TWI734356B - 光學成像鏡頭 - Google Patents

光學成像鏡頭 Download PDF

Info

Publication number
TWI734356B
TWI734356B TW109102165A TW109102165A TWI734356B TW I734356 B TWI734356 B TW I734356B TW 109102165 A TW109102165 A TW 109102165A TW 109102165 A TW109102165 A TW 109102165A TW I734356 B TWI734356 B TW I734356B
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
optical
image side
optical imaging
Prior art date
Application number
TW109102165A
Other languages
English (en)
Other versions
TW202127089A (zh
Inventor
張加欣
賴永楓
陳白娜
Original Assignee
大陸商玉晶光電(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商玉晶光電(廈門)有限公司 filed Critical 大陸商玉晶光電(廈門)有限公司
Publication of TW202127089A publication Critical patent/TW202127089A/zh
Application granted granted Critical
Publication of TWI734356B publication Critical patent/TWI734356B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本發明提供一種光學成像鏡頭,其從物側至像側依序包括第一、第二、第三、第四、第五及第六透鏡。本發明透過控制透鏡的凹凸曲面排列,並以至少一條件式控制相關參數,使光學成像鏡頭維持較大的視場角且同時具有較小的鏡頭前表面積。

Description

光學成像鏡頭
本發明乃是與一種光學成像鏡頭相關,且尤其是與應用在與六片透鏡之光學成像鏡頭相關。
近年來,光學成像鏡頭不斷演進,所要應用的範圍更為廣泛。除了要求鏡頭輕薄短小以外,為了讓消費者使用可攜式電子裝置時能有更廣的視野,現行的可攜式電子裝置開始追求全螢幕的設計,因此光學成像鏡頭佔螢幕的面積比也會變得越來越小。然而現有光學成像鏡頭的設計為了能有較大的視場角,其佔可攜式電子裝置螢幕的面積比值較大,難以滿足消費者的需求,故如何維持較大的視場角且同時又具有較小的鏡頭前表面積成了設計發展的目標。
本發明之一目的係在提供一種光學成像鏡頭,在維持大視場角之條件下,同時提供較小的鏡頭前表面積。
依據本發明,提供一種光學成像鏡頭,從一物側至一像側沿一光軸包括六片透鏡,依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡,第一透鏡至第六透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面。
為了便於表示本發明所指的參數,在本說明書及圖式定義:T1代表第一透鏡在光軸上的厚度、G12代表第一透鏡之像側面至第二透鏡之物側面在光軸上的距離、T2代表第二透鏡在光軸上的厚度、G23代表第二透鏡之像側面至第三透鏡之物側面在光軸上的距離、T3代表第三透鏡在光軸上的厚度、G34代表第三透鏡之像側面至第四透鏡之物側面在光軸上的距離、T4代表第四透鏡在光軸上的厚度、G45代表第四透鏡之像側面至第五透鏡之物側面在光軸上的距離、T5代表第五透鏡在光軸上的厚度、G56代表第五透鏡之像側面至第六透鏡之物側面在光軸上的距離、T6代表第六透鏡在光軸上的厚度、G6F代表第六透鏡至濾光片在光軸上的空氣間隙、TTF代表濾光片在光軸上的厚度、GFP代表濾光片至成像面在光軸上的空氣間隙、f1代表第一透鏡的焦距、f2代表第二透鏡的焦距、f3代表第三透鏡的焦距、f4代表第四透鏡的焦距、f5代表第五透鏡的焦距、f6代表第六透鏡的焦距、n1代表第一透鏡的折射率、n2代表第二透鏡的折射率、n3代表第三透鏡的折射率、n4代表第四透鏡的折射率、n5代表第五透鏡的折射率、n6代表第六透鏡的折射率、V1代表第一透鏡的阿貝數、V2代表第二透鏡的阿貝數、V3代表第三透鏡的阿貝數、V4代表第四透鏡的阿貝數、V5代表第五透鏡的阿貝數、V6代表第六透鏡的阿貝數、EFL代表光學成像鏡頭的系統焦距、TL代表第一透鏡之物側面至第六透鏡之像側面在光軸上的距離、TTL代表光學成像鏡頭的系統長度,即第一透鏡之物側面至成像面在光軸上的距離、ALT代表第一透鏡至第六透鏡在光軸上的六個透鏡厚度總和(即T1、T2、T3、T4、T5、T6之和)、AAG代表第一透鏡之像側面至第二透鏡之物側面在光軸上的距離、第二透鏡之像側面至第三透鏡之物側面在光軸上的距離、第三透鏡之像側面至第四透鏡之物側面在光軸上的距離、第四透鏡之像側面至第五透鏡之物側面在光軸上的距離及第五透鏡之像側面至第六透鏡之物側面在光軸上的距離的總和,即第一透鏡到第六透鏡在光軸上的五個空氣間隙總和(即G12、G23、G34、G45、G56之和)、BFL代表光學成像鏡頭的後焦距,即第六透鏡之像側面至成像面在光軸上的距離(即G6F、TTF、GFP之和)、HFOV代表光學成像鏡頭的半視角、ImgH代表光學成像鏡頭的像高及Fno代表光學成像鏡頭的光圈值。
依據本發明的一面向所提供的一光學成像鏡頭,第一透鏡的像側面的一光軸區域為凸面,第二透鏡的物側面的一圓周區域為凸面,第四透鏡的像側面的一圓周區域為凸面,第六透鏡的物側面的一光軸區域為凹面,第六透鏡的像側面的一圓周區域為凸面,其中,光學成像鏡頭具有屈光率的透鏡只有六片並且滿足以下條件式: T1/AAG≧1.000                            條件式(1)。
依據本發明的另一面向所提供的一光學成像鏡頭,第一透鏡的像側面的一光軸區域為凸面,第四透鏡的像側面的一圓周區域為凸面,第六透鏡的物側面的一光軸區域為凹面,第六透鏡的像側面的一圓周區域為凸面,其中,光學成像鏡頭具有屈光率的透鏡只有六片並且滿足條件式(1)及以下條件式: TTL/T1≦5.100                              條件式(2)。
依據本發明的再一面向所提供的一光學成像鏡頭,第一透鏡具有正屈光率,第一透鏡的像側面的一光軸區域為凸面,第二透鏡的物側面的一圓周區域為凸面,第四透鏡的像側面的一光軸區域為凹面,第四透鏡的像側面的一圓周區域為凸面,第六透鏡的像側面的一圓周區域為凸面,其中,光學成像鏡頭具有屈光率的透鏡只有六片並且滿足條件式(1)。
本發明可選擇性地控制前述參數,滿足下列至少一條件式: ALT/BFL≧2.100                                 條件式(3); EFL/(T4+T6)≧4.500                             條件式(4); TL/(T3+T6)≧4.300                              條件式(5); BFL/AAG≦1.700                                條件式(6); (T3+T4)/T2≦3.600                               條件式(7); (T1+G12+T2)/(T3+G34+T4)≧1.700      條件式(8); ALT/(T2+T3)≧4.700                            條件式(9); EFL/(G45+T5)≦5.700                          條件式(10); (TL+BFL)/(G23+G56)≦11.500             條件式(11); AAG/(G45+G56)≦2.500                      條件式(12); (G45+G56)/G23≧1.000                        條件式(13); (T1+T5)/(T3+T4)≧2.200                       條件式(14); ALT/(T1+G12)≦3.400                          條件式(15); EFL/(G23+G56)≦10.000                      條件式(16); TL/(T2+G23)≦8.000                            條件式(17); BFL/(G12+G34+T6)≧2.100                 條件式(18); (G45+T5)/(G34+T4)≧1.700                  條件式(19);及/或V4+V5+V6≦150.000                           條件式(20)。
前述所列之示例性限定條件式,亦可任意選擇性地合併不等數量施用於本發明之實施態樣中,並不限於此。在實施本發明時,除了前述條件式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列、屈光率變化、選用各種材質或其他細部結構,以加強對系統性能及/或解析度的控制。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中。
由上述中可以得知,本發明之光學成像鏡頭可在維持大視場角之條件下,同時提供較小的鏡頭前表面積。
為進一步說明各實施例,本發明乃提供有圖式。此些圖式乃為本發明揭露內容之一部分,其主要係用以說明實施例,並可配合說明書之相關描述來解釋實施例的運作原理。配合參考這些內容,本領域具有通常知識者應能理解其他可能的實施方式以及本發明之優點。圖中的元件並未按比例繪製,而類似的元件符號通常用來表示類似的元件。
本說明書和申請專利範圍中使用的用語「光軸區域」、「圓周區域」、「凹面」和「凸面」應基於本說明書中列出的定義來解釋。
本說明書之光學系統包含至少一透鏡,接收入射光學系統之平行於光軸至相對光軸呈半視角(HFOV)角度內的成像光線。成像光線通過光學系統於成像面上成像。所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡以高斯光學理論計算出來之近軸屈光率為正(或為負)。所言之「透鏡之物側面(或像側面)」定義為成像光線通過透鏡表面的特定範圍。成像光線包括至少兩類光線:主光線(chief ray)Lc及邊緣光線(marginal ray)Lm(如圖1所示)。透鏡之物側面(或像側面)可依不同位置區分為不同區域,包含光軸區域、圓周區域、或在部分實施例中的一個或多個中繼區域,該些區域的說明將於下方詳細闡述。
