抗潛伏性TGF-β1抗體可單獨或組合地包含任何特徵,如以下第1至7節所述:
1. 抗體結合活性 在某些實施例中,本文提供的抗體的解離常數(KD)為1微莫耳(micromolar)或更小、100 nM或更小、10 nM或更小、1 nM或更小、0.1 nM或更小、0.01 nM或更小或0.001 nM或更少(例如10 -8M或更少、例如10 -8M至10 -13M、例如10 -9M至10 -13M)。
在一實施例中,藉由放射性標記的抗原結合測定法(radiolabeled antigen binding assay,RIA),來測量抗體的結合活性且以KD表示。在一實施例中,用感興趣的抗體的Fab形式及其抗原來進行RIA。例如,藉由在未標記的抗原的滴定系列的存在下,用最小濃度之( 125I)標記的抗原來平衡Fab,然後用抗Fab抗體塗佈的盤子來捕捉結合的抗原,以測量Fab對抗原的溶液結合活性(參閱,例如Chen et al., J. Mol. Biol. 293:865-881(1999))。為了建立測定條件,用配在50 mM碳酸鈉(pH 9.6)中之5 微克(microgram)/ml的捕捉抗Fab抗體(Cappel Labs),將MICROTITER (註冊商標)多孔盤(Thermo Scientific)塗佈隔夜,之後在室溫下(約攝氏23度(C))用配在PBS中的2% (w/v)牛血清白蛋白阻斷2至5小時。在非吸附盤(Nunc#269620)中,將100 pM或26 pM的[ 125I]抗原與感興趣的Fab的系列稀釋液混合(例如,與Presta et al., Cancer Res. 57:4593-4599 (1997)中的抗VEGF抗體Fab-12的評價一致)。然後將感興趣的Fab培養過夜;然而,培養可持續更長的時間(例如約65小時)以確保達到平衡。此後,將混合物轉移到捕捉盤上,以在室溫下培養(例如一小時)。然後移除溶液,且用配在PBS中的0.1%聚山梨酯(polysorbate)20(TWEEN-20(註冊商標))來洗滌盤子八次。當盤子乾燥後,添加150微升/孔的閃爍劑(MICROSCINT-20 TM;Packard),且在TOPCOUNTTM gamma計數器(Packard)上將盤子計數十分鐘。每個Fab之產生小於或等於最大結合的20%的濃度選來用於競爭性結合測定法。
在一實施例中,為了測量抗體的結合活性,使用配體捕捉方法,例如使用BIACORE (註冊商標)T200或BIACORE (註冊商標)4000 (GE Healthcare, Uppsala, Sweden),其依賴於表面電漿共振分析法作為測量原理。BIACORE (註冊商標)控制軟體用於裝置的操作。在一實施例中,根據製造商的說明書,使用胺偶聯套組(GE Healthcare, Uppsala, Sweden),以使用於配體捕捉的分子例如抗標籤抗體、抗IgG抗體、蛋白A等固定在塗佈有羧甲基葡聚醣(carboxymethyldextran)的感測晶片(GE Healthcare, Uppsala, Sweden)上。在適當的pH值下用10 mM乙酸鈉溶液來稀釋捕捉配體的分子,且以適當的流速和適當的注入時間來注入。使用含有0.05%聚山梨酯20(其它名稱為Tween(註冊商標)-20)的緩衝液作為測量緩衝液,以10-30微升/分鐘的流速,且在較佳地在25度C或37度C的測量溫度下,來測量結合活性。對於用被捕捉配體的分子所捕捉的抗體作為配體來進行的測量,將抗體注入以使目標量的抗體被捕捉,然後將使用測量緩衝液製備的抗原和/或Fc受體(分析物)的系列稀釋液注入。對於用被捕捉配體的分子所捕捉的抗原和/或Fc受體作為配體進行的測量,將抗原和/或Fc受體注入以使目標量的抗原和/或Fc受體被捕捉,然後將使用測量緩衝液製備的抗體(分析物)的系列稀釋液注入。
在一實施例中,使用BIACORE (註冊商標)評估軟體來分析測量結果。藉由使用1:1結合模型來同時擬合結合和解離的感測圖,以進行動力學參數計算,且可計算結合速率(kon或ka)、解離速率(koff或kd)和平衡解離常數(KD)。對於弱結合活性的情況,特別是對於解離快且動力學參數難以計算的情況,可使用穩定態模型來計算平衡解離常數(KD)。作為關於結合活性的額外參數,可藉由將特定濃度下的分析物的結合量(共振單位:RU)除以經捕捉的配體的量,來計算「每單位配體量的分析物的結合量」。
2. 抗體片段 在某些實施例中,本文提供的抗體是抗體片段。抗體片段包含但不限於Fab、Fab’、Fab’-SH、F(ab’) 2、Fv和scFv片段及以下描述的其他片段。對於某些抗體片段的回顧(review),請參閱Hudson et al. Nat. Med. 9:129-134 (2003)。對於scFv片段的回顧,請參閱例如Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., (Springer-Verlag, New York), pp. 269-315 (1994);亦請參閱WO 93/16185;及美國專利號5,571,894和5,587,458。對於包含挽救受體結合抗原決定基殘基(salvage receptor binding epitope residue)且已增加體內半衰期的Fab和F(ab’) 2片段的討論,請參閱美國專利號5,869,046。
雙抗體是可為二價或雙特異性之具有兩個抗原結合位的抗體片段。參閱例如EP 404,097;WO 1993/01161; Hudson et al., Nat. Med. 9:129-134 (2003);和Hollinger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993)。亦於Hudson et al., Nat. Med. 9:129-134 (2003)中描述三抗體(triabody)和四抗體(tetrabody)。
單結構域抗體是包含抗體的全部或部分重鏈可變域或全部或部分輕鏈可變域的抗體片段。在某些實施例中,單結構域抗體是人類單結構域抗體(Domantis, Inc., Waltham, MA;參閱,例如美國專利號6,248,516 B1)。
可藉由各種技術包含但不限於如本文所述之完整抗體的蛋白裂解消化以及重組宿主細胞(例如大腸桿菌或噬菌體)的生產,來製備抗體片段。
本發明亦有關於結合至TGF-β1的抗原結合分子,其包含但不限於例如小抗體(minibody)(低分子量抗體)和支架蛋白。在本發明中,任何支架蛋白都是可接受的,只要它是具有穩定的三維結構且能夠結合至少一種抗原的胜肽。這樣的胜肽包含例如抗體可變區、纖連蛋白(lipocalin)、蛋白A結構域(protein A domain)、LDL受體A結構域(LDL receptor A domain)、脂質運載蛋白(lipocalin)和Nygren等人(Current Opinion in Structural Biology, (1997) 7:463-469;Journal of Immunol Methods, (2004) 290:3-28), Binz et al. (Nature Biotech. (2005) 23:1257-1266)和Hosse et al. (Protein Science, (2006) 15:14-27)中描述的其他分子的片段。當提及這樣的抗體時,例如,在本說明書的上下文中,應將「抗潛伏性TGF-β1抗體」替換為「抗潛伏性TGF-β1抗原結合分子」。
3. 嵌合和人源化抗體 在某些實施例中,本文提供的抗體是嵌合抗體。於例如美國專利號4,816,567;和Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)中描述了某些嵌合抗體。在一範例中,嵌合抗體包含非人類可變區(例如衍生自小鼠、大鼠、倉鼠、兔或非人類靈長類動物例如猴子的可變區)和人類恆定區。在又一實施例中,嵌合抗體是其中類別或亞類別已經從親本抗體的類別或亞類別改變的「類別轉換(class switched)」抗體。嵌合抗體包含其抗原結合片段。
在某些實施例中,嵌合抗體是人源化抗體。通常,將非人類抗體人源化,以降低對人類的免疫原性,同時保留親本非人類抗體的特異性和結合活性。通常,人源化抗體包含一或多個可變域,其中HVR例如CDR(或其部分)衍生自非人類抗體,而FR(或其部分)衍生自人類抗體序列。人源化抗體視需要而定地亦會包含人類恆定區的至少一部分。在一些實施例中,人源化抗體中的一些FR殘基被來自非人類抗體(例如衍生自HVR殘基的抗體)的對應殘基取代,例如以恢復或改善抗體特異性或結合活性。
在例如Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008)中回顧人源化抗體及其製造方法,且更在例如Riechmann et al., Nature 332:323-329 (1988);Queen et al., Proc. Nat'l Acad. Sci. USA 86:10029-10033 (1989);美國專利號5, 821,337、7,527,791、6,982,321和7,087,409;Kashmiri et al., Methods 36:25-34 (2005)(描述特異性決定區(specificity determining region,SDR)嫁接);Padlan, Mol. Immunol. 28:489-498 (1991) (描述「重整(resurfacing)」);Dall’Acqua et al., Methods 36:43-60 (2005) (描述「FR改組(FR shuffling)」;和Osbourn et al., Methods 36:61-68 (2005)及Klimka et al., Br. J. Cancer, 83:252-260 (2000) (描述FR改組的「指導選擇(guided selection)」方法)中描述。
可用於人源化的人類框架區包含但不限於:使用「最佳擬合」方法選擇的框架區(參閱,例如Sims et al. J. Immunol. 151:2296 (1993));衍生自輕或重鏈可變區的特定亞群組的人類抗體的共有序列的框架區(參閱,例如Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992);和Presta et al. J. Immunol., 151:2623 (1993));人類成熟(體細胞突變的)框架區或人類生殖系框架區(參閱,例如Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008));及衍生自篩選FR庫的框架區(參閱,例如Baca et al., J. Biol. Chem. 272:10678-10684 (1997)和Rosok et al., J. Biol. Chem. 271:22611-22618 (1996))。
4. 人類抗體 在某些實施例中,本文提供的抗體是人類抗體。可使用本發明所屬技術領域中已知的各種技術,來產生人類抗體。在van Dijk and van de Winkel, Curr. Opin. Pharmacol. 5: 368-74 (2001) 及Lonberg, Curr. Opin. Immunol. 20:450-459 (2008)中一般性地描述人類抗體。
可藉由將免疫原投予至已被修飾為回應抗原攻擊而產生完整的人類抗體或具有人類可變區的完整抗體的轉基因動物,來製備人類抗體。這樣的動物通常含有全部或部分的人類免疫球蛋白基因座,其取代了內源性免疫球蛋白基因座,或者其存在於染色體外或隨機整合至動物的染色體中。在這樣的轉基因小鼠中,已使內源性免疫球蛋白基因座失活。對於從轉基因動物中獲得人類抗體的方法的回顧,請參閱Lonberg, Nat. Biotech. 23:1117-1125 (2005)。亦請參閱,例如美國專利號6,075,181和6,150,584描述XENOMOUSE TM科技;美國專利號5,770,429描述HUMAB (註冊商標)科技;美國專利號7,041,870描述K-M MOUSE (註冊商標)科技及美國專利申請公開號US 2007/0061900描述VELOCIMOUSE (註冊商標)科技)。來自由這類動物所產生的完整抗體的人類可變區可被進一步修飾,例如藉由與不同的人類恆定區結合。
也可藉由基於雜交瘤的方法來製備人類抗體。已描述了用於產生人類單株抗體的人類骨髓瘤和小鼠-人類異源骨髓瘤細胞株。(參閱,例如Kozbor J. Immunol., 133: 3001 (1984);Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987);和Boerner et al., J. Immunol., 147: 86 (1991))。亦在Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006)中描述了藉由人類B細胞雜交瘤科技所產生的人類抗體。額外的方法包含例如在美國專利號7,189,826(描述從雜交瘤細胞株生產單株人類IgM抗體)和Ni, Xiandai Mianyixue, 26(4):265-268 (2006) (描述人類-人類雜交瘤)中描述的那些方法。亦在Vollmers and Brandlein, Histology and Histopathology, 20(3):927-937 (2005)及Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3):185-91 (2005)中描述人類雜交瘤技術(Trioma技術)。
亦可藉由單離選自人類衍生噬菌體展示庫的Fv選殖株可變域序列來產生人類抗體。然後可將這種可變域序列與期望的人類恆定域結合。以下描述從抗體庫中選擇人類抗體的科技。
5. 衍生自資料庫之抗體(Library-Derived Antibodies) 可藉由篩選組合庫中具有期望的活性的抗體,來單離出本發明的抗體。例如,本發明所屬技術領域中已知多種用於產生噬菌體展示庫且篩選此類資料庫中擁有期望的結合特性的抗體的方法。例如在Hoogenboom et al. in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, NJ, 2001)中回顧,且例如在the McCafferty et al., Nature 348:552-554;Clackson et al., Nature 352: 624-628 (1991);Marks et al., J. Mol. Biol. 222: 581-597 (1992);Marks and Bradbury, in Methods in Molecular Biology 248:161-175 (Lo, ed., Human Press, Totowa, NJ, 2003);Sidhu et al., J. Mol. Biol. 338(2): 299-310 (2004);Lee et al., J. Mol. Biol. 340(5): 1073-1093 (2004);Fellouse, Proc. Natl. Acad. Sci. USA 101(34): 12467-12472 (2004);及Lee et al., J. Immunol. Methods 284(1-2): 119-132(2004)中進一步描述此種方法。
在某些噬菌體展示方法中,藉由聚合酶連鎖反應(polymerase chain reaction,PCR)來分別選殖VH和VL基因的資料庫(repertoire),且在噬菌體庫中隨機重組,然後可如Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994)中所述的方法,來篩選抗原結合噬菌體。噬菌體通常以單鏈Fv (scFv)片段或Fab片段來展示抗體片段。來自經免疫的來源的資料庫提供對免疫原有高結合活性的抗體,無需構建(construct)雜交瘤。或者,可如Griffiths et al., EMBO J, 12: 725-734 (1993)所述,在沒有任何免疫的情況下來選殖初級庫(naive repertoire)(例如從人類),以提供對廣泛的非自身以及自身抗原的單一來源的抗體。最後,如Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992)所述,亦可藉由從幹細胞選殖未重排的V基因片段,且使用含有隨機序列的PCR引子,來編碼高度可變的CDR3區且在體外完成重排,以合成初級庫。描述人類抗體噬菌體庫的專利公開物包含,例如:美國專利號5,750,373和美國專利公開號2005/0079574、2005/0119455、2005/0266000、2007/0117126、2007/0160598、2007/0237764、2007/0292936和2009/0002360。
從人類抗體庫單離的抗體或抗體片段被認為是本文中的人類抗體或人類抗體片段。
6. 多特異性抗體 在某些實施例中,本文提供的抗體是多特異性抗體,例如雙特異性抗體。多特異性抗體是對至少兩個不同位置具有結合特異性的單株抗體。在某些實施例中,結合特異性的其中之一者是對TGF-β1,而另一者是對任何其他抗原。在某些實施例中,雙特異性抗體可結合至TGF-β1的兩個不同抗原決定基。雙特異性抗體亦可用於將細胞毒殺劑定位至表現TGF-β1的細胞。雙特異性抗體可製備為全長抗體或抗體片段。
製備多特異性抗體的技術包含但不限於具有不同特異性的兩個免疫球蛋白重鏈-輕鏈對的重組共表現(Milstein and Cuello, Nature 305: 537 (1983))、WO 93/08829和Traunecker et al., EMBO J. 10: 3655 (1991))和「旋鈕入孔(knob-in-hole)」工程(參閱例如美國專利號5,731,168)。亦可藉由將靜電操縱效應(electrostatic steering effect) 工程化來製備抗體Fc-異質二聚體分子(WO 2009/089004A1);交聯二或更多種抗體或片段(參閱例如美國專利號4,676,980和Brennan et al., Science, 229: 81 (1985));使用白胺酸(leucine)拉鍊來產生雙特異性抗體(參閱例如Kostelny et al., J. Immunol., 148(5):1547-1553 (1992));使用製備雙特異性抗體片段的「雙抗體」科技(參閱例如Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993));且使用單鏈Fv (scFv)二聚體(參閱例如Gruber et al., J. Immunol., 152:5368 (1994));且如例如Tutt et al. J. Immunol. 147: 60 (1991)中所述地製備三特異性抗體,來製備多特異性抗體。
本文亦包含具有三或更多個功能性抗原結合位的工程化抗體,其包含「章魚抗體(Octopus antibody)」(參閱例如US 2006/0025576A1)。
本文的抗體或片段亦包含「雙重作用Fab (Dual Acting Fab)」或「DAF」,其包含結合至TGF-β1的抗原結合位以及結合至不同抗原的另一抗原結合位(例如參閱US 2008/0069820)。
