TWI735893B - 氣體流量檢定單元 - Google Patents

氣體流量檢定單元 Download PDF

Info

Publication number
TWI735893B
TWI735893B TW108121465A TW108121465A TWI735893B TW I735893 B TWI735893 B TW I735893B TW 108121465 A TW108121465 A TW 108121465A TW 108121465 A TW108121465 A TW 108121465A TW I735893 B TWI735893 B TW I735893B
Authority
TW
Taiwan
Prior art keywords
pressure
gas
output valve
flow rate
flow
Prior art date
Application number
TW108121465A
Other languages
English (en)
Other versions
TW202012887A (zh
Inventor
城山直也
Original Assignee
日商Ckd股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Ckd股份有限公司 filed Critical 日商Ckd股份有限公司
Publication of TW202012887A publication Critical patent/TW202012887A/zh
Application granted granted Critical
Publication of TWI735893B publication Critical patent/TWI735893B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

提供一種當進行流過比較小流量(例如10sccm左右)之製程氣體之質量流控制器之流量檢測時,直到達到既定壓力為止之等待時間較短之氣體流量檢定單元。 一種氣體流量檢定單元(1A),被配設於質量流控制器(20)與真空幫浦(30)之間,在關閉第1及第2輸出閥(105,106)後,由壓力計(103)所測得之壓力,自既定之量測開始壓力(P1)改變成既定之第2壓力值(P2)之時間(t)、流體之溫度、及自質量流控制器(20)之輸出,至第1及第2輸出閥(105,106)之輸入為止之容積,檢測質量流控制器(20)之精度,其特徵在於:第1及第2輸出閥(105,106)係並列配置,在第2輸出閥106之出口側,配置有調節成為檢測對象之氣體之壓力之節流孔107。

