TWI737146B - 用於操作具有多個細束的帶電粒子裝置的裝置和方法 - Google Patents

用於操作具有多個細束的帶電粒子裝置的裝置和方法 Download PDF

Info

Publication number
TWI737146B
TWI737146B TW109102969A TW109102969A TWI737146B TW I737146 B TWI737146 B TW I737146B TW 109102969 A TW109102969 A TW 109102969A TW 109102969 A TW109102969 A TW 109102969A TW I737146 B TWI737146 B TW I737146B
Authority
TW
Taiwan
Prior art keywords
deflector
point
beamlet
charged particle
configuration
Prior art date
Application number
TW109102969A
Other languages
English (en)
Other versions
TW202036640A (zh
Inventor
班傑明約翰 庫克
迪特 溫克勒
勞夫 舒米德
Original Assignee
德商Ict積體電路測試股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商Ict積體電路測試股份有限公司 filed Critical 德商Ict積體電路測試股份有限公司
Publication of TW202036640A publication Critical patent/TW202036640A/zh
Application granted granted Critical
Publication of TWI737146B publication Critical patent/TWI737146B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3301Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts beam is modified for scan, e.g. moving collimator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3308Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object translates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/103Lenses characterised by lens type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • H01J2237/1516Multipoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2801Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/2811Large objects

Abstract

公開了一種操作帶電粒子束裝置的方法,該方法包括使複數個細束中的每一個細束依序通過偏轉器和掃描器。細束中的每一個細束以物鏡聚焦在樣本上以形成複數個焦點,從而形成陣列。第一細束聚焦在第一點上,且第二細束聚焦在第二點上。在裝置的置中配置中,複數個細束中的每一個細束由偏轉器導引向無彗星像差點。在裝置的細束移位的配置中,掃描器被掃描,使得第一細束通過可接受的像差點,第一細束掃描移位的第一視野;且第一點從正規的第一焦點移位到移位的第一焦點。