7. 抗體變異體 在某些實施例中,考慮了本文提供的抗體的胺基酸序列變異體。例如,可能期望改善抗體的結合活性和/或其他生物學特性。可藉由將適當的修飾導入至編碼抗體的核苷酸序列中或藉由胜肽合成,來製備抗體的胺基酸序列變異體。此種修飾包含,例如抗體的胺基酸序列內殘基的缺失和/或插入和/或取代。如果最終的構建體擁有期望的特性例如抗原結合,則可進行缺失、插入和取代的任何組合,以得到最終的構建體。
a) 取代、插入和缺失變異體 在某些實施例中,提供具有一或多個胺基酸取代的抗體變異體。感興趣的取代突變誘發的位置包含HVR和FR。在表1的「較佳取代」標題下顯示出保守取代。在表1的「示例性取代」的標題下提供了更多實質的變化,且如以下關於胺基酸側鏈類別進一步描述。可將胺基酸取代導入至感興趣的抗體中,且篩選具有期望的活性的產物,例如保留/改善的抗原結合、降低的免疫原性或改善的ADCC或CDC。
(表1)
Figure 02_image001
可根據常見的側鏈特性將胺基酸分組: (1) 疏水性:正白胺酸(Norleucine)、Met、Ala、Val、Leu、Ile; (2) 中性親水:Cys、Ser、Thr、Asn、Gln; (3) 酸性:Asp、Glu; (4) 鹼性:His、Lys、Arg; (5) 影響鏈方向的殘基:Gly、Pro; (6) 芳香族:Trp、Tyr、Phe。 非保守取代會需要將其中一個類別的成員交換成另一個類別。
一種類型的取代變異體涉及取代親本抗體(例如人源化或人類抗體)的一或多個高度可變區殘基。通常,相對於親本抗體,選來用於進一步研究的所得變異體會在某些生物學特性方面具有修飾(例如增加的結合活性、降低的免疫原性)和/或大抵上會保留親本抗體的某些生物學特性。示例性取代的變異體是結合活性成熟的抗體,其可例如使用基於噬菌體展示的結合活性成熟技術例如本文所述的那些方便地產生。簡而言之,將一或多個HVR殘基突變,且在噬菌體上展示變異體抗體並篩選特定的生物活性(例如結合活性)。
可在HVR中進行改變(例如取代),例如以改善抗體結合活性。這樣的改變可在HVR「熱點」中進行,即由在體細胞成熟過程中以高頻發生突變的密碼子所編碼的殘基(參閱例如Chowdhury, Methods Mol. Biol. 207:179-196 (2008))、和/或與抗原接觸的殘基,其中測試所得的變異體VH或VL的結合活性。例如,在Hoogenboom et al. in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, NJ, (2001))中,已描述了藉由構建和從二級庫中再選擇而產生的結合活性成熟。在結合活性成熟的一些實施例中,藉由各種方法(例如,易錯PCR、鏈改組或寡核苷酸定向突變誘發)中的任何一者,將多樣性導入至被選來成熟的可變基因中。然後創建二級庫。然後篩選此資料庫以鑑定出具有期望的結合活性的任何抗體變異體。將多樣性導入的另一方法涉及HVR定向方法,其中幾個HVR殘基(例如一次4至6個殘基)是隨機的。可例如使用丙胺酸掃描突變誘發或建模,來特異性地鑑定出涉及抗原結合的HVR殘基。特別經常以CDR-H3和CDR-L3為目標。
在某些實施例中,可在一或多個HVR內發生取代、插入或缺失,只要這樣的改變大抵上不降低抗體結合抗原的能力。例如,可在HVR中進行大抵上不降低結合活性的保守改變(例如,本文提供的保守取代)。這樣的改變可例如在HVR中的抗原接觸殘基之外。在上文提供的變異VH和VL序列的某些實施例中,每個HVR未被改變,或含有不超過一、二或三個胺基酸取代。
如Cunningham and Wells (1989) Science, 244:1081-1085所述,用於鑑定可靶向為突變誘發的抗體的殘基或區域的有用方法稱為「丙胺酸掃描突變誘發」。在此方法中,鑑定出目標殘基或一群目標殘基(例如帶電殘基,例如arg、asp、his、lys和glu),且用中性或帶負電的胺基酸(例如丙胺酸或聚丙胺酸)替換,以確定抗體與抗原的交互作用是否受到影響。可在對初始取代展現出功能敏感性的胺基酸位置將其它取代導入。替代地或額外地,可分析抗原-抗體複合體的晶體結構,以鑑定出抗體和抗原之間的接觸點。這樣的接觸殘基和鄰近殘基可被靶向或消除作為取代的候選物。可篩選變異體以確定它們是否含有期望的特性。
胺基酸序列插入包含從一個殘基至含有一百或更多個殘基的多肽的長度範圍內的胺基和/或羧基端融合,以及單一或多個胺基酸殘基的序列內插入。端插入的範例包含具有N端甲硫醯基殘基的抗體。抗體分子的其他插入變異體包含酵素(例如用於ADEPT)或增加抗體的血漿半衰期的多肽融合至抗體的N或C端。
b) 糖基化變異體 在某些實施例中,改變本文提供的抗體以增加或減少抗體糖基化的程度。可藉由改變胺基酸序列來方便地實現對抗體中糖基化位的添加或缺失,以產生或去除一或多個糖基化位。
當抗體包含Fc區時,與其相連的碳水化合物可被改變。由哺乳類細胞產生的天然抗體通常包含通常經N-鏈接(linkage)連接至Fc區的CH2域的Asn297的分支的雙觸角寡糖。參閱例如Wright et al. TIBTECH 15:26-32 (1997)。寡糖可包含各種碳水化合物例如,甘露糖(mannose)、N-乙醯葡萄糖胺(N-acetyl glucosamine,GlcNAc)、半乳糖和唾液酸、以及在雙觸角寡糖結構的「主幹(stem)」中連接至GlcNAc的岩藻糖(fucose)。在一些實施例中,可對本發明的抗體中的寡糖進行修飾,以產生具有某些改善的特性的抗體變異體。
在一實施例中,提供了具有缺少(直接或間接)連接至Fc區的岩藻糖的碳水化合物結構的抗體變異體。例如,此類抗體中的岩藻糖量可為1%至80%、1%至65%、5%至65%或20%至40%。例如,如WO 2008/077546中所述,相對於藉由MALDI-TOF質譜法來測量的連接至Asn 297的所有糖結構(例如,複合、混合(hybrid)和高甘露糖結構)的總和,藉由計算在Asn297的糖鏈內的岩藻糖平均量,來確定岩藻糖量。Asn297是指位於Fc區中約第297位的天冬醯胺酸(asparagine)殘基(Fc區殘基的EU編號);然而,由於抗體中的微小序列變化,Asn297也可位於約第297位的上游或下游約+/- 3個胺基酸,即在第294和300位之間。這樣的岩藻糖基化變異體可具有改善的ADCC功能。參閱例如,美國專利公開號US 2003/0157108 (Presta, L.);和US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd)。與「去岩藻糖基化」或「岩藻糖缺乏的」抗體變異體有關的公開物的範例包含:US 2003/0157108;WO 2000/61739;WO 2001/29246;US 2003/0115614;US 2002/0164328;US 2004/0093621;US 2004/0132140;US 2004/0110704;US 2004/0110282;US 2004/0109865;WO 2003/085119;WO 2003/084570;WO 2005/035586;WO 2005/035778;WO2005/053742;WO2002/031140;Okazaki et al. J. Mol. Biol. 336:1239-1249 (2004);Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004)。能夠產生去岩藻糖基化抗體的細胞株的範例包含缺乏蛋白質岩藻糖基化的Lec13 CHO細胞(Ripka et al. Arch. Biochem. Biophys. 249:533-545 (1986);美國專利申請號US 2003/0157108 A1, Presta, L;和WO 2004/056312 A1, Adams et al.,尤其是實施例11)、及敲除細胞株例如alpha-1,6-岩藻糖基轉移酶基因、FUT8、敲除CHO細胞(參閱例如,Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004);Kanda, Y. et al., Biotechnol. Bioeng., 94(4):680-688 (2006);和WO2003/085107)。
更提供抗體變異體一分為二的寡糖,例如其中連接至抗體的Fc區的雙觸角寡糖被GlcNAc一分為二。這樣的抗體變異體可具有減少的岩藻糖基化和/或改善的ADCC功能。例如於WO 2003/011878 (Jean-Mairet et al.);美國專利號6,602,684 (Umana et al.);和US 2005/0123546 (Umana et al.)。亦提供了在寡糖中具有至少一個連接至Fc區的半乳糖殘基的抗體變異體。這樣的抗體變異體可具有改善的CDC功能。例如於WO 1997/30087 (Patel et al.);WO 1998/58964 (Raju, S.);和WO 1999/22764 (Raju, S.)中描述此類抗體變異體。
c) Fc區變異體 在某些實施例中,可將一或多種胺酸修飾導入至本文提供的抗體的Fc區中,從而產生Fc區變異體。Fc區變異體可包括在一或多個胺基酸位置包含胺基酸修飾(例如取代)的人類Fc區序列(例如人類IgG1、IgG2、IgG3或IgG4 Fc區)。在另一實施例中,人類Fc變異體可包含嵌合人類Fc區序列(例如人類IgG1/4或人類IgG2/4 Fc區)、或在一或多個胺基酸位置更包含胺基酸修飾(取代)的嵌合人類Fc區序列。
在某些實施例中,本發明考量了擁有一些但不是全部效應子功能的抗體變異體,這使其成為應用的期望候選物,其中抗體的體內半衰期很重要但某些效應子功能(例如補體和ADCC)是不必要或有害的。可進行體外和/或體內細胞毒殺性測定法,以確認CDC和/或ADCC活性的降低/消耗。例如,可進行Fc受體(FcR)結合測定法,以確保抗體缺乏Fc gamma R結合(因此可能缺乏ADCC活性),但是保留FcRn結合能力。介導ADCC的主要細胞NK細胞僅表現Fc gamma RIII,而單核細胞表現Fc gamma RI、Fc gamma RII和Fc gamma RIII。在Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991)的表3中總結了造血細胞上的FcR表現。於美國專利號5,500,362 (參閱例如Hellstrom, I. et al. Proc. Nat'l Acad. Sci. USA 83:7059-7063 (1986))和Hellstrom, I et al., Proc. Nat'l Acad. Sci. USA 82:1499-1502 (1985);5,821,337 (參閱Bruggemann, M. et al., J. Exp. Med. 166:1351-1361 (1987))中描述評價感興趣的分子的ADCC活性的體外測定法的非限制性範例。或者,可採用非放射性測定法(參閱例如,用於流式細胞術的ACT1 TM非放射性細胞毒殺性測定法(CellTechnology, Inc. Mountain View, CA;和CytoTox 96 (註冊商標)非放射性細胞毒性測定法(Promega, Madison, WI)。用於此類測定法的有用的效應子細胞包含周邊血液單核細胞(peripheral blood mononuclear cell,PBMC)和自然殺手(Natural Killer,NK)細胞。替代地或額外地,例如可在如Clynes et al. Proc. Nat’l Acad. Sci. USA 95:652-656 (1998)中所揭露的動物模型中,體內評價感興趣的分子的ADCC活性。亦可進行C1q結合測定法,以證實抗體無法結合C1q,因此缺乏CDC活性。參閱例如,WO 2006/029879和WO 2005/100402中的C1q和C3c結合ELISA。為了評價補體活化,可進行CDC測定法(參閱例如Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996);Cragg, M.S. et al., Blood 101:1045-1052 (2003);和Cragg, M.S. and M.J. Glennie, Blood 103:2738-2743 (2004))。也可使用本發明所屬技術領域中已知的方法(參閱例如,Petkova, S.B. et al., Int'l. Immunol. 18(12):1759-1769 (2006)),來確定FcRn結合和體內清除/半衰期。
具有降低的效應子功能的抗體包含那些在Fc區殘基238、265、269、270、297、327和329具有一或多個取代的抗體(美國專利號6,737,056)。此類Fc突變體包含在二或更多個胺基酸位置265、269、270、297和327具有取代的Fc突變體,其包含具有殘基265和297被取代為丙胺酸的所謂的「DANA」Fc突變體(美國專利號7,332,581)。
描述了對FcR結合增加或減少的某些抗體變異體。 (參閱例如,美國專利號6,737,056;WO 2004/056312及Shields et al., J. Biol. Chem. 9(2): 6591-6604 (2001)。)
在某些實施例中,抗體變異體包含具有改善ADCC的一或多個胺基酸取代的Fc區,例如在Fc區的第298、333和/或334位的取代(殘基的EU編號)。
在一些實施例中,例如如美國專利號6,194,551、WO 99/51642及Idusogie et al. J. Immunol. 164: 4178-4184 (2000)中所述,在Fc區中進行導致C1q結合和/或補體依賴性細胞毒殺性(Complement Dependent Cytotoxicity,CDC)改變(即增加或減少)的改變。
在US2005/0014934A1 (Hinton et al.)中描述具有增加的半衰期和增加的對新生兒Fc受體(FcRn)的結合的抗體,其負責將母體IgG轉移至胎兒(Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994))。那些抗體包含於其中具有一或多個增加Fc區與FcRn結合的取代的Fc區。此類Fc變異體包含在一或多個Fc區殘基處具有取代的那些:238、256、265、272、286、303、305、307、311、312、317、340、356、360、362、376、378, 380、382、413、424或434,例如Fc區殘基434的取代(美國專利號7,371,826)。
亦參閱Duncan & Winter, Nature 322:738-40 (1988);美國專利號5,648,260;美國專利號5,624,821;和關於Fc區變異體的其他範例的WO 94/29351。
d) 經半胱胺酸工程化的抗體變異體 在某些實施例中,可能需要產生經半胱胺酸工程化的抗體,例如「thioMAb」,其中抗體的一或多個殘基被半胱胺酸殘基取代。在特定實施例中,經取代的殘基發生在抗體的可接近位置。藉由用半胱胺酸取代那些殘基,反應性硫醇基因此定位於抗體的可接近位置,且可用於將抗體偶聯至其他部分例如藥物部分或連接子-藥物部分,以產生免疫偶聯物,如本文進一步所述。在某些實施例中,可用半胱胺酸取代以下任一或多個殘基:輕鏈的V205 (Kabat編號);重鏈的A118 (EU編號);和重鏈Fc區的S400 (EU編號)。可如例如美國專利號7,521,541中所述地,產生經半胱胺酸工程化的抗體。
e) 抗體衍生物 在某些實施例中,本文提供的抗體可被進一步修飾,以含有本發明所屬技術領域中已知且容易獲得的額外非蛋白質部分。適合抗體衍生化的部分包含但不限於水溶性聚合物。水溶性聚合物的非限制性範例包含但不限於聚乙二醇(polyethylene glycol,PEG)、聚乙二醇(ethylene glycol)/聚丙二醇(propylene glycol)的共聚物、羧甲基纖維素(carboxymethylcellulose)、葡聚糖(dextran)、聚乙烯醇(polyvinyl alcohol)、聚乙烯吡咯烷酮(polyvinyl pyrrolidone)、聚-1, 3-二氧戊環(poly-1, 3-dioxolane)、聚-1,3,6-三惡烷(poly-1,3,6-trioxane)、乙烯(ethylene)/馬來酸酐(maleic anhydride)共聚物、聚胺基酸(polyaminoacid)(同質聚合物或無規共聚物(random copolymer))和葡聚糖(dextran)或聚(正乙烯基吡咯烷酮)聚乙二醇(poly(n-vinyl pyrrolidone)polyethylene glycol)、聚丙二醇同質聚合物(polypropylene glycol homopolymer)、聚環氧丙烷(polypropylene oxide)/環氧乙烷(ethylene oxide)共聚物、聚氧乙烯多元醇(polyoxyethylated polyol)(例如甘油)、聚乙烯醇(polyvinyl alcohol)及前述之混合物。聚乙二醇丙醛(polyethylene glycol propionaldehyde)由於在水中的穩定性而在製造中可能具有優勢。聚合物可為任何分子量,且可為支鏈或無支鏈的。連接至抗體的聚合物的數量可以變化,且如果連接多於一種聚合物,則它們可為相同或不同的分子。通常可基於以下考慮因素,包含但不限於待改善的抗體的特定特性或功能、抗體衍生物是否會用於在定義的條件下的治療中等,來確定用於衍生化的聚合物的數量和/或類型。
在另一實施例中,提供了可藉由暴露於輻射而選擇性加熱之抗體和非蛋白質部分的偶聯物。在一實施例中,非蛋白質部分是碳奈米管(Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605 (2005))。輻射可為任何波長,且包含但不限於不損害普通細胞但將非蛋白質部分加熱至殺死鄰近抗體-非蛋白質部分的細胞的溫度的波長。
B. 重組方法及組合物 可使用重組方法和組合物來產生抗體,例如如美國專利號4,816,567中所述。在一實施例中,提供了編碼本文所述之抗潛伏性TGF-β1抗體的單離核酸。這樣的核酸可編碼包含抗體的VL的胺基酸序列和/或包含抗體的VH的胺基酸序列(例如抗體的輕鏈和/或重鏈)。在又一實施例中,提供了包含此類核酸的一或多種載體(例如表現載體)。在又一實施例中,提供了包含此類核酸的宿主細胞。在一此類實施例中,宿主細胞包含(例如已經用以下所述轉形):(1)載體,其包含編碼包含抗體的VL的胺基酸序列和包含抗體的VH的胺基酸序列的核酸、或(2)第一載體,其包含編碼包含抗體的VL的胺基酸序列的核酸及第二載體,其包含編碼包含抗體的VH的胺基酸序列的核酸。在一實施例中,宿主細胞是真核的,例如中國倉鼠卵巢(Chinese Hamster Ovary,CHO)細胞或類淋巴細胞(例如Y0、NS0、Sp2/0細胞)。在一實施例中,提供了一種製備抗潛伏性TGF-β1抗體的方法,其中此方法包含在適合表現抗體的條件下,培養包含如上所述之包含編碼抗體的核酸的宿主細胞,和視需要而定地從宿主細胞(或宿主細胞培養基)中回收抗體。
為了重組產生抗潛伏性TGF-β1抗體,將如上所述之編碼抗體的核酸單離,且將其插入至一或多種載體中,以在宿主細胞中進一步選殖和/或表現。可使用常規流程(例如藉由使用能夠特異性結合至編碼抗體的重鏈和輕鏈的基因的寡核苷酸探針)輕易地將此類核酸單離和定序。