Description

氣體流量檢定單元
本發明係關於一種被配設於流體控制機器與真空幫浦之間,其中,其包括:壓力計,測量流動在前述流體控制機器與前述真空幫浦間之流路之流體之壓力;溫度計,測量前述流體之溫度;以及輸出閥,使前述流體往前述真空幫浦輸出;在關閉前述輸出閥後,由前述壓力計所測得之壓力,自既定之第1壓力值改變成既定之第2壓力值之時間、前述溫度計所測得之前述流體之溫度、及前述流路之中,自流體控制機器至前述輸出閥為止之流路之容積,檢測流體控制機器之精度之氣體流量檢定單元。
在半導體製造工序中,係以流體控制機器(具體說來,係熱式或壓力式之質量流控制器(MFC))精確控制供給到真空腔體之製程氣體之流量。製程氣體係腐蝕性較高,所以,使用於質量流控制器之細管之內徑,係因為腐蝕而改變,而有流量之測量精度降低之問題。為了防止此情事,本案申請者所提案之專利文獻1之在關閉輸出閥之後,由壓力計所測得之壓力,自既定之第1壓力值改變成既定之第2壓力值之時間、流體之溫度、及自質量流控制器至輸出閥為止之流路之容積,檢測質量流控制器之精度之氣體流量檢定單元係被使用。當依據此氣體流量檢定單元時,可正確地進行用於流過1sccm~1000sccm之流量之氣體之質量流控制器之流量檢測。
[專利文獻]
〔專利文獻1〕日本專利第5222935號公報
但是,上述先前技術有如下之問題。
近年來,有時係使氣體流量檢測各以一工序(例如十幾分鐘之時間)進行。其係為了確認製程氣體之流量沒有變化。例如,如圖9所示,使氣體輸入端口50為上游,質量流控制器20、流量控制閥21、氣體流量檢定單元60及真空幫浦30係被串接。氣體流量檢定單元60係具有檢測流路4,該檢測流路4係自上游側,串接有輸入閥102及輸出閥108,輸入閥102與輸出閥108之間,配置有壓力計103及溫度計104。因此,氣體流量檢定單元60係使自氣體輸入端口50輸入,且成為檢測對象之氣體(例如氮氣),自輸出閥108所具有之隔膜閥體(未圖示),可填充檢測氣體到上游側。
以上述構造為基礎,打開流量控制閥21、輸入閥102及輸出閥108,透過質量流控制器20,使設定流量之成為檢測對象之氣體流到真空幫浦30。在氣體流量穩定後,關閉輸出閥108,由藉壓力計103與溫度計104所測得之槽體體積V中之壓力上昇值與溫度變化值,算出氣體流量,藉比較設定流量,進行氣體流量檢測。
而且,氣體流量檢定單元60所使用之壓力計103,係必須高精度者,很多時候係壓力計量測精度範圍(圖5中P1~P3之範圍)被設定較窄。因此,槽體體積V中之壓力,係產生自關閉輸出閥108之時點(圖5中t1)之壓力Pb,至到達既定之量測開始壓力P1為止之等待時間(圖5中t3)。在流過做為比較大流量之1000sccm之製程氣體之質量流控制器之檢測中,雖然等待時間(t3)係1秒左右,但是,在流過做為比較小流量之10sccm之製程氣體之質量流控制器之檢測中,關閉輸出閥108之時點(圖5中t1)之壓力Pb,係變得比流過1000sccm之製程氣體時之壓力還要低,所以,有時等待時間(t3)係成為較長之60~90秒。配合關閉輸出閥108之時點(圖5中t1)之壓力Pb,降低做為壓力計量測精度範圍之下限之P1,藉此,可縮短等待時間t3,但是,壓力計103變得無法以高精度做壓力量測,所以,無法變更壓力計量測精度範圍。
壓力計103之量測時間(圖5中t),係因流量而改變,但是,當例如流量為10sccm時係120秒左右,等待時間t3需耗時90秒時,檢測所需時間係較長之210秒(t3及t之合計)。檢測作業係在每次1工序(約10分)結束時進行,所以,由等待時間t3所致之時間損失會累積,而有較大地影響半導體生產效率之問題。
本發明係為了解決上述問題點所研發出者,其目的在於提供一種在進行流過比較小流量(例如10sccm左右)之製程氣體之質量流控制器之流量檢測時,到達既定之壓力為止之等待時間較短之氣體流量檢定單元。
本發明一態樣中之氣體流量檢定單元,係具有如下之構造。 (1)一種氣體流量檢定單元,被配設於流體控制機器與真空幫浦之間,其中,其包括:壓力計,測量流過流體控制機器與真空幫浦間之流路之流體之壓力;溫度計,測量流體之溫度;以及輸出閥,使流體往前述真空幫浦輸出;在關閉輸出閥後,由壓力計所測得之壓力,自既定之第1壓力值改變為既定之第2壓力值之時間、溫度計所測得之流體之溫度、及前述流路之中,自流體控制機器至輸出閥為止之流路之容積,檢測流體控制機器之精度,其特徵在於:其包括改變自輸出閥輸出之流體之流量之流量改變機構。
(2)在(1)所述之構造中,輸出閥係兩個並列配置,其中一個輸出閥之出口側之流路,最好配置有節流孔。 (3)在(2)所述之構造中,最好節流孔之孔徑係可變。
(4)在(1)所述之構造中,輸出閥係僅配置有一個,在輸出閥之出口側之流路,最好配置有孔徑為可變之節流孔。
[發明效果]
