TWI737025B - 用於恢復或防止壓電裝置的劣化裝置性能的方法及其系統 - Google Patents

用於恢復或防止壓電裝置的劣化裝置性能的方法及其系統 Download PDF

Info

Publication number
TWI737025B
TWI737025B TW108138665A TW108138665A TWI737025B TW I737025 B TWI737025 B TW I737025B TW 108138665 A TW108138665 A TW 108138665A TW 108138665 A TW108138665 A TW 108138665A TW I737025 B TWI737025 B TW I737025B
Authority
TW
Taiwan
Prior art keywords
piezoelectric device
amplitude
voltage
piezoelectric
value
Prior art date
Application number
TW108138665A
Other languages
English (en)
Other versions
TW202121678A (zh
Inventor
施啟元
黃士芬
林佑儒
廖彥杰
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202121678A publication Critical patent/TW202121678A/zh
Application granted granted Critical
Publication of TWI737025B publication Critical patent/TWI737025B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/065Large signal circuits, e.g. final stages
    • H02N2/067Large signal circuits, e.g. final stages generating drive pulses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本揭露涉及一種用於恢復或防止壓電裝置的劣化裝置性 能的方法及其系統。用於恢復壓電裝置的劣化器件性能的方法包括在運行模式中藉由對壓電裝置施加大於或等於第一振幅的一或多個電壓脈衝以在第一時間段內操作壓電裝置,和在第一時間段的期間確定壓電裝置的性能參數具有已與參考值偏離大於預定閾值的第一值。在第二時間段的期間,方法更包括向壓電裝置施加包括正電壓偏壓和負電壓偏壓的雙極性半波。在第三時間段的期間,方法更包括在運行模式中操作壓電裝置,其中性能參數具有第二值。第二值與參考值之間的絕對差小於第一值與參考值之間的絕對差。