用於選殖或表現編碼抗體的載體的合適宿主細胞包含本文所述的原核或真核細胞。例如,可在細菌中產生抗體,特別是在不需要糖基化和Fc效應子功能時。對於在細菌中表現抗體片段和多肽,參閱例如,美國專利號5,648,237、5,789,199和5,840,523。 (亦參閱Charlton, Methods in Molecular Biology, Vol. 248 (B.K.C. Lo, ed., Humana Press, Totowa, NJ, 2003), pp. 245-254,其描述了在大腸桿菌中表現抗體片段。)表現之後,可從細菌細胞糊的可溶級分中單離出抗體,且可進一步純化。
除原核生物外,真核微生物例如絲狀真菌或酵母菌,也是編碼抗體載體的合適選殖或表現宿主,包含其糖基化路徑已被「人源化」的真菌和酵母菌株,從而產生具有部分或完全人類糖基化模式的抗體。參閱Nat。Gerngross, Nat. Biotech. 22:1409-1414 (2004), and Li et al., Nat. Biotech. 24:210-215 (2006)。
用於表現糖基化抗體的合適宿主細胞也衍生自多細胞有機體(無脊椎動物和脊椎動物)。無脊椎動物細胞的範例包含植物和昆蟲細胞。已鑑定出許多桿狀病毒株(baculoviral strain),其可與昆蟲細胞結合使用,特別是用於節食斜紋夜蛾細胞(Spodoptera frugiperda cell)的轉染。
植物細胞培養物也可作為宿主。參閱例如美國專利號5,959,177、6,040,498、6,420,548、7,125,978和6,417,429 (描述了在轉基因植物中產生抗體的PLANTIBODIES TM科技)。
脊椎動物細胞也可作為宿主。例如,適應在懸浮液中生長的哺乳類細胞可能是有用的。有用的哺乳類宿主細胞株的其他範例是由SV40 (COS-7)轉形的猴腎CV1系;人類胚胎腎細胞株(293或293細胞,如Graham et al., J. Gen Virol. 36:59 (1977)中所述);嬰兒倉鼠腎細胞(baby hamster kidney cell,BHK);小鼠史托利細胞(mouse sertoli cell)(TM4細胞,例如Mather, Biol. Reprod. 23:243-251 (1980)中描述);猴腎細胞(CV1);非洲綠猴腎細胞(VERO-76);人類子宮頸癌細胞(HELA);犬腎細胞(MDCK);水牛大鼠肝細胞(BRL 3A);人類肺細胞(W138);人類肝細胞(Hep G2);小鼠乳腺腫瘤(MMT 060562); TRI細胞,例如Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)中所述;MRC 5細胞;和FS4細胞。其他有用的哺乳類宿主細胞株包含中國倉鼠卵巢(Chinese hamster ovary,CHO)細胞,其包含DHFR -CHO細胞(Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980));和骨髓瘤細胞株例如Y0、NS0和Sp2/0。適合產生抗體的某些哺乳類宿主細胞株的回顧,參閱例如Yazaki and Wu, Methods in Molecular Biology, Vol. 248 (B.K.C. Lo, ed., Humana Press, Totowa, NJ), pp. 255-268 (2003)。
C. 測定法 可藉由本發明所屬技術領域中各種已知的測定法,來鑑定、篩選或特徵化(characterize)本文提供的抗潛伏性TGF-β1抗體的物理/化學特性和/或生物活性。
1. 結合測定法和其他測定法 在一面向中,例如藉由已知方法如ELISA、      西方墨點法、表面電漿共振(例如BIACORE(registered trademark))或類似技術(例如KinExa或OCTET(註冊商標))等,來測試本發明的抗體的抗原結合活性。
在另一面向中,競爭測定法可用於鑑定與本文所述的任何抗潛伏性TGF-β1抗體,較佳為hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191,競爭結合至潛伏性TGF-β1的抗體。在某些實施例中,這樣的競爭性抗體與本文所述的任何抗潛伏性TGF-β1抗體,較佳為hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08- SG191或hT0947AE09-SG191,結合至相同的抗原決定基(例如,線性或構型抗原決定基)。於Morris (1996) "Epitope Mapping Protocols," in Methods in Molecular Biology vol. 66 (Humana Press, Totowa, NJ)中,提供了映射出(map)抗體所結合的抗原決定基的詳細示例性方法。映射出抗原決定基的方法包含但不限於X射線晶體學和丙胺酸掃描突變誘發法。
在某些實施例中,當這樣的競爭性抗體過量存在時,其會阻斷(例如降低)參考抗體與潛伏性TGF-β1的結合至少10%、15%、20%、25%、30% 、35%、40%、45%、50%、55%、60%、65%、70%、75%或更多。在一些範例中,結合被抑制至少80%、85%、90%、95%或更多。在某些實施例中,這樣的競爭性抗體與本文所述的抗潛伏性TGF-β1抗體結合至相同抗原決定基(例如,線性抗原決定基或構型抗原決定基)。在又一些面向中,參考抗體是hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191。
在示例性競爭測定法中,將固定的潛伏性TGF-β1培養於包含結合至潛伏性TGF-β1 (例如hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)的第一標記抗體(參考抗體)及測試與第一抗體競爭結合至潛伏性TGF-β1的能力的第二未標記抗體的溶液中。第二抗體可存在於雜交瘤上清液中。作為對照,將固定的潛伏性TGF-β1培養於包含第一標記抗體但不包含第二未標記抗體的溶液中。在允許第一抗體結合至潛伏性TGF-β1的條件下培養後,去除過多的未結合抗體,且測量與固定的潛伏性TGF-β1連接的標記物的量。如果在測試樣品中與固定的潛伏性TGF-β1連接的標記物的量相對於對照樣品中大抵上減少,則表示第二抗體正在與第一種抗體競爭結合至潛伏性TGF-β1。請參閱Harlow and Lane (1988) Antibodies: A Laboratory Manual ch.14 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY)。
在某些實施例中,可藉由例如ELISA、西方墨點法、BIAcore、流式細胞術等的已知方法,來測試抗潛伏性TGF-β1抗體與細胞表面潛伏性TGF-β1的結合。例如,可使表現潛伏性TGF-β1抗體的細胞接觸與PE或APC直接偶聯的抗潛伏性TGF-β1抗體或未偶聯的抗潛伏性TGF-β1抗體,然後再接觸與PE或APC偶聯的二抗,且可檢測細胞表面潛伏性TGF-β1的染色。參閱例如Oida et al., PLoS One. 2010 Nov 24;5(11):e15523;Su et al, Hum Mol Genet. 2015 Jul 15;24(14):4024-36。
2. 活性測定法 在一面向中,提供了用於鑑定具有生物活性的抗潛伏性TGF-β1抗體的測定法。生物活性可包含例如抑制潛伏性TGF-β1的活化、抑制成熟TGF-β1從潛伏性TGF-β1的釋放、抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放、抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放而不抑制蛋白酶介導之潛伏性TGF-β1的LAP區的切割、抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放而不會阻擋蛋白酶接近潛伏性TGF-β1、抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放同時允許蛋白酶切割潛伏性TGF-β1的LAP區、抑制蛋白酶介導之成熟TGF-β1從潛伏性TGF-β1的釋放而不抑制或部分抑制整合素介導的TGF-β1活化等。亦提供了在體內和/或體外具有這種生物活性的抗體。
在某些實施例中,測試本發明的抗體的這種生物活性。
在一些實施例中,於測試抗體存在或不存在的情況下,使潛伏性TGF-β1的活化劑(例如蛋白酶、整合素、其他非蛋白酶活化劑等)接觸潛伏性TGF-β1之後,藉由使用本發明所屬技術領域中已知的方法例如電泳、層析法、免疫墨點分析法、酵素連結免疫吸附分析(enzyme-linked immunosorbent assay,ELISA)或質譜法,來檢測成熟TGF-β1,以確定測試抗體是否抑制潛伏性TGF-β1的活化,即抑制成熟TGF-β1從潛伏性TGF-β1的釋放。在一範例中,活化劑可為單離的(例如單離蛋白酶或整合素)和/或非單離的(例如包含整合素的小鼠、猴或人類PBMC)。亦已知活化潛伏性TGF-β1,即從潛伏性TGF-β1釋放成熟TGF-β1,也在沒有活化劑時發生(潛伏性TGF-β1的自發性活化)。在一些實施例中,在將潛伏性TGF-β1與或不與測試抗體一起培養之後,藉由使用上述方法來檢測成熟TGF-β1,以確定測試抗體是否抑制潛伏性TGF-β1的自發性活化。在一些實施例中,與測試抗體不存在的情況下檢測到的量相比,測試抗體存在(或接觸)的情況下檢測到的成熟TGF-β1的量減少時,測試抗體被鑑定為可抑制潛伏性TGF-β1活化的抗體。在一範例中,可根據成熟TGF-β1的濃度(例如g/ml、mg/ml、microgram/ml、ng/ml或pg/ml等),來測量減少或增加的成熟TGF-β1的量。在另一範例中,可根據與成熟TGF-β1直接或間接連接的標記的光密度(optical density,O.D.)(例如,在以mm或nm等為單位的波長),來測量減少或增加的成熟TGF-β1的量。
在某些實施例中,與在類似條件下的陰性對照相比,在此測定法中,對TGF-β1活化的抑制包含成熟TGF-β1的量至少有5%、10%、15%、20%、25%、30%、35%或40%或更多的減少。在一些實施例中,它是指抑制TGF-β1活化,即抑制成熟TGF-β1的釋放至少45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%或更多。
在一些實施例中,亦藉由檢測成熟TGF-β1活性,例如結合至TGF-β1受體的活性、或介導表現TGF-β1受體的細胞中的訊息傳導的活性等,來確定測試抗體是否抑制潛伏性TGF-β1的活化,即抑制成熟TGF-β1從潛伏性TGF-β1的釋放。在一些實施例中,可使用受體結合測定法來檢測成熟TGF-β1與TGF-β1受體的結合。在一些實施例中,可藉由檢測TGF-β1/Smad路徑的活化,來確定介導TGF-β1訊息傳導的活性。對這種測定法有用的細胞可為表現內源性TGF-β1受體的細胞,或藉由用TGF-β1受體基因來轉染細胞而產生的細胞。例如,可使用在本文所述的工作範例中使用的HEK-Blue TMTGF-β細胞、或瞬時或穩定地經遺傳修飾以表現編碼TGF-β1受體的轉基因的細胞。例如,可藉由檢驗Smad多肽的磷酸化、檢驗TGF-β1調控的基因(包含報導基因)的表現、或測量TGF-β1依賴性細胞的增殖,以在訊息傳導路徑的任何層級上檢測TGF-β1介導的訊息傳導。
在一些實施例中,亦可藉由檢測TGF-β1/Smad路徑的活化、藉由檢驗Smad多肽的磷酸化,來確定介導TGF-β1訊息傳導的活性(參閱例如Fukasawa et. al., Kidney International. 65(1):63-74 (2004)和Ganapathy et al., Molecular Cancer 26;9:122 (2010))。在另一些實施例中,可藉由檢驗TGF-β在BAE細胞的「受傷的」單層培養物中抑制細胞遷移的能力、檢驗TGF-β抑制細胞生長的能力來確定、檢驗TGF-β抑制纖維蛋白溶酶原活化劑(plasminogen activator,PA)活性的能力、檢驗TGF-β上調纖維蛋白溶酶原活化劑抑制劑1(plasminogen activator inhibitor-1,PAI-1)的能力等,來確定介導TGF-β1訊息傳導的活性。(請參閱Mazzieri et. al., Methods in Molecular Biology 142:13-27(2000))。
亦可使用在工作範例中闡述和舉例說明的方法,來檢測和/或測量TGF-β1活化的抑制作用。使用這些或其他合適類型的測定法,可篩選能夠抑制TGF-β1活化的測試抗體。在某些實施例中,與在類似條件下的陰性對照相比,在此測定法中,對TGF-β1活化的抑制包含TGF-β1的活化至少有5%、10%、15%、20%、25%、30%、35%或40%或更多的減少。在一些實施例中,它是指抑制TGF-β1活化至少45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%或更多。在某些實施例中,與在類似條件下的陰性對照相比,在此測定法中,對TGF-β1活化的抑制包含成熟TGF-β1的量至少有5%、10%、15%、20%、25%、30%、35%或40%或更多的減少。在一些實施例中,它是指成熟TGF-β1的量至少有45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%或更多的減少。
在一些實施例中,於測試抗體存在或不存在的情況下,使蛋白酶接觸潛伏性TGF-β1之後,藉由使用本發明所屬技術領域中已知的各種方法例如電泳、層析法、免疫墨點分析法、酵素連結免疫吸附分析(ELISA)或質譜法,來檢測潛伏性TGF-β1的切割產物和/或未切割的潛伏性TGF-β1,以確定測試抗體是否抑制潛伏性TGF-β1的LAP部的切割。例如,在蛋白標籤(例如FLAG標籤等)添加至潛伏性TGF-β1的LAP區的N端的情況下,當發生蛋白酶介導的切割時,蛋白標籤所添加至的部份被切斷。因此,可藉由檢測沒有蛋白標籤的潛伏性TGF-β1 (或潛伏性TGF-β1的LAP區)來檢測潛伏性TGF-β1的切割產物,和/或可藉由檢測有蛋白標籤的潛伏性TGF-β1來檢測未切割的潛伏性TGF-β1。
又例如,蛋白標籤 (例如FLAG標籤等)添加至潛伏性TGF-β1的LAP區的N端且蛋白酶的切割位的位置不靠近蛋白酶的情況下,當發生蛋白酶介導的切割時,有蛋白標籤的LAP區變短。因此,可藉由檢測具有蛋白標籤之縮短的LAP區的潛伏性TGF-β1 (或潛伏性TGF-β1之縮短的LAP區),來檢測潛伏性TGF-β1的切割產物。
在一些實施例中,與測試抗體不存在的情況下檢測到的量相比,於測試抗體存在(或之後與其接觸)的情況下檢測到的潛伏性TGF-β1的切割產物的量減少時,此測試抗體被鑑定為可抑制潛伏性TGF-β1的切割的抗體。相反地,與測試抗體不存在的情況下檢測到的量相比,於測試抗體存在(或之後與其接觸)的情況下檢測到的潛伏性TGF-β1的切割產物的量沒有顯著減少時,此測試抗體被鑑定為不會抑制潛伏性TGF-β1的切割的抗體。在一些實施例中,與測試抗體不存在的情況下檢測到的量相比,於測試抗體存在(或之後與其接觸)的情況下檢測到的未切割的潛伏性TGF-β1的量增加時,此測試抗體被鑑定為可抑制潛伏性TGF-β1的切割的抗體。相反地,與測試抗體不存在的情況下檢測到的量相比,於測試抗體存在(或之後與其接觸)的情況下檢測到的未切割的潛伏性TGF-β1的量沒有增加時,此測試抗體被鑑定為不會抑制潛伏性TGF-β1的切割的抗體。在某些實施例中,藉由檢測蛋白酶與潛伏性TGF-β1之間的蛋白質交互作用的方法,例如ELISA或表面電漿共振(例如BIACORE (註冊商標)或類似技術(例如KinExa或OCTET (註冊商標)),來確定測試抗體是否阻擋蛋白酶接近潛伏性TGF-β1。與測試抗體不存在的情況下檢測到的交互作用相比,於測試抗體存在(或之後與其接觸)的情況下檢測到蛋白酶與潛伏性TGF-β1之間的交互作用降低時,此測試抗體被鑑定為可阻擋蛋白酶接近潛伏性TGF-β1的抗體。
在某些實施例中,與在類似條件下的陰性對照相比,在此測定法中,潛伏性TGF-β1的切割的非抑制包含潛伏性TGF-β1的切割產物的量增加至少5%、10%、15%、20%、25%、30%、35%或40%或更多。在一些實施例中,與在類似條件下的陰性對照相比,在此測定法中,潛伏性TGF-β1的切割的非抑制包含潛伏性TGF-β1的切割產物的量增加至少50%或更少、45%或更少、40%或更少、35%或更少、30%或更少、25%或更少、20%或更少、15%或更少、10%或更少、5%或更少。
在一些實施例中,可對抗潛伏性TGF-β1抗體進行其他生物活性測定法,例如以評估其作為治療劑的有效性。這樣的測定法是本發明所屬技術領域中已知的,且取決於抗體的靶抗原和預期用途。例如,可於單側輸尿管梗阻(Unilateral Ureteral Obstruction, UUO)誘導的小鼠腎纖維化模型(例如如Chevalier RL et al., Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009 Jun;75(11):1145-1152中所述)、膽鹼缺乏,L-胺基酸定義的高脂飲食(choline-deficient, L-amino acid-defined, high-fat diet,CDAHFD)誘導的NASH/肝纖維化小鼠模型、博萊黴素(bleomycin,BLM)誘導的肺纖維化小鼠模型和/或同系腫瘤模型(例如,如Mariathasan S et al., TGF-βattenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018 Feb 22;554(7693):544-548.中所述)中,來評價抗潛伏性TGF-β1抗體對TGF-β1阻斷的生物學效應。在又一些實施例中,抗潛伏性TGF-β1抗體可進行本文所述的生物活性測定法。
3. 篩選方法 在一面向中,本發明抗體的篩選方法包含本文所述和本發明所屬技術領域中已知的各種測定法。例如,一種抗潛伏性TGF-β1抗體的篩選方法包含: (a) 使包含潛伏性TGF-β1和蛋白酶的生物樣品與測試抗體接觸; (b) 檢測(i)測試抗體是否抑制潛伏性TGF-β1的LAP區的切割,和(ii)測試抗體是否抑制潛伏性TGF-β1的活化;以及 (c) 選擇抑制潛伏性TGF-β1的活化,而不會抑制蛋白酶介導之潛伏性TGF-β1的LAP部的切割的測試抗體。