本發明之氣體流量檢定單元,係藉具有上述構造,而具有如下之作用及效果。 當依據上述(1)所述之構造時,可使成為檢測對象之氣體之流量,藉流量改變機構而做成小流量。在流量改變機構之上游側與下流側,產生壓力差,藉流量改變機構,可使上游側之流路中之壓力,與不包括流量改變機構之情形相比較下,可做成比較高。槽體體積中之壓力變得較高,因此,在進行氣體流量檢測時,在關閉輸出閥後,槽體體積中之壓力到達既定之量測開始壓力為止之等待時間,變得較短。
例如當自流體控制機器至真空幫浦為止之流路之內徑係4mm時,當流量改變機構使用孔徑為0.8mm左右之節流孔時,藉該節流孔而流量變成小流量,在節流孔之上游側與下流側,產生壓力差,即使成為檢測對象之氣體之流量係例如10sccm之小流量,也可以藉節流孔,使上游側之流路中之壓力,接近量測開始壓力P1。因此,即使成為檢測對象之氣體之流量係10sccm時,槽體體積中之壓力到達特定之量測開始壓力為止之等待時間,也成為與做為檢測對象之氣體之流量為1000sccm時之等待時間同等之約1秒,所以,可謀求削減檢測所需之時間。
在先前技術中,當為10sccm之小流量時,檢測作業所需之時間需耗時約210秒時(自關閉輸出閥108之時點之壓力Pb,至到達既定之量測開始壓力P1為止之等待時間t3(90秒),與量測時間(120秒)之合計(參照圖5及圖9)。近年來,為了確認製程氣體之流量沒有變化,有時在每一工序(例如十幾分鐘之時間)進行氣體流量檢測。因為進行檢測之頻率較高,由等待時間t3所致之時間損失係累積,對半導體生產效率之影響很大。但是,如果等待時間t3可削減成與流過1000sccm之製程氣體時同等之約1秒時,檢測作業所需之時間,成為合計121秒(等待時間1秒與量測時間120秒之合計),其與先前相比較下,削減約四成時間,也可提高半導體生產之效率。
當依據上述(2)所述之構造時,氣體流量檢定單元係通到真空幫浦之流路,成為可選擇地具有在節流孔之上游側與下流側,產生壓力差之流路,與不具有節流孔,而不產生壓力差之通常之流路。因此,依據成為檢測對象之氣體之流量,可分開使用流路。當進行氣體流量檢測時,當流量係例如10sccm之小流量時,如果使用具有節流孔之側之流路時,在關閉輸出閥後,槽體體積中之壓力到達既定之量測開始壓力為止之等待時間變得較短。另外,當流量係例如比較大流量之1000sccm時,只要使用不具有節流孔之通常流路即可。
當依據上述(3)所述之構造時,並列之輸出閥之中,在具有節流孔之側的配置有輸出閥之流路中,對應成為檢測對象之氣體之流量,可調整節流孔之孔徑。例如即使成為檢測對象之氣體之流量,係比10sccm更小流量之數sccm時,藉縮小節流孔之孔徑到對應數sccm之直徑,在關閉輸出閥後,槽體體積中之壓力到達既定之量測開始壓力為止之等待時間不會變長,可提高檢測作業之效率。
當依據上述(4)所述之構造時,對應成為檢測對象之氣體之流量,可調整節流孔之孔徑。無須使輸出閥兩個並列配置,分成具有節流孔之側的流路,與不具有節流孔之側的流路之兩個流路地,而以一個流路,即使例如10sccm~1000sccm之範圍內之流量,或比10sccm更小流量時,藉對應流量以調整節流孔之孔徑,也可以在關閉輸出閥後,使槽體體積中之壓力到達既定之量測開始壓力為止之等待時間為一定。
(第1實施形態) 針對本發明第1實施形態之氣體流量檢定單元1A,參照圖面做詳細說明。
如圖1所示,使氣體輸入端口50為上游,質量流控制器20、流量控制閥21、氣體流量檢定單元1A及真空幫浦30係串接。
氣體流量檢定單元1A係質量流控制器20與真空幫浦30間之流路的一部分,具有檢測流路4,在該檢測流路4係在上游側,串接有輸入閥102及第1輸出閥105,在輸入閥102與第1輸出閥105之間,配置有壓力計103及溫度計104。又,第2輸出閥106與節流孔107係相對於第1輸出閥105而言,被並列配置。而且,節流孔107之孔徑係可為固定,也可為可變。成為檢測對象之氣體(例如氮氣),係自氣體輸入端口50被輸入,可自第1輸出閥105及第2輸出閥106所具有之隔膜(未圖示),填充檢測氣體到上游側。
接著,說明氣體流量檢定單元1A的控制機構40。圖2係表示氣體流量檢定單元1A的控制構造之方塊圖。控制機構40係眾所周知之微電腦,其中,其由中央運算處理裝置(CPU)41、輸出入介面42、ROM43及RAM44所構成。
輸出入介面42係被連接到輸入閥102、壓力計103、溫度計104、第1輸出閥105、第2輸出閥106及流量控制閥21。控制機構40係透過輸出入介面42,對於輸入閥102、第1輸出閥105、第2輸出閥106及流量控制閥21,傳送控制訊號,藉此,控制閥之開閉動作。又,控制機構40係透過輸出入介面42,自壓力計103及溫度計104接收量測數據。
在RAM44設有數據記憶部441。在數據記憶部441記憶有量測開始壓力P1及槽體體積V(參照圖3中之S14及S15)。所謂槽體體積V,係指檢測流路4之體積與檢測氣體管線6之體積之合計體積,在製造氣體流量檢定單元1A以安裝到外部系統後,事後被量測,以被記憶到數據記憶部441。