Description

用於操作具有多個細束的帶電粒子裝置的裝置和方法
本文所述的實施例涉及用於檢查、缺陷偵測、和/或關鍵尺寸應用中的帶電粒子束裝置。實施例還涉及操作帶電粒子束裝置的方法,該帶電粒子束裝置例如包括多於一個帶電粒子的細束的裝置。多束系統可用於一般目的,例如成像,以及用於高通量電子束檢查(electron beam inspection,EBI)。實施例亦可涉及掃描帶電粒子束裝置以及以諸如掃描電子顯微鏡(scanning electron microscope,SEM)的掃描帶電粒子束裝置的檢查方法。
帶電粒子束裝置有許多用途,例如檢查具有奈米級特徵的半導體裝置。現代半導體技術高度依賴於對在積體電路生產過程中使用的各種處理的精確控制。因此,檢查半導體晶圓以便偵測問題。此外,可以對掩模或光罩(reticle)進行檢查,以確保掩模或光罩準確地界定期望的圖案。
晶圓或掩模的缺陷檢查可以包括整個晶圓或掩模區域的檢查。因此,以高解析度檢查大面積是具有挑戰性的。此外,儘可能地,期望要快速地實行檢查,以使生產效能不受檢查處理的限制。
掃描電子顯微鏡(SEM)已用於檢查晶圓。晶圓表面可以使用聚焦良好的電子束來掃描。當電子束照射晶圓時,產生並可偵測出二次電子和/或反向散射電子,即信號電子。例如,晶圓上某個位置的缺陷的偵測可以透過將二次電子的強度信號與對應於圖案上相同位置的參考信號進行比較來達成。
半導體技術中的晶圓和掩模缺陷檢查,是受益於高解析度和快速的檢查工具,這些工具可能涵蓋完整的晶圓/掩模應用和/或熱點檢查。電子束可用於提供樣本的高解析度檢查,從而能夠偵測出小的缺陷。特別地,從20 nm節點與以上,需要基於電子束的成像工具具有高解析度的潛力,來偵測許多關注的缺陷。
然而,由於特徵尺寸的減小和對更高解析度的需求的增加,掃描晶圓的整個表面可能耗費很長的時間。因此,由於產量限制,使用單光束掃描電子顯微鏡(SEM)進行晶圓檢查可能是不理想的。因此,多束的SEM是被期望的。例如,多個束、或細束,可以允許在樣本上的多個位置同時進行檢查,從而提高了效能。然而,當使用了需要創新解決方案的多束系統時,可能會遇到許多技術難題,例如產生、控制、和操作多個帶電粒子束的困難。
本文公開了一種操作帶電粒子束裝置(1)的方法,該方法包括使複數個細束(4A、4D)中的每一個細束通過偏轉器(6)和掃描器(12)。細束在通過偏轉器之後通過掃描器。細束中的每一個細束以物鏡聚焦在樣本上以形成複數個焦點,從而形成陣列。第一細束聚焦在第一點上,且第二細束聚焦在第二點上。在裝置的置中配置中,複數個細束中的每一個細束由偏轉器導向垂直於光軸的虛擬平面上的無彗星像差點;第一點(40A)是由第一細束(4A)形成的正規的第一焦點(40A);且掃描器被掃描。在裝置的細束移位的配置中(第4圖),掃描器被掃描,選擇性地與偏轉器同步,以使第一細束(4A)通過虛擬平面(210)上的可接受的像差點105,第一細束4A掃描移位的第一視野405A;且第一點(40A或45A)從正規的第一焦點(40A)移位到移位的第一焦點(45A)。
本文公開了一種帶電粒子束裝置,包括帶電粒子源和多孔板,多孔板包括複數個孔,每個孔用於使細束通過,多孔板形成複數個帶電粒子的細束。裝置亦包括偏轉器;掃描器;和物鏡,物鏡被配置以將複數個細束聚焦在複數個焦點上以形成陣列,陣列包括聚焦在第一點上的第一細束和聚焦在第二點上的第二細束。帶電粒子束裝置具有置中配置和細束移位的配置。在置中配置中,偏轉器被配置以將複數個細束中的每一個細束導引向垂直於光軸的虛擬平面上的無彗星像差點,且複數個焦點包括由第一細束形成的正規的第一焦點的第一點。在細束移位的配置中,掃描器和偏轉器各別被配置以被掃描,以使得偏轉器使第一細束偏轉通過虛擬平面上的可接受的像差點,且第一細束掃描移位的第一視野,且第一點從正規的第一焦點移位到移位的第一焦點。
實施例亦針對用於執行所公開的方法的設備,並且包括用於實行每個所描述的方法特徵的設備的部分。可以透過例如電腦和/或控制器的硬體元件來實行方法特徵。電腦和/或控制器可以是可配置的、可程式化的、經配置的、和/或經程式化的,例如透過適當的軟體。此外,實施例亦針對可以由所描述的設備實行的方法。實施例包括用於實行設備的每個功能的方法特徵。
現將詳細參照各種實施例,在圖式中示出了實施例的一或多個範例。在圖式的以下描述中,相同的元件符號指代相同的元件。描述了關於各個實施例的差異。每個範例都是透過解釋的方式來提供,且不意味著限制。此外,作為一個實施例的一部分示出或描述的特徵可以在其他實施例上或與其他實施例結合使用以產生又一進一步的實施例。本實施方式意欲包括修改和變化。
在不限制本申請案的保護範疇的情況下,在下文中,帶電粒子束裝置或其元件可以被稱為帶電粒子束裝置或「裝置」,其可以包括用於偵測二次或反向散射的粒子,例如電子,的元件。實施例可以包括可偵測可用於獲得樣本圖像的電子、離子、光子、X射線、和/或其他信號形式的二次和/或反向散射的帶電粒子的設備和元件。如本文所述,關於偵測的討論和描述是針對掃描電子顯微鏡中的電子而示例性地描述的。裝置可以在各種不同的儀器中偵測其他類型的帶電粒子,例如,正離子。
在此,初級帶電粒子束或初級帶電粒子細束可以由粒子束源產生,並且可以被引導至待檢查和/或成像的樣本。
在此,束可以是初級束(primary beam);細束(beamlet)可以是初級細束(primary beamlet)。初級束或細束是用於照射樣本。初級細束可以是用於照射樣本的細束。
根據可以與其他實施例組合的本文的實施例,帶電粒子的信號束可以指的是次級粒子和/或反向散射粒子的束。通常,透過將初級束或初級細束撞擊在樣本上和/或透過將初級束從樣本反向散射來產生信號束或次級束。
本文所指的「樣本(specimen)」或「樣本(sample)」包括,但不限於,半導體晶圓、半導體工件、光刻掩模、和其他工件,例如記憶碟等。實施例可以應用於在其上沉積材料或結構化的任何工件。樣本可以包括要結構化的表面或在其上沉積有層的表面、邊緣、和典型是斜面。
根據一個實施例,第1圖示出了包括複數個帶電粒子細束4A、4D、4G的帶電粒子束裝置1。該裝置可用於樣本檢查。帶電粒子束裝置1包括帶電粒子源2,帶電粒子源2可以產生帶電粒子,帶電粒子被導向多孔板5。多孔板5的孔5A、5D、5G各者都可以通過細束4A、4D、4G。每個細束可以在通過偏轉器6之後通過掃描器12。
細束可以由物鏡10聚焦以形成複數個焦點(focal spots)40A、40D。第一細束4A聚焦在第一點40A上,第二細束4D聚焦在第二點40D上。
帶電粒子束裝置1包括偏轉器6,其可以包括偏轉器元件6A、6D,其可以分別將細束4A、4D引向物鏡10。偏轉器元件6A、6D可以由控制器110定址。偏轉器元件6A、6D可以被配置為使得每個偏轉器元件使細束中之一個細束通過。偏轉器元件6A、6D可包括第一偏轉器元件6A和第二偏轉器元件6D。第一偏轉器元件6A可以使第一細束4A通過。第二偏轉器元件6D可以使第二細束4D通過。可以操作微機電(MEM,Microelectromechanical)裝置,以同時為每個偏轉器元件通電。偏轉器6可以包括MEM裝置。MEM裝置可以被配置以在每個偏轉器元件6A、6D處產生電多極,例如偶極、四極、六極、八極、和/或更高的多極。
控制器110可定址每個偏轉器元件6A、6D。控制器110可以將第一信號發送到第一偏轉器元件6A,並且將第二信號發送到第二偏轉器元件6D。第一信號和第二信號可以是相同的或不同的。第二信號可以與控制器110發送到偏轉器6的附加偏轉器元件的附加信號相同。控制器110可以例如控制每個偏轉器元件6A、6D,使得每個偏轉器元件6A、6D接收唯一的信號,或者接收相同的信號。
偏轉器6可以使細束看起來好像來自空間上分開的源。替代地/附加地,帶電粒子束裝置1可包括聚光鏡(未 示出),聚光鏡可被放置在例如源2和多孔板5之間。聚光鏡可將帶電粒子直接引導到多孔板5。替代地/附加地,可以將聚光鏡放置在多孔板5之後,例如緊接在多孔板5之後。聚光鏡可以使帶電粒子准直且/或將它們,直接或間接地,引導向物鏡10。