Description

用於恢復或防止壓電裝置的劣化裝置性能的方 法及其系統
本揭露涉及一種用於恢復或防止壓電裝置的劣化裝置性能的方法以及用於恢復壓電裝置的劣化裝置性能的系統。
壓電裝置(例如壓電致動器、壓電感測器等)用於許多現代電子裝置(例如汽車感測器/致動器、航空感測器/致動器等)。壓電裝置的一個實例是壓電致動器。壓電致動器可用於產生在電信號的控制下向系統中的物理部件施加力的物理運動。由壓電致動器產生的物理運動可用來控制各種類型的系統(例如機械系統、光學系統等)。
本揭露的用於恢復壓電裝置的劣化裝置性能的方法包括:在運行模式中藉由對壓電裝置施加大於或等於第一振幅的一或多個電壓脈衝以在第一時間段內操作壓電裝置;在第一時間段 的期間確定壓電裝置的性能參數具有已與參考值偏離大於預定閾值的第一值;在第二時間段對壓電裝置施加包括正電壓偏壓和負電壓偏壓的雙極性半波,第二時間段在第一時間段之後;以及在第二時間段之後的第三時間段以運行模式操作壓電裝置,其中壓電裝置的性能參數在第三時間段的期間具有第二值,且其中第二值與參考值之間的絕對差低於第一值與參考值之間的絕對差。
本揭露的用於恢復壓電裝置的劣化裝置性能的方法包括:在運行模式中藉由對壓電裝置施加大於或等於第一振幅的一或多個電壓脈衝以在第一時間段內操作壓電裝置,其中第一振幅大於壓電裝置的矯頑電場電壓;確定已達到運行模式的預定閾值;以及在第二時間段藉由以下操作對壓電裝置執行雙極性半波:以第一極性的第二振幅在壓電裝置上電壓偏壓信號;將藉由施加在壓電裝置上的電壓偏壓信號從第二振幅調節到在與第一極性相反的第二極性的第三振幅,其中第二振幅等於第三振幅,且其中第二振幅小於或等於壓電裝置的矯頑電場電壓;以及將藉由施加在壓電裝置上的電壓偏壓信號從第三振幅調節到第二振幅與第三振幅之間的第四振幅。
本揭露的用於恢復壓電裝置的劣化裝置性能的系統包括壓電裝置、偏壓電路及測量電路系統。壓電裝置設置在半導體基板上。壓電裝置包括設置在第一電極與第二電極之間的壓電結構。偏壓電路電性連接到第一電極和第二電極。偏壓電路配置成在運行模式中藉由施加在壓電裝置上的電壓偏壓信號來操作。測 量電路系統電性連接到偏壓電路。測量電路配置成檢測在運行模式期間已達到預定閾值。偏壓電路配置成在預定閾值的檢測後藉由以下操作來執行恢復操作:將電壓偏壓從起始值提高到在第一極性的第一量值,將電壓偏壓從在第一極性的第一量值降低到在與第一極性相反的第二極性下的第一量值,以及將電壓偏壓從在第二極性下的第一量值提高到等於起始值的結束值。
100、200:橫截面視圖
102:基板
104:底部電極
106:壓電層
108:頂部電極
110:鈍化層
112a:第一金屬墊
112b:第二金屬墊
114:電觸點
116:電線
120:控制電路
124:第一介面
128:第二介面
210:偏壓電路
220:測量電路
300、700A、800A:曲線圖
302:滯迴線
304:雙極性半波
306:第一負電壓
308:負矯頑電場電壓
314:正矯頑電場電壓
316:第一正電壓
400、500、600、700B、700C、800B、800C:時序圖
402:單極脈衝
404、504:脈衝
502:靜態序列
506:長存儲時間步驟
602:第二組
604:恢復操作
606:電容率資料點
702:第一組
706:壓印電容率
707:恢復電容率
708:初始電容率
710:中間電容率
802:最後一個靜態序列
900:方法
902、904、906、906a、906b、906c:動作
t1:第一時間段
t2:第二時間段
t3:第三時間段
t4:第四時間段
t5:第五時間段
t6:第六時間段
t7:第七時間段
t8:第八時間段
當結合附圖閱讀時,從以下詳細描述最好地理解本揭露的各方面。應注意,根據業界中的標準慣例,各個特徵未按比例繪製。實際上,為了論述清楚起見,可任意增大或減小各個特徵的尺寸。
圖1說明聯接到控制電路的壓電裝置的一些實施例的橫截面視圖。
圖2說明聯接到偏壓電路和測量電路的壓電裝置的一些實施例的橫截面視圖。
圖3說明極化曲線和極化曲線內的用以恢復劣化壓電裝置的雙極性半波的一些實施例的曲線圖。
圖4、圖5以及圖6說明在運行操作中的一或多個脈衝之後電壓相對於雙極性半波恢復操作的時間的一些實施例的時序圖。
圖7A說明在壓印效應之後壓電結構的電容率由於多個運行操作迴圈而恢復的一些實施例的曲線圖。
圖7B和圖7C說明可對應於圖7A的曲線圖的運行操作和雙極性半波的一些實施例的時序圖。
圖8A說明用於防止壓印效應的壓電結構的電容率的恢復的一些實施例的曲線圖。
圖8B和圖8C說明可對應於圖8A的曲線圖的運行操作和雙極性半波的一些實施例的時序圖。
圖9說明在壓電裝置的性能參數劣化之後執行雙極性半波的方法的一些實施例的流程圖。
以下公開內容提供用於實施所提供主題的不同特徵的多個不同實施例或實例。下文描述元件和佈置的具體實例以簡化本揭露。當然,這些元件和佈置僅是實例且並不意欲為限制性的。舉例來說,在以下描述中,第一特徵在第二特徵上方或第二特徵上的形成可包含第一特徵和第二特徵直接接觸地形成的實施例,且還可包含額外特徵可在第一特徵與第二特徵之間形成使得第一特徵和第二特徵可不直接接觸的實施例。另外,本揭露可在各種實例中重複參考標號和/或字母。此重複是出於簡單和清晰的目的,且本身並不指示所論述的各種實施例和/或配置之間的關係。
此外,為了易於描述,在本文中可使用空間相關術語,例如“在...下方”、“在...下”、“下部”、“在...上”、“上部”等等,以描述如圖中所說明的一個元件或特徵與另一(一些)元 件或特徵的關係。除圖中所描繪的定向以外,空間相對術語意欲涵蓋裝置在使用或操作中的不同定向。設備可以其它方式定向(旋轉90度或處於其它定向),且本文中所使用的與空間相關的描述詞可同樣相應地進行解釋。
壓電金屬-絕緣體-金屬(metal-insulator-metal;MIM)裝置包括佈置在頂部電極與底部電極之間的壓電層。當在頂部電極和底部電極上施加充足電壓偏壓時,在壓電層中可引發機械應力。機械應力可用於例如聲學、機械性和/或光學應用。壓電層的結構中的改變可影響壓電層中的其它電子特性,如電容率(permittivity)、電容、極化等。
隨時間推移,由於在裝置的運行模式期間在壓電層上施加電壓脈衝,電荷可在壓電層與頂部電極或底部電極之間的介面處累積。電荷累積也稱為壓印(imprint effect)效應(例如靜態壓印或動態壓印),可劣化壓電MIM裝置的裝置性能。靜態壓印可在向壓電MIM裝置施加電壓偏壓之後出現,且隨後壓電MIM裝置存儲較長一段時間。動態壓印可在向壓電MIM裝置施加連續的單極偏壓脈衝之後出現。舉例來說,如果在壓電MIM裝置中出現壓印效應(例如,靜態壓印或動態壓印),那麼當未向壓電MIM裝置施加電壓偏壓時,例如壓電層的特性(如電容率、電容、極化和/或壓電係數(piezoelectric coefficient))可明顯改變,由此劣化壓電MIM裝置性能。因此,電學特性或機械特性(如電容率、電容、極化、壓電係數或類似特性)的劣化可用於定量壓電MIM 裝置的壓印程度。