圖1為透鏡100的徑向剖視圖。定義透鏡100表面上的二參考點:中心點及轉換點。透鏡表面的中心點為該表面與光軸I的一交點。如圖1所例示,第一中心點CP1位於透鏡100的物側面110,第二中心點CP2位於透鏡100的像側面120。轉換點是位於透鏡表面上的一點,且該點的切線與光軸I垂直。定義透鏡表面之光學邊界OB為通過該透鏡表面徑向最外側的邊緣光線Lm與該透鏡表面相交的一點。所有的轉換點皆位於光軸I與透鏡表面之光學邊界OB之間。除此之外,若單一透鏡表面有複數個轉換點,則該些轉換點由徑向向外的方向依序自第一轉換點開始命名。例如,第一轉換點TP1(最靠近光軸I)、第二轉換點TP2(如圖4所示)及第N轉換點(距離光軸I最遠)。
定義從中心點至第一轉換點TP1的範圍為光軸區域,其中,該光軸區域包含中心點。定義距離光軸I最遠的第N轉換點徑向向外至光學邊界OB的區域為圓周區域。在部分實施例中,可另包含介於光軸區域與圓周區域之間的中繼區域,中繼區域的數量取決於轉換點的數量。
當平行光軸I之光線通過一區域後,若光線朝光軸I偏折且與光軸I的交點位在透鏡像側A2,則該區域為凸面。當平行光軸I之光線通過一區域後,若光線的延伸線與光軸I的交點位在透鏡物側A1,則該區域為凹面。
除此之外,參見圖1,透鏡100還可包含一由光學邊界OB徑向向外延伸的組裝部130。組裝部130一般來說用以供該透鏡100組裝於光學系統之一相對應元件(圖未示)。成像光線並不會到達該組裝部130。組裝部130之結構與形狀僅為說明本發明之示例,不以此限制本發明的範圍。下列討論之透鏡的組裝部130可能會在圖式中被部分或全部省略。
參見圖2,定義中心點CP與第一轉換點TP1之間為光軸區域Z1。定義第一轉換點TP1與透鏡表面的光學邊界OB之間為圓周區域Z2。如圖2所示,平行光線211在通過光軸區域Z1後與光軸I在透鏡200的像側A2相交,即平行光線211通過光軸區域Z1的焦點位於透鏡200像側A2的R點。由於光線與光軸I相交於透鏡200像側A2,故光軸區域Z1為凸面。反之,平行光線212在通過圓周區域Z2後發散。如圖2所示,平行光線212通過圓周區域Z2後的延伸線EL與光軸I在透鏡200的物側A1相交,即平行光線212通過圓周區域Z2的焦點位於透鏡200物側A1的M點。由於光線的延伸線EL與光軸I相交於透鏡200物側A1,故圓周區域Z2為凹面。於圖2所示的透鏡200中,第一轉換點TP1是光軸區域與圓周區域的分界,即第一轉換點TP1為凸面轉凹面的分界點。
另一方面,光軸區域的面形凹凸判斷還可依該領域中通常知識者的判斷方式,即藉由近軸的曲率半徑(簡寫為R值)的正負號來判斷透鏡之光軸區域面形的凹凸。R值可常見被使用於光學設計軟體中,例如Zemax或CodeV。R值亦常見於光學設計軟體的透鏡資料表(lens data sheet)中。以物側面來說,當R值為正時,判定為物側面的光軸區域為凸面;當R值為負時,判定物側面的光軸區域為凹面。反之,以像側面來說,當R值為正時,判定像側面的光軸區域為凹面;當R值為負時,判定像側面的光軸區域為凸面。此方法判定的結果與前述藉由光線/光線延伸線與光軸的交點判定方式的結果一致,光線/光線延伸線與光軸交點的判定方式即為以一平行光軸之光線的焦點位於透鏡之物側或像側來判斷面形凹凸。本說明書所描述之「一區域為凸面(或凹面)」、「一區域為凸(或凹)」或「一凸面(或凹面)區域」可被替換使用。
圖3至圖5提供了在各個情況下判斷透鏡區域的面形及區域分界的範例,包含前述之光軸區域、圓周區域及中繼區域。
圖3為透鏡300的徑向剖視圖。參見圖3,透鏡300的像側面320在光學邊界OB內僅存在一個轉換點TP1。透鏡300的像側面320的光軸區域Z1及圓周區域Z2如圖3所示。此像側面320的R值為正(即R>0),因此,光軸區域Z1為凹面。
一般來說,以轉換點為界的各個區域面形會與相鄰的區域面形相反,因此,可用轉換點來界定面形的轉變,即自轉換點由凹面轉凸面或由凸面轉凹面。於圖3中,由於光軸區域Z1為凹面,面形於轉換點TP1轉變,故圓周區域Z2為凸面。
圖4為透鏡400的徑向剖視圖。參見圖4,透鏡400的物側面410存在一第一轉換點TP1及一第二轉換點TP2。定義光軸I與第一轉換點TP1之間為物側面410的光軸區域Z1。此物側面410的R值為正(即R>0),因此,光軸區域Z1為凸面。
定義第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間為圓周區域Z2,該物側面410的該圓周區域Z2亦為凸面。除此之外,定義第一轉換點TP1與第二轉換點TP2之間為中繼區域Z3,該物側面410的該中繼區域Z3為凹面。再次參見圖4,物側面410由光軸I徑向向外依序包含光軸I與第一轉換點TP1之間的光軸區域Z1、位於第一轉換點TP1與第二轉換點TP2之間的中繼區域Z3,及第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間的圓周區域Z2。由於光軸區域Z1為凸面,面形自第一轉換點TP1轉變為凹,故中繼區域Z3為凹面,又面形自第二轉換點TP2再轉變為凸,故圓周區域Z2為凸面。
圖5為透鏡500的徑向剖視圖。透鏡500的物側面510無轉換點。對於無轉換點的透鏡表面,例如透鏡500的物側面510,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50~100%為圓周區域。參見圖5所示之透鏡500,定義光軸I至自光軸I起算到透鏡500表面光學邊界OB之間距離的50%為物側面510的光軸區域Z1。此物側面510的R值為正(即R>0),因此,光軸區域Z1為凸面。由於透鏡500的物側面510無轉換點,因此物側面510的圓周區域Z2亦為凸面。透鏡500更可具有組裝部(圖未示)自圓周區域Z2徑向向外延伸。
本發明之光學成像鏡頭,乃是一定焦鏡頭,其從物側至像側沿一光軸設置六片透鏡,依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡。第一透鏡至第六透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面。本發明之光學成像鏡頭透過設計透鏡之面形特徵及參數數值範圍,而可在維持大視場角時,同時提供較小的鏡頭前表面積。
在此設計的前述鏡片之特性主要是考量光學成像鏡頭的光學特性、系統長度、光圈值、像高、鏡頭前表面積及/或視場角,舉例來說:使第一透鏡像側面的光軸區域為凸面、第二透鏡物側面的圓周區域為凸面、第四透鏡像側面的圓周區域為凸面及第六透鏡像側面的圓周區域為凸面之面形並滿足T1/AAG≧1.000時,搭配第六透鏡物側面的光軸區域為凹面之面形或具有正屈光率的第一透鏡及第四透鏡像側面的光軸區域為凹面之面形兩組之一,可有效使整個光學成像鏡頭系統達到修正球差、像差、畸變等目的,且可使光學成像鏡頭系統降低鏡頭前表面積,其中T1/AAG較佳的範圍為1.000≦T1/AAG≦1.700。當光學成像鏡頭系統中,使第一透鏡像側面的光軸區域為凸面、第四透鏡像側面的圓周區域為凸面、第六透鏡物側面的光軸區域為凹面、第六透鏡像側面的圓周區域為凸面之面形及滿足TTL/T1≦5.100和T1/AAG≧1.000時,可使光學成像鏡頭系統降低鏡頭前表面積。滿足TTL/T1≦5.100時可有效控制光學成像鏡頭系統的總長度,達到輕薄短小的目的,其中T1/AAG較佳的範圍為1.000≦T1/AAG≦1.700,TTL/T1較佳的範圍為3.800≦TTL/T1≦5.100。
透過適當的材料配置,當符合V4+V5+V6≦150.000時,能有效改善色差,而較佳的範圍為120.000≦V4+V5+V6≦150.000。
透過控制T1的厚度,搭配其他透鏡的厚度或空氣間隙,若滿足(T1+G12+T2)/(T3+G34+T4)≧1.700、(T1+T5)/(T3+T4)≧2.200及/或ALT/(T1+G12)≦3.400,能進一步降低光學成像系統的鏡頭前表面積。較佳地,可進一步滿足1.700≦(T1+G12+T2)/(T3+G34+T4)≦2.300、2.200≦(T1+T5)/(T3+T4)≦3.100及/或2.200≦ALT/(T1+G12)≦3.400。
為了達成縮短透鏡系統長度及確保成像品質,同時考量製作的難易程度,本發明的光學成像鏡頭可適當地調整透鏡間的空氣間隙或是透鏡厚度,若滿足以下至少一條件式之數值限定,能有較佳的配置:ALT/BFL≧2.100、EFL/(T4+T6)≧4.500、TL/(T3+T6)≧4.300、BFL/AAG≦1.700、(T3+T4)/T2≦3.600、ALT/(T2+T3)≧4.700、EFL/(G45+T5)≦5.700、(TL+BFL)/(G23+G56)≦11.500、AAG/(G45+G56)≦2.500、(G45+G56)/G23≧1.000、EFL/(G23+G56)≦10.000、TL/(T2+G23)≦8.000、BFL/(G12+G34+T6)≧2.100及(G45+T5)/(G34+T4)≧1.700。較佳地,光學成像鏡頭可進一步滿足2.100≦ALT/BFL≦3.500、4.500≦EFL/(T4+T6)≦7.300、4.300≦TL/(T3+T6)≦6.500、1.000≦BFL/AAG≦1.700、1.700≦(T3+T4)/T2≦3.600、4.700≦ALT/(T2+T3)≦6.900、3.700≦EFL/(G45+T5)≦5.700、7.700≦(TL+BFL)/(G23+G56)≦11.500、1.600≦AAG/(G45+G56)≦2.500、1.000≦(G45+G56)/G23≦1.900、6.300≦EFL/(G23+G56)≦10.000、5.300≦TL/(T2+G23)≦8.000、2.100≦BFL/(G12+G34+T6)≦3.200及1.700≦(G45+T5)/(G34+T4)≦3.100之至少一者。
有鑑於光學系統設計的不可預測性,在本發明的架構之下,符合上述的條件式時,能較佳地使本發明光學成像鏡頭的成像品質提升、系統長度縮短、光圈值縮小、鏡頭前表面積較小、擴大視場角及/或組裝良率提升而改善先前技術的缺點。