偏轉器6和掃描器12可以被配置以同步,並且小透鏡300或小透鏡陣列也可以與偏轉器和/或掃描器同步。控制器110可以使掃描器12的掃描和偏轉器6以及選擇性的小透鏡300或小透鏡陣列的掃描同步。控制器110可以控制帶電粒子裝置1的配置,例如在置中配置和細束移位的配置之間切換。
偏轉器6和/或掃描器12可以使帶電粒子細束4A、4D、4G在樣本8上移動。樣本8可以在平台7上,平台例如可移動平台,其亦可幫助移動樣本8,從而有助於樣本8的成像和/或檢查。
當細束4A、4D、4G撞擊樣本8的表面時,它們可以經歷與樣本的相互作用。相互作用可以產生各種發射,例如電子、X射線、熱、和光。這些發射中的許多發射可用於產生樣本的圖像和/或從樣本8收集資料。用於檢查或成像的感興趣的發射是來自信號電子,該信號電子以相對較低的能量(1至50eV)以各種角度從樣本8逸出。可以透過物鏡10從樣本收集包括反向散射和/或二次電子的信號電子。二次電子可以在束分離器組件中從反向散射電子和/或細束4A、4D、4G分離,束分離器可以被放置在光 路徑中,使得由物鏡10收集的信號電子可以被導向偵測器組件。偵測器組件可包括偵測器元件,其可配置以產生測量信號,例如,與所偵測到的信號電子相對應的電子信號。電腦和/或控制器可接收由裝置產生的資料。
透過以細束4A、4D、4G照射樣本並顯示和/或記錄偵測器組件的輸出,可以提供用於樣本的檢查/測試的資料,包括樣本8的表面的多個圖像。每個圖像都可以提供關於樣本表面不同部分的資訊。因此,與單束裝置相比,可以透過使用多束來增加獲得資料的速度。平台7(或樣本支撐件)可以是可移動的,例如可以在所有方向上水平地移動。這可以允許細束4A、4D、4G到達樣本上要檢查的目標區域。
第1圖還示出無彗星像差(coma free)點100,其被示為在物鏡10中。無彗星像差點100可以替代地位於掃描器12中或在掃描器與物鏡10之間。可以看到細束4A、4D、4G通過無彗星像差點100。透過通過無彗星像差點100,可以減小和/或最小化像差,並且可以減小和/或最小化聚焦的細束點(spot)尺寸以改善解析度。掃描器12可以操作以動態地偏移細束4A、4D,使得它們在掃描期間間歇地和/或週期性地通過無彗星像差點100。
掃描器12可以增加像差,例如像散、彗星像差、和像場彎曲像差。可以基於可接受的像差的量和/或解析度損失來判定和/或選擇可以判定視野的尺寸的掃描範圍。更 大的範圍和/或視野可能導致更大的像差、更大的細束焦點尺寸、以及更差的解析度。
在一個範例中,細束的焦點陣列延伸到大約80μm半徑的範圍,例如,細束陣列以大約80μm的半徑置於虛擬環上;其中一個細束的視野可以約為±5μm。如果掃描範圍大於該範圍,則會導致空間解析度的顯著降低,例如光點尺寸增加5%或更大。掃描器12可增加明顯的像差。替代地/附加地,可以限制掃描器的操作,以保持解析度,或者至少保持可接受的解析度。例如,如果細束4A、4D被間歇地和/或週期性地相對遠離無彗星像差點100來掃描,則細束的光點尺寸在遠離無彗星像差點100的位置處增大,並且解析度,特別是靠近視野的外邊緣,可能會變更糟。在相對高掃描範圍,細束像差可能會達到無法接受的高程度,從而使光點尺寸變得無法接受地大,且解析度是無法接受地差。可以預先判定或選擇怎樣是可接受和不可接受。
在一個實施例中,可以限制由掃描器12進行的掃描範圍,使得像差不大於可接受的,例如限制像差使得光點尺寸增加小於當束通過無彗星像差點100時光點尺寸的1%、2%、5%、或10%。若我們定義垂直於光軸0的虛擬平面210(見第2圖),則可接受的像差點105可定義為虛擬平面210上的包括無彗星像差點100的點。可接受的像差點105可以是虛擬平面210上的細束可以通過的點,這可能導致聚焦的細束的光點大小增加比通過無彗星像差點100 的細束的光點大小以上的一預定量還小;預定量可以是10%、5%、2%、或1%。
掃描器12可以使細束4A、4D從無彗星像差點100動態地偏移,這可能增加像散、彗星像差、和像場彎曲。尋找操作方法以及相關連的硬體(例如光學元件和控制器)佈置,其可以最小化像差而同時提供帶電粒子裝置,該帶電粒子裝置能夠以良好的空間解析度能力,尤其是如在半導體檢查應用中當期望快速生產時,在大視野範圍操作,這可能在技術上具有挑戰性。
第2圖示出了根據本文描述的實施例的裝置的置中配置。在裝置的置中配置中,偏轉器6將複數個細束4A、4D中的每一個導向虛擬平面210上的無彗星像差點100。
無彗星像差點可以位於物鏡10的視場(field)中,例如位於物鏡10中(例如,如第1圖所見),即,例如,不在無視野區域中。無彗星像差點100可以位於光軸0上。無彗星像差點100可以位於掃描器12中,例如掃描器12的中心。無彗星像差點100可以位於物鏡10和掃描器12之間。無彗星像差點可以位於掃描器12、物鏡10、和用於在帶電粒子束撞擊樣本之前使帶電粒子束減速的靜電透鏡中的至少一個的視野中,或者位於以下的視野之間的位置:掃描器12、物鏡10、和用於減速的靜電透鏡。
第2圖示出了由物鏡10聚焦的細束4A、4D,以形成複數個焦點40A、40D。第一細束4A聚焦在第一點40A上且第二細束4D聚焦在第二點40D上。複數個焦點可以形 成陣列,例如有規律地間隔開的陣列。如第2圖所示,焦點可以位於虛擬環25上,虛擬環25可以以光軸0為中心。焦點40A、40D可以位於焦平面20上,例如垂直於光軸0的焦平面。
當裝置處於置中配置時,第一點40A被稱為正規的(regular)第一焦點40A。
在可以與本文描述的其他實施例結合的實施例中,可以掃描細束使得細束通過無彗星像差點100,例如透過掃描器12和偏轉器6的操作,特別是透過同步掃描掃描器12和偏轉器6。
第3A圖示出了根據本文描述的實施例的裝置的置中配置。第3A圖示出了包括無彗星像差點100、以及細束4A、4D的焦點40A、40D的虛擬平面210。為了簡化說明,在第3A圖中未示出物鏡10。物鏡10被理解為放置在掃描器12之後。在置中配置中,正規第一焦點40A可以在第一視野中置中,第一視野可以被視為正規第一視野400A。第二細束4D可以形成第二焦點40D,其可以在第二視野400D中置中。偏轉器6可以將細束4A、4D中的每一個導向無彗星像差點100。掃描器12可以掃描細束4A、4D,使得第一和第二細束4A、4D的各自的視野400A、400D在掃描期間被細束4A、4D照射,而帶電粒子裝置位於置中配置。
第3B圖示出了根據本文描述的實施例的裝置的置中配置。在置中配置中,被偏轉器6導向無彗星像差點 100的至少第一細束4A,例如每個細束4A、4D,可以被掃描器12動態地偏移遠離無彗星像差點100,例如在掃描期間。細束4A、4D中的每一個,包括由偏轉器6導向無彗星像差點100的那些細束,都可以在掃描期間由掃描器12偏移。掃描器12在細束上的操作可能導致細束在離開無彗星像差點100的一點處通過虛擬平面210。每個細束4A、4D可以間歇地和/或週期性地通過無彗星像差點100,例如與掃描頻率同步。
可以佈置掃描器12以使每個束接近相等地動態偏移,從而引起每個束接近相同的動態偏移。可以將正規第一和第二焦點40A、40D定位以使得第一和第二細束4A、4D在掃描期間分別通過無彗星像差點100。正規第一和第二焦點40A、40D可以分別在各自的視野內,例如分別在第一視野400A和第二視野400D內,如第3A圖和第3B圖所示。正規的第一和第二焦點40A、40D可以在它們各自的視野,第一視野400A和第二視野400D內置中。
如果偏轉器6靜態偏轉(和/或引導)第一細束4A朝著可接受的像差點105,並且掃描器12動態地使細束4A、4D偏移,則第一細束4A可以在沿可接受的像差點105附近振盪的點通過虛擬平面210。如果振盪太大,可能會導致不想要的光點尺寸增加和解析度降低。
在第3B圖中,第一細束4A被示為被掃描器偏轉,從而形成束路徑33A和33A'。束路徑33A、33A'可以在從無彗星像差點100偏移的點處通過虛擬平面210,到 達正規視野400A的邊緣。掃描的範圍和/或視野400A、400D可以被預定範圍所限制。預定範圍可以是基於可接受的光點尺寸的增加,其可以與在視野邊緣處的可容忍的解析度損失相關。