本揭露的各種實施例提供一種用於恢復或防止劣化壓電MIM裝置的方法。在一些實施例中,可在運行模式中將壓電裝置操作第一時段的時間,其可包括壓電裝置的一或多個電壓偏壓和/存儲的應用。包括雙極性半波的恢復操作可在壓電裝置的性能參數達到預定閾值後進行。預定閾值可表明在壓電裝置中已出現壓印效應,或在壓電裝置中壓印效應即將出現。
在預定閾值的檢測後,可進行雙極性半波的一或多個迴圈以恢復劣化壓電裝置。雙極性半波可包括在具有第一極性的第一振幅處的電壓偏壓的應用。隨後將電壓偏壓調節到具有與第一極性相反的第二極性的第二振幅,其中第一振幅的量值等於第二振幅的量值。接著可將電壓偏壓調節到等於零的第三振幅。在一些實施例中,第一振幅的量值小於或等於劣化之前的壓電裝置的矯頑電場(electric coercive field)電壓。藉由向壓電裝置施加雙極性半波,可減小壓電層與頂部電極或底部電極之間的介面處的電荷累積,且可恢復由壓印效應(例如靜態壓印或動態壓印)導致的壓電裝置的劣化特性。由於雙極性半波的電壓偏壓具有小於或等於壓電裝置的矯頑電場電壓的振幅,壓電裝置的結構並不經歷疲勞。因此,雙極性半波可復原或提高在並未通過疲勞劣化壓電裝置的機械結構的情況下壓電裝置運行的可靠性。
圖1說明聯接到控制電路的壓電裝置的一些實施例的橫截面視圖100。
橫截面視圖100中的壓電裝置在一些實施例中可包括基板102上方的底部電極104。可將壓電層106佈置在底部電極104上方和頂部電極108下方。在一些實施例中,鈍化層(passivation layer)110可佈置在頂部電極108的頂部表面上方,且覆蓋頂部電極108、壓電層106以及底部電極104的外側壁。在一些實施例中,與壓電層106和頂部電極108相比,底部電極104可更寬,且壓電層106和頂部電極108可具有彼此大體上對準的最外側壁。第一金屬墊112a可佈置在頂部電極108上方並延伸穿過鈍化層110以直接接觸頂部電極108。第一金屬墊112a由鈍化層110與壓電層106和底部電極104間隔開。在一些實施例中,第一金屬墊112a也在基板102上方。第二金屬墊112b可佈置在底部電極104上方並延伸穿過鈍化層110以直接接觸底部電極104。在一些實施例中,第二金屬墊112b由鈍化層110與壓電層106和/或頂部電極108隔開。在一些實施例中,第二金屬墊112b也在基板102上方。第二金屬墊112b與第一金屬墊112a間隔開。在一些實施例中,將電觸點114與第一金屬墊112a和第二金屬墊112b中的每一個聯接。在一些實施例中,電觸點114是焊料凸塊。
在一些實施例中,第一金屬墊112a和第二金屬墊112b各自延伸穿過鈍化層110中的開口。在一些實施例中,鈍化層110中的開口的寬度可各自介於約10微米與約50微米之間、約50微米與約100微米之間、約100微米與約500微米之間、約500微米與約10毫米之間以及約10毫米與約100毫米之間的範圍內。 此外,在一些實施例中,鈍化層110、頂部電極108、壓電層106、底部電極104以及第一金屬墊112a和第二金屬墊112b可各自具有在介於約10埃與約100埃之間、約100埃與約100納米之間、約100納米與約1微米之間、約1微米與約100微米之間以及約100微米與約1毫米之間的範圍內的厚度。
在一些實施例中,底部電極104和頂部電極108可各自包括例如不銹鋼、黃銅、銅、鍍鋅的鐵、軟鋼、鉛、蒙乃爾合金(monel)、鎳、鎳-鉻、鋅、磷青銅、鋁、鉑、金、釕、銅合金、石墨、鈣、碳酸銫、氟化鋰、氧化鉬(IV)、銀、碳、鈀、錫、鋼、鈧、鈦、釩、鉻、錳、鈷、鋅、鎵、銦、鉈、摻雜矽、多晶矽、鍺、銻、鎢、鉿、銥、混合型金屬氧化物、氮化鈦、氮化鉭或類似物。在一些實施例中,底部電極104包括與頂部電極108相同的材料,然而在其它實施例中,底部電極104可包括與頂部電極108不同的材料。在一些實施例中,壓電層106可包括例如鋯鈦酸鉛、氮化鋁、鈮酸鋰、砷化鎵、氧化鋅、石英單晶、聚合物膜壓電材料(例如PVDF)、一些其它壓電材料或前述內容的組合。
此外,在壓電裝置的其它實施例中,壓電層106可設置在頂部電極108與底部電極104之間。壓電層106、底部電極104以及頂部電極108可由層間介電層包圍。此外,在此類其它實施例中,通孔可聯接到頂部電極108和底部電極104而不是第一金屬墊112a和第二金屬墊112b。
在一些實施例中,控制電路120可經由電線116聯接到 電觸點114。因此,控制電路120可聯接到底部電極104和頂部電極108。控制電路120配置成經由底部電極104和頂部電極108在壓電層106上施加電壓偏壓。舉例來說,在一些實施例中,將底部電極104接地,且控制電路120配置成將電壓施加到頂部電極108。
在一些實施例中,控制電路120配置成在運行模式和復原模式中操作壓電裝置。運行模式涉及控制電路120在壓電層106上施加電壓偏壓脈衝以在壓電層106中引發機械應力。在運行模式期間,電荷載子(charge carriers)可累積在壓電層106與底部電極104之間的第一介面124處,或電荷載子可累積在壓電層106與頂部電極108之間的第二介面128處。舉例來說,在一些實施例中,可由控制電路120在壓電層106上施加多個具有同一極性的電壓偏壓。因此,可不斷在取決於極性的某一方向上偏壓電荷載子(例如,從底部電極104到頂部電極108,或從頂部電極108到底部電極104),且電荷載子可累積在第一介面124或第二介面128處,由此劣化壓電裝置性能。在其它實施例中,壓電裝置可存儲較長一段時間,且電荷載子可累積在第一介面124或第二介面128處,且劣化壓電裝置性能。
為改進壓電裝置性能,控制電路120可配置成藉由使用小於或等於壓電層106的矯頑電場電壓的雙極電壓偏壓來施加雙極性半波而在復原模式中操作。在一些實施例中,控制電路120配置成多次施加雙極性半波以通過在第一介面124或第二介面 128處減少電荷載子累積來改進壓電裝置性能。
圖2說明聯接到測量電路和偏壓電路的壓電裝置的一些實施例的橫截面視圖200。
在一些實施例中,圖1的控制電路120可包括偏壓電路210和測量電路220。因此,在一些實施例中,可將測量電路220和偏壓電路210聯接到頂部電極108和底部電極104。此外,在一些實施例中,可將測量電路220聯接到偏壓電路210。在其它實施例中,可將測量電路220直接聯接到偏壓電路210,而非直接聯接到壓電裝置的底部電極104和頂部電極108。