在實施本發明時,除了上述條件式之外,亦可如以下實施例針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列、屈光率變化或其他細部結構,以加強對系統性能及/或解析度的控制以及製造上良率的提升。除此之外,材質設計方面,本發明的實施例的光學成像鏡頭的所有透鏡中可為玻璃、塑膠、樹脂等各種透明材質製作之透鏡。當採用塑膠材質製作鏡片時,更能減輕鏡頭重量及節省成本。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中,並不限於此。
為了說明本發明確實可在提供良好的光學性能的同時,增加視場角及降低光圈值,以下提供多個實施例以及其詳細的光學數據。首先請一併參考圖6至圖9,其中圖6顯示依據本發明之第一實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖7顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖,圖8顯示依據本發明之第一實施例之光學成像鏡頭之詳細光學數據,圖9顯示依據本發明之第一實施例光學成像鏡頭之各透鏡之非球面數據。
如圖6所示,本實施例之光學成像鏡頭1從物側A1至像側A2依序包括一光圈(aperture stop)STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。一濾光片TF及一影像感測器的一成像面IMA皆設置於光學成像鏡頭1的像側A2。在本實施例中,濾光片TF為紅外線濾光片(IR cut filter)且設於第六透鏡L6與成像面IMA之間,濾光片TF將經過光學成像鏡頭1的光過濾掉特定波段的波長,例如過濾掉紅外光波段,可使得紅外光波段的波長不會成像於成像面IMA上。
光學成像鏡頭1之第一透鏡L1、第二透鏡L2、第三透鏡L3、第四透鏡L4、第五透鏡L5及第六透鏡L6在此示例性地以塑膠材質所構成,然不限於此,亦可為其他透明材質製作,如:玻璃、樹脂。
第一透鏡L1、第二透鏡L2、第三透鏡L3、第四透鏡L4、第五透鏡L5及第六透鏡L6形成細部結構如下:第一透鏡L1具有正屈光率,並具有一朝向物側A1的物側面L1A1及一朝向像側A2的像側面L1A2。物側面L1A1的光軸區域L1A1C為凸面及其圓周區域L1A1P為凸面。像側面L1A2的光軸區域L1A2C為凸面及其圓周區域L1A2P為凸面。第一透鏡L1的物側面L1A1與像側面L1A2皆為非球面。
第二透鏡L2具有負屈光率,並具有一朝向物側A1的物側面L2A1及一朝向像側A2的像側面L2A2。物側面L2A1的光軸區域L2A1C為凸面及其圓周區域L2A1P為凸面。像側面L2A2的光軸區域L2A2C為凹面及其圓周區域L2A2P為凹面。第二透鏡L2的物側面L2A1與像側面L2A2皆為非球面。
第三透鏡L3具有負屈光率,並具有一朝向物側A1的物側面L3A1及一朝向像側A2的像側面L3A2。物側面L3A1的光軸區域L3A1C為凹面以及其圓周區域L3A1P為凹面。像側面L3A2的光軸區域L3A2C為凹面及其圓周區域L3A2P為凸面。第三透鏡L3的物側面L3A1與像側面L3A2皆為非球面。
第四透鏡L4具有負屈光率,並具有一朝向物側A1的物側面L4A1及具有一朝向像側A2的像側面L4A2。物側面L4A1的光軸區域L4A1C為凸面以及其圓周區域L4A1P為凹面。像側面L4A2的光軸區域L4A2C為凹面及其圓周區域L4A2P為凸面。第四透鏡L4的物側面L4A1與像側面L4A2皆為非球面。
第五透鏡L5具有正屈光率,並具有一朝向物側A1的物側面L5A1及一朝向像側A2的像側面L5A2。物側面的光軸區域L5A1C為凸面以及其圓周區域L5A1P為凹面。像側面L5A2的光軸區域L5A2C為凸面及其圓周區域L5A2P為凸面。第五透鏡L5的物側面L5A1與像側面L5A2皆為非球面。
第六透鏡L6具有負屈光率,並具有一朝向物側A1的物側面L6A1及一朝向像側A2的像側面L6A2。物側面L6A1的光軸區域L6A1C為凹面以及其圓周區域L6A1P為凸面。像側面L6A2的光軸區域L6A2C為凹面及其圓周區域L6A2P為凸面。第六透鏡L6的物側面L6A1與像側面L6A2皆為非球面。
在本實施例中,係設計各透鏡L1、L2、L3、L4、L5、L6、濾光片TF及影像感測器的成像面IMA之間皆存在空氣間隙,然而並不限於此,在其他實施例中亦可使任兩相對的透鏡表面輪廓設計為彼此相應,而可彼此貼合,以消除其間之空氣間隙。
關於本實施例之光學成像鏡頭1中的各透鏡之各光學特性及各距離之數值,請參考圖8。關於各條件式T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6) 、(G45+T5)/(G34+T4)及V4+V5+V6之值,請參考圖50A。
第一透鏡L1的物側面L1A1及像側面L1A2、第二透鏡L2的物側面L2A1及像側面L2A2、第三透鏡L3的物側面L3A1及像側面L3A2、第四透鏡L4的物側面L4A1及像側面L4A2、第五透鏡L5的物側面L5A1及像側面L5A2及第六透鏡L6的物側面L6A1及像側面L6A2,共十二個非球面皆是依下列非球面曲線公式定義:
Figure 02_image001
Y表示非球面曲面上的點與光軸的垂直距離;Z表示非球面之深度(非球面上距離光軸為Y的點,其與相切於非球面光軸上頂點之切面,兩者間的垂直距離);R表示透鏡表面近光軸處之曲率半徑;K為錐面係數(Conic Constant);a i為第i階非球面係數。各個非球面之參數詳細數據請一併參考圖9。
圖7(a)繪示本實施例的縱向球差的示意圖,橫軸為縱向球差,縱軸為視場。圖7(b)繪示本實施例的弧矢方向的場曲像差的示意圖,圖7(c)繪示本實施例的子午方向的場曲像差的示意圖,橫軸為場曲像差,縱軸為像高。圖7(d)繪示本實施例的畸變像差的示意圖,橫軸為百分比,縱軸為像高。三種代表波長(470nm, 555nm, 650nm)在不同高度的離軸光線皆集中於的成像點附近,每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.006~0.008 mm,明顯改善不同波長的球差,弧矢方向的場曲像差落在-0.02~0.02 mm內,子午方向的場曲像差落在-0.1~0.14 mm內,而畸變像差維持於0~3.5%內。
從上述數據中可以看出光學成像鏡頭1的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭1將半視角(HFOV)擴大至40.051度,提供4.624 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質及較小的鏡頭前表面積。
參考圖10至圖13,圖10顯示依據本發明之第二實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖11顯示依據本發明之第二實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖12顯示依據本發明之第二實施例之光學成像鏡頭之詳細光學數據,圖13顯示依據本發明之第二實施例之光學成像鏡頭之各透鏡之非球面數據。如圖10中所示,本實施例之光學成像鏡頭2從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第二實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2之表面凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第二實施例的各曲率半徑、透鏡厚度、非球面係數及後焦距等相關光學參數與第一實施例不同。關於本實施例之光學成像鏡頭2的各透鏡之各光學特性及各距離之數值,請參考圖12。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6) 、(G45+T5)/(G34+T4)及V4+V5+V6之值,請參考圖50A。
從圖11(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.008~0.012mm以內。從圖11(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.05~0.05mm內。從圖11(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.15~0.3mm內。圖11(d)顯示光學成像鏡頭2的畸變像差維持在-0.5~3%的範圍內。
從上述數據中可以看出光學成像鏡頭2的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭2將半視角(HFOV)擴大至38.994度,提供4.748 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質及較小的鏡頭前表面積。
參考圖14至圖17,其中圖14顯示依據本發明之第三實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖15顯示依據本發明之第三實施例光學成像鏡頭之各項像差圖示意圖,圖16顯示依據本發明之第三實施例之光學成像鏡頭之詳細光學數據,圖17顯示依據本發明之第三實施例之光學成像鏡頭之各透鏡之非球面數據。如圖14中所示,本實施例之光學成像鏡頭3從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第三實施例之朝向物側A1的物側面L1A1, L3A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2等透鏡表面的凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第三實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數及物側面L2A1等透鏡表面的凹凸配置與第一實施例不同。在此為了更清楚顯示圖面,僅標示表面凹凸配置與第一實施例不同之光軸區域與圓周區域之處,而省略相同凹凸配置之光軸區域與圓周區域的標號,且以下每個實施例亦僅標示透鏡表面凹凸配置與第一實施例不同之光軸區域與圓周區域之處,省略相同處的標號,並不再贅述。詳細地說,表面凹凸配置差異之處在於,第二透鏡L2的物側面L2A1的光軸區域L2A1C為凹面。在於關於本實施例之光學成像鏡頭3的各透鏡之各光學特性及各距離之數值,請參考圖16。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,請參考圖50A。