或者,不是上述步驟(b)和(c),抗潛伏性TGF-β1抗體的篩選方法包含例如以下步驟(b)和(c): (b) 測量(i)未切割的潛伏性TGF-β1的量和(ii)成熟TGF-β1的量;以及 (c) 與測試抗體不存在時相比,如果未切割的潛伏性TGF-β1的量沒有顯著增加且成熟TGF-β1的量減少,選擇此抑制蛋白酶介導之潛伏性TGF-β1從成熟TGF-β1的釋放,而不會抑制蛋白酶介導之潛伏性TGF-β1的LAP區的切割的測試抗體。 或者,不是上述步驟(b)和(c),抗潛伏性TGF-β1抗體的篩選方法包含例如以下步驟(b)和(c): (b) 測量(i)潛伏性TGF-β1的切割產物的量和(ii)成熟TGF-β1的活性的程度;以及 (c) 與測試抗體不存在時相比,如果切割產物的量沒有顯著減少且成熟TGF-β1的活性的程度減少,選擇此抑制蛋白酶介導之潛伏性TGF-β1的活化,而不會抑制蛋白酶介導之潛伏性TGF-β1的LAP區的切割的測試抗體。 此外,本發明提供了一種抗潛伏性TGF-β1抗體的產生方法,除上述步驟(a)至(c)外,其還包含例如以下步驟(d)和(e): (d) 獲得步驟(c)中所選的抗潛伏性TGF-β1抗體的胺基酸序資訊;以及 (e) 將編碼抗潛伏性TGF-β1抗體的基因導入至宿主細胞中。
在此上下文中,例如詞組「未切割的潛伏性TGF-β1的量沒有顯著增加」和「(潛伏性TGF-β1的)切割產物的量沒有顯著減少」中的術語「沒有顯著增加/減少」,是指增加/減少的程度/級別可為零、或可不為零但接近零、或可非常低以至於技術上可忽略不計、或在實際/大抵上被本發明所屬技術領域中具有通常知識者視為零。例如,在免疫墨點分析法中,當研究員無法檢測或觀察到未切割的潛伏性TGF-β1的任何顯著訊號/條帶(或相對較高或較強的訊號)時,則認為未切割的潛伏性TGF-β1的量「沒有顯著增加」或(潛伏性TGF-β1)的切割產物的量「沒有顯著降低」。此外,術語「沒有顯著增加/減少」與術語「大抵上沒有增加/減少」可互換使用。
在一些實施例中,可藉由本文所述和本發明所屬技術領域中已知的各種測定法來確定,測試抗體是否抑制潛伏性TGF-β1的LAP區的切割,及測試抗體是否抑制潛伏性TGF-β1的活化。
D. 免疫偶聯物 本發明亦提供了包含與一或多種細胞毒殺劑例如化療劑或藥物、生長抑制劑、毒素(例如蛋白毒素、細菌、真菌、植物或動物來源的酶活性毒素或其片段)或放射性同位素偶聯的本文的抗潛伏性TGF-β1抗體的免疫偶聯物。
在一實施例中,免疫偶聯物是抗體藥物偶聯物(antibody-drug conjugate,ADC),其中抗體偶聯至一或多種藥物,其包含但不限於美登木素生物鹼(maytansinoid)(參閱美國專利號5,208,020、5,416,064和歐洲專利EP 0 425 235 B1); 澳瑞他汀(auristatin)例如單甲基澳瑞他汀藥物部分DE和DF (MMAE和MMAF)(參閱美國專利號5,635,483和5,780,588和7,498,298);尾海兔素(dolastatin);加利車黴素(calicheamicin)或其衍生物(參閱美國專利號5,712,374、5,714,586、5,739,116、5,767,285、5,770,701、5,770,710、5,773,001和5,877,296;Hinman et al., Cancer Res. 53:3336-3342 (1993);和Lode et al., Cancer Res. 58:2925-2928 (1998));蒽環抗生素(anthracycline)例如道諾黴素(daunomycin)或阿黴素(doxorubicin)(參閱Kratz et al., Current Med. Chem. 13:477-523 (2006);Jeffrey et al., Bioorganic & Med. Chem. Letters 16:358-362 (2006);Torgov et al., Bioconj. Chem. 16:717-721 (2005);Nagy et al., Proc. Natl. Acad. Sci. USA 97:829-834 (2000);Dubowchik et al., Bioorg. & Med. Chem. Letters 12:1529-1532 (2002); King et al., J. Med. Chem. 45:4336-4343 (2002);和美國專利號6,630,579);甲胺蝶呤(methotrexate);長春地辛(vindesine);紫杉烷(taxane)例如多西他賽多烯紫杉醇(docetaxel)、紫杉醇(paclitaxel)、拉羅他賽(larotaxel)、替西他賽(tesetaxel)和沃塔紫杉醇(ortataxel);新月毒素(trichothecene)和CC1065。
在另一實施例中,免疫偶聯物包含與酶活性毒素或其片段偶聯的本文所述抗體,其包含但不限於白喉A鏈(diphtheria A chain)、白喉毒素(diphtheria toxin)的非結合活性片段、外毒素A鏈(exotoxin A chain)(來自綠膿桿菌(Pseudomonas aeruginosa))、蓖麻毒素A鏈(ricin A chain)、相思子素A鏈(abrin A chain)、蒴蓮根毒素A鏈(modeccin A chain)、alpha-帚曲毒蛋白(alpha-sarcin)、桐油樹蛋白(Aleurites fordii protein)、石竹素蛋白(dianthin protein)、美洲商陸蛋白(Phytolacca americana protein)(PAPI,PAPII和PAP-S)、苦瓜抑制子(momordica charantia inhibitor)、麻瘋樹毒蛋白(curcin)、巴豆毒素(crotin)、肥皂草抑制因子(saponaria officinalis inhibitor)、白樹毒素(gelonin)、米托格林(mitogellin)、局限曲菌素(restrictocin)、苯黴素(phenomycin)、依諾黴素(enomycin)和單端孢黴烯毒素(tricothecene)。
在另一實施例中,免疫偶聯物包含與放射性原子偶聯以形成放射性偶聯物的本文所述的抗體。多種放射性同位素可用於產生放射性偶聯物。範例包含 211At、 131I、 125I、 90Y、 186Re、 188Re、 153Sm、 212Bi、 32P、 212Pb和Lu的放射性同位素。當放射性偶聯物用於檢測時,其可包含用於閃爍顯像(scintigraphic)研究的放射性原子例如Tc-99m或 123I,或用於核磁共振(nuclear magnetic resonance,NMR)成像(亦稱為磁共振成像(magnetic resonance imaging,MRI))的自旋標記例如又是碘123、碘131、銦111、氟19、碳13、氮15、氧17、釓(gadolinium)、錳(manganese)或鐵。
可使用多種雙功能蛋白偶聯劑,例如N-琥珀醯亞胺基-3-(2-吡啶基二硫代)丙酸酯(N-succinimidyl-3-(2-pyridyldithio) propionate,SPDP)、琥珀醯亞胺基-4-(N-馬來醯亞胺基甲基)環己烷-1-甲酸酯(succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate,SMCC)、亞胺基硫雜環戊烷(iminothiolane,IT)、亞胺基酸酯(imidoester)的雙功能衍生物(例如己二酸二甲酯鹽酸鹽(dimethyl adipimidate HCl))、活性酯(例如辛二酸二琥珀醯亞胺基(disuccinimidyl suberate))、醛(例如戊二醛(glutaraldehyde))、雙疊氮基化合物(bis-azido compound)(例如雙(對疊氮基苯甲醯基)己二胺(bis (p-azidobenzoyl) hexanediamine))、雙重氮(bis-diazonium)衍生物(例如雙-(對重氮苯甲醯基)-乙二胺(bis-(p-diazoniumbenzoyl)-ethylenediamine))、二異氰酸酯(diisocyanates)(例如甲苯2,6-二異氰酸酯(toluene 2,6-diisocyanate))和雙活性氟化合物(例如1,5-二氟-2,4-二硝基苯(1,5-difluoro-2,4-dinitrobenzene)),來製造抗體和細胞毒殺劑的偶聯物。例如,可如Vitetta et al., Science 238:1098 (1987)中所述地來製備蓖麻毒蛋白免疫毒素(ricin immunotoxin)。碳-14標記的1-異硫氰酸根合芐基-3-甲基二亞乙基三胺五乙酸(1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid,MX-DTPA)是用於放射性核素與抗體偶聯的示例性螯合劑。參閱WO94/11026。接頭可為促進細胞毒殺藥物於細胞中釋放的「可切割的接頭」。例如,可使用酸不穩定接頭、胜肽酶敏感接頭、光不穩定接頭、二甲基接頭或含二硫化物的接頭(Chari et al., Cancer Res. 52:127-131 (1992);美國專利號5,208,020)。用過的。
本文的免疫偶聯物或ADC明確地考量到,但不限於這種用交聯劑製備的偶聯物,交聯劑包含但不限於市售可得的(例如從Pierce Biotechnology, Inc., Rockford, IL., U.S.A)BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、磺基-EMCS、磺基-GMBS、磺基-KMUS、磺基-MBS、磺基-SIAB、磺基-SMCC和磺基-SMPB和SVSB(琥珀醯亞胺基-(4-乙烯基碸)苯甲酸酯(succinimidyl-(4-vinylsulfone)benzoate))。
E. 診斷和檢測的方法和組合物 在某些實施例中,本文提供的任何抗潛伏性TGF-β1抗體於檢測生物樣品中TGF-β1例如潛伏性TGF-β1的存在是有用的。如本文所用地,術語「檢測」涵蓋定量或定性檢測/測量。在某些實施例中,生物樣品包含細胞或組織,例如血清、全血、血漿、活檢樣品、組織樣品、細胞懸浮液、唾液、痰、口腔液、腦脊髓液(cerebrospinal fluid)、羊水(amniotic fluid)、腹水(ascites fluid)、牛奶,初乳(colostrum)、乳腺分泌、淋巴、尿液、汗液、淚液(lacrimal fluid)、胃液(gastric fluid)、滑膜液(synovial fluid)、腹膜液(peritoneal fluid)、眼晶狀體液(ocular lens fluid)和黏液(mucus)。
在一實施例中,提供一種用於診斷或檢測方法的抗潛伏性TGF-β1抗體。在又一面向中,提供一種檢測生物樣品中TGF-β1例如潛伏性TGF-β1的存在的方法。例如,檢測潛伏性TGF-β1的存在的方法包含: (a) 在允許抗潛伏性TGF-β1抗體結合至潛伏性TGF-β1的條件下,使生物樣品接觸本文所述之本發明的抗潛伏性TGF-β1抗體;以及 (b) 檢測抗潛伏性TGF-β1抗體和潛伏性TGF-β1之間是否形成複合物。
這種方法可為體外或體內方法。在一實施例中,抗潛伏性TGF-β1抗體用來選擇適合用抗潛伏性TGF-β1抗體治療的合格對象,例如其中TGF-β1例如潛伏性TGF-β1是用於選擇患者的生物標誌物。即,抗潛伏性TGF-β1抗體可作為靶向TGF-β1的診斷劑是有用的。
更具體地,抗潛伏性TGF-β1抗體於診斷纖維化,較佳為心肌纖維化、肺/肺纖維化、肝纖維化、腎纖維化、皮膚纖維化、眼纖維化和骨髓纖維化是有用的。本發明的抗潛伏性TGF-β1抗體於癌症的診斷亦是有用的。
在一些實施例中,本發明提供了於生物樣品中抑制成熟TGF-β1從潛伏性TGF-β1的釋放而不會抑制蛋白酶介導之潛伏性TGF-β1的LAP區的切割的方法,此方法包含在允許抗體結合至潛伏性TGF-β1結合的條件下,使含有潛伏性TGF-β1接觸本發明的抗潛伏性TGF-β1抗體的生物樣品。
在某些實施例中,例如出於檢測/診斷目的,提供標記的抗潛伏性TGF-β1抗體。標記包含但不限於直接檢測的標記或部分(例如螢光、發色、電子密集、化學發光和放射性標記)、及例如透過酵素反應或分子交互作用之間接檢測的部分(例如酵素或配體)。示例性標記包含但不限於放射性同位素 32P、 14C、 125I、 3H和 131I、螢光團例如稀土螯合物或螢光素及其衍生物、若丹明(rhodamine)及其衍生物、丹磺醯基(dansyl)、繖形酮(umbelliferone)、螢光素酶(luceriferase)例如螢火蟲螢光素酶和細菌螢光素酶(美國專利號4,737,456)、螢光素(luciferin)、2,3-二氫鄰苯二甲二酮(2,3-dihydrophthalazinedione)、辣根過氧化物酶(horseradish peroxidase,HRP)、鹼性磷酸酶(alkaline phosphatase)、β-半乳糖苷酶(β-galactosidase)、葡萄糖澱粉酶(glucoamylase)、溶菌酶(lysozyme)、醣類氧化酶(saccharide oxidase)例如葡萄糖氧化酶(glucose oxidase)、半乳糖氧化酶(galactose oxidase)和葡萄糖-6-磷酸脫氫酶(glucose-6-phosphate dehydrogenase)、與使用過氧化氫來氧化染料前體(例如HRP、乳過氧化物酶(lactoperoxidase)或微過氧化物酶(microperoxidase))的酵素偶聯的雜環氧化酶(heterocyclic oxidase)例如尿酸酶(uricase)和黃嘌呤氧化酶(xanthine oxidase)、生物素/抗生物素蛋白、自旋標記、噬菌體標記、穩定的自由基等等。
F. 醫藥製劑 藉由將具有期望純度的抗體與一或多種視需要而定之醫藥上可接受的載劑混合,來製備出凍乾製劑或水溶液形式的本文所述的抗潛伏性TGF-β1抗體的醫藥製劑(Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980))。醫藥上可接受的載劑通常在所採用的劑量和濃度下對受體無毒,且包含但不限於:緩衝劑例如磷酸鹽、檸檬酸鹽和其他有機酸;抗氧化劑包含抗壞血酸和甲硫胺酸;防腐劑(例如十八烷基二甲基芐基氯化銨(octadecyldimethylbenzyl ammonium chloride);六甲基氯化銨(hexamethonium chloride);氯化苯索寧(benzalkonium chloride);苯酚(phenol)、丁醇或芐醇;對羥基苯甲酸烷基酯(alkyl paraben)例如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯;兒茶酚(catechol);間苯二酚(resorcinol);環己醇(cyclohexanol);3-戊醇和間甲酚(m-cresol));低分子量(少於約10個殘基)多肽;蛋白質例如血清白蛋白、明膠或免疫球蛋白;親水性聚合物例如聚乙烯吡咯烷酮(polyvinylpyrrolidone);胺基酸例如甘胺酸、麩醯胺酸、天冬醯胺酸、組胺酸、精胺酸或離胺酸;單醣、雙醣和其他碳水化合物包含葡萄糖、甘露糖或糊精;螯合劑例如EDTA;糖例如蔗糖、甘露醇、海藻糖或山梨糖醇;形成鹽的相對離子例如鈉;金屬複合物(例如鋅-蛋白複合物);和/或非離子表面活性劑例如聚乙二醇(polyethylene glycol,PEG)。本文中的示例性醫藥上可接受的載劑更包含間質藥物分散劑(interstitial drug dispersion agent),例如可溶性中性活性透明質酸酶糖蛋白(soluble neutral-active hyaluronidase glycoprotein,sHASEGP),例如人類可溶性PH-20透明質酸酶糖蛋白,例如rHuPH20 (HYLENEX(註冊商標), Baxter International, Inc.)。在美國專利公開號2005/0260186和2006/0104968中描述了某些示例性sHASEGP和使用方法,包含rHuPH20。在一面向中,將sHASEGP與一或多種額外糖胺聚醣酶(glycosaminoglycanase) 組合例如軟骨素酶(chondroitinase)。
在美國專利號6,267,958中描述示例性凍乾抗體製劑。水性抗體製劑包含美國專利號6,171,586和WO2006/044908中描述的那些,後者的製劑包含組胺酸-乙酸鹽緩衝液。
在一面向中,本發明提供了用於治療纖維化,較佳為心肌纖維化、肺纖維化、肝纖維化、腎纖維化、皮膚纖維化、眼纖維化和骨髓纖維化之包含抗潛伏性TGF-β1抗體的醫藥製劑。本發明亦提供了用於治療癌症之包含抗潛伏性TGF-β1抗體的醫藥製劑。
本文的製劑亦可含有超過一種之對所治療的特定適應症所需的活性成分,較佳為具有不會互相不利影響的互補活性的那些。例如,可期望進一步提供免疫檢查點抑制劑,其在下面的「III. 組合療法」中描述。
活性成分可被包埋在例如藉凝聚技術或藉界面製備的微膠囊中,例如分別在膠體藥物遞送系統(例如脂質體、白蛋白微球、微乳劑、奈米顆粒和奈米膠囊)中或大乳劑中的羥甲基纖維素(hydroxymethylcellulose)或明膠-微膠囊(gelatin-microcapsule)和聚(甲基丙烯酸甲酯)微膠囊(poly-(methylmethacrylate) microcapsule)。於Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)中揭露此類技術。
可製備持續釋放製品。持續釋放製品的合適範例包含含有抗體的固體疏水性聚合物的半透性基質,此基質為定型物品的形式,例如膜或微膠囊。
用於體內投予的製劑通常是無菌的。例如藉無菌濾膜來過濾,可輕易地實現無菌。
G. 治療方法和組合物 本文提供的任何抗潛伏性TGF-β1抗體可於治療方法中。在一面向中,提供了作為藥物的抗潛伏性TGF-β1抗體。在又一些面向中,提供了用於治療癌症或纖維化(例如肝纖維化、腎纖維化或肺纖維化)等的抗潛伏性TGF-β1抗體。在某些實施例中,提供了用於治療方法的抗潛伏性TGF-β1抗體。在某些實施例中,本發明提供了用於治療具有癌症或纖維化(例如肝纖維化、腎纖維化或肺纖維化)等的個體的方法的抗潛伏性TGF-β1抗體,其包含對個體投予有效量的抗潛伏性TGF-β1抗體。在一這樣的實施例中,此方法更包含對個體投予有效量的至少一額外治療劑,例如如下所述。在又一些實施例中,本發明提供了用於抑制蛋白酶介導之潛伏性TGF-β1的活化的抗潛伏性TGF-β1抗體。在某些實施例中,本發明提供了用於在個體中抑制蛋白酶介導之潛伏性TGF-β1的活化的方法的抗潛伏性TGF-β1抗體,其包含對個體投予有效量的抗潛伏性TGF-β1抗體,以抑制蛋白酶介導之潛伏性TGF-β1的活化。上述實施例中的任何一者所述的「個體」較佳為人類。
在又一面向中,本發明提供抗潛伏性TGF-β1抗體在藥物的製造或製備中的用途。在一實施例中,此藥物用於治療癌症或纖維化(例如肝纖維化、腎纖維化或肺纖維化)等。在又一實施例中,此藥物用於治療癌症或纖維化(例如肝纖維化、腎纖維化或肺纖維化)等的方法,其包含對具有癌症或纖維化(例如肝纖維化、腎纖維化或肺纖維化)等的個體投予有效量的藥物。在一這樣的實施例中,此方法更包含對個體投予有效量的至少一額外治療劑,例如如下所述。在又一實施例中,此藥物用於抑制蛋白酶介導之潛伏性TGF-β1的活化。在又一實施例中,此藥物用於在個體中抑制蛋白酶介導之潛伏性TGF-β1的活化的方法,其包含對個體投予有效量的藥物,以抑制蛋白酶介導之潛伏性TGF-β1的活化。上述實施例中的任何一者所述的「個體」較佳為人類。