在一些實施例中,偏壓電路210可配置成在壓電層106上施加不同的幅值、極性和/或時間段的電壓偏壓以在運行模式和復原模式中操作。測量電路220可配置成確定偏壓電路210何時將在復原模式中操作。在一些實施例中,測量電路220配置成檢測壓電裝置的性能參數已達到預定閾值或與預定閾值有偏離。舉例來說,在一些實施例中,性能參數可以是壓電層106的電學特性,例如電容率、電容、極化或壓電係數。在一些實施例中,預定閾值發生在出現壓印之前,然而在其它實施例中,預定閾值發生在出現壓印之後。舉例來說,在一些實施例中,預定閾值可定義電容的劣化。在此類實施例中,當壓電裝置的電容已與參考值偏離大於預定閾值(例如4%)時,電容可視為已被劣化。在一些實施例中,參考值可以是壓電裝置的性能參數的初始值。儘管如此,一旦測量電路220檢測到劣化,測量電路220就可向偏壓電 路210發送信號以施加雙極性半波從而恢復壓電裝置。
在其它實施例中,壓電裝置的性能參數可以是預定執行時間或預定運行脈衝數值。舉例來說,在一些實施例中,測量電路220可對偏壓電路210已在運行模式中操作的時間進行計數。在藉由測量電路220檢測到時間已達到預定執行時間後,測量電路220可向偏壓電路210發送信號以施加雙極性半波,從而恢復壓電裝置。舉例來說,在一些實施例中,預定執行時間可以是數分鐘、數小時、數天、數周等。此外,在一些實施例中,運行脈衝的預定數值可從一個脈衝到數千個脈衝變動。
在一些實施例中,偏壓電路210配置成多次施加雙極性半波以增加壓電裝置的恢復。在一些實施例中,在恢復操作中由偏壓電路210進行的雙極性半波的數量被預先設定。在其它實施例中,測量電路220可測量壓電裝置的性能參數,且檢測性能參數何時已恢復。在一些實施例中,性能參數的恢復可基於例如預定恢復性能值,或預定閾值與性能參數之間的改進百分比。在其它實施例中,所進行的雙極性半波的數值可基於環的預定數值或預定時間段。
圖3說明與壓電裝置的滯迴線(hysteresis loop)相關的雙極性半波的一些實施例的曲線圖300。
曲線圖300說明極化相對於壓電裝置電壓,例如在圖1和圖2中所說明的壓電裝置。壓電材料的矯頑電場是壓電材料能夠在在去極化之前所能耐受的最大電場。圖3中的曲線圖300利 用壓電層的厚度,使得矯頑電場可被量化為滯迴線302中的矯頑電場電壓。而定量滯迴線302表示壓電裝置的極化隨著向壓電裝置施加的電壓偏壓由零伏升高到第一正電壓316、降低到第一負電壓306以及升高回到零伏而變化。壓電裝置的矯頑電場電壓是極化等於零的電壓。在多個實施例中,如圖3所說明,壓電裝置具有在任何壓印效應(例如靜態壓印或動態壓印)前由滯迴線302確定的正矯頑電場電壓314和負矯頑電場電壓308。在一些實施例中,正矯頑電場電壓314和負矯頑電場電壓308在量值上相等。舉例來說,在一些實施例中,正矯頑電場電壓314可以是大致3伏,且負矯頑電場電壓308可以是大致-3伏。
在一些實施例中,在恢復操作中向壓電裝置施加雙極性半波304。藉由正矯頑電場電壓314和負矯頑電場電壓308來分別確定雙極性半波304的最大電壓偏壓和最小電壓偏壓。因此,在一些實施例中,為了向被劣化的壓電裝置施加雙極性半波304,由控制電路(圖1的120)向壓電裝置施加的電壓偏壓可(例如)從起始電壓(例如零伏)升高到正矯頑電場電壓314,降低到負矯頑電場電壓308,且升高到等於起始電壓的結束電壓(例如零伏)。在其它實施例中,雙極性半波304具有低於正矯頑電場電壓314的最大電壓和大於負矯頑電場電壓308的最小電壓。因此,雙極性半波304的最大電壓和最小電壓等於正矯頑電場電壓314和負矯頑電場電壓308或在所述正矯頑電場電壓與所述負矯頑電場電壓之間,以在壓電層106中防止疲勞時恢復被劣化的壓電裝置。
圖4說明在向壓電裝置施加連續單極脈衝之後施加雙極性半波的一些實施例的時序圖400。
在一些實施例中,在運行模式期間,控制電路(圖1的120)可施加多個單極脈衝402。多個單極脈衝402的每一脈衝404可具有在第一時間段t1內保持的第一振幅。在一些實施例中,如圖4中所說明,第一振幅可等於第一正電壓316,例如,或在一些實施例中,可等於第一負電壓306。在其它實施例中,第一振幅可大於或低於第一正電壓316。在一些實施例中,第一正電壓316可大於正矯頑電場電壓314,且第一負場電壓306可低於負矯頑電場電壓308。然而,提高第一振幅可提高壓電裝置的性能參數的劣化率。此外在一些實施例中,每一個脈衝404可具有相同第一振幅和/或第一時間段t1,然而在其它實施例中,每一個脈衝404的第一振幅和/或第一時間段t1可不同。然而,每一個脈衝404具有同一極性,這可在壓電裝置中產生動態壓印。
因此,在一些實施例中,在第二時間段t2內已向壓電裝置施加多個單極脈衝402之後,可對壓電裝置施加包括雙極性半波304的恢復操作以恢復或防止壓電裝置出現動態壓印效應。為了進行雙極性半波304,控制電路(圖1的120)可將對壓電裝置施加的電壓偏壓提高到具有保持第四時間段t4的第一極性的第二振幅,將電壓偏壓降低到具有保持第四時間段t4的第二極性的第三振幅,且將電壓偏壓從第三振幅提高到零。在一些實施例中,第二振幅等於第三振幅,且第一極性與第二極性相反。第一振幅 和第二振幅具有小於或等於壓電裝置的正矯頑電場電壓308和負矯頑電場電壓314的幅值。在圖4中,首先施加正矯頑電場電壓314,且隨後可施加負矯頑電場電壓308。在其它實施例中,可首先施加負矯頑電場電壓308,且隨後可施加正矯頑電場電壓314。儘管如此,可在已對壓電裝置施加多個單極脈衝402以使壓電裝置從動態壓印效應中恢復之後,在第三時間段t3內施加雙極性半波304。
圖5說明在壓電裝置經歷長存儲時間以恢復壓電裝置之後施加雙極性半波的一些實施例的時序圖500。
在一些實施例中,在運行模式期間,控制電路(圖1的120)可向壓電裝置施加包括後接長存儲時間步驟506的脈衝504的靜態序列502。如圖4中的每一個脈衝404,在一些實施例中,圖5中的脈衝504可具有在第一時間段t1內保持的第一振幅。在一些實施例中,第一振幅等於第一正電壓316,例如,或第一負電壓306。在其它實施例中,第一振幅可高於或低於第一正電壓316,或高於或低於第一負電壓306。在第一時間段t1之後,在長存儲時間步驟506期間,控制電路(圖1的120)可能不在第五時間段t5內向壓電裝置施加電壓偏壓。在一些實施例中,第五時間段t5可大於第一時間段t1。儘管如此,在一些實施例中,長存儲時間步驟506(例如Q時間)可造成壓電裝置中的靜態壓印,進而劣化壓電裝置的特性。在一些實施例中,為將壓電裝置的劣化特性從靜態壓印效應中復原,可在長存儲時間步驟506之後在第三時間 段t3內執行雙極性半波。