在ROM43記憶有各種程式或數據。例如記憶有容積量測程式431或流量檢測程式432A。容積量測程式431係量測槽體體積V者。又,流量檢測程式432A係適宜控制輸入閥102與第1輸出閥105與第2輸出閥106之閥開閉動作,以壓力計103及溫度計104,檢測檢測流路4之壓力與溫度,依據檢測結果,進行質量流控制器20之流量檢測者。
接著,針對氣體流量檢定單元1A之動作,使用圖3及圖4之流程圖做說明。氣體流量檢定單元1A係例如作業者藉按壓指示流量檢測開始之按鍵,氣體流量檢定單元1A的控制機構40係自ROM43讀出容積量測程式431(圖3中之S11~S15)及流量檢測程式432A(圖4中之S21~S34)以執行之。又,在流量檢測開始時點,第1輸出閥105及第2輸出閥106係處於打開狀態。
第1係控制機構40為了量測槽體體積V,執行容積量測程式431(S11~S15)。首先,初始化氣體流量檢定單元1A,刪除先前流量檢測所取得之數據(S11)。而且,吹掃配管內,去除多餘之氣體(S12)。
接著,控制機構40係判斷是否已經量測過槽體體積V(S13)。當判斷未量測過槽體體積V時(S13:NO),量測槽體體積V(S14),使測得之槽體體積V記憶到數據記憶部441(S15),結束容積量測程式431。另外,當判斷已經量測過槽體體積時(S13:YES),就結束容積量測程式431。
在容積量測程式431結束後,控制機構40係執行流量檢測程式432A。首先,透過質量流控制器20,使成為檢測對象之氣體,以設定流量流到氣體流量檢定單元1A(S21)。
當設定流量超過既定值α(在本實施形態中,係10sccm)時(S22:YES),控制機構40係關閉第2輸出閥106(S23)。藉關閉第2輸出閥106,成為檢測對象之氣體,係流動在配置有打開之第1輸出閥105之流路。
而且,控制機構40係如果質量流控制器20之流量穩定時,關閉第1輸出閥105(S24)。藉關閉第1輸出閥105,使成為檢測對象之氣體,填充到檢測流路4與檢測氣體管線6,上昇槽體體積V中之壓力。
而且,控制機構40係判斷壓力計103所檢測之壓力值,是否超過被記憶到數據記憶部441之既定之量測開始壓力P1(S25)。當測得之壓力值小於既定之量測開始壓力P1時(S25:NO),待機直到壓力計103量測既定之量測開始壓力P1為止。例如當檢測流路4之流路內徑係4mm,而且,流到檢測流路4之氣體之流量係1000sccm時,自第1輸出閥105被關閉,至壓力計103量測特定之量測開始壓力P1為止之時間,係約1秒左右。如果壓力計103量測既定之量測開始壓力P1時(S25:YES),量測自量測P1開始,至量測時間t後之第2壓力值P2(S26)。而且,本實施例中之量測時間t係約120秒。
量測第2壓力值P2後,控制機構40係依據下述公式1所述之氣體之狀態方程式,算出絕對流量Q2(S27)。亦即,將槽體體積V(m3)代入下述公式1的「V」,將自第2壓力值P2減去P1所得之壓力變動值△P(Pa)代入「△P」,將量測時間t(s)代入「△t」,將溫度計104所測得之氣體溫度(K)代入「T」, 代入R係氣體常數(J/mol‧K),算出絕對流量Q2。
流量Q2=(△P/△t)×(V/RT)---(公式1)
而且,控制機構40係比較絕對流量Q2與設定流量,以進行流量檢測(S28)。所謂流量檢測,具體說來,係控制機構40求出現在之設定流量與以S27所算出之絕對流量Q2之誤差,當該誤差處於正常範圍時,顯示告知檢測已經結束之主旨。又,控制機構40係當現在之設定流量與絕對流量Q2之誤差,處於正常範圍與異常範圍間之許容範圍時,修正質量流控制器20之設定流量,顯示告知檢測已經結束之主旨。而且,控制機構40係當現在之設定流量與絕對流量Q2之誤差,處於異常範圍時,顯示指示更換質量流控制器20。之後,流量檢測程式432A係結束,流量檢測係結束。
另外,當在S21中,流動之氣體之設定流量小於既定值α(在本實施形態中,係10sccm)時(S22:NO),控制機構40係關閉第1輸出閥105(S29)。藉關閉第1輸出閥105,成為檢測對象之氣體,係流過打開之第2輸出閥106側的流路。因此,成為檢測對象之氣體成為通過節流孔107。
而且,控制機構40係如果質量流控制器20之流量穩定時,關閉第2輸出閥106(S30)。藉關閉第2輸出閥106,使成為檢測對象之氣體,填充到檢測流路4與檢測氣體管線6,上昇槽體體積V中之壓力。
而且,控制機構40係判斷壓力計103所測得之壓力值,是否超過被記憶於數據記憶部441之既定之量測開始壓力P1(S31)。當測得之壓力值小於既定之量測開始壓力P1時(S31:NO),待機直到壓力計103量測既定之量測開始壓力P1。
在S29中,藉成為檢測對象之氣體通過節流孔107,流量成為小流量,在節流孔107之上游側與下流側,產生壓力差,所以,如圖5所示,藉節流孔107,上游側的流路中之壓力Pa係與先前之不包括節流孔107之情形之壓力Pb相比較下,成為維持在較高之狀態。藉節流孔107而上游側的流路中之壓力被維持,所以,在S30中,自關閉第2輸出閥106之時點(圖5中之t1),至槽體體積V中之壓力達到既定之量測開始壓力P1為止之等待時間t2,係變得比先前之不包括節流孔107之情形之等待時間t3還要短。