在又一面向中,本發明提供了一種用於治療癌症或纖維化(例如肝纖維化、腎纖維化或肺纖維化)等的方法。在一實施例中,此方法包含對具有這種癌症或纖維化(例如肝纖維化,腎纖維化或肺纖維化)等的個體投予有效量的抗潛伏性TGF-β1抗體。在一這樣的實施例中,此方法更包含對個體投予有效量的至少一額外治療劑,如下所述。在一些實施例中,抗體和試劑的投予是同時的。上述實施例中的任何一者所述的「個體」較佳為人類。
在又一面向中,本發明提供了一種抑制個體中蛋白酶介導之潛伏性TGF-β1的活化的方法。在一實施例中,此方法包含對個體投予有效量的抗潛伏性TGF-β1抗體,以抑制蛋白酶介導之潛伏性TGF-β1的活化。在一實施例中,「個體」是人類。
在又一面向中,本發明提供了包含本文提供的任何抗潛伏性TGF-β1抗體的醫藥製劑,例如用於以上任何治療方法中。在一實施例中,醫藥製劑包含本文提供的任何抗潛伏性TGF-β1抗體和醫藥上可接受的載劑。在另一實施例中,醫藥製劑包含本文提供的任何抗潛伏性TGF-β1抗體和至少一額外治療劑,例如如下所述。
可藉由任何合適的方法包括腸胃外(parenteral)、肺內和鼻內且如果需要局部治療,則病灶內(intralesional)投予,來投予本發明的抗體(和任何額外治療劑)。腸胃外輸注包括肌內、靜脈內、動脈內、腹腔內或皮下投予。可藉由任何合適的途徑例如藉由注射例如靜脈內或皮下注射來給藥,部分取決於投予是短暫或長期。本文考量到了各種給藥時程,包含但不限於在各個時間點上的單次或多次投予、推注投予和脈衝輸注。
本發明的抗體將以與良好醫學實踐一致的方式配製、給藥和投予。在此情況下考慮的因素包含正在治療的特定失調、正在治療的特定哺乳類、個別患者的臨床狀況、失調的原因、試劑的遞送位置、投予方法、投予時程及其他醫學從業人員已知的因素。此抗體不需要但視需要而定地與目前用於預防或治療所述疾病的一或多種試劑一起配製。此類其他試劑的有效量取決於製劑中存在的抗體的量、失調或治療的類型及上述其他因素。
為了預防或治療疾病,本發明抗體的適當劑量(當單獨使用或與一或多種其他額外治療劑組合使用時)將取決於要治療的疾病類型、抗體類型、疾病的嚴重程度和病程、是否出於預防或治療目的而投予抗體、以前的療法、患者的臨床病史和對此抗體的反應及主治醫師的判斷。可一次或透過一系列治療來對患者適當地投予抗體。
應當理解的是,本文所述的任何製造物品都可包含本發明的免疫偶聯物,以代替抗潛伏性TGF-β1抗體或除其之外。
III. 組合療法
本發明的抗潛伏性TGF-β1抗體可單獨或與其他試劑組合用於一療法中,較佳為用於治療癌症或纖維化的療法中,更佳為用於治療癌症的療法中。例如,本發明的抗體可與至少一額外治療劑共同投予。在一些實施例中,抗體和試劑的投予是同時的。在某些實施例中,額外治療劑是一或多種免疫檢查點抑制劑,例如CTLA-4、PD-1、PD-L1、PD-L2、CD160、CD57、CD244、LAG-3、CD272、KLRG1、CD26、CD39、CD73、CD305、TIGIT、TIM-3和/或VISTA的抑制劑。在一些實施例中,免疫檢查點抑制劑是例如抗CTLA-4抗體、抗PD-1抗體、抗PD-L1抗體、抗PD-L2抗體、抗CD160抗體、抗CD57抗體、抗CD244抗體、抗LAG-3抗體、抗CD272抗體、抗KLRG1抗體、抗CD26抗體、抗CD39抗體、抗CD73抗體、抗CD305抗體、抗TIGIT抗體、抗TIM-3抗體和/或抗VISTA抗體。較佳地,免疫檢查點抑制劑是PD-1軸結合拮抗劑。更佳地,免疫檢查點抑制劑是抗PD-1抗體或抗PD-L1抗體。在一些實施例中,抗PD-1抗體是納武利尤單抗(Nivolumab)、帕博利珠單抗(Pembrolizumab)或西米普利單抗(Cemiplimab)。在一些實施例中,抗PD-L1抗體是阿特珠單抗(Atezolizumab)、阿維魯單抗(Avelumab)或杜魯伐單抗(Durvalumab)、較佳為阿特珠單抗。較佳地,組合療法包含本發明的抗潛伏性TGF β-1抗體和阿特珠單抗。在一些實施例中,與抗TGF β抗體單一療法或免疫檢查點抑制劑單一療法相比,包含本發明的抗潛伏性TGF β-1抗體和一或多種免疫檢查點抑制劑的組合療法具有加成或協同功效,例如加成、組合或協同的抗腫瘤功效。
在一面向中,本發明的組合療法用於治療癌症或纖維化,較佳為癌症。在一實施例中,癌症對免疫檢查點抑制劑有抗性和/或對免疫檢查點抑制劑顯示出有限反應。不受任何理論的束縛,一些免疫檢查點抗性癌症的反應缺乏和/或對免疫檢查點抑制劑顯示出有限反應與纖維母細胞中的TGF-β訊號傳遞的特徵(signature)有關,特別是在具有排除了來自腫瘤薄壁(tumour parenchyma)但是發現於富含纖維母細胞和膠原蛋白的腫瘤周圍基質中的CD8+ T細胞的患者中。因此,與免疫檢查點抑制劑組合的抗潛伏性TGF-β1抗體可減少基質細胞中的TGF-β訊號傳遞、促進T細胞穿透進入腫瘤中心、且可表現出增強的抗腫瘤活性。
計劃性細胞死亡蛋白1 (PD-1;亦稱為CD274或B7-H1)是第I型膜蛋白,其屬於T細胞調控劑的CD28/CTLA-4家族。PD-1具有兩個配體,即屬於B7家族的PD-L1和PD-L2。認為PD-1和配體負面地調控免疫反應,例如T細胞反應。PD-L1和PD-1在幾種類型的癌症中高度表現,且被認為在癌症的免疫逃脫中起作用。抑制例如PD-1和PD-L1之間的交互作用的抑制劑例如「(免疫)檢查點抑制劑」可增強T細胞反應且增加抗腫瘤活性。
術語「PD-1軸結合拮抗劑」是指抑制PD-1軸結合配偶體與其一或多個結合配偶體的交互作用,從而去除PD-1訊息傳遞軸所引起的T細胞功能障礙的分子,其中結果是恢復或增強T細胞功能(例如增殖、細胞激素產生、靶細胞殺死)。如本文所使用地,PD-1軸結合拮抗劑包含PD-1結合拮抗劑、PD-L1結合拮抗劑和PD-L2結合拮抗劑。
術語「PD-1結合拮抗劑」是指減少、阻斷、抑制、消除或干擾PD-1與其一或多種結合配偶體例如PD-L1、PD-L2的交互作用所引起的訊息傳導的分子。在一些實施例中,PD-1結合拮抗劑是抑制PD-1結合至其一或多種結合配偶體的分子。在一具體面向中,PD-1結合拮抗劑抑制PD-1結合至PD-L1和/或PD-L2。例如,PD-1結合拮抗劑包含抗PD-1抗體、其抗原結合片段、免疫黏附素、融合蛋白、寡肽和其他減少、阻斷、抑制、消除或干擾PD-1與PD-L1和/或PD-L2的交互作用所引起的訊息傳導的分子。在一實施例中,PD-1結合拮抗劑降低了由或透過T淋巴細胞上表現的細胞表面蛋白介導與透過PD-L2之訊息傳遞介導的負共刺激訊號,從而使功能障礙的T細胞的功能障礙較少(例如,增強效應子對抗原辨識的反應)。在一具體面向中,PD-1結合拮抗劑是MDX-1106(尼納武利尤單抗)、MK-3475(蘭博珠單抗(lambrolizumab))、CT-011(吡珠單抗(pidilizumab))或AMP-224或AMP-514 (MEDI0680)。在另一具體面向中,PD-1拮抗劑選自由PDR001、REGN2810、BGB A317和SHR-1210所組成的群組。
術語「PD-L1結合拮抗劑」是指減少、阻斷、抑制、消除或干擾PD-L1與其一或多種結合配偶體例如PD-1、B7-1的交互作用所引起的訊息傳導的分子。在一些實施例中,PD-L1結合拮抗劑是抑制PD-L1結合至其結合配偶體的分子。在一些具體面向中,PD-L1結合拮抗劑抑制PD-L1結合至PD-1和/或B7-1。在一些實施例中,PD-L1結合拮抗劑包含抗PD-L1抗體、其抗原結合片段、免疫黏附素、融合蛋白、寡肽和其他減少、阻斷、抑制、消除或干擾PD-L1與其結合配偶體例如PD-1、B7-1的交互作用所引起的訊息傳導的分子。在一實施例中,PD-L1結合拮抗劑降低了由或透過T淋巴細胞上表現的細胞表面蛋白介導與透過PD-L2之訊息傳遞介導的負共刺激訊號,從而使功能障礙的T細胞的功能障礙較少(例如,增強效應子對抗原辨識的反應)。在一些實施例中,PD-L1結合拮抗劑是抗PD-L1抗體。在一具體面向中,抗PD-L1抗體是YW243.55.S70(阿特珠單抗)、MDX-1105、阿維魯單抗、MPDL3280A或MEDI4736 (杜魯伐單抗)。
術語「PD-L2結合拮抗劑」是指減少、阻斷、抑制、消除或干擾PD-L2與其一或多種結合配偶體例如PD-1的交互作用所引起的訊息傳導的分子。在一些實施例中,PD-L2結合拮抗劑是抑制PD-L2結合至其一或多種結合配偶體的分子。在一具體面向中,PD-L2結合拮抗劑抑制PD-L2結合至PD-1。在一些實施例中,PD-L2結合拮抗劑包含抗PD-L2抗體、其抗原結合片段、免疫黏附素、融合蛋白、寡肽和其他減少、阻斷、抑制、消除或干擾PD-L2與其結合配偶體例如PD-1的交互作用所引起的訊息傳導的分子。在一實施例中,PD-L2結合拮抗劑降低了由或透過T淋巴細胞上表現的細胞表面蛋白介導與透過PD-L2之訊息傳遞介導的負共刺激訊號,從而使功能障礙的T細胞的功能障礙較少(例如,增強效應子對抗原辨識的反應)。在一些實施例中,PD-L2結合拮抗劑是免疫黏附素。
以上所述的此種組合療法包含組合投予(其中二或更多種治療劑包含於相同或分開的製劑中)和分開投予,在這種情況下,可在投予一或多種額外治療劑之前、同時和/或之前投予本發明抗體。在一實施例中,抗潛伏性TGF-β1抗體的投予和額外治療劑的投予在彼此相距約一個月內、或在約一、二或三週內、或在約一、二、三、四、五或六天內發生。本發明的抗體也可與放射療法組合使用。
在一面向中,當上述組合療法涵蓋組合投予且二或更多種治療劑包含在同一醫藥製劑中時,本文的醫藥製劑包含例如本發明的抗潛伏性TGF β-1抗體和一或多種上述免疫檢查點抑制劑。較佳地,本文的醫藥製劑包含本發明的抗潛伏性TGF β-1抗體、PD-1軸結合拮抗劑(較佳為PD-L1抗體、更佳為阿特珠單抗)和醫藥上可接受的載劑。
在一面向中,本發明提供了用於治療一或多種疾病之與其他治療劑組合使用的抗潛伏性TGF β-1抗體。在另一面向中,本發明提供了用於治療一種或多種疾病之與其他治療劑組合使用的包含抗潛伏性TGF β-1抗體的醫藥製劑。在一實施例中,一或多種疾病為癌症和/或纖維化、較佳為癌症。在一實施例中,額外治療劑是一或多種上述免疫檢查點抑制劑。較佳地,本發明提供了與PD-1軸結合拮抗劑(較佳為PD-L1抗體、更佳為阿特珠單抗)組合使用的抗潛伏性TGF β-1抗體。
在一面向中,本發明提供了用於治療一或多種疾病之與抗潛伏性TGF β-1抗體組合使用的PD-1軸結合拮抗劑(較佳為抗PD-L1抗體、更佳為阿特珠單抗)。在另一面向中,本發明提供了用於治療一或多種疾病之與抗潛伏性TGF β-1組合使用的包含PD-1軸結合拮抗劑(較佳為抗PD-L1抗體、更佳為阿特珠單抗)的醫藥製劑。在一實施例中,一或多種疾病是癌症和/或纖維化、較佳為癌症。
IV. 製造物品、套組
A. 製造物品 在本發明的另一面向中,提供了含有對上述失調(例如纖維化和癌症)的治療、預防和/或診斷有用的材料的製造物品。製造物品包含容器和在此容器上的標籤或與此容器相關的仿單(package insert)。合適的容器包含例如瓶(bottle)、小瓶(vial)、注射器、IV溶液袋等。容器可由多種材料形成,例如玻璃或塑膠。容器容納組合物本身或與對治療、預防和/或診斷疾病(例如纖維化和癌症)有效的另一組合物組合的組合物,且可具有無菌入口(例如容器可為靜脈內溶液袋或具有可被皮下注射針刺穿的塞子的小瓶)。組合物中的至少一活性成分是本發明的抗體或免疫偶聯物。標籤或仿單指出此組合物用於治療所選的病症(例如纖維化和癌症)。再者,此製造物品可包含(a) 含有組合物於其中的第一容器,其中組合物包含本發明的抗體/免疫偶聯物;及(b) 含有組合物於其中的第二容器,其中組合物包含其他細胞毒殺劑或治療劑。在本發明的此實施例中的製造物品可更包含指示此組合物可用於治療特定的病症(例如纖維化和癌症)的仿單。替代地或額外地,製造物品可更包含第二(或第三)容器,其包含醫藥上可接受的緩衝液,例如注射用抑菌水(bacteriostatic water for injection,BWFI)、磷酸鹽緩衝鹽水、林格氏溶液(Ringer's solution)和右旋糖溶液(dextrose solution)。其可更包含商業和使用者的觀點上期望的其他材料,包含其他緩衝液、稀釋劑、過濾器、針頭和注射器。
可理解的是,上述任何製造物品還都可包含本發明的免疫偶聯物,來代替抗潛伏性TGF-β1抗體或除其之外。
B. 套組 本揭露提供了用於治療、預防和/或診斷本文所述的失調的方法,特別是治療有纖維化或癌症的個體的方法的套組,其含有抗潛伏性TGF-β1抗體、包含抗潛伏性TGF-β1抗體的免疫偶聯物、編碼抗潛伏性TGF-β1抗體的單離核酸或包含本揭露的核酸或藉由本揭露的方法產生的載體。套組可額外地含有本文「III. 組合療法」中舉例說明的任何治療劑,例如包含抗PD-L1抗體的免疫檢查點抑制劑。套組可與本文揭露的額外醫藥上可接受的載劑或培養基、或描述如何使用套組的說明手冊等包裝在一起。與本文所述的製造物品一樣,套組可含有對纖維化或癌症的治療有用的材料;容器和在此容器上的標籤或與此容器相關的仿單;本身或與對治療、預防和/或診斷疾病(例如纖維化和癌症)有效的另一組合物組合的組合物;無菌入口等。套組可更包含標籤或指示此組合物可用於治療纖維化和癌症的仿單。替代地或額外地,套組可更包含第二(或第三)容器,其包含醫藥上可接受的緩衝液,例如注射用抑菌水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液和右旋糖溶液。套組可更包含商業和使用者的觀點上期望的其他材料,包含其他緩衝液、稀釋劑、過濾器、針頭和注射器。 [實施例]
以下是本發明的方法和組合物的實施例。應該理解的是,鑑於以上提供的一般性描述,可實踐各種其他實施例。
實施例1:抗原的表現和純化 (1-1) 潛伏性TGF-β1的表現和純化 用於表現和純化的序列是:帶有flag標記的人類潛伏性TGF-β1 (序列辨識號:1、2)和帶有flag標記的小鼠潛伏性TGF-β1 (序列辨識號:3、4)、及帶有flag標記的食蟹猴潛伏性TGF-β1 (序列辨識號:5、6)。這些帶有flag標記的潛伏性TGF-β1中的每一者從其N端到C端均具有一衍生自大鼠血清白蛋白的訊號序列(序列辨識號:7)、一Flag標記和一潛伏性TGF-β1序列。在這些帶有flag標記的潛伏性TGF-β1的每一者中的第30位的Cys殘基被Ser取代,其對應至「C33S突變」(參閱,例如Yoshinaga K, et al. Perturbation of transforming growth factor (TGF)-beta1 association with latent TGF-beta binding protein yields inflammation and tumors. Proc Natl Acad Sci U S A. 2008;105(48):18758-18763)。
使用FreeStyle293-F或Expi293F細胞株(Thermo Fisher Schientific),來瞬時表現帶有flag標記的人類潛伏性TGF-β1(以下稱為「人類潛伏性TGF-β1 (SLC)」或「人類潛伏性TGF-β1」)、帶有flag標記的小鼠潛伏性TGF-β1(以下稱為「小鼠潛伏性TGF-β1 (SLC)」或「小鼠潛伏性TGF-β1」)或帶有flag標記的食蟹猴潛伏性TGF-β1 (以下稱為「猴潛伏性TGF-β1 (SLC)」或「猴潛伏性TGF-β1」)。將表現人類、小鼠或猴潛伏性TGF-β1(SLC)的條件培養基應用於裝填有抗Flag M2親和樹脂(Sigma)的管柱,且以Flag胜肽(Sigma)來洗脫潛伏性TGF-β1 (SLC)。收集含有人類、小鼠或猴潛伏性TGF-β1(SLC)的級分,然後將其用於以1x PBS平衡的Superdex 200凝膠過濾管柱(GE Healthcare)上。然後匯集(pool)含有人類、小鼠或猴潛伏性TGF-β1 (SLC)的級分,且儲存於-80度C下。
(1-2) 小鼠潛伏期相關胜肽(LAP)的表現和純化 用於表現和純化的序列是:帶有flag標記的小鼠LAP (序列辨識號:8、9),其從其N端至C端具有一衍生自大鼠血清白蛋白的訊號序列(序列辨識號:7)、一Flag標記和一潛伏期相關蛋白(LAP)序列。在這些帶有flag標記的LAP的每一者中的第30位的Cys殘基皆被Ser取代,其對應至「C33S突變」。帶有Flag標記的小鼠LAP(序列辨識號:8、9)(以下稱為“重組小鼠潛伏期相關蛋白(LAP)”)的表現和純化被以與實施例(1-1)中所述完全相同之方式進行。
實施例2,抗TGF-β1抗體的人源化和最佳化 (2-1) 人源化 如下將親本抗TGF-β抗體TBA0947嵌合抗體人源化。首先,使用TBA0947的可變區和人類生殖系框架,來設計人源化抗體的重鏈和輕鏈的可變區。然後,將每個設計的重鏈可變區和輕鏈可變區的多核苷酸分別選殖到含有重鏈恆定區SG181序列(序列辨識號:10)和輕鏈恆定區SK1序列(序列辨識號:11)的表現載體中。在FreeStyle 293-F細胞(Thermo Fisher Scientific)中瞬時表現人源化抗體,且進行Biacore分析。選擇顯示出至少類似於親本抗體的Biacore結合活性的人源化抗體。
(2-2) 最佳化 將實施例(2-1)中獲得的人源化抗體最佳化至對潛伏性TGF-β1 (SLC)具有改善的結合活性的hT0947AE04、hT0947AE07、hT0947AE08和hT0947AE09。簡而言之,對在重鏈和輕鏈的互補決定區(CDRs)中的所有殘基進行了全面性的突變誘發。每個胺基酸均被除了原始胺基酸和半胱胺酸之外的其他18種天然胺基酸取代。在FreeStyle 293-F細胞(Thermo Fisher Scientific)中瞬時表現變異體,且從培養上清液中將其純化出來,以供Biacore評價。選擇對人類和鼠類潛伏性TGF-β1 (SLC)具有改善的結合活性之感興趣的變異體。然後產生在CDR中具有這些突變的組合的抗體。
(2-3) 最佳化抗體的胺基酸序列 hT0947AE04、hT0947AE07、hT0947AE08和hT0947AE09的可變區的胺基酸序列鑑定如下: -hT0947AE04的重鏈可變區包含序列辨識號:12的胺基酸序列(hT0947AE04H),且hT0947AE04的輕鏈可變區包含序列辨識號:13的胺基酸序列(hT0947AE04L)。 -hT0947AE07的重鏈可變區包含序列辨識號:14的胺基酸序列(hT0947AE07H),且hT0947AE07的輕鏈可變區包含序列辨識號:15的胺基酸序列(hT0947AE07L)。 -hT0947AE08的重鏈可變區包含序列辨識號:16的胺基酸序列(hT0947AE08H),且hT0947AE08的輕鏈可變區包含序列辨識號:17的胺基酸序列(hT0947AE08L)。 -hT0947AE09的重鏈可變區包含序列辨識號:18的胺基酸序列(hT0947AE09H),且hT0947AE09的輕鏈可變區包含序列辨識號:19的胺基酸序列(hT0947AE09L)。