圖6說明在壓電裝置經歷長存儲時間之前施加雙極性半波以防止壓電裝置中的劣化的一些實施例的時序圖600。
除在圖6中,在長存儲時間步驟506之前進行雙極性半波304以外,圖6的時序圖600包括與圖5的時序圖500中相同的脈衝504、雙極性半波304以及長存儲時間步驟506。在一些實施例中,在長存儲時間步驟506之前進行雙極性半波304,以在長存儲時間步驟506期間藉由降低極化來防止在壓電裝置中出現的靜態壓印效應及因此在壓電裝置的第一介面或第二介面(例如124、128)處的電荷累積。
圖7A說明壓電裝置的電容率的劣化、壓印以及恢復的一些實施例的曲線圖700A。
圖7A中的曲線圖700A包括用於每一個“測試數量”的多個電容率資料點606。在一些實施例中,測試可包括多個單極脈衝(圖4中的402)、多個靜態序列(圖5中的502)或其組合。舉例來說,在一些實施例中,測試可包括長存儲時間步驟506之後的多個單極脈衝(圖4中的402)。在每一個測試之後,可在零伏下測量壓電裝置的電容率或一些其它性能參數並將其作為電容率資料點606記錄在曲線圖700A上。多個電容率資料點606的第一組702說明隨時間推移壓電裝置的電容率減小的程度。然而,在第一組702與多個電容率資料點606的第二組602之間,壓電裝置的電容率明顯減小到壓印電容率706,且在整個第二組602 中保持恒定。因此,壓印效應(例如靜態壓印或動態壓印)可出現在第一組702的最後一次測試與第二組602的第一次測試之間。
在一些實施例中,在第二組602的結束處,包括雙極性半波(例如圖4中的304)的恢復操作604可提高壓電裝置的電容率。儘管恢復操作604可能未將壓電裝置的電容率完全恢復到初始電容率708,但恢復操作604可將壓電裝置的電容率從壓印電容率706提高到恢復電容率707。在一些實施例中,壓印電容率706較初始電容率708低百分之十。因此,儘管電容率資料點606可能在恢復操作604之後在第三組中未與第一組702中的多個電容率資料點606同樣高,但恢復操作604仍在壓印效應之後改進壓電裝置的性能參數。
圖7B說明執行雙極性半波以在靜態壓印之後恢復壓電裝置的一些實施例的時序圖700B。
圖7B的時序圖700B可對應於圖7A的曲線圖700A。舉例來說,在一些實施例中,圖7A的每一個電容率資料點606可表示在每一靜態序列502之後的壓電裝置的所測量電容率。因此,在圖7A的第一組702中,存在九個電容率資料點606;且在圖7B的第一組702中,存在九個靜態序列502。在一些實施例中,多個靜態序列502的第一組702可在第六時間段t6內出現,且多個靜態序列502的第二組602可在第七時間段t7內出現。在第一組702與第二組602之間可出現靜態壓印效應。為了將壓電裝置從靜態壓印效應中恢復,恢復操作604可包括大於一個雙極性半波304。 舉例來說,如圖7B中所說明,在恢復操作604中在第八時間段t8內進行十個雙極性半波304。在其它實施例中,恢復操作604中的雙極性半波304的總數可在大致一個雙極性半波304與大致100個雙極性半波304之間的範圍中。
在一些實施例中,在恢復操作604中進行的雙極性半波304的總數取決於例如可節省多少時間、期望恢復到什麼程度和/或可供使用的功率量。在一些實施例中,每一個雙極性半波304在例如大致等於40毫秒的第三時間段t3內出現。在一些實施例中,雙極性半波304持續直到測量電路(圖2中的220)確定已達到預定恢復性能值,或已達到預定閾值與性能參數之間的改進百分比。預定恢復性能值可基於例如壓電裝置的性能參數的測量值、第八時間段t8或雙極性半波值的數值。因此,藉由在恢復操作604中使用一或多個雙極性半波304,可改進因壓印效應所致的劣化壓電裝置的特性。
圖7C說明執行雙極性半波以在動態壓印之後恢復壓電裝置的一些實施例的時序圖700C。
圖7C的時序圖700C可對應於圖7A的曲線圖700A。舉例來說,在一些實施例中,圖7A的每一個電容率資料點606可表示在多個單極脈衝402的每一集合之後的壓電裝置的所測量電容率。在一些實施例中,多個單極脈衝402的每一集合可包括三個脈衝(圖4中的404),然而在其它實施例中,多個單極脈衝402的每一集合可包括大於或小於三個脈衝(圖4中的404)。在圖7A 的第一組702中,存在九個電容率資料點606;且在圖7C的第一組702中,存在多個單極脈衝402的九個集合。在第一組702與第二組602之間,可出現動態壓印效應。為將壓電裝置從動態壓印效應中恢復,恢復操作604可包括大於一個雙極性半波304。
圖8A說明在壓印效應之前恢復壓電裝置的電容率的一些實施例的曲線圖800A。
圖8A中的曲線圖800A說明如何在第一組702之後但在第二組(圖7A中的602)之前施加恢復操作604使得壓電裝置可在壓印效應(例如靜態壓印或動態壓印)出現之前恢復。儘管壓印效應尚未完全出現,如第二組(圖7A中的602)中所繪示,壓電裝置的電容率仍可能降低。在一些實施例中,藉由防止壓印效應,恢復操作604可在改進壓電裝置的劣化裝置性能中更有效。
在一些實施例中,因為中間電容率710或壓電裝置的一些其它性能參數已達到性能參數預定閾值,因此可對壓電裝置施加恢復操作604。在其它實施例中,由於壓電裝置的中間電容率710已與初始電容率708(例如參考值)偏離大於性能參數預定閾值,因此可對壓電裝置施加恢復操作604。在一些實施例中,裝置劣化的測量和確定可由測量電路(圖2中的220)執行。在另外其它實施例中,當脈衝的總數或時間段已達到預定閾值,同時壓電裝置在第一組702期間處於運行模式中時,可進行恢復操作604以防止壓印效應(例如靜態壓印或動態壓印)。
圖8B說明在壓電裝置由於靜態壓印而劣化前執行雙極 性半波的一些實施例的時序圖800B。
圖8B的時序圖800B可對應於圖8A的曲線圖800A。舉例來說,在一些實施例中,圖8A的每一個電容率資料點606可表示在每一靜態序列502之後的壓電裝置的所測量電容率。因此,在圖8A的第一組702中,存在九個電容率資料點606;且在圖8B的第一組702中,存在九個靜態序列502。然而,多個靜態序列502中的最後一個靜態序列802可能不包括長存儲時間步驟506。
在一些實施例中,由於在靜態壓印效應之前進行恢復操作604,因此相較於如果恢復操作604是在靜態壓印效應(例如圖7B)之後執行,可在恢復操作604中使用更少雙極性半波304。在實施例中,為了更改進壓電裝置,相較於,在靜態壓印效應之前進行的恢復操作604中使用的雙極性半波304的數量可等於或大於在靜態壓印效應之後進行的雙極性半波304的數量。
圖8C說明在壓電裝置由於動態壓印而劣化前執行雙極性半波的一些實施例的時序圖700B。