從圖15(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.014~0.012mm以內。從圖15(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.04~0.02mm內。從圖15(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.08~0.14mm內。圖15(d)顯示光學成像鏡頭3的畸變像差維持在0~3.5%的範圍內。與第一實施例相較,本實施例的子午方向的場曲像差小。
從上述數據中可以看出光學成像鏡頭3的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭3將半視角(HFOV)擴大至40.041度,提供4.770 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質及較小的鏡頭前表面積。
另請一併參考圖18至圖21,其中圖18顯示依據本發明之第四實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖19顯示依據本發明之第四實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖20顯示依據本發明之第四實施例之光學成像鏡頭之詳細光學數據,圖21顯示依據本發明之第四實施例之光學成像鏡頭之各透鏡之非球面數據。如圖18中所示,本實施例之光學成像鏡頭4從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第四實施例之朝向物側A1的物側面L1A1, L3A1, L4A1, L5A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2等透鏡表面的凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第四實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數及物側面L2A1, L6A1之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第二透鏡L2的物側面L2A1的光軸區域L2A1C為凹面,第六透鏡L6的物側面L6A1的圓周區域L6A1P為凹面。關於本實施例之光學成像鏡頭4的各透鏡之各光學特性及各距離之數值,請參考圖20。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,請參考圖50A。
從圖19(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.01~0.009mm以內。從圖19(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.025~0.01mm內。從圖19(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.04~0.03mm內。圖19(d)顯示光學成像鏡頭4的畸變像差維持在0~2.5%的範圍內。與第一實施例相較,本實施例的弧矢方向的場曲像差及畸變像差較小。
從上述數據中可以看出光學成像鏡頭4的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭4將半視角(HFOV)擴大至40.041度,提供4.820 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質及較小的鏡頭前表面積。
另請一併參考圖22至圖25,其中圖22顯示依據本發明之第五實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖23顯示依據本發明之第五實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖24顯示依據本發明之第五實施例之光學成像鏡頭之詳細光學數據,圖25顯示依據本發明之第五實施例之光學成像鏡頭之各透鏡之非球面數據。如圖22中所示,本實施例之光學成像鏡頭5從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第五實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L4A1, L5A1及朝向像側A2的像側面L1A2, L2A2, L4A2, L5A2, L6A2的透鏡表面的凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第五實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距及物側面L6A1及像側面L3A2之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第三透鏡L3的像側面L3A2的光軸區域L3A2C為凸面,第六透鏡L6的物側面L6A1的圓周區域L6A1P為凹面。關於本實施例之光學成像鏡頭5的各透鏡之各光學特性及各距離之數值,請參考圖24。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,請參考圖50A。
從圖23(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.018~0.016mm以內。從圖23(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.05~0.05mm內。從圖23(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.05~0.35mm內。圖23(d)顯示光學成像鏡頭5的畸變像差維持在0~3.5%的範圍內。
從上述數據中可以看出光學成像鏡頭5的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭5將半視角(HFOV)擴大至40.041度,提供4.773 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質及較小的鏡頭前表面積。
另請一併參考圖26至圖29,其中圖26顯示依據本發明之第六實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖27顯示依據本發明之第六實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖28顯示依據本發明之第六實施例之光學成像鏡頭之詳細光學數據,圖29顯示依據本發明之第六實施例之光學成像鏡頭之各透鏡之非球面數據。如圖26中所示,本實施例之光學成像鏡頭6從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第六實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2的透鏡表面的凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第六實施例各透鏡表面的曲率半徑、透鏡厚度及後焦距與第一實施例不同。關於本實施例之光學成像鏡頭6的各透鏡之各光學特性及各距離之數值,請參考圖28。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4)及V4+V5+V6之值,請參考圖50A。
從圖27(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.01~0.007mm以內。從圖27(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.03~0.01mm內。從圖27(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.02~0.05mm內。圖27(d)顯示光學成像鏡頭6的畸變像差維持在0~2%的範圍內。與第一實施例相較,本實施例的子午方向的場曲像差及畸變像差較小。
從上述數據中可以看出光學成像鏡頭6的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭6將半視角(HFOV)擴大至40.041度,提供4.856 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質及較小的鏡頭前表面積。
另請一併參考圖30至圖33,其中圖30顯示依據本發明之第七實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖31顯示依據本發明之第七實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖32顯示依據本發明之第七實施例之光學成像鏡頭之詳細光學數據,圖33顯示依據本發明之第七實施例之光學成像鏡頭之各透鏡之非球面數據。如圖30中所示,本實施例之光學成像鏡頭7從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第七實施例之朝向物側A1的物側面L1A1, L2A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2的透鏡表面的凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第七實施例各透鏡表面的曲率半徑、透鏡厚度、後焦距及物側面L3A1之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第三透鏡L3的物側面L3A1的光軸區域L3A1C為凸面。關於本實施例之光學成像鏡頭7的各透鏡之各光學特性及各距離之數值,請參考圖32。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,請參考圖50B。
從圖31(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.01~0.018mm以內。從圖31(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.04~0.02mm內。從圖31(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.06~0.14mm內。圖31(d)顯示光學成像鏡頭7的畸變像差維持在-3~0%的範圍內。與第一實施例相較,本實施例子午方向的場曲像差和畸變像差較小。