根據Kabat,將hT0947AE04、hT0947AE07、hT0947AE08和hT0947AE09的CDR (HVR)的胺基酸序列鑑定如下: -hT0947AE04包括分別包含序列辨識號:20、21和22的胺基酸序列的重鏈CDR1、CDR2和CDR3,及分別包含序列辨識號:23、24和25的胺基酸序列的輕鏈CDR1、CDR2和CDR3。 -hT0947AE07包含分別包含序列辨識號:26、27和28的胺基酸序列的重鏈CDR1、CDR2和CDR3,及分別包含序列辨識號:29、30和31的胺基酸序列的輕鏈CDR1、CDR2和CDR3。 -hT0947AE08包含分別包含序列辨識號:32、33和34的胺基酸序列的重鏈CDR1、CDR2和CDR3,及分別包含序列辨識號:35、36和37的胺基酸序列的輕鏈CDR1、CDR2和CDR3。 -hT0947AE09包含分別包含序列辨識號:38、39和40的胺基酸序列的重鏈CDR1、CDR2和CDR3,及分別包含序列辨識號:41、42和43的胺基酸序列的輕鏈CDR1、CDR2和CDR3。
(2-4) 建立全長輕鏈和重鏈 將多個胺基酸取代導入至重鏈恆定區SG1 (序列辨識號:44)。SG1是具有最後兩個C端胺基酸,Gly-Lys (GK)之缺失的野生型人類IgG1重鏈恆定區。因此,產生了SG181 (序列辨識號:10)和SG191 (序列辨識號:45)。根據EU索引,SG181包含胺基酸取代L235R/G236R(降低效應子功能的胺基酸取代)和K214R。根據EU索引,SG191包含胺基酸取代L235R/G236R(降低效應子功能的胺基酸取代)、M428L/N434A (增強對FcRn的結合活性的胺基酸取代)、Q438R/S440E(減少對類風濕因子的結合的胺基酸取代)和K214R。此外,產生了mF18 (序列辨識號:46),其為包含P235K/S239K (降低效應子功能的胺基酸取代)小鼠IgG重鏈恆定區。
每個重鏈可變區與重鏈恆定區SG181 (序列辨識號:10)、SG191(序列辨識號:45)或mF18 (序列辨識號:46)組合。因此,建立了具有以下胺基酸序列的全長重鏈序列: (a1) 包含序列辨識號:47的胺基酸序列的全長重鏈,其包含hT0947AE04H (重鏈可變區)和SG181 (重鏈恆定區) (a2) 包含序列辨識號:48的胺基酸序列的全長重鏈,其包含hT0947AE07H (重鏈可變區)和SG181 (重鏈恆定區) (a3) 包含序列辨識號:49的胺基酸序列的全長重鏈,其包含hT0947AE08H (重鏈可變區)和SG181 (重鏈恆定區) (a4) 包含序列辨識號:50的胺基酸序列的全長重鏈,其包含hT0947AE09H (重鏈可變區)和SG181 (重鏈恆定區) (b1) 包含序列辨識號:51的胺基酸序列的全長重鏈,其包含hT0947AE04H (重鏈可變區)和SG191 (重鏈恆定區) (b2) 包含序列辨識號:52的胺基酸序列的全長重鏈,其包含hT0947AE07H (重鏈可變區)和SG191 (重鏈恆定區) (b3) 包含序列辨識號:53的胺基酸序列的全長重鏈,其包含hT0947AE08H (重鏈可變區)和SG191 (重鏈恆定區) (b4) 包含序列辨識號:54的胺基酸序列的全長重鏈,其包含hT0947AE09H (重鏈可變區)和SG191 (重鏈恆定區) (c1) 包含序列辨識號:55的胺基酸序列的全長重鏈,其包含hT0947AE04H (重鏈可變區)和mF18 (重鏈恆定區) (c2) 包含序列辨識號:56的胺基酸序列的全長重鏈,其包含hT0947AE07H (重鏈可變區)和mF18 (重鏈恆定區) (c3) 包含序列辨識號:57的胺基酸序列的全長重鏈,其包含hT0947AE08H (重鏈可變區)和mF18 (重鏈恆定區) (c4) 包含序列辨識號:58的胺基酸序列的全長重鏈,其包含hT0947AE09H (重鏈可變區)和mF18 (重鏈恆定區)
每個輕鏈可變區與人類IgG輕鏈恆定區(κ) SK1 (序列辨識號:11)、或小鼠IgG輕鏈恆定區(κ) mk1 (序列辨識號:59)組合。因此,建立了具有以下胺基酸序列的全長輕鏈序列: (d1) 包含序列辨識號:60的胺基酸序列的全長輕鏈,其包含hT0947AE04L (輕鏈可變區)和SK1 (輕鏈恆定區) (d2) 包含序列辨識號:61的胺基酸序列的全長輕鏈,其包含hT0947AE07L (輕鏈可變區)和SK1 (輕鏈恆定區) (d3) 包含序列辨識號:62的胺基酸序列的全長輕鏈,其包含hT0947AE08L (輕鏈可變區)和SK1 (輕鏈恆定區) (d4) 包含序列辨識號:63的胺基酸序列的全長輕鏈,其包含hT0947AE09L (輕鏈可變區)和SK1 (輕鏈恆定區) (e1) 包含序列辨識號:64的胺基酸序列的全長輕鏈,其包含hT0947AE04L (輕鏈可變區)和mk1 (輕鏈恆定區) (e2) 包含序列辨識號:65的胺基酸序列的全長輕鏈,其包含hT0947AE07L (輕鏈可變區)和mk1 (輕鏈恆定區) (e3) 包含序列辨識號:66的胺基酸序列的全長輕鏈,其包含hT0947AE08L (輕鏈可變區)和mk1 (輕鏈恆定區) (e4) 包含序列辨識號:67的胺基酸序列的全長輕鏈,其包含hT0947AE09L (輕鏈可變區)和mk1 (輕鏈恆定區)
然後,將各自的全長重鏈和輕鏈組合,且建立了表2中所示的抗體。如表2中所示地來命名所建立的抗體,且在本描述中以它們各自的名稱來稱呼。
(表2)
Figure 02_image003
實施例3,用於抗潛伏性TGF-β1抗體的結合活性評估的Biacore分析 使用Biacore 8k儀器(GE Healthcare),來測量抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191)對人類、食蟹猴或小鼠的潛伏性TGF-β1 (SLC)的結合活性。使用胺偶聯試劑套組(GE Healthcare),將小鼠抗人類Ig κ輕鏈抗體(BD Pharmingen)固定在CM5感測器晶片的所有流通池上。以約20RU(共振單位)的捕捉程度將抗體捕捉至抗κ感測器表面,然後將在實施例(1-1)中製備的人類、食蟹猴或小鼠的潛伏性TGF-β1(SLC)注入至流通池(flow cell)上。在含有20 mM ACES、150 mM NaCl、0.05% Tween 20、0.005% NaN 3的ACES pH 7.4中製備所有抗體和分析物。測定溫度設定在37度C。每個循環以10mM甘胺酸-HCl、pH2.1來恢復感測器表面。藉由使用Biacore Insight Software,版本1.1.1.7442 (GE Healthcare),來處理數據且將其擬合為1:1結合模型以確定結合活性。表3中顯示了抗潛伏性TGF-β1抗體對人類、食蟹猴或小鼠的潛伏性TGF-β1的結合活性(ka、kd和KD)。
(表3)
Figure 02_image005
實施例4,抗潛伏性TGF-β1抗體的特徵化 (4-1)抗潛伏性TGF-β1抗體結合至細胞表面潛伏性TGF-β1 使用表現小鼠潛伏性TGF-β1的Ba/F3細胞或表現人類潛伏性TGF-β1的FreeStyle TM293-F細胞(ThermoFisher),藉由FACS來測試抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)對細胞表面潛伏性TGF-β1的結合活性。在4度C下,將抗潛伏性TGF-β1抗體(每個10微克/mL)與每個細胞株一起培養30分鐘,且用FACS緩衝液(2%FBS、在PBS中之2mM EDTA)洗滌。不會結合至小鼠潛伏性TGF-β1也不結合至人類潛伏性TGF-β1之具有人類IgG1 Fc區的抗KLH抗體(IC17-hIgG1)作為陰性對照抗體。然後添加山羊F(ab’)2抗人類IgG,小鼠ads-PE(Southern Biotech,目錄號2043-09),且在4度C下培養30分鐘,並用FACS緩衝液洗滌。在FACS Verse (Becton Dickinson)上進行數據採集,然後使用FlowJo軟體(Tree Star)和GraphPad Prism軟體(GraphPad)來分析和計算平均螢光強度(Mean Fluorescence intensity,MFI)。如圖1中所示,所有抗潛伏性TGF-β1抗體都結合至在Ba/F3細胞上表現的小鼠細胞表面潛伏性TGF-β1和在FreeStyle TM293-F細胞上表現的人類細胞表面潛伏性TGF-β1。
(4-2) 抗潛伏性TGF-β1抗體不會結合至成熟TGF-β1,但結合至小鼠LAP 藉由ELISA,來測試抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)對成熟TGF-β1的結合活性。在4度C下,以小鼠或人類成熟TGF-β1將384孔盤塗佈隔夜,然後以PBS-T洗滌四次。洗滌後,在室溫下以阻斷緩衝液(1x TBS/Tween-20 + 0.5% BSA + 1x Block ace)來阻斷盤子至少1小時,然後以PBS-T洗滌四次。洗滌後,將抗體溶液添加至盤子且在室溫下培養2小時,然後以PBS-T洗滌四次。洗滌後,將稀釋的二抗(山羊抗人類IgG-HRP,Abcam,目錄號ab98624)添加至盤子,且在室溫下培養1小時,然後以PBS-T洗滌四次。洗滌後,將TMB溶液添加至盤子且在室溫下培養15分鐘,然後添加1N硫酸以終止反應。在450nm/570nm測量吸光度(光密度(optical density);O​​D)。抗KLH抗體(IC17-IgG1)作為陰性對照抗體,且具有人類IgG1 Fc區(GC1008-F1332m)的抗成熟TGF-β抗體GC1008(如美國專利US 8,383,780中所述)作為陽性對照抗體。如圖2A和2B中所示,抗潛伏性TGF-β1抗體不結合至小鼠成熟TGF-β1也不結合至人類成熟TGF-β1。 再者,如上所述藉由ELISA,來測試抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947A09-SG191)對小鼠潛伏期相關蛋白(LAP)的結合活性。如圖2C中所示,抗潛伏性TGF-β1抗體結合至小鼠LAP。
(4-3) 抗潛伏性TGF-β1抗體抑制自發性潛伏性TGF-β1的活化 在37度C下,於抗潛伏性TGF-β1抗體(hT0947AE04 -SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)存在或不存在的情況下,將在實施例(1-1)中製備的小鼠潛伏性TGF-β1 (mSLC)和人類潛伏性TGF-β1 (hSLC),各自培養1小時。抗KLH抗體(IC17-IgG1)作為陰性對照。根據製造商的步驟,藉由成熟TGF-β1 ELISA (Human TGF-β1 Quantikine ELISA Kit, R&D systems),來分析自發性潛伏性TGF-β1的活化和自發性潛伏性TGF-β1活化的抗體介導抑制。如圖3中所示,潛伏性TGF-β1的自發性活化被潛伏性TGF-β1抗體抑制。
(4-4) 抗潛伏性TGF-β1抗體抑制纖溶酶(plasmin, PLN)介導之潛伏性TGF-β1的活化 在37度C下,於抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)存在或不存在的情況下, 將在實施例(1-1)中製備的小鼠潛伏性TGF-β1 (mSLC)和人類潛伏性TGF-β1 (hSLC),各自與人類纖溶酶(Calbiochem)一起培養1小時。在與纖溶酶一起培養之前,在室溫下將抗體與小鼠或人類潛伏性TGF-β1 (SLC)一起預培養30分鐘。抗KLH抗體(IC17-hIgG1)作為陰性對照。根據製造商的步驟,藉由成熟TGF-β1 ELISA (Human TGF-β1 Quantikine ELISA Kit, R&D systems),來分析纖溶酶介導的潛伏性TGF-β1的活化和抗體介導的抑制。如圖4中所示,纖溶酶介導的潛伏性TGF-β1的活化被潛伏性TGF-β1抗體抑制。
(4-5) 抗潛伏性TGF-β1抗體抑制血漿激肽釋放酶(plasma kallikrein, PLK)介導之潛伏性TGF-β1的活化 在37度C下,於抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)存在或不存在的情況下, 將在實施例(1-1)中製備的小鼠潛伏性TGF-β1 (mSLC)和人類潛伏性TGF-β1 (hSLC),各自與人類激肽釋放酶(Enzyme Research Laboratories)一起培養2小時。在與激肽釋放酶一起培養之前,在室溫下將抗體與小鼠或人類潛伏性TGF-β1 (SLC)一起預培養30分鐘。抗KLH抗體(IC17-hIgG1)作為陰性對照。根據製造商的步驟,藉由成熟TGF-β1 ELISA (Human TGF-β1 Quantikine ELISA Kit, R&D systems),來分析激肽釋放酶介導的潛伏性TGF-β1的活化和抗體介導的抑制。如圖5中所示,激肽釋放酶介導的潛伏性TGF-β1的活化被潛伏性TGF-β1抗體抑制。
(4-6) 抗潛伏性TGF-β1抗體抑制MMP2和MMP9介導之人類潛伏性TGF-β1的活化 在37度C下,於抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)存在或不存在的情況下,將在實施例(1-1)中製備的人類潛伏性TGF-β1 (SLC)與活化的金屬蛋白酶2(metalloproteinase 2, MMP2)或MMP9 (R&D systems)一起培養2小時。在與MMP2或MMP9一起培養之前,在室溫下將抗體與人類潛伏性TGF-β1 (SLC)一起預培養30分鐘。抗KLH抗體(IC17-hIgG1)作為陰性對照。根據製造商的步驟,藉由成熟TGF-β1 ELISA (Human TGF-beta 1 Quantikine ELISA Kit, R&D systems),來分析MMP2和MMP9介導的人類潛伏性TGF-β1的活化和抗體介導的抑制。如圖6中所示,MMP2介導的潛伏性TGF-β1的活化和MMP9介導的潛伏性TGF-β1的活化被潛伏性TGF-β1抗體抑制。
(4-7) 抗潛伏性TGF- β1抗體抑制潛伏性TGF- β1的活化,而不會阻止透過纖溶酶(PLN)之潛伏性TGF- β1前肽(propeptide)的切割 在37度C下,於抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)存在或不存在的情況下,將在實施例(1-1)中製備的每個小鼠潛伏性TGF-β1 (mSLC)和人類潛伏性TGF-β1 (hSLC)各自與人類纖溶酶(Calbiochem)一起培養1小時。在與纖溶酶一起培養之前,在室溫下將抗體與小鼠或人類潛伏性TGF-β1 (SLC)一起預培養30分鐘。將為絲胺酸蛋白酶抑制劑之一且已知抑制纖溶酶的活性的甲磺酸卡莫司他(Camostat mesylate)(TOCRIS)作為對照。將樣品與4x SDS-PAGE樣品緩衝液(Wako)混合,然後在95度C下加熱5分鐘,然後加載進行SDS膠體電泳。藉由Trans-Blot(註冊商標)Turbo TMTransfer System(Bio-rad)將蛋白轉移到膜上。使用小鼠抗FLAG、M2-HRP抗體(Sigma-Aldrich)來檢測潛伏性TGF-β1前肽。將膜與ECL受質一起培養,且藉由ImageQuant LAS 4000(GE Healthcare)來拍攝圖像。 如圖7中所示,透過纖溶酶之潛伏性TGF- β1前肽的切割不會被潛伏性TGF-β1抗體抑制。
(4-8) 抗潛伏性TGF-β1抗體不會顯著地抑制小鼠PBMC中整合素(integrin)介導的潛伏性TGF-β1的活化 進行了小鼠PBMC和HEK-Blue TMTGF-β細胞共培養測定,以檢測整合素介導的潛伏性TGF-β1的活化。藉由使用Histopaque-1083密度梯度培養基(Sigma-Aldrich),從小鼠血液中單離出小鼠PBMC。表現Smad3/4結合元素(Smad3/4-binding elements, SBE)誘導的SEAP報導基因的HEK-Blue TMTGF-β細胞(Invivogen)可藉由監控Smad3/4的活化,來檢測生物活性的TGF-β1(小鼠TGF-β1和人類TGF-β1兩者)。活性TGF-β1刺激SEAP的產生及其分泌到細胞上清液中。藉由使用QUANTI-Blue TM試劑(Invivogen)來評價分泌的SEAP的量。
將HEK-Blue TMTGF-β細胞維持在補充有10%胎牛血清、50 U/mL鏈黴素(streptomycin)、50微克/mL青黴素(penicillin)、100微克/mL諾黴素(Normocin)、30微克/mL的保米黴素(Blasticidin)、200微克/mL的HygroGold和100微克/mL的吉歐黴素(Zeocin)的DMEM培養基(Gibco)中。在功能測定期間,將用於細胞的培養基改為測定培養基(含10% FBS的RPMI1640),且接種到96孔盤。然後將抗潛伏性TGF-β1抗體(hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191或hT0947AE09-SG191)和小鼠PBMC應用於孔中,並與HEK-Blue TMTGF-β細胞一起培養隔夜。然後將細胞上清液與QUANTI-Blue TM混合,並在比色盤讀取儀中測量620 nm的光密度(OD)。RGD胜肽(GRRGDLATIH,GenScript)已知結合至整合素且作為誘餌整合素配體,以抑制整合素介導的TGF-β1的活化。因此,RGD胜肽作為陽性對照。再者, RGE對照胜肽(GRRGELATIH,GenScript)作為陰性對照,其已知不作為誘餌整合素配體。抗KLH抗體(IC17-hIgG1)作為陰性對照。抗成熟TGF-β1抗體(GC1008-F1332m)作為陽性對照。F1332m是包含胺基酸取代以降低效應子功能的人類IgG1重鏈恆定區。 如圖8中所示,抗潛伏性TGF-β1抗體沒有顯著地抑制小鼠PBMC中整合素介導的TGF-β1的活化。
實施例5,抗潛伏性TGF-β1抗體的抗腫瘤活性(1) 在具有EMT6鼠類乳腺癌細胞和Balb/c小鼠的小鼠同源(syngeneic)模型中,評估了抗潛伏性TGF-β1單株抗體hT0947AE04-mF18單獨或與抗PD-L1抗體組合的體內功效,其中單獨的免疫檢查點抑制劑治療對腫瘤生長和生存顯示出有限的效果(參閱Nature. 2018 Feb 22;554(7693):544-548.)。
(5-1) 小鼠同源模型(syngeneic model)的建立 從美國典型培養物保藏中心(American Type Culture Collection,ATCC CRL-2755)獲得EMT6鼠類乳腺癌細胞株。將細胞培養於有10%胎牛血清(FBS;SIGMA)的RPMI-1640培養基(SIGMA)加2 mM L-麩醯胺酸(SIGMA)中。從日本Charles River Inc.購買6週齡之無特定病原體的Balb/c母小鼠,且在接種前適應2週。收穫處於對數生長期的EMT6細胞,且用Hank平衡鹽溶液(Hank's balanced salt solution)(HBSS;SIGMA)洗滌,以1x 10 6個細胞/mL的濃度重新懸浮於50% HBSS和50% Matrigel (CORNING)中。小鼠被以於100微升的HBSS:Matrigel(1:1)的1x10 5個EMT6細胞接種在左乳脂墊#5中。當平均腫瘤體積達到約100-300 mm 3(接種後7天)時,根據腫瘤體積和體重將小鼠隨機分組。用卡尺測量腫瘤體積,且如下計算腫瘤體積: 腫瘤體積(mm 3) = (1/2) x 長度(mm) x 寬度 (mm) 2