圖8C的時序圖800C可對應於圖8A的曲線圖800A。舉例來說,在一些實施例中,圖8A的每一個電容率資料點606可表示在多個單極脈衝402的每一集合之後的壓電裝置的所測量電容率。因此,在圖8A的第一組702中,存在九個電容率資料點606;且在圖8B的第一組702中,存在多個單極脈衝402的九個集合。在一些實施例中,為了防止動態壓印出現且改進劣化壓電裝置的任意性能參數,可在第一組702之後進行恢復操作604。
圖9說明在檢測到性能參數達到預定閾值後對壓電裝置執行雙極性半波的方法900的一些實施例的流程圖。
雖然方法900在下文說明且描述為一系列動作或事件,但應瞭解,不應以限制意義來解釋此類動作或事件的所說明排序。舉例來說,除本文中所說明和/或所描述的動作或事件之外,一些動作可與其它動作或事件以不同次序和/或同時出現。另外,可能並非需要所有說明的動作來實施本文中的描述的一或多個方面或實施例。另外,本文中所描繪的動作中的一或多個可在一或多個單獨動作和/或階段中進行。
在動作902處,在運行模式中藉由向壓電裝置施加第一振幅下的一或多個電壓脈衝來操作壓電裝置。圖4說明對應於動作902的一些實施例的時序圖400。
在動作904處,確定壓電裝置的性能參數已達到預定閾值。
在動作906處,藉由執行動作906a、動作906b以及動作906c來對壓電裝置施加雙極性半波。
在動作906a處,對壓電裝置施加第一電壓偏壓,其中第一電壓偏壓具有第一極性和第二振幅。
在動作906b處,將第一電壓偏壓調節到第二電壓偏壓,其中第二電壓偏壓具有第二振幅和與第一極性相反的第二極性。
在動作906c處,將第二電壓偏壓調節到等於零的第三電壓偏壓。圖8A、圖8B以及圖8C分別說明對應於動作904、動作 906、動作906a、動作906b以及動作906c的一些實施例的曲線圖800A、時序圖800B以及時序圖800C。
因此,本揭露涉及對壓電裝置執行雙極性半波以防止壓印效應或在壓印效應之後進行恢復以減少壓電裝置的劣化並提高壓電裝置的可靠性的方法。
因此,在一些實施例中,本揭露涉及用於恢復壓電裝置的劣化裝置性能的方法,所述方法包括:在運行模式中藉由對所述壓電裝置施加大於或等於第一振幅的一或多個電壓脈衝以在第一時間段內操作所述壓電裝置;在第一時間段的期間確定壓電裝置的性能參數具有已與參考值偏離大於預定閾值的的第一值;在第二時間段內對壓電裝置施加雙極性半波,包括正電壓偏壓和負電壓偏壓,第二時間段在第一時間段之後;以及在運行模式中在第二時間段之後的第三時間段內操作壓電裝置,其中壓電裝置的性能參數在第三時間段的期間具有第二值,且其中第二值與參考值之間的絕對差低於第一值與參考值之間的絕對差。
在一些實施例中,性能參數是壓電裝置的電容率。
在一些實施例中,性能參數對應于第一時間段。
在一些實施例中,施加雙極性半波包括:對壓電裝置施加第一電壓偏壓,其中第一電壓偏壓具有第二振幅和第一極性;將第一電壓偏壓調節到第二電壓偏壓,其中第二電壓偏壓具有第二振幅和與第一極性相反的第二極性,其中第二振幅低於第一振幅;以及將第二電壓偏壓調節到第一電壓偏壓與第二電壓偏壓之 間的第三電壓偏壓。
在一些實施例中,第二振幅小於或等於壓電裝置的矯頑電場電壓。第一振幅大於矯頑電場電壓。
在一些實施例中,第三電壓偏壓等於零。
在其它實施例中,本揭露涉及用於防止壓電裝置的劣化裝置性能的方法,所述方法包括:在運行模式中藉由對所述壓電裝置施加大於或等於第一振幅的一或多個電壓脈衝以在第一時間段內操作所述壓電裝置,其中第一振幅大於壓電裝置的矯頑電場電壓;確定已達到運行模式的預定閾值;以及藉由以下操作在第二時間段內對壓電裝置執行雙極性半波:在第一極性下的第二振幅下在壓電裝置上施加電壓偏壓信號;將壓電裝置上的電壓偏壓信號從第二振幅調節到在與第一極性相反的第二極性下的第三振幅,其中第二振幅等於第三振幅,且其中第二振幅小於或等於壓電裝置的矯頑電場電壓;以及將壓電裝置上的電壓偏壓信號從第三振幅調節到第二振幅與第三振幅之間的第四振幅。
在一些實施例中,預定閾值對應于預定時間段。當第一時間段等於預定時間段時已達到預定閾值。
在一些實施例中,預定閾值對應於脈衝的預定數。當運行模式的一或多個電壓脈衝的總數等於脈衝的預定數時已達到預定閾值。
在一些實施例中,所述一或多個電壓脈衝的每一個脈衝具有同一極性。
在一些實施例中,在第一時間段之前,壓電裝置的性能參數等於第一值。在第一時間段之後和在第二時間段之前,壓電裝置的性能參數等於已與第一值偏離第一絕對差的第二值。在第二時間段之後,壓電裝置的性能參數等於已與第一值偏離第二絕對差的第三值,第二絕對差低於第一絕對差。
在一些實施例中,雙極性半波被多次執行。
在一些實施例中,運行模式更包括在所述一或多個電壓脈衝的每一個脈衝之間的第三時間段將電壓偏壓信號保持為零。
在一些實施例中,第一時間段開始於所述一或多個電壓脈衝的第一脈衝的起始處並結束於所述一或多個電壓脈衝的最後一個脈衝的結束處。第二時間段在第一時間段之後。
在另外其它實施例中,本揭露涉及一種系統,所述系統包括:壓電裝置,設置在半導體基板上,壓電裝置包括設置於第一電極與第二電極之間的壓電結構;偏壓電路,電性聯接到第一電極和第二電極,其中偏壓電路配置成在運行模式中藉由在壓電結構上施加電壓偏壓來操作;測量電路,電性聯接到偏壓電路,其中測量電路配置成檢測在運行模式期間已達到預定閾值;且其中偏壓電路配置成在預定閾值的檢測後藉由以下操作來執行恢復操作:將電壓偏壓從起始值提高到在第一極性下的第一量值,將電壓偏壓從在第一極性下的第一量值降低到在與第一極性相反的第二極性下的第一量值,以及將電壓偏壓從在第二極性下的第一量值提高到等於起始值的結束值。
在一些實施例中,測量電路電性連接到壓電裝置。測量電路配置成測量壓電裝置的性能參數。測量電路配置成檢測性能參數何時達到預定閾值。
在一些實施例中,測量電路配置成在運行模式中對由偏壓電路施加的電壓偏壓脈衝的數量進行計數。預定閾值是由測量電路所計數的電壓偏壓脈衝的預定數量。
在一些實施例中,測量電路配置成測量偏壓電路處於運行模式中的總時間。預定閾值是由測量電路所測量的預定時間。
在一些實施例中,第一量值小於或等於壓電結構的矯頑電場電壓。
在一些實施例中,測量電路配置成在恢復操作期間測量壓電結構的參數值,其中測量電路配置成確定當與預定閾值相比時參數值已恢復。偏壓電路配置成重複恢復操作直至確定參數值的恢復為止。
前文概述若干實施例的特徵使得本領域的技術人員可更好地理解本揭露的各個方面。本領域的技術人員應瞭解,其可易於使用本揭露作為設計或修改用於進行本文中所介紹的實施例的相同目的和/或實現相同優勢的其它過程和結構的基礎。本領域的技術人員還應認識到,此類等效構造並不脫離本揭露的精神和範圍,且其可在不脫離本揭露的精神和範圍的情況下在本文中進行各種改變、替代和更改。
902、904、906、906a、906b、906c:動作