例如當流路內徑係4mm時,如果使節流孔107之孔徑為0.8mm左右時,即使成為檢測對象之氣體之流量係例如10sccm之小流量,在節流孔107之上游側與下流側,也產生壓力差,所以,可藉節流孔107,使上游側的流路中之壓力接近量測開始壓力P1。因此,即使成為檢測對象之氣體之流量係10sccm時,槽體體積V中之壓力達到特定之量測開始壓力P1為止之等待時間,也與成為檢測對象之氣體之流量係1000sccm時之等待時間成為同等,所以,可謀求削減檢測所需之時間,可提高檢測作業之效率。
又,如果使節流孔107之孔徑為可變者時,使此孔徑可對應成為檢測對象之氣體之流量以調整之。即使當例如成為檢測對象之氣體之流量,係比10sccm還要少之小流量之數sccm時,藉縮小節流孔107之孔徑至對應數sccm之直徑(約0.2~0.3mm),也可藉節流孔107,使上游側的流路中之壓力接近量測開始壓力P1。因此,即使成為檢測對象之氣體之流量係如數sccm之小流量時,在關閉第2輸出閥106後,槽體體積V中之壓力達到既定之量測開始壓力P1為止之等待時間,也不會變長,可提高檢測作業之效率。
在S30中,於關閉第2輸出閥106後,如果壓力計103量測既定之量測開始壓力P1時(S31:YES),在量測P1後,量測於量測時間t後之第2壓力值P2(S32)。而且,本實施例中之量測時間t係約120秒。
在量測第2壓力值P2後,控制機構40係依據上述公式1所述之氣體之狀態方程式,算出絕對流量Q2(S33)。計算方法係與上述之S27中之計算相同。而且,控制機構40係比較絕對流量Q2與設定流量,以進行流量檢測(S34)。流量檢測之具體方法係與上述之S28相同。在進行流量檢測後,流量檢測程式432A係結束。
如上所述,當依據第1實施形態之氣體流量檢定單元1A時,其係一種氣體流量檢定單元1A,被配設於質量流控制器20與真空幫浦30之間,在關閉第1輸出閥105及第2輸出閥106後,由壓力計103所測得之壓力,自既定之量測開始壓力P1改變成既定之第2壓力值P2之時間(量測時間t)、流體之溫度、及自質量流控制器20至第1輸出閥105及第2輸出閥106為止之流路(檢測氣體管線6及檢測流路4)之容積(槽體體積V),檢測質量流控制器20之精度,其特徵在於:第1輸出閥105及第2輸出閥106係並列配置,在第2輸出閥106的出口側的流路,配置有成為檢測對象之氣體為小流量時,產生壓力差之節流孔107。藉產生壓力差,可使節流孔107的上游側的流路中之壓力,比不包括節流孔107之情形還要高。節流孔107的上游側的流路中之壓力變高,藉此,當進行氣體流量檢測時,在關閉第2輸出閥106後,槽體體積V中之壓力達到既定之量測開始壓力P1為止之等待時間係變短。
例如當流路內徑係4mm時,如果使節流孔107之孔徑為0.8mm左右時,即使成為檢測對象之氣體之流量係例如10sccm之小流量,在節流孔107之上游側與下流側也產生壓力差,所以,可使節流孔107之上游側的流路中之壓力接近量測開始壓力P1。因此,即使成為檢測對象之氣體之流量係10sccm時,槽體體積V中之壓力達到特定之量測開始壓力P1為止之等待時間,係變得與成為檢測對象之氣體之流量為1000sccm時之等待時間同等,所以,可謀求削減檢測所需之時間,可提高檢測作業之效率。
又,第1輸出閥105及第2輸出閥106係並列配置,在第2輸出閥106的出口側,配置有在成為檢測對象之氣體之流量為小流量時,產生壓力差之節流孔107,所以,氣體流量檢定單元1A係通到真空幫浦之流路,變得可選擇在節流孔107之上游側與下流側,產生壓力差之流路、及不具備節流孔107之不產生壓力差之通常流路。因此,可依據成為檢測對象之氣體之流量,區分使用流路。例如當進行氣體流量檢測時,當流量為10sccm之小流量時,如果使用具有節流孔107之側之流路時,在關閉輸出閥後,槽體體積V中之壓力達到既定之量測開始壓力P1為止之等待時間係變短。另外,當流量係比較大流量之1000sccm時,可以只要使用不具有節流孔107之通常流路即可。
又,當依據第1實施形態之氣體流量檢定單元1A時,節流孔107之孔徑係可變,所以,並列之第1輸出閥105及第2輸出閥106之中,於配置有具有節流孔107之側的第2輸出閥106之流路中,係對應成為檢測對象之氣體之流量,可調整節流孔107之孔徑。例如即使成為檢測對象之氣體之流量係比10sccm更少之小流量之數sccm時,藉縮小節流孔107之孔徑至對應之數sccm之直徑,在關閉第2輸出閥106後,槽體體積V中之壓力達到既定之量測開始壓力P1為止之等待時間不變長,可提高檢測作業之效率。
(第2實施形態) 接著,針對第2實施形態之氣體流量檢定單元1B,參照圖面做詳細說明。而且,對於與第1實施形態同樣之構造,係賦予相同編號,其詳細說明則予以省略。如圖6所示,使氣體輸入端口50為上游,質量流控制器20、流量控制閥21、氣體流量檢定單元1B及真空幫浦30係被串接。