(5-2) 抗腫瘤活性的評估 在實施例(5-1)中的小鼠模型建立後,用同型對照抗體(小鼠IgG1抗體組合大鼠IgG2b抗體,購自Bio X Cell)、抗小鼠PD-L1抗體(大鼠IgG2b選殖株10F.9G2,購自Bio X Cell)、hT0947AE04-mF18或hT0947AE04-mF18與抗小鼠PD-L1抗體的組合,來治療小鼠,如表4中所示。每週3次投予抗體3週。靜脈內投予第一劑,腹腔內投予第二劑及其之後的。
(表4)
Figure 02_image007
每週兩次測量腫瘤體積。結果如圖9中所示。
亦藉由腫瘤生長抑制(TGI [%])來評估抗腫瘤活性。特定日的特定組的TGI [%]計算如下: TGI[%] = {1-(T-T0)/(C-C0)} x 100 其中,「T」是組別於測量日的平均腫瘤體積,「T0」是組別於隨機化日的平均腫瘤體積,「C」是組別1(同型對照)於測量日的平均腫瘤體積,「C0」是組別1(同型對照)於隨機化日的平均腫瘤體積。因此,抗小鼠PD-L1抗體(組別2)、hT0947AE04-mF18(組別3)和hT0947AE04-mF18與抗小鼠PD-L1抗體的組合(組別4)於第一劑後的第14天的TGI [%]值分別為51、12和83。因此,觀察到抗潛伏性TGF-β1 (hT0947AE04-mF18)和抗PD-L1抗體之間的協同抗腫瘤功效。
亦繪製了生存曲線以評估各組別的生存。「生存的」小鼠的定義如下:其腫瘤體積不超過1955 mm 3。如圖10中所示,與用抗小鼠PD-L1抗體治療的小鼠(組別2)和用hT0947AE04-mF18治療的小鼠(組別3)相比,hT0947AE04-mF18與抗小鼠PD-L1抗體(第4組)的組合治療顯著地提高小鼠的生存。
實施例6,抗潛伏性TGF-β1抗體的抗腫瘤活性(2) 在具有EMT6鼠類乳腺癌細胞和Balb/c小鼠的小鼠同源模型中,評估抗潛伏性TGF-β1單株抗體hT0947AE04-mF18、hT0947AE07-SG181或hT0947AE08-SG181與抗PD-L1抗體組合的體內功效。
(6-1) 小鼠同源模型的建立 從美國典型培養物保藏中心(ATCC CRL-2755)獲得EMT6鼠類乳腺癌細胞株。將細胞培養於有10%胎牛血清(FBS;SIGMA)的RPMI-1640培養基(SIGMA)加2 mM L-麩醯胺酸(SIGMA)中。從日本Charles River Inc.購買7週齡之無特定病原體的Balb/c母小鼠,且在接種前適應1週。收穫處於對數生長期的EMT6細胞,且用Hank平衡鹽溶液(HBSS;SIGMA)洗滌,以1x 10 6個細胞/mL的濃度重新懸浮於50% HBSS和50% Matrigel (CORNING)中。小鼠被以於100微升的HBSS:Matrigel(1:1)的1x10 5個EMT6細胞接種在左乳脂墊#5中。當平均腫瘤體積達到約100-300 mm 3(接種後7天)時,根據腫瘤體積和體重將小鼠隨機分組。用卡尺測量腫瘤體積,且如下計算腫瘤體積: 腫瘤體積(mm 3) = (1/2) x 長度(mm) x 寬度 (mm) 2
(6-2) 抗腫瘤活性的評估 在實施例(6-1)中的小鼠模型建立後,用媒劑(150 mM NaCl/20 mM His-HCl緩衝液pH6.0)、抗小鼠PD-L1抗體(大鼠IgG2b選殖體10F.9G2,購自Bio X Cell)、hT0947AE04-mF18與抗小鼠PD-L1抗體的組合、hT0947AE07-SG181與抗小鼠PD-L1抗體的組合或hT0947AE08-SG181與抗小鼠PD-L1抗體的組合,來治療小鼠,如表5中所示。每週3次投予抗體3週。靜脈內投予第一劑,腹腔內投予第二劑及其之後的。
(表5)
Figure 02_image009
每週兩次測量腫瘤體積。結果如圖11中所示。
亦藉由腫瘤生長抑制(TGI [%])來評估抗腫瘤活性。特定日的特定組的TGI [%]計算如下:TGI[%] = {1-(T-T0)/(C-C0)} x 100,其與實施例(5-2)中的相同。單獨抗小鼠PD-L1抗體 (組別2)、hT0947AE04-mF18與抗小鼠PD-L1抗體的組合(組別3)、hT0947AE07-SG181與抗小鼠PD-L1抗體的組合(組別4)和hT0947AE08-SG181與抗小鼠PD-L1抗體的組合(組別5)於第一劑後的第14天的TGI [%]值分別為64、89、86和76。因此,抗潛伏性TGF-β1抗體顯示出與抗PD-L1抗體的組合功效。
實施例7,抗潛伏性TGF-β1抗體在UUO誘導的小鼠腎纖維化模型中的體內功效 在已知誘導漸進腎纖維化的單側輸尿管阻塞(Unilateral Ureteral Obstruction, UUO)小鼠模型中,評估單株抗體hT0947AE04-SG191、hT0947AE07-SG191和hT0947AE08-SG191的體內功效。
(7-1) UUO誘導的小鼠腎纖維化模型的建立 在誘導漸進式腎纖維化的單側輸尿管阻塞(UUO)小鼠模型中,評估了單株抗體hT0947AE04-SG191、hT0947AE07-SG191和hT0947AE08-SG191的體內功效。 從Invivos Pte Ltd(新加坡)購買了6週齡之無特定病原體的C57BL/6NTac公小鼠,且在開始治療前適應了1週。將動物維持在20至26度C,光照/黑暗週期為12:12小時,且以商業標準飲食(5P75;PMI Nutrition INT'L (LabDiet), Missouri, United States)和自來水自由餵食。在異氟烷麻醉的情況下進行UUO手術。剃掉腹部左側的毛,且切一垂直切口穿過皮膚。切第二切口穿過腹膜,皮膚也縮回以露出腎臟。使用鑷子將腎臟拉到表面,且在腎臟下方將左輸尿管用手術絲綁兩次。將結紮的腎臟輕輕放回其正確的解剖位置,然後縫合腹膜和皮膚。添加止痛劑以減少動物痛苦。在假(sham)手術組中,僅切開並縫合腹膜和皮膚。
(7-2) 體內功效的評估 從手術操作的前一天開始,每週三次藉由靜脈注射以15 mg/kg,來投予所有單株抗體。抗KLH抗體(IC17dk-SG181)作為本研究中的陰性對照。對假手術組投予抗KLH抗體(IC17dk-SG181)。將動物稱重,然後在術後7天在異氟烷麻醉下藉由放血來殺死動物。從心室(heart cavities)或後大靜脈(postcaval vein)收集血液樣品,並保持在-80攝氏度直到進行測定。腎臟很快被移除。將一部分腎臟組織在液氮中或在乾冰上速凍以用於分子分析。 測量腎臟中的羥脯胺酸含量,其為膠原蛋白所包含的胺基酸中的一者,以評估多餘的基質沉積到組織。在95度C下將濕腎組織乾燥3小時並稱重。然後,將6N HCl(100微升/1mg 乾組織)添加至乾燥的組織且烹煮隔夜。藉由過濾器來清潔樣品,且將10微升的每一個樣品塗盤到96孔盤中。在60度C下將具有樣品的盤子乾燥,且使用羥脯胺酸測定套組(BioVision)來測量羥脯胺酸。於圖12中顯示此實驗的結果。在誘導出疾病的腎臟中觀察到羥脯胺酸含量的顯著增加,且所有抗體(hT0947AE04-SG191、hT0947AE07-SG191和hT0947AE08-SG191)均抑制了腎纖維化。數據表示為平均值+/-平均值的標準差(standard error of the mean, SEM)。使用學生t檢驗的分析,來進行統計分析。當P值<0.05時,差異被認為是顯著的。
實施例8,抗潛伏性TGF-β1抗體的毒性評估 相較於抗成熟TGF-β抗體GC1008-mF18 (具有小鼠IgG Fc區mF18的抗成熟TGF-β抗體GC1008 (如美國專利號US 8,383,780所述)),在正常小鼠和食蟹猴的重複劑量毒性研究中,評估了抗潛伏性TGF-β1抗體的潛在毒性。因為抗潛伏性TGF-β1抗體在小鼠和食蟹猴中發生交叉反應,所以將小鼠和食蟹猴選為用於評估體內毒理學研究的動物種類。所有毒理學研究的摘要,請參閱表6。 (表6) 毒理學研究的摘要
Figure 02_image011
在小鼠3個月研究中(IV;5或20 mg/kg,Q2D,共46劑),觀察到貧血變化(於hT0947AE04-mF18組中的20 mg/kg;於GC1008-mF18組中的5和20 mg / kg)和心臟病變(於GC1008-mF18組中的5和20 mg/kg;參閱表7)。這些發現被認為是TGF-β抑制的靶點(on-target)毒性所引起的。考慮到在小鼠3個月研究中的靶點毒性,hT0947AE04-mF18的NOAEL為5 mg/kg IV Q2D。此外,因為5 mg/kg組對GC1008-mF18有不良影響,在小鼠3個月研究中未確定GC1008-mF18的NOAEL。 (表7) 小鼠3個月毒性研究的組織病理學的主要發現
Figure 02_image013
在猴6週研究中(IV;10、30或100 mg/kg,Q2W,共4劑),未觀察到hT0947AE07-SG191的靜脈內投予所引起的毒理學相關變化,且NOAEL為最高測試劑量之100 mg/kg Q2W。
實施例9,抗潛伏性TGF-β1抗體的抗腫瘤活性(3) 在具有EMT6鼠類乳腺癌細胞Balb/c小鼠同源模型中,評估抗潛伏性TGF-β1單株抗體hT0947AE07-SG181與抗小鼠PD-L1抗體組合的體內功效。 從美國典型培養物保藏中心獲得EMT6鼠類乳腺癌細胞株。將細胞培養於有10%胎牛血清(FBS;Nichirei Biosciences Inc)的RPMI-1640培養基(SIGMA)中。從日本Charles River Inc.購買6週齡之無特定病原體的Balb/c母小鼠,且在接種前適應1週。收穫處於對數生長期的EMT6細胞,且用Hank平衡鹽溶液(HBSS;SIGMA)洗滌,以1x 10 6個細胞/mL的濃度重新懸浮於50% HBSS和50% Matrigel (CORNING)中。小鼠被以於100微升的HBSS:Matrigel(1:1)的1x10 5個EMT6細胞接種在左乳脂墊#5中。 當平均腫瘤體積達到約100-300 mm 3(接種後7天)時,根據腫瘤體積和體重將小鼠隨機分組。用卡尺測量腫瘤體積,且以1/2 x l x w 2,其中 l=長度,w=寬度,來計算腫瘤體積。 用媒劑(150 mM NaCl/20 mM His-HCl緩衝液pH6.0)、抗小鼠PD-L1抗體(大鼠IgG2b選殖體10F.9G2,購自Bio X Cell,第一劑10 mg/kg,其之後為5 mg/kg)、hT0947AE07-SG191 (10 mg/kg)與抗小鼠PD-L1抗體的組合、或hT0947AE07-SG191 (30 mg/kg)與抗小鼠PD-L1抗體的組合,來治療小鼠。抗體每週3次投予抗體兩週,靜脈內投予第一劑,腹腔內投予其之後的。 每週兩次測量腫瘤體積。藉由腫瘤生長抑制(TGI [%])來評估抗腫瘤活性,TGI[%]計算為 {1-(T-T0)/(C-C0)} x 100,其中組別於測量日的平均腫瘤體積為 T,組別於隨機化日的平均腫瘤體積為T0,媒劑對照組也類似地以C和是C0表示。 圖13中顯示此實驗的結果。 單獨抗小鼠PD-L1抗體、hT0947AE07-SG191 (10 mg/kg)與抗小鼠PD-L1抗體的組合、和hT0947AE07-SG191 (30 mg/kg)與抗小鼠PD-L1抗體的組合於第一劑後的第14天的TGI [%]分別為60、77和80。hT0947AE07-SG191顯示出與抗小鼠PD-L1抗體的組合功效。
儘管為了清楚理解的目的,而在本文中透過圖式說明和範例的方式,來詳細地描述了本發明,但這些描述和範例不應被視為限制本發明的範圍。本文引用的所有專利和科學文獻的揭露內容明確地全文引入作為參考。 [產業利用性]
本發明提供了跨物種之抑制蛋白酶介導的潛伏性TGF-β1的活化而不抑制整合素介導的潛伏性TGF-β1的活化的抗潛伏性TGF-β1抗體。本發明亦提供了包含抗潛伏性TGF-β1抗體和免疫檢查點抑制劑的組合療法。本發明的抗潛伏性TGF-β1抗體,其可與檢查點抑制劑組合投予,預期對治療TGF-β1相關疾病例如纖維化和癌症是有用的。
無。
[圖1A] 圖1A顯示出抗體結合至BaF3細胞上的細胞表面潛伏性TGF-β1的結果。 IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖1B] 圖1B顯示出抗體結合至FreeStyleTM 293-F細胞上的細胞表面潛伏性TGF-β1的結果。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖2A] 圖2A顯示出抗體結合至小鼠成熟TGF-β1的結果。GC1008-F1332m代表作為陽性對照的抗成熟TGF-β抗體。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖2B] 圖2B顯示出抗體結合至人類成熟TGF-β1的結果。GC1008-F1332m代表作為陽性對照的抗成熟TGF-β抗體。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖2C] 圖2C顯示出抗體結合至小鼠LAP的結果。GC1008-F1332m代表作為陽性對照的抗成熟TGF-β抗體。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖3A] 圖3A顯示出對自發性小鼠潛伏性TGF-β1活化的抗體活性的結果。mSLC代表重組小鼠潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖3B] 圖3B顯示出對自發性人類潛伏性TGF-β1活化的抗體活性的結果。hSLC代表重組人類潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖4A] 圖4A顯示出對纖溶酶(plasmin,PLN)介導的小鼠潛伏性TGF-β1的活化的抗體活性的結果。mSLC代表重組小鼠潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖4B] 圖4B顯示出對纖溶酶(PLN)介導的小鼠潛伏性TGF-β1的活化的抗體活性的結果。hSLC代表重組人類潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖5A] 圖5A顯示出對血漿激肽釋放酶(PLK)介導的小鼠潛伏性TGF-β1的活化的抗體活性的結果。mSLC代表重組小鼠潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖5B] 圖5B顯示出對血漿激肽釋放酶(PLK)介導的人類潛伏性TGF-β1的活化的抗體活性的結果。hSLC代表重組人類潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖6A] 圖6A顯示出對基質金屬蛋白酶(matrix metalloproteinase,MMP)2介導的人類潛伏性TGF-β1的活化的抗體活性的結果。hSLC代表重組人類潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖6B] 圖6B顯示出對基質金屬蛋白酶(MMP)9介導的人類潛伏性TGF-β1的活化的抗體活性的結果。hSLC代表重組人類潛伏性TGF-β1。IC17-hIgG1代表作為陰性對照的抗KLH抗體。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖7A] 圖7A顯示了對纖溶酶(PLN)介導的小鼠潛伏性TGF-β1的切割的抗體活性的結果。Cam代表卡莫司他(camostat),其是作為對照的蛋白酶抑制劑。AE04 (hT0947AE04-SG191)、AE07 (hT0947AE07-SG191)、AE08 (hT0947AE08-SG191)和AE09 (hT0947AE09-SG191)代表抗潛伏性TGF-β1抗體。 [圖7B] 圖7B顯示了對纖溶酶(PLN)介導的人類潛伏性TGF-β1的切割的抗體活性的結果。Cam代表卡莫司他(camostat),其是作為對照的蛋白酶抑制劑。AE04 (hT0947AE04-SG191)、AE07 (hT0947AE07-SG191)、AE08 (hT0947AE08-SG191)和AE09 (hT0947AE09-SG191)代表抗潛伏性TGF-β1抗體。 [圖8] 圖8顯示出於小鼠PBMC中,對整合素介導的小鼠TGF-β1的活化的抗體活性的結果。IC17-hIgG1代表作為陰性對照的抗KLH抗體。GC1008-F1332m代表作為陽性對照抗成熟TGF-β抗體。RGE代表RGE胜肽。RGD代表作為陽性對照的RGD胜肽。hT0947AE04-SG191、hT0947AE07-SG191、hT0947AE08-SG191和hT0947AE09-SG191代表抗潛伏性TGF-β1抗體。 [圖9] 圖9顯示出同型(isotype)對照治療組(實心圓)、抗PD-L1治療組(實心正方形)、hT0947AE04-mF18治療組(實心三角形)和hT0947AE04-mF18加抗PD-L1治療組(叉)的腫瘤生長曲線。每個點代表每組的平均腫瘤體積。(N = 10) [圖10] 圖10顯示出同型對照治療組(實心圓)、抗PD-L1治療組(實心正方形)、hT0947AE04-mF18治療組(實心三角形)和hT0947AE04-mF18加抗PD-L1治療組(叉)的腫瘤生長曲線。每個點代表每組的平均腫瘤體積。(N = 10) [圖11] 圖11顯示出媒劑治療組(實心圓)、抗PD-L1治療組(實心正方形)、hT0947AE04-mF18加抗PD-L1治療組 (X)、hT0947AE07-SG181加抗PD-L1治療組(實心三角形)和hT0947AE08-SG181加上抗PD-L1治療組(空心圓)的腫瘤生長曲線。每個點代表每組的平均腫瘤體積。(N = 10)。 [圖12] 圖12顯示出腎臟中羥脯胺酸(hydroxyproline)含量的結果。在單側輸尿管阻塞(Unilateral Ureteral Obstruction,UUO)誘導的小鼠腎纖維化模型中評估(evaluate)單株抗體。假手術組代表非疾病誘導的對照。IC17dk-SG181是作為陰性對照的抗KLH抗體。 hT0947AE04-SG191、hT0947AE07-SG191和hT0947AE08-SG191代表抗潛伏性TGF-β1抗體。 [圖13] 圖13顯示出媒劑治療組(實心圓)、抗小鼠PD-L1抗體治療組(實心正方形)、hT0947AE07-SG191 (10 mg/kg)加抗小鼠PD-L1抗體治療組(實心三角形)和hT0947AE07-SG191 (30 mg/kg)加抗小鼠PD-L1抗體治療組(空心圓)的腫瘤生長曲線。每個點代表對應組的平均腫瘤體積。(每組N = 10)
<110> 中外製藥股份有限公司(CHUGAI SEIYAKU KABUSHIKI KAISHA)
<120> 跨物種抗潛伏性TGF-β1抗體及使用方法
<150> JP 2019-155278
<151> 2019-08-28
<160> 73
<170> PatentIn version 3.5
<210> 1
<211> 387
<212> PRT
<213> 人工序列
<220>
<223> 帶有flag標記的人類潛伏性TGF-beta 1
<400> 1
Figure 109129510-A0305-02-0112-1