光點尺寸的增加和解析度的損失往往會隨細束從虛擬平面210上的無彗星像差點的移位程度而縮放。透過參考可接受的像差點105(見第4圖)來判定掃描參數的限制,例如視野400A,可能是有用的。例如,在置中配置中,可以限制第一細束4A的正規第一視野400A,使得當第一細束4A到達正規第一視野400A的邊緣時,其通過置中配置的可接受的像差點104、104'。
掃描器12可以使細束4A、4D偏轉,使得在掃描器12最大偏轉時,細束4A、4D達到可接受的像差點。細束4A、4D的視野400A、400D的範圍可以由可接受的像差點和/或以最大偏轉通過虛擬平面的細束的相關聯的解析度損失來判定。
掃描器12可以是多極的,例如六極、八極、或更高。帶電束裝置被配置為使得對於每個束,可以應用個別的像散和多極(例如六極或更高)校正,例如透過調節與每個細束4A、4D相對應的偏轉元件6A、6D。
在不顯著降低解析度的情況下,將細束導引到細束的正規視野之外的感興趣的區域可能在技術上是困難的。在帶電粒子裝置的一些配置中,熱點或其他感興趣的區域可能相對較差解析(resolved)。
第4圖示出了根據本文所述的實施例的帶電粒子束裝置1的細束移位的配置。如第3A圖和第3B圖,為了簡化描述,在第4圖中未示出物鏡10。物鏡10被理解為在掃描器12下方。在細束移位的配置中,如第4圖所示,偏轉器6可使第一細束4A朝向可接受的像差點105偏轉,而偏轉器6使第二細束4D朝向無彗星像差點100偏轉。
在細束移位的配置中,可接受的像差點105可以從無彗星像差點100移位。第一細束4A的焦點可以從正規第一焦點40A(見第3圖)移位到經移位的第一焦點45A。第一焦點可能有最大細束偏移,其與可接受的像差點105和/或光點大小的預定的可接受的增加(例如1%、2%、5%、或10%)有關,例如針對置中配置。
在細束移位的配置中,第一細束4A可用於照射和/或成像感興趣區域,例如熱點等,而第二細束4D,或複數個細束中的任意數量的其他細束,可以與置中配置類似/相同地操作。換言之,有可能將一個細束,例如第一細束4A,引導到感興趣的區域,例如熱點,而陣列4D、4G可以繼續如在置中配置中來操作。如果用於每個細束4A、4D的每個偏轉器元件6A、6D是可單獨定址的,則將會是有利的。偏轉器6可以被配置使得每個細束4A、4D單獨地偏轉,例如獨立於其他細束。
在細束移位的配置中,可以掃描掃描器12和偏轉器6,使得第一細束4A通過虛擬平面210上的可接受的像差點105。掃描可以是使得在掃描期間第一細束4A連續地 通過可接受的像差點100。替代地,可以實行掃描,使得第一細束4A與掃描同步地在可接受的像差點100附近振盪,例如若偏轉器6將第一細束4A靜態地朝向可接受的像差點105導引;第一細束4A可以間歇地或週期性地通過可接受的像差點。
移位的第一焦點45A可以導引至特別感興趣的樣本8的熱點和/或位置。期望能夠調整陣列的至少一個細束,例如陣列的任意細束,以能夠照射感興趣的點或「熱點」。熱點等可能位於一個在帶電粒子裝置的常規配置下,細束4A、4D中的每個細束由於明顯的像差而無法在沒有明顯的解析度損失的情況下能到達的位置。可能期望要操作帶電粒子裝置,使得即使當照射/成像在可能位於樣本上任意位置的熱點時,解析度損失也最小化。
如第4圖所示,經移位的第一點45A可以在第一細束4A的經移位的視野405A中置中。第二點40D可以在由第二細束4D形成的第二視野400D中置中。第二點40D和/或第二視野400D在帶電粒子束裝置1的置中配置和束移位的配置中可能是無法區分的。偏轉器6可以將第一細束4A導引至可接受的像差點105。
在移位細束的配置中,第一細束4A可以照射經移位的第一視野405A。經移位的第一點45A可以從正規第一焦點40A移位第一細束偏移415A。在移位細束的配置中,偏轉器6可使第一細束4A朝向不在由複數個細束4A、4D形成的規則陣列(例如,或環)上的熱點等移動。換句話 說,在細束移位的配置中,第一細束4A的第一點可以從由細束形成的焦點的陣列移位,或者,如果在置中配置中的複數個焦點形成一個環時,從環移位。
本文公開了利用細束(例如,第一細束)的多次偏轉(特別是在移位細束的配置中)的方法和設備來最佳化細束路徑,並滿足可能的目標,諸如降低噪訊、保持可接受的解析度、最小化像差、和/或增加掃描速率,特別是在使用細束來照射熱點/對熱點成像時。
根據本文公開的實施例,第5圖示出帶電粒子裝置的移位細束的配置。第一細束4A可以照射移位的視野405A,第一細束4A可以連續地通過虛擬平面210上的可接受的像差點105。考慮到由於掃描器12而造成的偏轉,偏轉器6可以導引第一細束4A導引朝向可接受的像差點105。第5圖示出第一細束4A的兩個光路徑44A、44A',光路徑44A、44A'各者到達第一細束的移位視野405A的視野的邊緣。偏轉器元件6A可以使第一細束4A沿著光路徑44A、44A'偏轉以到達移位的視野405A的邊緣。移位的第一焦點45A可以位於移位的視野405A中,例如在其中心。偏轉器6的掃描,或更具體地,第一偏轉器元件6A的掃描可以補償掃描器12的偏轉,使得第一細束4A連續地通過可接受的像差點105。換言之,偏轉器6可以與掃描器12同步地被掃描,使得第一細束4A連續地通過可接受的像差點105,而其他細束4D、4G靜態地導向無彗星像差點100。
在又另一實施例中,偏轉器6與掃描器12同步地被掃描,使得第一細束連續地通過可接受的像差點105,而其他細束4D、4G靜態地導向無彗星像差點100。在可以與本文公開的任何其他實施例結合的實施例中:複數個細束4A、4D中的每個細束由掃描器12掃描;第一細束4A被偏轉器6掃描;且第二細束4D透過偏轉器6朝著無彗星像差點100靜態偏轉。
第5圖還示出了可以校正第一細束4A的像場彎曲像差的小透鏡300。對於複數個細束4A、4D中的每個細束4A、4D,可以有小透鏡陣列,以校正各個細束的像場彎曲。小透鏡陣列的每個小透鏡可以由控制器110定址,並且可以與掃描器12和/或偏轉器6同步地掃描。第一細束4A或任何細束的校正像場彎曲可以與掃描器12和/或偏轉器6的掃描同步。每個小透鏡,例如用於第一細束4A的小透鏡300,可以與掃描器和/或偏轉器同步地掃描。
如第5圖所示,偏轉器6對細束的預偏轉可以在當照射感興趣區域(諸如置中配置中的任何細束的正規視野外的熱點)時,將細束保持在可接受的像差點105處。動態的像散(stigmatic)校正和六極(hexapole)校正可以進一步擴展複數個細束的細束的相應視野。例如,當細束被偏轉器預偏轉時可獲得的視野可具有範圍在約為5-10μm。
控制器可以包括被配置以定址偏轉器6的每個偏轉器元件6A、6D的電子設備。控制器可以為偏轉器6的偏 轉器元件6A、6D的子元件(例如,極)提供快速切換電壓。控制器可與掃描器12同步地提供適合於由偏轉器元件6A、6D中的至少一個偏轉器元件偏轉細束4A、4D的信號和/或功率。到偏轉器6和掃描器12(以及選擇性地小透鏡陣列)的同步控制信號或功率信號的相對相位和幅度可以是可調整的。
每個偏轉器元件6A、6D可被配置以使細束4A、4D之一者通過。偏轉器可包括MEM裝置,該MEM裝置被配置以在偏轉器6的每個偏轉器元件6A、6D處產生電偶極(dipole)或更高的電偶極。MEM裝置可被配置以在每個偏轉器元件6A、6D處同時產生偶極(dipole)、四極(quadrupole)、和六極(hexapole)。例如,每個偏轉器元件6A、6D包括8個或更多個極(poles)/電極(electrodes),特別是用以同時產生偶極、四極、和六極。亦設想了更高階的MEM裝置,例如MEMS(microelectromechanical systems,微機電系統),其包括例如多達20個極/電極或甚至更高的偏轉器元件6A、6D。
每個偏轉器元件6A、6D可以被配置以靜態地和/或動態地產生場(包括靜態場和動態場的疊加),例如可以由來自控制器的信號和/或功率來判定。每個偏轉器元件6A、6D可被配置以,例如透過控制器,與其他偏轉器元件一致或獨立於其他偏轉器元件來操作。