從上述數據中可以看出光學成像鏡頭7的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭7將半視角(HFOV)擴大至40.041度,提供4.698 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質。
另請一併參考圖34至圖37,其中圖34顯示依據本發明之第八實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖35顯示依據本發明之第八實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖36顯示依據本發明之第八實施例之光學成像鏡頭之詳細光學數據,圖37顯示依據本發明之第八實施例之光學成像鏡頭之各透鏡之非球面數據。如圖34中所示,本實施例之光學成像鏡頭8從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第八實施例之朝向物側A1的物側面L1A1, L2A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2的透鏡表面的凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第八實施例各透鏡表面的曲率半徑、透鏡厚度、後焦距及物側面L3A1之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第三透鏡L3的物側面L3A1的光軸區域L3A1C為凸面。關於本實施例之光學成像鏡頭8的各透鏡之各光學特性及各距離之數值,請參考圖36。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4)及V4+V5+V6之值,請參考圖50B。
從圖35(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.01~0.012mm以內。從圖35(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.04~0.02mm內。從圖35(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.05~0.07mm內。圖35(d)顯示光學成像鏡頭8的畸變像差維持在0~2.5%的範圍內。與第一實施例相比較,本實施例子午方向的場曲像差及畸變像差較小。
從上述數據中可以看出光學成像鏡頭8的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭8將半視角(HFOV)擴大至38.994度,提供4.728 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質。
另請一併參考圖38至圖41,其中圖38顯示依據本發明之第九實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖39顯示依據本發明之第九實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖40顯示依據本發明之第九實施例之光學成像鏡頭之詳細光學數據,圖41顯示依據本發明之第九實施例之光學成像鏡頭之各透鏡之非球面數據。如圖38中所示,本實施例之光學成像鏡頭9從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第九實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L4A1, L5A1及朝向像側A2的像側面L1A2, L2A2, L4A2, L5A2, L6A2的透鏡表面的凹凸配置及除第二透鏡L2之外各透鏡的正負屈光率配置大致上與第一實施例類似,唯第九實施例各透鏡表面的曲率半徑、透鏡厚度、後焦距、物側面L6A1和像側面L3A2之表面凹凸配置及第二透鏡L2具有正屈光率與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第三透鏡L3的像側面L3A2的光軸區域L3A2C為凸面且圓周區域L3A2P為凹面,第六透鏡L6的物側面L6A1的圓周區域L6A1P為凹面。關於本實施例之光學成像鏡頭9的各透鏡之各光學特性及各距離之數值,請參考圖40。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,請參考圖50B。
從圖39(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.04~0.03mm以內。從圖39(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.12~0.04mm內。從圖39(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.14~0.14mm內。圖39(d)顯示光學成像鏡頭9的畸變像差維持在0~3.5%的範圍內。
從上述數據中可以看出光學成像鏡頭9的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭9將半視角(HFOV)擴大至40.051度,提供4.664 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質。
另請一併參考圖42至圖45,其中圖42顯示依據本發明之第十實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖43顯示依據本發明之第十實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖44顯示依據本發明之第十實施例之光學成像鏡頭之詳細光學數據,圖45顯示依據本發明之第十實施例之光學成像鏡頭之各透鏡之非球面數據。如圖42中所示,本實施例之光學成像鏡頭10從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第十實施例之朝向物側A1的物側面L1A1, L2A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L4A2, L5A2, L6A2的透鏡表面的凹凸配置及除第三透鏡L3之外的各透鏡的正負屈光率配置大致上與第一實施例類似,唯第十實施例各透鏡表面的曲率半徑、透鏡厚度、後焦距、物側面L3A1和像側面L3A2之表面凹凸配置及第三透鏡L3具有正屈光率與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第三透鏡L3的物側面L3A1的圓周區域L3A1P為凸面,第三透鏡L3的像側面L3A2的光軸區域L3A2C為凸面。關於本實施例之光學成像鏡頭10的各透鏡之各光學特性及各距離之數值,請參考圖44。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,請參考圖50B。
從圖43(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.007~0.009mm以內。從圖43(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.025~0.005mm內。從圖43(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.04~0.02mm內。圖43(d)顯示光學成像鏡頭10的畸變像差維持在-0.5~3.5%的範圍內。與第一實施例相較,本實施例的弧矢和子午方向的場曲像差較小。
從上述數據中可以看出光學成像鏡頭10的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭10將半視角(HFOV)擴大至38.994度,提供4.609 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質。與第一實施例相較,本實施例系統長度較短。
另請一併參考圖46至圖49,其中圖46顯示依據本發明之第十一實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖,圖47顯示依據本發明之第十一實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖48顯示依據本發明之第十一實施例之光學成像鏡頭之詳細光學數據,圖49顯示依據本發明之第十一實施例之光學成像鏡頭之各透鏡之非球面數據。如圖46中所示,本實施例之光學成像鏡頭11從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5及一第六透鏡L6。
第十一實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2的透鏡表面的凹凸配置及除第四透鏡L4之外的各透鏡的正負屈光率配置大致上與第一實施例類似,唯第十一實施例各透鏡表面的曲率半徑、透鏡厚度、後焦距及第四透鏡L4具有正屈光率與第一實施例不同。關於本實施例之光學成像鏡頭11的各透鏡之各光學特性及各距離之數值,請參考圖48。關於T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,請參考圖50B。
從圖47(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.012~0.012mm以內。從圖47(b)的弧矢方向的場曲像差中,三種代表波長變化量落在-0.02~0.02mm內。從圖47(c)的子午方向的場曲像差中,三種代表波長變化量落在-0.03~0.07mm內。圖47(d)顯示光學成像鏡頭11的畸變像差維持在0~3.5%的範圍內。與第一實施例相較,本實施例的子午方向的場曲像差較小。
從上述數據中可以看出光學成像鏡頭11的各種光學特性已符合光學系統的成像品質要求。本實施例之光學成像鏡頭11將半視角(HFOV)擴大至38.994度,提供4.650 mm的系統長度,同時相較於現有光學鏡頭能有效提供較佳的成像品質。