Figure pseq-1
Figure pseq-2
Figure pseq-3
Figure pseq-4
Figure pseq-5
Figure pseq-6
Figure pseq-7
Figure pseq-8
Figure pseq-9
Figure pseq-10
Figure pseq-11
Figure pseq-12
Figure pseq-13
Figure pseq-14
Figure pseq-15
Figure pseq-16
Figure pseq-17
Figure pseq-18
Figure pseq-19
Figure pseq-20
Figure pseq-21
Figure pseq-22
Figure pseq-23
Figure pseq-24
Figure pseq-25
Figure pseq-26
Figure pseq-27
Figure pseq-28
Figure pseq-29
Figure pseq-30
Figure pseq-31
Figure pseq-32
Figure pseq-33
Figure pseq-34
Figure pseq-35
Figure pseq-36
Figure pseq-37
Figure pseq-38
Figure pseq-39
Figure pseq-40
Figure pseq-41
Figure pseq-42
Figure pseq-43
Figure pseq-44
Figure pseq-45
Figure pseq-46
Figure pseq-47
Figure pseq-48
Figure pseq-49
Figure pseq-50
Figure pseq-51
Figure pseq-52
Figure pseq-53
Figure pseq-54
Figure pseq-55
Figure pseq-56
Figure pseq-57
Figure pseq-58
Figure pseq-59
Figure pseq-60
Figure pseq-61
Figure pseq-62
Figure pseq-63
Figure pseq-64
Figure pseq-65
Figure pseq-66
Figure pseq-67
Figure pseq-68
Figure pseq-69
Figure pseq-70
Figure pseq-71
Figure pseq-72
Figure pseq-73
Figure pseq-74
Figure pseq-75
Figure pseq-76
Figure pseq-77
Figure pseq-78
Figure pseq-79
Figure pseq-80
Figure pseq-81
Figure pseq-82
Figure pseq-83
Figure pseq-84
Figure pseq-85

Claims (12)

  1. 一種抗潛伏性TGF-β1抗體,包括:(a)HVR-H1、HVR-H2和HVR-H3,其分別包括序列辨識號:20、21和22的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包括序列辨識號:23、24和25的胺基酸序列;(b)HVR-H1、HVR-H2和HVR-H3,其分別包括序列辨識號:26、27和28的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包括序列辨識號:29、30和31的胺基酸序列;(c)HVR-H1、HVR-H2和HVR-H3,其分別包括序列辨識號:32、33和34的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包括序列辨識號:35、36和37的胺基酸序列;或(d)HVR-H1、HVR-H2和HVR-H3,其分別包括序列辨識號:38、39和40的胺基酸序列,及HVR-L1、HVR-L2和HVR-L3,其分別包括序列辨識號:41、42和43的胺基酸序列。
  2. 一種抗潛伏性TGF-β1抗體,包括:(a)序列辨識號:12的一VH序列和序列辨識號:13的一VL序列;(b)序列辨識號:14的一VH序列和序列辨識號:15的一VL序列;(c)序列辨識號:16的一VH序列和序列辨識號:17的一VL序列;或(d)序列辨識號:18的一VH序列和序列辨識號:19的一VL序列。
  3. 如請求項1或2所述的抗潛伏性TGF-β1抗體,其為一人類、人源化或嵌合抗體。
  4. 如請求項1或2所述的抗潛伏性TGF-β1抗體,其為一全長IgG抗體,較佳為一全長IgG1抗體。
  5. 如請求項1或2所述的抗潛伏性TGF-β1抗體,其中該抗潛伏性 TGF-β1抗體包括相較於一野生型IgG1 Fc區具有減弱的效應子功能的一經修飾的IgG1 Fc區。
  6. 一種抗潛伏性TGF-β1抗體,包括:(a)序列辨識號:47的一全長重鏈序列和序列辨識號:60的一全長輕鏈序列;(b)序列辨識號:48的一全長重鏈序列和序列辨識號:61的一全長輕鏈序列;(c)序列辨識號:49的一全長重鏈序列和序列辨識號:62的一全長輕鏈序列;(d)序列辨識號:50的一全長重鏈序列和序列辨識號:63的一全長輕鏈序列;(e)序列辨識號:51的一全長重鏈序列和序列辨識號:60的一全長輕鏈序列;(f)序列辨識號:52的一全長重鏈序列和序列辨識號:61的一全長輕鏈序列;(g)序列辨識號:53的一全長重鏈序列和序列辨識號:62的一全長輕鏈序列;或(h)序列辨識號:54的一全長重鏈序列和序列辨識號:63的一全長輕鏈序列。
  7. 一種免疫偶聯物,包括如請求項1至6中任一項所述的抗潛伏性TGF β-1抗體和一細胞毒殺劑。
  8. 一種單離核酸,編碼如請求項1至6中任一項所述的抗潛伏性TGF β-1抗體。
  9. 一種載體,包括如請求項8所述的核酸。
  10. 一種宿主細胞,包括如請求項8所述的核酸或如請求項9的載體。
  11. 一種產生抗潛伏性TGF-β1抗體的方法,包括培養如請求項10所述的宿主細胞,以產生該抗體。
  12. 一種醫藥製劑,包括如請求項1至6中任一項所述的抗潛伏性TGF β-1抗體或如請求項7所述的免疫偶聯物、和一醫藥上可接受的載體。
TW109129510A 2019-08-28 2020-08-28 跨物種抗潛伏性TGF-β1抗體及使用方法 TWI737469B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019155278 2019-08-28
JP2019-155278 2019-08-28

Publications (2)

Publication Number Publication Date
TW202122422A TW202122422A (zh) 2021-06-16
TWI737469B true TWI737469B (zh) 2021-08-21

Family

ID=74684250

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110128876A TW202142571A (zh) 2019-08-28 2020-08-28 跨物種抗潛伏性TGF-β1抗體及使用方法
TW109129510A TWI737469B (zh) 2019-08-28 2020-08-28 跨物種抗潛伏性TGF-β1抗體及使用方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110128876A TW202142571A (zh) 2019-08-28 2020-08-28 跨物種抗潛伏性TGF-β1抗體及使用方法

Country Status (18)

Country Link
US (2) US11312767B2 (zh)
EP (1) EP4021498A4 (zh)
JP (2) JP6846564B2 (zh)
KR (2) KR20220043930A (zh)
CN (1) CN114729370A (zh)
AR (1) AR120077A1 (zh)
AU (1) AU2020340176A1 (zh)
BR (1) BR112022003412A2 (zh)
CA (1) CA3149151A1 (zh)
CL (1) CL2022000438A1 (zh)
CO (1) CO2022001789A2 (zh)
CR (1) CR20220125A (zh)
IL (1) IL290816A (zh)
MX (1) MX2022001938A (zh)
PE (1) PE20221447A1 (zh)
SG (1) SG11202009970VA (zh)
TW (2) TW202142571A (zh)
WO (1) WO2021039945A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202142571A (zh) 2019-08-28 2021-11-16 日商中外製藥股份有限公司 跨物種抗潛伏性TGF-β1抗體及使用方法
EP4348260A2 (en) 2021-06-03 2024-04-10 Scholar Rock, Inc. Tgf-beta inhibitors and therapeutic use thereof
EP4370148A1 (en) 2021-07-14 2024-05-22 Scholar Rock, Inc. Ltbp complex-specific inhibitors of tgf beta1 and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043734A1 (en) * 2016-09-05 2018-03-08 Chugai Seiyaku Kabushiki Kaisha Anti-tgf-beta 1 antibodies and methods of use
WO2019163927A1 (en) * 2018-02-23 2019-08-29 Chugai Seiyaku Kabushiki Kaisha Cross-species anti-latent tgf-beta 1 antibodies and methods of use

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005105144A1 (ja) 2004-04-30 2007-09-13 協和醗酵工業株式会社 潜在型TGF−βの活性化抑制剤
WO2011102483A1 (ja) 2010-02-19 2011-08-25 独立行政法人理化学研究所 ヒトTGF-βのLAPに結合する抗体
ES2694203T3 (es) 2012-03-08 2018-12-19 Ludwig Institute For Cancer Research Limited Anticuerpos específicos del Tgf-1 y métodos y usos de los mismos
EP2916867A4 (en) 2012-11-06 2016-10-05 Scholar Rock Inc COMPOSITIONS AND METHOD FOR MODULATING CELL SIGNALING
RS61778B1 (sr) 2013-05-06 2021-06-30 Scholar Rock Inc Kompozicije i postupci za modulaciju faktora rasta
WO2015171691A2 (en) 2014-05-06 2015-11-12 Scholar Rock, Inc. Compositions and methods for growth factor modulation
AU2016206682B2 (en) 2015-01-14 2021-11-11 The Brigham And Women's Hospital, Inc. Treatment of cancer with anti-LAP monoclonal antibodies
EP3922645A1 (en) * 2015-09-15 2021-12-15 Scholar Rock, Inc. Anti-pro/latent-myostatin antibodies and uses thereof
CA3055555A1 (en) * 2016-03-11 2017-09-14 Scholar Rock, Inc. Tgf.beta.1-binding immunoglobulins and use thereof
US20180207267A1 (en) 2017-01-06 2018-07-26 Scholar Rock, Inc. Isoform-specific, context-permissive tgfb1 inhibitors and use thereof
GB201707561D0 (en) 2017-05-11 2017-06-28 Argenx Bvba GARP-TGF-beta antibodies
JP2020186172A (ja) 2017-06-19 2020-11-19 株式会社ボナック 抗TGF−β1抗体
EP3658583A1 (en) 2017-07-28 2020-06-03 Scholar Rock, Inc. Ltbp complex-specific inhibitors of tgf-beta 1 and uses thereof
WO2019045086A1 (ja) * 2017-08-29 2019-03-07 林化成株式会社 活性型もしくは潜在型TGF−β1特異的抗体の用途
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. ANTI-LAP ANTIBODIES AND USES THEREOF
EP3820896A1 (en) 2018-07-11 2021-05-19 Scholar Rock, Inc. TGFbeta1 INHIBITORS AND USE THEREOF
TW202005981A (zh) 2018-07-11 2020-02-01 美商供石公司 高親和性、異構體選擇性之TGFβ1抑制劑及其用途
PE20220279A1 (es) 2019-01-30 2022-02-25 Scholar Rock Inc Inhibidores especificos del complejo de ltbp de tgf beta y usos de los mismos
TW202142571A (zh) 2019-08-28 2021-11-16 日商中外製藥股份有限公司 跨物種抗潛伏性TGF-β1抗體及使用方法
WO2022180764A1 (en) * 2021-02-26 2022-09-01 Chugai Seiyaku Kabushiki Kaisha Uses of cross-species anti-latent tgf-beta 1 antibodies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043734A1 (en) * 2016-09-05 2018-03-08 Chugai Seiyaku Kabushiki Kaisha Anti-tgf-beta 1 antibodies and methods of use
WO2019163927A1 (en) * 2018-02-23 2019-08-29 Chugai Seiyaku Kabushiki Kaisha Cross-species anti-latent tgf-beta 1 antibodies and methods of use

Also Published As

Publication number Publication date
SG11202009970VA (en) 2021-04-29
EP4021498A4 (en) 2024-01-03
US20220204605A1 (en) 2022-06-30
AU2020340176A1 (en) 2022-04-14
AR120077A1 (es) 2022-02-02
PE20221447A1 (es) 2022-09-21
IL290816A (en) 2022-04-01
CO2022001789A2 (es) 2022-06-10
KR20210039328A (ko) 2021-04-09
MX2022001938A (es) 2022-03-11
EP4021498A1 (en) 2022-07-06
WO2021039945A1 (en) 2021-03-04
JP2021118685A (ja) 2021-08-12
JP6846564B2 (ja) 2021-03-24
KR102376605B1 (ko) 2022-03-21
US20210395356A1 (en) 2021-12-23
US11312767B2 (en) 2022-04-26
CR20220125A (es) 2022-05-04
CA3149151A1 (en) 2021-03-04
JP2021036864A (ja) 2021-03-11
CL2022000438A1 (es) 2022-11-25
CN114729370A (zh) 2022-07-08
KR20220043930A (ko) 2022-04-05
TW202122422A (zh) 2021-06-16
BR112022003412A2 (pt) 2022-05-24
TW202142571A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
JP6872069B2 (ja) FcRH5に対するヒト化親和性成熟抗体及び使用方法
JP7017599B2 (ja) 抗fap抗体及び使用の方法
JP6311042B2 (ja) 抗メソテリン抗体及びイムノコンジュゲート
JP5836481B2 (ja) Fgfr1アゴニスト及び使用方法
JP5841149B2 (ja) 抗テネイシンca2抗体及び使用の方法
JP6242813B2 (ja) 抗lrp5抗体及び使用方法
TW202031897A (zh) 抗c5抗體及使用方法
WO2018043734A1 (en) Anti-tgf-beta 1 antibodies and methods of use
JP2017536102A (ja) 抗アルファ−シヌクレイン抗体及び使用方法
TWI737469B (zh) 跨物種抗潛伏性TGF-β1抗體及使用方法
KR102193080B1 (ko) 항-jagged 항체 및 사용 방법
JP7315566B2 (ja) 種交差性抗潜在型TGF-β1抗体および使用方法
WO2022180764A1 (en) Uses of cross-species anti-latent tgf-beta 1 antibodies
JP7280400B2 (ja) 種交差性抗潜在型TGF-β1抗体の使用