對於佈置在半徑為80μm的虛擬環中的細束陣列,透過小透鏡300(和/或小透鏡陣列)的像場彎曲的動態校正,以及透過偏轉器6的動態預偏轉,可以擴展細束從正規焦點朝向感興趣的區域(或熱點)的可達到約20μm的可能偏移,並且允許每個細束的視野約為20μm。有利的是,在可接受的解析度損失下,與正規陣列的偏差可能較大,並且視野可能較大。
第6圖示出了根據本文描述的實施例的移位細束的配置。為了清楚,未示出物鏡10,物鏡10被理解為在掃描器12下方(自掃描器沿光軸更往前)。第6圖亦未示出複數個細束的其他細束6D、6G。其他細束也應理解為是存在的,其與前述類似地通過光學元件。例如,第二細束4D(和/或複數個細束中的任何其他細束)可以通過偏轉器6和掃描器12朝向無彗星像差點。
偏轉器6可以包括第一MEM裝置61和第二MEM裝置62。第一MEM裝置61和第二MEM裝置62可以沿著光軸0佈置。每個細束4A、4D可以順序地通過第一MEM裝置61和第二MEM裝置62。控制器可以透過控制偏轉器6來控制第一MEM裝置61和第二MEM裝置62中的每一者。控制器110可以定址每個MEM裝置的各個元件61A、61D、62A、62D。第一細束4A可以順序地被第一MEM裝置61的第一偏轉器元件61A偏轉,接著被第二MEM裝置62的第一偏轉器元件62A偏轉。第二細束4D可以順序 地被第一MEM裝置61的第二偏轉器元件62A偏轉,接著被第二MEM裝置62的第二偏轉器元件62D偏轉。
偏轉器可包括第一MEM裝置和第二MEM裝置,使得在細束移位的配置中,可接受的像差點是包括無彗星像差點100的虛擬平面210上的最小像差點111,並且第一細束4A連續地通過最小像差點111。控制器和MEM裝置可以被配置以使得複數個細束4A、4D中的任何一個細束可以被偏轉器6和掃描器12偏轉,使得細束連續地通過最小像差點111。
可以使用第一MEM裝置61和第二MEM裝置62將第一細束4A(或任何細束)對準感興趣的區域或熱點,以將細束保持在最小像差點111上。可以最佳化六極校正和像散校正。透過小透鏡的像場彎曲的動態校正,與透過MEM裝置偏轉器的動態預偏轉同步、與掃描器12同步,可以減小像差和/或保持細束通過最小像差點。
在一個實施例中,最小像差點111是包括無彗星像差點100的虛擬平面210上的點,掃描細束可以連續地通過該點,最小像差點111使得在掃描細束聚焦在焦平面的連續部分上時,細束保持合理地最小光點尺寸。當細束通過無彗星像差點到達置中配置的視野中心時,合理的最小光點大小可以小於大過光點大小10%、5%、2%、或1%。焦平面的連續部分可以不同於正常視野。
最小像差點111可以對應於置中配置的無彗星像差點100。
對於佈置在半徑為80μm的虛擬環中的細束陣列,透過小透鏡300(和/或小透鏡陣列)的像場彎曲的動態校正,以及透過偏轉器6使用連續兩個MEM裝置的動態預偏轉,可以擴展細束從正規焦點朝向感興趣的區域(或熱點)的可達到約40μm的可能偏移,並且允許每個細束的視野約為40μm。
在一個實施例中,在細束移位的配置中,掃描器12和偏轉器6被同步地掃描,使得第一細束4A連續地通過最小像差點111,例如到達從置中配置的正規第一焦點40A移位的經移位的第一焦點45A。當第一細束4A通過最小像差點111掃描移位的第一視野405A時,第二細束4D通過無彗星像差點100並掃描正規第二視野400D是可能的。
偏轉器6、掃描器12、和小透鏡300或小透鏡陣列可以,例如透過控制器110,而同步。小透鏡陣列可以被配置以獨立於第二細束4D校正第一細束4A的像場彎曲像差,特別是當帶電粒子束裝置1處於細束移位的配置時。小透鏡陣列可以直接相鄰地定位,例如在偏轉器6的正上方或正下方。
通常,掃描器12可以被配置為彼此同步地同時掃描所有細束4A、4D。在細束移位的配置中,偏轉器6可以與掃描器同步地使一或多個細束(例如第一細束)動態地偏轉,而偏轉器6使其他細束(例如,包括第二細束)朝向無彗星像差點靜態地偏轉。偏轉器6的動態偏轉可以導引一 個細束(例如第一細束4A),使得它連續地通過可接受的像差點105和/或最小像差點111。
實施例可包括被配置為以細束移位的配置的第一和第二MEM裝置,以與掃描器的掃描同步地動態校正像散。對於通過其中的每個細束,偏轉器可以包括至少一個偏轉器元件(和/或MEM裝置元件),例如兩個偏轉器元件(和/或MEM裝置元件)。每個MEM裝置元件可以產生偶極(dipole)或更高極。
MEM裝置之一者或每個MEM裝置可被配置以在偏轉器6的每個偏轉器元件處產生電偶極或更高極。MEM裝置或多個MEM裝置各者可被配置以在每個偏轉器元件處同時產生偶極(dipole)、四極(quadrupole)、和六極(hexapole)。例如,每個偏轉器元件包括8個或更多的極/電極,特別是用以同時產生偶極、四極、和六極。亦設想了更高階的MEM裝置,例如MEMS,其包括例如多達20個極/電極或甚至更高的偏轉器元件。
MEM裝置的每個偏轉器元件可以被配置以靜態地和/或動態地產生場(包括靜態場和動態場的疊加),例如可以由來自控制器的信號和/或功率來判定。每個偏轉器元件可被配置以,例如透過控制器,與其他偏轉器元件一致或獨立於其他偏轉器元件來操作。當有兩個MEM裝置時,每個細束都可以通過唯一的一對偏轉器元件,從每個MEM裝置的一個偏轉器元件,並且每個唯一的偏轉器元件 的對可以同步地動態操作,特別是用以最小化細束移位的配置中的像差。
控制器110可以被配置以控制帶電粒子裝置1的配置,例如在置中配置和細束移位的配置之間切換。控制器110可以選擇複數個細束中的哪些細束被移位。控制器110可以對掃描器12的掃描和偏轉器6(或其中的任何一或多個元件)的掃描,以及可選地,對小透鏡陣列(或其中的任何一或多個小透鏡)的掃描,來控制、同步、和/或供電。
本文進一步設想和公開用於MEMS和/或小透鏡的高速電子設備。這樣的高速電子設備可以包括多個通道。例如,在控制具有8個極(poles)/電極(electrodes)的MEM裝置時,每個MEM裝置元件可以具有由控制器110以與掃描器12同步地高速控制的高達8個通道。為了簡單起見,具有4個極的MEMS可能是有利的。
第7圖示出了根據本文描述的實施例的操作帶電掃描裝置500的方法。複數個細束通過偏轉器和掃描器510。裝置以置中配置操作520,並且裝置以細束移位的配置操作530。細束以物鏡聚焦在樣本上540。本公開旨在包括以下列舉的實施例,其中提及對元件符號和圖式的參照以幫助理解,而參照或圖式的意圖不是限制性的:
1.一種操作帶電粒子束裝置(1)的方法,包括以下步驟: 使複數個細束(4A、4D)中的每一個細束通過偏轉器(6)和掃描器(12),其中細束在通過偏轉器之後通過掃描器;以物鏡(10)將複數個細束(4A、4D)中的每一個細束聚焦在樣本上以形成複數個焦點(40A、40D),該複數個焦點形成陣列,該聚焦包括將第一細束(4A)聚焦在第一點(40A)上,及將第二細束聚焦在第二點(40D)上;在裝置的置中配置中,以偏轉器(6)將複數個細束中的每一個細束導向垂直於光軸的虛擬平面(210)上的無彗星像差點(100),其中第一點(40A)是由第一細束(4A)形成的正規的(regular)第一焦點(40A),且掃描掃描器12,使得細束中的每一個細束掃描正規的視野,包括第一細束掃描正規的第一視野和第二細束掃描正規的第二視野;和在裝置的細束移位的配置(第4圖)中,掃描掃描器,以使第一細束(4A)通過虛擬平面(210)上的可接受的像差點105,第一細束4A掃描移位的第一視野405A,其中第一點(40A或45A)從正規的第一焦點(40A)移位到移位的第一焦點(45A)。 在細束移位的配置中,掃描器和偏轉器可(例如,同步地)被掃描,使得第一細束通過可接受的像差點。
2.如實施例1所述之操作帶電粒子束裝置的方法,其中,在細束移位的配置中,移位的第一視野(405A)在基本上垂直於光軸的方向上從正規的第一視野(400A)移位,並且掃描器被掃描以使得第二細束掃描正規的第二視野。掃描器可以同步地掃描細束中的每個細束,例如,使得從每個細束同時掃描每個相應的視野。
3.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中,在置中配置中,正規的第一焦點(40A)在第一細束(4A)的正規的第一視野(400A)中置中;且在細束移位的配置中,移位的第一點(45A)在第一細束的移位的視野中置中。