圖50A、50B統列出以上十一個實施例的的各參數、T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4) 及V4+V5+V6之值,以及各實施例的詳細光學數據中,可看出本發明之光學成像鏡頭確實可滿足前述條件式(1)、(2)及/或條件式(3)~(20)之至少任一。其次,此處各個實施例所揭露之光學參數的組合比例關係所得的包含最大最小值以內的數值範圍皆可屬本發明據以實施之範疇。
本發明光學成像鏡頭各實施例的縱向球差、場曲像差、畸變像差皆符合使用規範。另外,三種代表波長在不同高度的離軸光線皆集中在成像點附近,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差皆獲得控制而具有良好的球差、像差、畸變抑制能力。進一步參閱成像品質數據,三種代表波長彼此間的距離亦相當接近,顯示本發明在各種狀態下對不同波長光線的集中性佳而具有優良的色散抑制能力。綜上所述,本發明藉由透鏡的設計與相互搭配,能產生優異的成像品質。
以上敍述依據本發明多個不同實施例,其中各項特徵可以單一或不同結合方式實施。因此,本發明實施方式之揭露為闡明本發明原則之具體實施例,應不拘限本發明於所揭示的實施例。進一步言之,先前敍述及其附圖僅為本發明示範之用,並不受其限囿。其他元件之變化或組合皆可能,且不悖于本發明之精神與範圍。此外,本發明之各個實施例所揭露之光學參數的組合比例關係所得的包含最大最小值以內的數值範圍皆可據以實施。
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 光學成像鏡頭 100, 200, 300, 400, 500 透鏡 130 組裝部 211, 212 平行光線 STO 光圈 L1 第一透鏡 L2 第二透鏡 L3 第三透鏡 L4 第四透鏡 L5 第五透鏡 L6 第六透鏡 TF 濾光片 IMA 成像面 110, 410, 510, L1A1, L2A1, L3A1, L4A1, L5A1, L6A1, TFA1 物側面 120, 320, L1A2, L2A2, L3A2, L4A2, L5A2, L6A2, TFA2 像側面 Z1, L1A1C, L1A2C, L2A1C, L2A2C, L3A1C, L3A2C, L4A1C, L4A2C, L5A1C, L5A2C, L6A1C, L6A2C 光軸區域 Z2, L1A1P, L1A2P, L2A1P, L2A2P, L3A1P, L3A2P, L4A1P, L4A2P, L5A1P, L5A2P, L6A1P, L6A2P 圓周區域 A1 物側 A2 像側 CP 中心點 CP1 第一中心點 CP2 第二中心點 TP1 第一轉換點 TP2 第二轉換點 OB 光學邊界 I 光軸 Lc 主光線 Lm 邊緣光線 EL 延伸線 Z3 中繼區域 M, R 相交點
本發明所附圖式說明如下: 圖1顯示本發明之一實施例之透鏡剖面結構示意圖; 圖2繪示透鏡面形與光線焦點的關係示意圖; 圖3繪示範例一的透鏡區域的面形及區域分界的關係圖; 圖4繪示範例二的透鏡區域的面形及區域分界的關係圖; 圖5繪示範例三的透鏡區域的面形及區域分界的關係圖; 圖6顯示依據本發明之第一實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖7顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖8顯示依據本發明之第一實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖9顯示依據本發明之第一實施例之光學成像鏡頭之非球面數據; 圖10顯示依據本發明之第二實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖11顯示依據本發明之第二實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖12顯示依據本發明之第二實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖13顯示依據本發明之第二實施例之光學成像鏡頭之非球面數據; 圖14顯示依據本發明之第三實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖15顯示依據本發明之第三實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖16顯示依據本發明之第三實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖17顯示依據本發明之第三實施例之光學成像鏡頭之非球面數據; 圖18顯示依據本發明之第四實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖19顯示依據本發明之第四實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖20顯示依據本發明之第四實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖21顯示依據本發明之第四實施例之光學成像鏡頭之非球面數據; 圖22顯示依據本發明之第五實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖23顯示依據本發明之第五實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖24顯示依據本發明之第五實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖25顯示依據本發明之第五實施例之光學成像鏡頭之非球面數據; 圖26顯示依據本發明之第六實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖27顯示依據本發明之第六實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖28顯示依據本發明之第六實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖29顯示依據本發明之第六實施例之光學成像鏡頭之非球面數據; 圖30顯示依據本發明之第七實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖31顯示依據本發明之第七實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖32顯示依據本發明之第七實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖33顯示依據本發明之第七實施例之光學成像鏡頭之非球面數據; 圖34顯示依據本發明之第八實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖35顯示依據本發明之第八實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖36顯示依據本發明之第八實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖37顯示依據本發明之第八實施例之光學成像鏡頭之非球面數據; 圖38顯示依據本發明之第九實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖39顯示依據本發明之第九實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖40顯示依據本發明之第九實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖41顯示依據本發明之第九實施例之光學成像鏡頭之非球面數據; 圖42顯示依據本發明之第十實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖43顯示依據本發明之第十實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖44顯示依據本發明之第十實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖45顯示依據本發明之第十實施例之光學成像鏡頭之非球面數據; 圖46顯示依據本發明之第十一實施例之光學成像鏡頭之六片式透鏡之剖面結構示意圖; 圖47顯示依據本發明之第十一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖48顯示依據本發明之第十一實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖49顯示依據本發明之第十一實施例之光學成像鏡頭之非球面數據; 圖50A、50B統列出以上十一個實施例的各參數及T1/AAG、TTL/T1、ALT/BFL、EFL/(T4+T6)、TL/(T3+T6)、BFL/AAG、(T3+T4)/T2、(T1+G12+T2)/(T3+G34+T4)、ALT/(T2+T3)、EFL/(G45+T5)、(TL+BFL)/(G23+G56)、AAG/(G45+G56)、(G45+G56)/G23、(T1+T5)/(T3+T4)、ALT/(T1+G12)、EFL/(G23+G56)、TL/(T2+G23)、BFL/(G12+G34+T6)、(G45+T5)/(G34+T4)及V4+V5+V6值的比較表。
1 光學成像鏡頭 STO 光圈 L1 第一透鏡 L2 第二透鏡 L3 第三透鏡 L4 第四透鏡 L5 第五透鏡 L6 第六透鏡 TF 濾光片 IMA 成像面 L1A1, L2A1, L3A1, L4A1, L5A1, L6A1, TFA1 物側面 L1A2, L2A2, L3A2, L4A2, L5A2, L6A2, TFA2 像側面 L1A1C, L1A2C, L2A1C, L2A2C, L3A1C, L3A2C, L4A1C, L4A2C, L5A1C, L5A2C, L6A1C, L6A2C 光軸區域 L1A1P, L1A2P, L2A1P, L2A2P, L3A1P, L3A2P, L4A1P, L4A2P, L5A1P, L5A2P, L6A1P, L6A2P 圓周區域 A1 物側 A2 像側