Claims (10)

  1. 一種用於恢復壓電裝置的劣化裝置性能的方法,包括:在運行模式中藉由對所述壓電裝置施加大於或等於第一振幅的一或多個電壓脈衝以在第一時間段內操作所述壓電裝置;在所述第一時間段的期間確定所述壓電裝置的性能參數具有已與參考值偏離大於預定閾值的第一值;在第二時間段對所述壓電裝置施加包括正電壓偏壓和負電壓偏壓的雙極性半波,所述第二時間段在所述第一時間段之後;以及在所述第二時間段之後的第三時間段以所述運行模式操作所述壓電裝置,其中所述壓電裝置的所述性能參數在所述第三時間段的期間具有第二值,且其中所述第二值與所述參考值之間的絕對差低於所述第一值與所述參考值之間的絕對差。
  2. 如申請專利範圍第1項所述的方法,其中所述性能參數對應於所述第一時間段以及所述第三時間段。
  3. 如申請專利範圍第1項所述的方法,其中施加所述雙極性半波包括:對所述壓電裝置施加第一電壓偏壓,其中所述第一電壓偏壓具有第二振幅和第一極性;將所述第一電壓偏壓調節到第二電壓偏壓,其中所述第二電壓偏壓具有所述第二振幅和與所述第一極性相反的第二極性,其中所述第二振幅低於所述第一振幅;以及 將所述第二電壓偏壓調節到所述第一電壓偏壓與所述第二電壓偏壓之間的第三電壓偏壓。
  4. 如申請專利範圍第3項所述的方法,其中所述第二振幅小於或等於所述壓電裝置的矯頑電場電壓,且其中所述第一振幅大於所述矯頑電場電壓。
  5. 一種用於防止壓電裝置的劣化裝置性能的方法,包括:在運行模式中藉由對所述壓電裝置施加大於或等於第一振幅的一或多個電壓脈衝以在第一時間段內操作所述壓電裝置,其中所述第一振幅大於所述壓電裝置的矯頑電場電壓;確定已達到所述運行模式的預定閾值;以及在第二時間段藉由以下操作對所述壓電裝置執行雙極性半波:以第一極性的第二振幅在所述壓電裝置上電壓偏壓信號;將藉由施加在所述壓電裝置上的所述電壓偏壓信號從所述第二振幅調節到在與所述第一極性相反的第二極性的第三振幅,其中所述第二振幅等於所述第三振幅,且其中所述第二振幅小於或等於所述壓電裝置的所述矯頑電場電壓;以及將藉由施加在所述壓電裝置上的所述電壓偏壓信號從所述第三振幅調節到所述第二振幅與所述第三振幅之間的第四振幅。
  6. 如申請專利範圍第5項所述的方法, 其中在所述第一時間段之前,所述壓電裝置的性能參數等於第一值;其中在所述第一時間段之後和在所述第二時間段之前,所述壓電裝置的所述性能參數等於已與所述第一值偏離第一絕對差的第二值;以及其中在所述第二時間段之後,所述壓電裝置的所述性能參數等於已與所述第一值偏離第二絕對差的第三值,所述第二絕對差低於所述第一絕對差。
  7. 一種用於防止壓電裝置的劣化裝置性能的系統,包括:壓電裝置,設置在半導體基板上,所述壓電裝置包括設置在第一電極與第二電極之間的壓電結構;偏壓電路,電性聯接到所述第一電極和所述第二電極,其中所述偏壓電路配置成在運行模式中藉由施加在所述壓電裝置上的電壓偏壓信號來操作;測量電路系統,電性聯接到所述偏壓電路,其中所述測量電路配置成檢測在所述運行模式期間已達到預定閾值;且其中所述偏壓電路配置成在所述預定閾值的檢測後藉由以下操作來執行恢復操作:將所述電壓偏壓從起始值提高到在第一極性的第一量值,將所述電壓偏壓從在所述第一極性的所述第一量值降低到在與所述第一極性相反的第二極性下的所述第一量值,以及 將所述電壓偏壓從在所述第二極性下的所述第一量值提高到等於所述起始值的結束值。
  8. 如申請專利範圍第7項所述的系統,其中所述測量電路電性聯接到所述壓電裝置,其中所述測量電路配置成測量所述壓電裝置的性能參數,其中所述測量電路配置成檢測所述性能參數何時達到所述預定閾值。
  9. 如申請專利範圍第7項所述的系統,其中所述測量電路配置成在所述運行模式中對由所述偏壓電路施加的電壓偏壓脈衝的數量進行計數,且其中所述預定閾值是由所述測量電路所計數的電壓偏壓脈衝的預定數量。
  10. 如申請專利範圍第7項所述的系統,其中所述測量電路配置成測量所述偏壓電路處於所述運行模式中的總時間,且其中所述預定閾值是由所述測量電路所測量的預定時間。
TW108138665A 2019-08-07 2019-10-25 用於恢復或防止壓電裝置的劣化裝置性能的方法及其系統 TWI737025B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/534,330 2019-08-07
US16/534,330 US11456330B2 (en) 2019-08-07 2019-08-07 Fatigue-free bipolar loop treatment to reduce imprint effect in piezoelectric device