4.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中在置中配置和細束移位的配置中,第二點(40D)在第二細束的正規的第二視野(400D)中置中。
5.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中在置中配置中,陣列是有規律地間隔開。在細束移位的配置中,至少一個細束,例如第一細束,可以聚焦在偏離其正規點的位置。
6.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中置中配置使得陣列的每個焦點佈置在虛擬環上;和在細束移位的配置中,第一點從虛擬環移位。
7.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中偏轉器包括MEM裝置,該MEM裝置被配置以在偏轉器(6)的每個偏轉器元件(6A、6D)處產生至少一電偶極(dipole)和四極(quadrupole);且每個偏轉器元件被配置以通過細束中之一個細束。MEM裝置也可配置以產生六極(hexapole)。MEM裝置可具有8個極(poles)/電極(electrodes)。MEM裝置可被配置以產生甚至更高的多極,例如高達20。
8.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中可接受的像差點是從虛擬平面上的無彗星像差點移位;其中無彗星像差點位於物鏡的視場中。
9.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中在置中配置中和在細束移位的配置中,細束中的每個細束由掃描器掃描;且在細束移位的配置中,第一細束由偏轉器掃描,且 第二細束由偏轉器朝著無彗星像差點靜態地偏轉。掃描器可以同步地掃描細束中的每個細束。偏轉器可以與掃描器同步地掃描第一細束。
10.如前述任一實施例所述之操作帶電粒子束裝置的方法,進一步包括以下步驟:使第一細束通過小透鏡,該小透鏡校正第一細束的像場彎曲(field curvature)。小透鏡可以與掃描器的掃描同步地調變。
11.如實施例10所述之操作帶電粒子束裝置的方法,其中校正第一細束的像場彎曲是與掃描器和/或偏轉器的掃描同步;且小透鏡與掃描器和/或偏轉器同步地掃描。
12.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中偏轉器包括第一MEM裝置和第二MEM裝置,使得在細束移位的配置中,可接受的像差點是最小像差點,且在掃描器掃描和偏轉器掃描的期間,第一細束連續通過最小像差點。
13.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中在細束移位的配置中,掃描偏轉器包括:掃描第一細束,以使第一細束動態地偏轉,而同時使第二細束靜態地偏轉。
14.如前述任一實施例所述之操作帶電粒子束裝置的方法,其中,在細束移位的配置中,掃描器和偏轉器被同步地掃描,使得第一細束連續地通過可接受的像差點。
15.一種帶電粒子束裝置,包括:帶電粒子源和多孔板,多孔板包括複數個孔,每個孔用於使細束通過,多孔板形成複數個帶電粒子的細束;偏轉器;掃描器;物鏡,物鏡被配置以將複數個細束聚焦在複數個焦點上以形成陣列,陣列包括聚焦在第一點上的第一細束和聚焦在第二點上的第二細束;且其中帶電粒子束裝置具有置中配置和細束移位的配置;其中在置中配置中,偏轉器被配置以將複數個細束中的每一個細束導向垂直於光軸的虛擬平面上的無彗星像差點,且複數個焦點包括第一點,第一點是由第一細束形成的正規的(regular)第一焦點,且在細束移位的配置中,掃描器和偏轉器各別被配置以被掃描,以使得 偏轉器使第一細束偏轉通過虛擬平面上的可接受的像差點,且第一細束掃描移位的第一視野,其中第一點從正規的第一焦點移位到移位的第一焦點。
16.如實施例15所述之帶電粒子束裝置,進一步包括小透鏡陣列,小透鏡陣列被配置以當帶電粒子束裝置處於細束移位的配置時,獨立於第二細束校正第一細束的像場彎曲像差。
17.如實施例15或實施例16所述之帶電粒子束裝置,其中掃描器被配置以同步地同時掃描複數個細束中的每一個細束;且在細束移位的配置中,偏轉器被配置以與掃描器同步地動態偏轉第一細束,且偏轉器被配置以使第二細束朝向無彗星像差點靜態地偏轉。
18.如實施例15、實施例16、或實施例17所述之帶電粒子束裝置,其中偏轉器包括第一MEM裝置和第二MEM裝置,第一MEM裝置和第二MEM裝置被配置以使得,在細束移位的配置中,可接受的像差點是最小像差點,且 偏轉器和掃描器被配置用於同步,使得第一細束連續地通過最小像差點。
19.如實施例15、實施例16、實施例17、或實施例18所述之帶電粒子束裝置,其中偏轉器包括第一MEM裝置和第二MEM裝置,且第一MEM裝置和第二MEM裝置被配置為,在細束移位的配置中,以與掃描器的掃描同步地動態校正像散。每個MEM裝置可被配置以產生偶極(dipole)、四極(quadrupole)、六極(hexapole)、及其組合。每個MEM裝置可能還會產生更高的多極,例如高達20。
20.如實施例15至實施例19中任一項所述之帶電粒子束裝置,包括控制器,控制器控制帶電粒子束裝置的配置,其中掃描器和偏轉器由控制器控制;且其中控制器使掃描器和偏轉器同步。
21.如實施例15至實施例20中任一項所述之帶電粒子束裝置,其中偏轉器包括配置以產生電偶極(dipole)或更高極(例如,偶極、四極、和六極)的MEM裝置;及掃描偏轉器是以偏轉器動態偏轉至少一個細束,例如與掃描器的掃描同步。
雖然前述內容涉及本文的實施例,但可在不脫離本文的基本範疇的情況下設計本公開的其他和進一步的實施例,並且其中之範疇由隨附申請專利範圍來判定。
0:光軸
1:帶電粒子束裝置
2:帶電粒子源
4A:帶電粒子細束
4D:帶電粒子細束
4G:帶電粒子細束
5:多孔板
5A:孔
5D:孔
5G:孔
6:偏轉器
6A:偏轉器元件
6D:偏轉器元件
7:平台
8:樣本
10:物鏡
12:掃描器
20:焦平面
25:虛擬環
33A:束路徑
33A':束路徑
40A:焦點
40D:焦點
44A:路徑
44A':路徑
45A:焦點
61:MEM裝置
61A:偏轉器元件
62:MEM裝置
62A:偏轉器元件
62D:偏轉器元件
100:無彗星像差點
104:像差點
104':像差點
105:像差點
110:控制器
111:最小像差點
210:虛擬平面
300:小透鏡
400A:第一視野
400D:第二視野
405A:視野
415A:第一細束偏移
500:方法
510:步驟
520:步驟
530:步驟
540:步驟
為了可以詳細地理解上述特徵的方式,可以透過參考實施例來進行上文簡要概述的更具體的描述。隨附圖式與實施例有關,並在以下進行描述: 第1圖示出了根據本文所述的實施例的帶電粒子束裝置的示意圖; 第2圖示出了根據本文所述的實施例的在置中配置下的帶電粒子裝置的部分; 第3A圖示出了根據本文所述的實施例的在置中配置下的帶電粒子裝置的部分; 第3B圖示出了根據本文所述的實施例的在置中配置下的帶電粒子裝置的部分; 第4圖示出了根據本文所述的實施例的在細束移位的配置下的帶電粒子裝置的部分; 第5圖示出了根據本文所述的實施例的在細束移位的配置下的帶電粒子裝置的部分; 第6圖示出了根據本文所述的實施例的在細束移位的配置下的帶電粒子裝置的部分; 第7圖示出了根據本文所述的實施例的操作帶電掃描裝置的方法。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
0:光軸
1:帶電粒子束裝置
2:帶電粒子源
4A:帶電粒子細束
4D:帶電粒子細束
4G:帶電粒子細束
5:多孔板
5A:孔
5D:孔
5G:孔
6:偏轉器
6A:偏轉器元件
6D:偏轉器元件
7:平台
8:樣本
10:物鏡
12:掃描器
100:無彗星像差點
110:控制器