Claims (20)

  1. 一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡,且該第一透鏡至該第六透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面; 該第一透鏡的該像側面的一光軸區域為凸面; 該第二透鏡的該物側面的一圓周區域為凸面; 該第四透鏡的該像側面的一圓周區域為凸面; 該第六透鏡的該物側面的一光軸區域為凹面; 該第六透鏡的該像側面的一圓周區域為凸面;及 其中,該光學成像鏡頭具有屈光率的透鏡只有六片並且滿足以下條件式:T1/AAG≧1.000, T1代表該第一透鏡在該光軸上的一厚度,AAG代表該第一透鏡到該第六透鏡在該光軸上的五個空氣間隙的一總和。
  2. 一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡,且該第一透鏡至該第六透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面; 該第一透鏡的該像側面的一光軸區域為凸面; 該第四透鏡的該像側面的一圓周區域為凸面; 該第六透鏡的該物側面的一光軸區域為凹面; 該第六透鏡的該像側面的一圓周區域為凸面; 其中,該光學成像鏡頭具有屈光率的透鏡只有六片並且滿足以下條件式:T1/AAG≧1.000及  TTL/T1≦5.100, T1代表該第一透鏡在該光軸上的一厚度,AAG代表該第一透鏡到該第六透鏡在該光軸上的五個空氣間隙的一總和,TTL代表該第一透鏡的該物側面到一成像面在該光軸上的一距離。
  3. 一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡,且該第一透鏡至該第六透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面; 該第一透鏡具有正屈光率; 該第一透鏡的該像側面的一光軸區域為凸面; 該第二透鏡的該物側面的一圓周區域為凸面; 該第四透鏡的該像側面的一光軸區域為凹面; 該第四透鏡的該像側面的一圓周區域為凸面; 該第六透鏡的該像側面的一圓周區域為凸面; 其中,該光學成像鏡頭具有屈光率的透鏡只有六片並且滿足以下條件式:T1/AAG≧1.000, T1代表該第一透鏡在該光軸上的一厚度,AAG代表該第一透鏡到該第六透鏡在該光軸上的五個空氣間隙的一總和。
  4. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足ALT/BFL≧2.100,ALT代表該第一透鏡至該第六透鏡在該光軸上的六個透鏡厚度的一總和,BFL代表該第六透鏡的該像側面到該成像面在該光軸上的一距離。
  5. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足EFL/(T4+T6)≧4.500,EFL代表該光學成像鏡頭的一系統焦距,T4代表該第四透鏡在該光軸上的一厚度,T6代表該第六透鏡在該光軸上的一厚度。
  6. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足TL/(T3+T6)≧4.300,TL代表該第一透鏡之該物側面至該第六透鏡之該像側面在該光軸上的一距離,T3代表該第三透鏡在該光軸上的一厚度,T6代表該第六透鏡在該光軸上的一厚度。
  7. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足BFL/AAG≦1.700,BFL代表該第六透鏡的該像側面到該成像面在該光軸上的一距離。
  8. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T3+T4)/T2≦3.600, T3代表該第三透鏡在該光軸上的一厚度,T4代表該第四透鏡在該光軸上的一厚度,T2代表該第二透鏡在該光軸上的一厚度。
  9. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T1+G12+T2)/(T3+G34+T4)≧1.700,G12代表該第一透鏡之該像側面至該第二透鏡之該物側面在該光軸上的一距離, T2代表該第二透鏡在該光軸上的一厚度,T3代表該第三透鏡在該光軸上的一厚度,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的一距離,T4代表該第四透鏡在該光軸上的一厚度。
  10. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足ALT/(T2+T3)≧4.700,ALT代表該第一透鏡至該第六透鏡在該光軸上的六個透鏡厚度的一總和,T2代表該第二透鏡在該光軸上的一厚度,T3代表該第三透鏡在該光軸上的一厚度。
  11. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足EFL/(G45+T5)≦5.700,EFL代表該光學成像鏡頭的一系統焦距,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的一距離,T5代表該第五透鏡在該光軸上的一厚度。
  12. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(TL+BFL)/(G23+G56)≦11.500,TL代表該第一透鏡之該物側面至該第六透鏡之該像側面在該光軸上的一距離,BFL代表該第六透鏡的該像側面到該成像面在該光軸上的一距離,G23代表該第二透鏡之該像側面至該第三透鏡之該物側面在該光軸上的一距離,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的一距離。
  13. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足AAG/(G45+G56)≦2.500,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的一距離,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的一距離。
  14. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(G45+G56)/G23≧1.000,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的一距離,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的一距離,G23代表該第二透鏡之該像側面至該第三透鏡之該物側面在該光軸上的一距離。
  15. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T1+T5)/(T3+T4)≧2.200,T5代表該第五透鏡在該光軸上的一厚度,T3代表該第三透鏡在該光軸上的一厚度,T4代表該第四透鏡在該光軸上的一厚度。
  16. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足ALT/(T1+G12)≦3.400,ALT代表該第一透鏡至該第六透鏡在該光軸上的六個透鏡厚度的一總和,G12代表該第一透鏡之該像側面至該第二透鏡之該物側面在該光軸上的一距離。
  17. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足EFL/(G23+G56)≦10.000, EFL代表該光學成像鏡頭的一系統焦距,G23代表該第二透鏡之該像側面至該第三透鏡之該物側面在該光軸上的一距離,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的一距離。
  18. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足TL/(T2+G23)≦8.000,TL代表該第一透鏡之該物側面至該第六透鏡之該像側面在該光軸上的一距離,T2代表該第二透鏡在該光軸上的一厚度,G23代表該第二透鏡之該像側面至該第三透鏡之該物側面在該光軸上的一距離。
  19. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足BFL/(G12+G34+T6)≧2.100,BFL代表該第六透鏡的該像側面到該成像面在該光軸上的一距離,G12代表該第一透鏡之該像側面至該第二透鏡之該物側面在該光軸上的一距離,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的一距離,T6代表該第六透鏡在該光軸上的一厚度。
  20. 如申請專利範圍第1-3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(G45+T5)/(G34+T4)≧1.700,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的一距離,T5代表該第五透鏡在該光軸上的一厚度,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的一距離,T4代表該第四透鏡在該光軸上的一厚度。
TW109102165A 2019-12-31 2020-01-21 光學成像鏡頭 TWI734356B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911407999.0A CN111025598B (zh) 2019-12-31 2019-12-31 光学成像镜头
CN201911407999.0 2019-12-31