氣體流量檢定單元1B係具有檢測流路4,在該檢測流路4,自上游側開始,串接有輸入閥102、輸出閥108及孔徑為可變之節流孔107,在輸入閥102與輸出閥108之間,配置有壓力計103及溫度計104。 成為檢測對象之氣體,係自氣體輸入端口50被輸入,氣體流量檢定單元1B係可自輸出閥108具有之隔膜閥體(未圖示),填充成為檢測對象之氣體到上游側。
接著,說明第2實施形態氣體流量檢定單元1B的控制機構40。圖7係表示氣體流量檢定單元1B的控制構造之方塊圖。
輸出入介面42係被連接到輸入閥102、壓力計103、溫度計104、節流孔107、輸出閥108及流量控制閥21。控制機構40係透過輸出入介面42,對於輸入閥102、輸出閥108及流量控制閥21傳送控制訊號,藉此,控制閥之開閉動作。又,控制機構40係透過輸出入介面42,傳送控制訊號到節流孔107,藉此,對應成為檢測對象之氣體之流量,以調整節流孔107之孔徑。控制機構40係透過輸出入介面42,自壓力計103及溫度計104接收量測數據。
此外,關於CPU41、ROM43及RAM44,係與第1實施形態相同。
接著,針對氣體流量檢定單元1B之動作,使用圖3及圖8之流程圖做說明。 氣體流量檢定單元1B係例如作業者按壓指示流量檢測開始之按鍵,藉此,氣體流量檢定單元1B的控制機構40,係自ROM43讀出容積量測程式431(圖3中之S11~S15)及流量檢測程式432B(圖8中之S41~S47)以執行之。
第1係控制機構40為了量測槽體體積V,執行容積量測程式431(圖3中之S11~S15)。被執行之動作係與第1實施形態相同。
當容積量測程式結束時,控制機構40係執行流量檢測程式432B。首先,控制機構40係透過質量流控制器20,使成為檢測對象之氣體以設定流量,流到氣體流量檢定單元1B(S41)。當透過質量流控制器20,成為檢測對象之氣體以設定流量流動時,控制機構40係對應設定流量,調整節流孔107之孔徑(S42)。而且,控制機構40係等待質量流控制器20之流量變穩定,當判斷流量變穩定時,關閉輸出閥108(S43)。藉關閉輸出閥108,填充成為檢測對象之氣體到檢測流路4與檢測氣體管線6,上昇槽體體積V中之壓力。
而且,自判斷壓力計103所測得之壓力值,是否超過被記憶到數據記憶部441之既定之量測開始壓力P1之步驟,至進行流量檢測之步驟(S44~S47),係與第1實施形態中之圖4中之S25~S28相同。
如上所述,當依據第2實施形態之氣體流量檢定單元1B時,其係一種氣體流量檢定單元1B,被配設於質量流控制器20與真空幫浦30之間,在關閉輸出閥108之後,依據壓力計103所測得之壓力,自既定之量測開始壓力P1改變成既定之第2壓力值P2之時間(量測時間t)、流體之溫度、及自質量流控制器20之輸出至輸出閥108之輸入為止之容積,檢測質量流控制器20之精度,其特徵在於:輸出閥108係僅配置有一個,在出口側,配置有孔徑係可變,而且,減少成為檢測對象之氣體之流量之節流孔107,所以,對應成為檢測對象之氣體之流量,可調整節流孔107之孔徑。無須使輸出閥兩個並列配置,分成具有節流孔之流路、及不具有節流孔之流路,而以一個流路,即使係例如10sccm~1000sccm之範圍內之流量,或比10sccm更少之小流量,藉對應流量以調整節流孔107之孔徑,在關閉輸出閥108後,槽體體積V中之壓力達到既定之量測開始壓力P1為止之等待時間也可為一定。
而且,上述實施形態只不過係例示,其非用於侷限本發明者。因此,本發明當然在不脱逸其要旨之範圍內,可做種種改良及變形。 例如在第1及第2實施形態中,係採取特定檢測氣體流量時之量測時間t為120秒左右之方法,但是,也可以不特定量測時間t,而採取特定第2壓力值P2,量測達到被特定之第2壓力值P2為止之時間之方法。
1:氣體流量檢定單元 20:質量流控制器(流體控制機器之一例) 30:真空幫浦 103:壓力計 104:溫度計 105:第1輸出閥 106:第2輸出閥 107:節流孔(流量改變機構之一例)
〔圖1]係使用第1實施形態氣體流量檢定單元之流量檢測系統之迴路圖。 〔圖2〕係表示第1實施形態氣體流量檢定單元的控制構造之方塊圖。 〔圖3〕係表示第1實施形態氣體流量檢定單元的容積量測程式之動作之流程圖。 〔圖4〕係表示第1實施形態氣體流量檢定單元的流量檢測程式之動作之流程圖。 〔圖5〕係表示實施氣體流量檢測時之槽體體積之壓力上昇之圖。 〔圖6〕係使用第2實施形態氣體流量檢定單元之流量檢測系統之迴路圖。 〔圖7〕係表示第2實施形態氣體流量檢定單元的控制構造之方塊圖。 〔圖8〕係表示第2實施形態氣體流量檢定單元的流量檢測程式之動作之流程圖。 〔圖9〕係使用先前技術所做之氣體流量檢定單元之流量檢測系統之迴路圖。
1A:氣體流量檢定單元
6:檢測氣體管線
20:質量流控制器
21:流量控制閥
30:真空幫浦
50:氣體輸入端口
102:輸入閥
103:壓力計
104:溫度計
105:第1輸出閥
106:第2輸出閥
107:節流孔