Claims (19)

  1. 一種操作一帶電粒子束裝置的方法,包括以下步驟:使複數個細束中的每一個細束通過一偏轉器和一掃描器,其中該等細束在通過該偏轉器之後通過該掃描器;以一物鏡將該複數個細束中的每一個細束聚焦在一樣本上以形成複數個焦點,該複數個焦點形成一陣列,該聚焦包括將一第一細束聚焦在一第一點上,及將一第二細束聚焦在一第二點上;在該裝置的一置中配置中,以該偏轉器將該複數個細束中的每一個細束導向垂直於一光軸的一虛擬平面上的一無彗星像差點,其中該第一點是由該第一細束形成的一正規的(regular)第一焦點,且掃描該掃描器,使得該等細束的每一個細束掃描一正規的視野,包括該第一細束掃描一正規的第一視野和該第二細束掃描一正規的第二視野;和在該裝置的一細束移位的配置中,掃描該掃描器,使得該第一細束通過該虛擬平面上的一可接受的像差點,該第一細束掃描一移位的第一視野,其中該第一點從該正規的第一焦點移位到一移位的第一焦點,且其中該掃瞄器和該偏轉器被同步地掃描,使得該第一細束連續通過該可接受的像差點或使得該第 一細束在該可接受的像差點的附近振盪。
  2. 如請求項1所述之操作一帶電粒子束裝置的方法,其中,在該細束移位的配置中,該移位的第一視野在基本上垂直於該光軸的一方向上從該正規的第一視野移位,並且該掃描器被掃描以使得該第二細束掃描該正規的第二視野。
  3. 如請求項1所述之操作一帶電粒子束裝置的方法,其中,在該置中配置中,該正規的第一焦點在該第一細束的一正規的第一視野中置中;且在該細束移位的配置中,該移位的第一點在該第一細束的一移位的視野中置中。
  4. 如請求項1所述之操作一帶電粒子束裝置的方法,其中在該置中配置和該細束移位的配置中,該第二點在該第二細束的該正規的第二視野中置中。
  5. 如請求項1所述之操作一帶電粒子束裝置的方法,其中在該置中配置中,該陣列是有規律地間隔開。
  6. 如請求項1所述之操作一帶電粒子束裝置的方法,其中該置中配置使得該陣列的每個焦點佈置在一虛擬環上; 和在該細束移位的配置中,該第一點從該虛擬環移位。
  7. 如請求項1所述之操作一帶電粒子束裝置的方法,其中該偏轉器包括一微機電(MEM,Microelectromechanical)裝置,該MEM裝置被配置以在該偏轉器的每個偏轉器元件處產生至少一電偶極(dipole)和一電四極(quadrupole);且每個偏轉器元件被配置以通過該等細束中之一個細束。
  8. 如請求項1所述之操作一帶電粒子束裝置的方法,其中該可接受的像差點是從該虛擬平面上的該無彗星像差點移位;其中該無彗星像差點是位於該物鏡的視場(field)中。
  9. 如請求項1所述之操作一帶電粒子束裝置的方法,其中在該置中配置中和在該細束移位的配置中,該等細束中的每個細束由該掃描器掃描;且在該細束移位的配置中,該第一細束由該偏轉器掃描,且該第二細束由該偏轉器朝著該無彗星像差點靜態地偏轉。
  10. 如請求項1所述之操作一帶電粒子束裝置的方法,進一步包括以下步驟: 使該第一細束通過一小透鏡,該小透鏡校正該第一細束的像場彎曲(field curvature)。
  11. 如請求項10所述之操作一帶電粒子束裝置的方法,其中校正該第一細束的像場彎曲是與該掃描器和/或該偏轉器的掃描同步;且該小透鏡與該掃描器和/或該偏轉器同步地掃描。
  12. 如請求項1所述之操作一帶電粒子束裝置的方法,其中該偏轉器包括一第一MEM裝置和一第二MEM裝置,使得在該細束移位的配置中,該可接受的像差點是一最小像差點,且在該掃描器掃描和該偏轉器掃描的期間,該第一細束連續通過該最小像差點。
  13. 如請求項1所述之操作一帶電粒子束裝置的方法,其中在該細束移位的配置中,掃描該偏轉器包括:掃描該第一細束,以使該第一細束動態地偏轉,而同時使該第二細束靜態地偏轉。
  14. 一種帶電粒子束裝置,包括:一帶電粒子源和一多孔板,該多孔板包括複數個孔,每個孔用於使一細束通過,該多孔板形成複數個帶電粒子的細束;一偏轉器; 一掃描器;一物鏡,該物鏡被配置以將該複數個細束聚焦在複數個焦點上以形成一陣列,該陣列包括聚焦在一第一點上的一第一細束和聚焦在一第二點上的一第二細束;且其中該帶電粒子束裝置具有一置中配置和一細束移位的配置;其中在該置中配置中,該偏轉器被配置以將該複數個細束中的每一個細束導向垂直於一光軸的一虛擬平面上的一無彗星像差點,且該複數個焦點包括該第一點,該第一點是由該第一細束形成的一正規的(regular)第一焦點,且在該細束移位的配置中,該掃描器和偏轉器各別被配置以被掃描,以使得該偏轉器使該第一細束偏轉通過該虛擬平面上的一可接受的像差點,且該第一細束掃描一移位的第一視野,其中該第一點從該正規的第一焦點移位到一移位的第一焦點,且其中該掃瞄器和該偏轉器被同步地掃描,使得該第一細束連續通過該可接受的像差點或使得該第一細束在該可接受的像差點的附近振盪。
  15. 如請求項14所述之帶電粒子束裝置,進一步包括 一小透鏡陣列,該小透鏡陣列被配置以當該帶電粒子束裝置處於該細束移位的配置時,獨立於該第二細束校正該第一細束的像場彎曲像差。
  16. 如請求項14所述之帶電粒子束裝置,其中該掃描器被配置以同步地同時掃描該複數個細束中的每一個細束;且在該細束移位的配置中,該偏轉器被配置以與該掃描器同步地動態偏轉該第一細束,且該偏轉器被配置以使該第二細束朝向該無彗星像差點靜態地偏轉。
  17. 如請求項14所述之帶電粒子束裝置,其中該偏轉器包括一第一MEM裝置和一第二MEM裝置,該第一MEM裝置和該第二MEM裝置被配置以使得,在該細束移位的配置中,該可接受的像差點是一最小像差點,且該偏轉器和該掃描器被配置用於同步,使得該第一細束連續地通過該最小像差點。
  18. 如請求項14所述之帶電粒子束裝置,其中該偏轉器包括一第一MEM裝置和一第二MEM裝置,且該第一MEM裝置和該第二MEM裝置被配置為,在該細束移位的配置中,以與該掃描器的該掃描同步地動態校正像散。
  19. 如請求項14所述之帶電粒子束裝置,包括一控制器,該控制器控制該帶電粒子束裝置的一配置,其中該掃描器和該偏轉器由該控制器控制;且其中該控制器使該掃描器和該偏轉器同步;其中選擇性地該偏轉器包括配置以產生一電偶極(dipole)或更高極的一MEM裝置;及掃描該偏轉器是以該偏轉器與該掃描器的該掃描同步地動態偏轉至少一個細束。
TW109102969A 2019-02-12 2020-01-31 用於操作具有多個細束的帶電粒子裝置的裝置和方法 TWI737146B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/273,961 US10748743B1 (en) 2019-02-12 2019-02-12 Device and method for operating a charged particle device with multiple beamlets
US16/273,961 2019-02-12