Publications (2)

Publication Number Publication Date
TW202127089A TW202127089A (zh) 2021-07-16
TWI734356B true TWI734356B (zh) 2021-07-21

Family

ID=70197420

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102165A TWI734356B (zh) 2019-12-31 2020-01-21 光學成像鏡頭

Country Status (3)

Country Link
US (1) US11543625B2 (zh)
CN (1) CN111025598B (zh)
TW (1) TWI734356B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792681B (zh) * 2020-09-18 2023-02-11 南韓商三星電機股份有限公司 光學成像系統

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658612A (zh) * 2019-11-13 2020-01-07 玉晶光电(厦门)有限公司 光学成像镜头
CN113866945B (zh) * 2021-09-30 2024-07-19 玉晶光电(厦门)有限公司 光学成像镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104787A1 (en) * 2012-12-31 2014-07-03 Samsung Electronics Co., Ltd. Photographic lens and photographic apparatus using the same
TW201516453A (zh) * 2014-08-12 2015-05-01 玉晶光電股份有限公司 光學成像鏡頭及應用該光學成像鏡頭的電子裝置
TWI565965B (zh) * 2015-06-04 2017-01-11 Optical camera lens

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907417B2 (ja) * 2012-03-16 2016-04-26 株式会社リコー 結像レンズ、撮像装置および情報装置
JP5924121B2 (ja) * 2012-05-22 2016-05-25 株式会社オプトロジック 撮像レンズ
CN206074890U (zh) * 2013-10-21 2017-04-05 康达智株式会社 摄像镜头
KR20150058972A (ko) * 2013-11-21 2015-05-29 삼성전자주식회사 촬상 렌즈 시스템 및 이를 채용한 촬상 장치
CN104808321B (zh) * 2015-01-23 2017-05-10 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
TWI574040B (zh) * 2016-04-15 2017-03-11 大立光電股份有限公司 光學成像系統組、取像裝置及電子裝置
KR101914041B1 (ko) * 2016-08-03 2018-11-02 주식회사 코렌 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
TWI607238B (zh) * 2016-08-22 2017-12-01 大立光電股份有限公司 光學攝像系統組、取像裝置及電子裝置
CN106772931B (zh) * 2016-11-02 2019-05-03 玉晶光电(厦门)有限公司 光学镜片组
TWI676046B (zh) * 2018-06-20 2019-11-01 大立光電股份有限公司 攝影用光學鏡頭、取像裝置及電子裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104787A1 (en) * 2012-12-31 2014-07-03 Samsung Electronics Co., Ltd. Photographic lens and photographic apparatus using the same
TW201516453A (zh) * 2014-08-12 2015-05-01 玉晶光電股份有限公司 光學成像鏡頭及應用該光學成像鏡頭的電子裝置
TWI565965B (zh) * 2015-06-04 2017-01-11 Optical camera lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792681B (zh) * 2020-09-18 2023-02-11 南韓商三星電機股份有限公司 光學成像系統

Also Published As

Publication number Publication date
CN111025598B (zh) 2024-07-19
US11543625B2 (en) 2023-01-03
TW202127089A (zh) 2021-07-16
US20210199924A1 (en) 2021-07-01
CN111025598A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
TWI731546B (zh) 光學成像鏡頭
TWI725315B (zh) 光學成像鏡頭
TWI732418B (zh) 光學成像鏡頭
CN111025540B (zh) 光学成像镜头
TWI729741B (zh) 光學成像鏡頭
CN108627958B (zh) 光学成像镜头
TWI750945B (zh) 光學成像鏡頭
TW202125030A (zh) 光學成像鏡頭
TWI757782B (zh) 光學成像鏡頭
TW202045971A (zh) 光學成像鏡頭
TWI748548B (zh) 光學成像鏡頭
CN108627953B (zh) 光学成像镜头
TWI742814B (zh) 光學成像鏡頭
TWI734356B (zh) 光學成像鏡頭
TW202223479A (zh) 光學成像鏡頭
TW202006417A (zh) 光學成像鏡頭
TW202119085A (zh) 光學成像鏡頭
TWI734355B (zh) 光學成像鏡頭
TW202223478A (zh) 光學成像鏡頭
TWI699575B (zh) 光學成像鏡頭
TWI779426B (zh) 光學成像鏡頭
TWI745067B (zh) 光學成像鏡頭
TWI757863B (zh) 光學成像鏡頭
TWI796620B (zh) 光學成像鏡頭
TWI850818B (zh) 光學成像鏡頭