Claims (4)

  1. 一種氣體流量檢定單元,被配設於流體控制機器與真空幫浦之間,其中,其包括:壓力計,測量流過前述流體控制機器與前述真空幫浦間之流路之流體之壓力;溫度計,測量前述流體之溫度;以及輸出閥,使前述流體往前述真空幫浦輸出;關閉前述輸出閥後,由前述壓力計所測得之壓力,自既定之第1壓力值改變成既定之第2壓力值之時間、前述溫度計所測得之前述流體之溫度、及前述流路之中,自前述流體控制機器至前述輸出閥為止之流路的容積,檢測前述流體控制機器之精度,其特徵在於: 其包括改變自前述輸出閥輸出之流體之流量之流量改變機構。
  2. 如申請專利範圍第1項所述之氣體流量檢定單元,其中,前述輸出閥係兩個並列配置,在其中一個輸出閥之出口側之流路,配置有節流孔。
  3. 如申請專利範圍第2項所述之氣體流量檢定單元,其中,前述節流孔之孔徑係可變。
  4. 如申請專利範圍第1項所述之氣體流量檢定單元,其中,前述輸出閥係僅配置有一個,在前述輸出閥之出口側之流路,配置有孔徑可變之節流孔。
TW108121465A 2018-07-09 2019-06-20 氣體流量檢定單元 TWI735893B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-129784 2018-07-09
JP2018129784A JP6978985B2 (ja) 2018-07-09 2018-07-09 ガス流量検定ユニット