Publications (2)

Publication Number Publication Date
TW202121678A TW202121678A (zh) 2021-06-01
TWI737025B true TWI737025B (zh) 2021-08-21

Family

ID=74367884

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138665A TWI737025B (zh) 2019-08-07 2019-10-25 用於恢復或防止壓電裝置的劣化裝置性能的方法及其系統

Country Status (3)

Country Link
US (3) US11456330B2 (zh)
CN (1) CN112350612A (zh)
TW (1) TWI737025B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456330B2 (en) * 2019-08-07 2022-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Fatigue-free bipolar loop treatment to reduce imprint effect in piezoelectric device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134428A (ja) * 2010-12-24 2012-07-12 Canon Inc 圧電デバイスの駆動方法
JP2014054800A (ja) * 2012-09-13 2014-03-27 Ricoh Co Ltd 圧電体の駆動方法、液滴吐出ヘッドの駆動方法、液滴吐出ヘッド、及び画像記録装置
TW201414026A (zh) * 2012-09-19 2014-04-01 Fujifilm Corp 壓電元件及其使用方法
CN105835528A (zh) * 2015-01-30 2016-08-10 精工爱普生株式会社 压电元件的驱动方法以及压电元件及压电元件应用装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226433B2 (ja) * 1994-09-22 2001-11-05 松下電器産業株式会社 強誘電体メモリ装置
JP3432747B2 (ja) * 1998-07-14 2003-08-04 シャープ株式会社 液晶表示装置の駆動装置および駆動方法
US6294393B1 (en) * 2000-08-23 2001-09-25 Nec Research Institute, Inc. Reduction of imprint in ferroelectric devices using a depoling technique
JP4487536B2 (ja) * 2002-11-15 2010-06-23 パナソニック株式会社 圧電体アクチュエータの駆動方法および圧電体アクチュエータ並びにこれを用いたディスク記録再生装置
WO2007001063A1 (ja) * 2005-06-29 2007-01-04 Ngk Insulators, Ltd. 圧電/電歪膜型素子
NL1036034A1 (nl) * 2007-10-11 2009-04-15 Asml Netherlands Bv Imprint lithography.
CN101943721B (zh) * 2009-07-10 2012-07-04 复旦大学 一种快速测量铁电薄膜印刻效应的方法
JP5549381B2 (ja) * 2010-05-31 2014-07-16 ブラザー工業株式会社 圧電アクチュエータ装置、及び、インクジェットプリンタ
CN102691164A (zh) * 2012-06-18 2012-09-26 芮国林 选针器压电陶瓷驱动片双驱动系统和驱动方法
US9614463B2 (en) * 2014-02-10 2017-04-04 Tdk Corporation Piezoelectric device, piezoelectric actuator, hard disk drive, and inkjet printer apparatus
JP2016049697A (ja) * 2014-08-29 2016-04-11 株式会社リコー 圧電アクチュエータ、液滴吐出装置及び画像形成装置
US9457560B2 (en) * 2014-09-24 2016-10-04 Xerox Corporation Method of sensing degradation of piezoelectric actuators
DE102015013553B4 (de) * 2015-10-20 2018-03-08 Physik Instrumente (Pi) Gmbh & Co. Kg Verfahren zur Ansteuerung eines Stellelements
US11730058B2 (en) * 2018-09-20 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated heater (and related method) to recover degraded piezoelectric device performance
US11456330B2 (en) * 2019-08-07 2022-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Fatigue-free bipolar loop treatment to reduce imprint effect in piezoelectric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134428A (ja) * 2010-12-24 2012-07-12 Canon Inc 圧電デバイスの駆動方法
JP2014054800A (ja) * 2012-09-13 2014-03-27 Ricoh Co Ltd 圧電体の駆動方法、液滴吐出ヘッドの駆動方法、液滴吐出ヘッド、及び画像記録装置
TW201414026A (zh) * 2012-09-19 2014-04-01 Fujifilm Corp 壓電元件及其使用方法
CN105835528A (zh) * 2015-01-30 2016-08-10 精工爱普生株式会社 压电元件的驱动方法以及压电元件及压电元件应用装置

Also Published As

Publication number Publication date
US20220367564A1 (en) 2022-11-17
US11456330B2 (en) 2022-09-27
CN112350612A (zh) 2021-02-09
US20210043680A1 (en) 2021-02-11
US11856862B2 (en) 2023-12-26
US20240099147A1 (en) 2024-03-21
TW202121678A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US20240099147A1 (en) Fatigue-free bipolar loop treatment to reduce imprint effect in piezoelectric device
US8022599B2 (en) Actuator
KR20160066938A (ko) 마찰대전 발전소자
Wouters et al. Electrical conductivity in ferroelectric thin films
US8228708B2 (en) Semiconductor memory device and a method of operating thereof
KR20190055661A (ko) 강유전 소자의 구동 방법
US20230292620A1 (en) Manufacturing method of a strain gauge sensor
US20130038335A1 (en) Switching apparatus and test apparatus
CN111682100B (zh) 压电产生装置及其制作方法、微机电系统
JP2005347364A (ja) 伸縮可能な圧電素子
US11107630B2 (en) Integration scheme for breakdown voltage enhancement of a piezoelectric metal-insulator-metal device
US11322580B2 (en) Titanium layer as getter layer for hydrogen in a MIM device
US10707405B2 (en) Electromechanical actuator
KR101578321B1 (ko) 온도변화에 의해 에너지를 발생시키는 에너지 발생소자 및 이를 포함하는 온도변화 감지센서
Choi et al. Asymmetric switching and imprint in (La, Sr) CoO3/Pb (Zr, Ti) O3/(La, Sr) CoO3 heterostructures
US20170310087A1 (en) Controlled Thin-Film Ferroelectric Polymer Corona Polarizing System and Process
JP5227566B2 (ja) アクチュエータ
JP2009295941A (ja) 記憶素子およびその製造方法
CN110943155A (zh) 压电器件、恢复压电器件的劣化器件性能的方法及系统
Papaioannou et al. Dielectric charging process in AlN RF-MEMS capacitive switches
KR102026306B1 (ko) 반도체 디바이스 및 반도체 디바이스의 제조 방법
JP2015536580A (ja) 電子部品の製造方法
US20020058343A1 (en) Evaluation method of ferroelectric capacitor and wafer mounted with evaluation element
JP6119861B2 (ja) 化合物半導体装置及びその製造方法
Reis et al. New Insight Into Defects and Degradation Kinetics in Lead Zirconate Titanate