Publications (2)

Publication Number Publication Date
TW202036640A TW202036640A (zh) 2020-10-01
TWI737146B true TWI737146B (zh) 2021-08-21

Family

ID=69190786

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102969A TWI737146B (zh) 2019-02-12 2020-01-31 用於操作具有多個細束的帶電粒子裝置的裝置和方法

Country Status (7)

Country Link
US (1) US10748743B1 (zh)
EP (1) EP3924994B1 (zh)
JP (1) JP7228052B2 (zh)
KR (1) KR102636455B1 (zh)
CN (1) CN113412531A (zh)
TW (1) TWI737146B (zh)
WO (1) WO2020164872A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869743B2 (en) * 2021-05-11 2024-01-09 Kla Corporation High throughput multi-electron beam system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034428A1 (en) * 2009-09-18 2011-03-24 Mapper Lithography Ip B.V. Charged particle optical system with multiple beams
TW201250759A (en) * 2011-03-23 2012-12-16 Kla Tencor Corp Multiple-beam system for high-speed electron-beam inspection
US20150076362A1 (en) * 2012-04-24 2015-03-19 Hitachi High-Technologies Corporation Charged particle beam apparatus
US9035249B1 (en) * 2013-12-02 2015-05-19 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multi-beam system for high throughput EBI
TW201830451A (zh) * 2017-02-08 2018-08-16 漢民微測科技股份有限公司 多帶電粒子束的裝置
CN109216143A (zh) * 2017-07-05 2019-01-15 Ict集成电路测试股份有限公司 带电粒子束装置和对样本进行成像或照明的方法件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758728B2 (ja) 2011-07-26 2015-08-05 株式会社日立ハイテクノロジーズ 荷電粒子線装置
NL2009696C2 (en) * 2012-10-25 2014-04-29 Univ Delft Tech Apparatus and method for inspecting a surface of a sample.
KR20190091577A (ko) * 2015-07-22 2019-08-06 에이에스엠엘 네델란즈 비.브이. 복수의 하전 입자 빔을 이용하는 장치
JP6641011B2 (ja) * 2015-11-30 2020-02-05 エーエスエムエル ネザーランズ ビー.ブイ. 複数の荷電粒子ビームの装置
SG11201806100PA (en) 2016-01-27 2018-08-30 Hermes Microvision Inc Apparatus of plural charged-particle beams
EP3268979A4 (en) * 2016-04-13 2019-05-08 Hermes Microvision Inc. DEVICE WITH MULTIPLE LOADED PARTICLE RAYS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034428A1 (en) * 2009-09-18 2011-03-24 Mapper Lithography Ip B.V. Charged particle optical system with multiple beams
TW201250759A (en) * 2011-03-23 2012-12-16 Kla Tencor Corp Multiple-beam system for high-speed electron-beam inspection
US20150076362A1 (en) * 2012-04-24 2015-03-19 Hitachi High-Technologies Corporation Charged particle beam apparatus
US9035249B1 (en) * 2013-12-02 2015-05-19 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multi-beam system for high throughput EBI
TW201830451A (zh) * 2017-02-08 2018-08-16 漢民微測科技股份有限公司 多帶電粒子束的裝置
CN109216143A (zh) * 2017-07-05 2019-01-15 Ict集成电路测试股份有限公司 带电粒子束装置和对样本进行成像或照明的方法件

Also Published As

Publication number Publication date
KR102636455B1 (ko) 2024-02-15
JP2022521057A (ja) 2022-04-05
WO2020164872A1 (en) 2020-08-20
EP3924994B1 (en) 2024-02-28
US20200258714A1 (en) 2020-08-13
US10748743B1 (en) 2020-08-18
TW202036640A (zh) 2020-10-01
KR20210126663A (ko) 2021-10-20
CN113412531A (zh) 2021-09-17
EP3924994A1 (en) 2021-12-22
JP7228052B2 (ja) 2023-02-22

Similar Documents

Publication Publication Date Title
KR102295389B1 (ko) 1차 하전 입자 빔렛들의 어레이를 이용하여 시료를 검사하기 위한 방법, 1차 하전 입자 빔렛들의 어레이를 이용한 시료의 검사를 위한 하전 입자 빔 디바이스, 및 시료의 검사를 위한 다중-컬럼 현미경
US10896800B2 (en) Charged particle beam system and method
JP6728498B2 (ja) 試験片を検査する方法および荷電粒子マルチビーム装置
TWI650550B (zh) 用於高產量電子束檢測(ebi)的多射束裝置
TWI751556B (zh) 用於以初級帶電粒子小束陣列檢查樣本的帶電粒子束裝置
US8362425B2 (en) Multiple-beam system for high-speed electron-beam inspection
JP4878501B2 (ja) 荷電粒子線応用装置
KR102566320B1 (ko) 하전 입자 빔 디바이스, 필드 곡률 보정기, 및 하전 입자 빔 디바이스를 동작시키는 방법들
KR20190099316A (ko) 다수의 하전 입자 빔을 사용하는 장치
TW201921103A (zh) 帶電粒子束裝置、用於帶電粒子束裝置的孔佈置和用於操作帶電粒子束裝置的方法
US10249472B2 (en) Charged particle beam device, charged particle beam influencing device, and method of operating a charged particle beam device
TWI737146B (zh) 用於操作具有多個細束的帶電粒子裝置的裝置和方法
TWI830168B (zh) 溢流柱及帶電粒子裝置
KR20230018523A (ko) 다중 소스 시스템을 갖는 입자 빔 시스템 및 다중 빔 입자 현미경
CN116325067A (zh) 在可调工作距离附近具有快速自动对焦的多重粒子束显微镜及相关方法