Publications (2)

Publication Number Publication Date
TW202012887A TW202012887A (zh) 2020-04-01
TWI735893B true TWI735893B (zh) 2021-08-11

Family

ID=69142342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121465A TWI735893B (zh) 2018-07-09 2019-06-20 氣體流量檢定單元

Country Status (3)

Country Link
JP (1) JP6978985B2 (zh)
TW (1) TWI735893B (zh)
WO (1) WO2020012849A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965389B (zh) * 2020-06-24 2022-02-15 合肥工业大学 一种基于stm32单片机的旋片泵抽速校准装置及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102319A1 (ja) * 2006-03-07 2007-09-13 Ckd Corporation ガス流量検定ユニット
TWI329191B (zh) * 2005-06-06 2010-08-21 Ckd Corp
TWI329734B (en) * 2005-03-25 2010-09-01 Mks Instr Inc Flow verifier and method for verifying measurement of a flow rate of a fluid by a device,apparatus for preventing an external element from affecting verification of a flow rate of a fluid by a flow rate verifier, and flow verifier and method for verifica
WO2018004856A1 (en) * 2016-06-27 2018-01-04 Applied Materials, Inc Methods, systems, and apparatus for mass flow verification based on choked flow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299447A (en) * 1992-07-13 1994-04-05 Ford Motor Company Air flow manifold system for providing two different mass air flow rates to a mass air flow sensor production calibration station
JP6748586B2 (ja) * 2016-07-11 2020-09-02 東京エレクトロン株式会社 ガス供給システム、基板処理システム及びガス供給方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI329734B (en) * 2005-03-25 2010-09-01 Mks Instr Inc Flow verifier and method for verifying measurement of a flow rate of a fluid by a device,apparatus for preventing an external element from affecting verification of a flow rate of a fluid by a flow rate verifier, and flow verifier and method for verifica
TWI329191B (zh) * 2005-06-06 2010-08-21 Ckd Corp
WO2007102319A1 (ja) * 2006-03-07 2007-09-13 Ckd Corporation ガス流量検定ユニット
WO2018004856A1 (en) * 2016-06-27 2018-01-04 Applied Materials, Inc Methods, systems, and apparatus for mass flow verification based on choked flow

Also Published As

Publication number Publication date
WO2020012849A1 (ja) 2020-01-16
TW202012887A (zh) 2020-04-01
JP6978985B2 (ja) 2021-12-08
JP2020008428A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6892687B2 (ja) 流量制御装置および流量制御装置を用いる異常検知方法
JP4881391B2 (ja) 差圧式マスフローコントローラにおける診断機構
JP5727596B2 (ja) 流量モニタ付圧力式流量制御装置の実ガスモニタ流量初期値のメモリ方法及び実ガスモニタ流量の出力確認方法
KR101827887B1 (ko) 가스 유량 검정 시스템 및 가스 유량 검정 유닛
JP4788920B2 (ja) 質量流量制御装置、その検定方法及び半導体製造装置
JP5186530B2 (ja) フローモニタリングおよび制御のためのシステムおよび方法
US7904257B2 (en) Flow verification system and flow verification method
US10184185B2 (en) Gas flow monitoring method and gas flow monitoring apparatus
JP5433660B2 (ja) ガス流量監視システム
JP2008504613A (ja) 流量制御装置および体積の内部等温制御により流量検証を行うための方法
JP2009109295A (ja) 流量検定故障診断装置、流量検定故障診断システム、流量検定故障診断方法及び流量検定故障診断プログラム
TWI494554B (zh) Method and device for differential pressure measurement
KR20170078655A (ko) 유량 검정 유닛
TWI735893B (zh) 氣體流量檢定單元
JP5011195B2 (ja) 流体分流供給ユニット
KR102162046B1 (ko) 유량 측정 방법 및 유량 측정 장치
US10890475B2 (en) Diagnostic system, diagnostic method, diagnostic program, and flow rate controller