TWI732141B - Enhancement-mode high electron mobility transistors and manufacturing methods thereof - Google Patents

Enhancement-mode high electron mobility transistors and manufacturing methods thereof Download PDF

Info

Publication number
TWI732141B
TWI732141B TW107136263A TW107136263A TWI732141B TW I732141 B TWI732141 B TW I732141B TW 107136263 A TW107136263 A TW 107136263A TW 107136263 A TW107136263 A TW 107136263A TW I732141 B TWI732141 B TW I732141B
Authority
TW
Taiwan
Prior art keywords
layer
barrier
sublayer
recessed area
electron mobility
Prior art date
Application number
TW107136263A
Other languages
Chinese (zh)
Other versions
TW202017181A (en
Inventor
馮天璟
杜尚儒
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW107136263A priority Critical patent/TWI732141B/en
Publication of TW202017181A publication Critical patent/TW202017181A/en
Application granted granted Critical
Publication of TWI732141B publication Critical patent/TWI732141B/en

Links

Images

Abstract

A High Electron Mobility Transistor (HEMT) includes a channel layer, a first barrier layer, a depletion layer, a source electrode, a drain electrode and a gate electrode. The first barrier layer is formed on the channel layer and includes a surface and a recess extended from the surface, wherein, along an upward direction from channel layer, the first barrier layer includes a first barrier sublayer, a second barrier sublayer and a third barrier sublayer sequentially stacked on the channel layer. The depletion layer is formed on the first barrier layer, covers the recess in the barrier layer, and extends to cover a portion of the surface of the barrier layer. The source electrode and the drain electrode are respectively formed on the barrier layer, and the gate electrode is formed on the depletion layer and between the source electrode and the drain electrode. The first barrier sublayer, the second barrier sublayer and the third barrier sublayer respectively include a material selected from one of AlGaN, AlInN and AlGaInN, and respectively include a first Al content, a second Al content and a third Al content. The third Al content is less than the first Al content and the second Al content, which are mutually different.

Description

增強型高電子移動率電晶體與相關之製造方法Enhanced high electron mobility transistor and related manufacturing method

本說明書係關於一種高電子移動率電晶體(High Electron Mobility Transistor,HEMT)以及其製作方法;特別關於一種增強型高電子移動率電晶體(enhancement-mode HEMT,E-mode HEMT)以及其製作方法。 This manual is about a high electron mobility transistor (High Electron Mobility Transistor, HEMT) and its manufacturing method; especially about an enhanced high electron mobility transistor (enhancement-mode HEMT, E-mode HEMT) and its manufacturing method .

HEMT之結構一般具有通道層、形成於通道層上的阻障層、源極電極、汲極電極及閘極電極分別形成於阻障層上。藉由對閘極電極施加一偏壓,可調控閘極電極下方通道層的二維電子氣(two-dimensional electron gas,2DEG)濃度而達到開關HEMT的功效。HEMT之結構一般具有通道層、形成於通道層上的阻障層、源極電極、汲極電極及閘極電極分別形成於阻障層上。藉由對閘極電極施加一偏壓,可調控閘極電極下方通道層的二維電子氣(two-dimensional electron gas,2DEG)濃度而達到開關HEMT的功效。 The structure of the HEMT generally has a channel layer, a barrier layer formed on the channel layer, a source electrode, a drain electrode, and a gate electrode formed on the barrier layer, respectively. By applying a bias to the gate electrode, the two-dimensional electron gas (2DEG) concentration of the channel layer under the gate electrode can be adjusted to achieve the effect of switching HEMT. The structure of the HEMT generally has a channel layer, a barrier layer formed on the channel layer, a source electrode, a drain electrode, and a gate electrode formed on the barrier layer, respectively. By applying a bias to the gate electrode, the two-dimensional electron gas (2DEG) concentration of the channel layer under the gate electrode can be adjusted to achieve the effect of switching HEMT.

HEMT的主要特徵在於利用不同晶格常數(lattice constant)材料相接觸後形成的異質接面(heterojunction),以於鄰近異質接面處產生2DEG。舉例來說,氮化鋁鎵(AlGaN)與氮化鎵(GaN)就是兩種用來形成異質接面的材 料。藉由AlGaN與GaN材料形成的疊層所產生自發性極化(spontaneous polarization)及壓電極化(piezoelectric polarization)現象,造成兩者間所形成之異質接面處的能帶彎曲,且在GaN層靠近接面處產生2DEG,其中,2DEG可提供高電子移動率以及低阻抗等特性。因此,具有2DEG的HEMT就非常適合高速與高功率之電路應用。 The main feature of HEMT is to use a heterojunction formed by contacting materials with different lattice constants to produce 2DEG adjacent to the heterojunction. For example, aluminum gallium nitride (AlGaN) and gallium nitride (GaN) are two materials used to form heterojunctions. material. The phenomenon of spontaneous polarization and piezoelectric polarization caused by the stack of AlGaN and GaN materials causes the energy band at the heterojunction formed between the two to be bent, and the GaN layer 2DEG is generated near the junction, where 2DEG can provide high electron mobility and low impedance. Therefore, HEMT with 2DEG is very suitable for high-speed and high-power circuit applications.

HEMT可依是否需施加負偏壓下以使2DEG空乏而區分為空乏型HEMT(depletion-mode HEMT,D-mode HEMT)或增強型HEMT(E-mode HEMT)。增強型HEMT藉由製程處理而將閘電極下方之通道層中的2DEG空乏,使得HEMT在不施加正偏壓的情況下,源電極與汲電極之間沒有電連接,此時增強型HEMT是處於一常關狀態(normally-off state),故增強型HEMT又可被稱為常關型HEMT(normally-off HEMT)。習知製作增強型HEMT的方法是在閘電極與阻障層之間插入一P型空乏層。藉由P型空乏層的反極化效果,使得閘電極下方之通道層中的2DEG空乏,進而使電連接源電極與汲電極的2DEG在閘極下方中斷。因此,要製造此類增強型HEMT,阻障層則不能過厚。但是,如此薄的阻障層將致使非閘電極下方(亦即源電極或汲電極與閘電極之間)的2DEG濃度偏低,使得增強型HEMT在施以正偏壓而導通時,會因通道層內2DEG濃度偏低造成元件阻抗過高的問題。 The HEMT can be classified into a depletion-mode HEMT (D-mode HEMT) or an enhanced HEMT (E-mode HEMT) depending on whether a negative bias is required to deplete the 2DEG. The enhanced HEMT depletes the 2DEG in the channel layer under the gate electrode through the process, so that there is no electrical connection between the source electrode and the drain electrode of the HEMT without applying a positive bias. At this time, the enhanced HEMT is in A normally-off state, so the enhanced HEMT can also be referred to as a normally-off HEMT (normally-off HEMT). The conventional method of manufacturing an enhanced HEMT is to insert a P-type depletion layer between the gate electrode and the barrier layer. Due to the reverse polarization effect of the P-type depletion layer, the 2DEG in the channel layer under the gate electrode is depleted, and the 2DEG that electrically connects the source electrode and the drain electrode is interrupted under the gate electrode. Therefore, to manufacture this type of enhanced HEMT, the barrier layer cannot be too thick. However, such a thin barrier layer will cause the 2DEG concentration under the non-gate electrode (that is, between the source electrode or drain electrode and the gate electrode) to be low, so that when the enhanced HEMT is turned on by applying a positive bias, it will be The low concentration of 2DEG in the channel layer causes the problem of too high component impedance.

一種高電子移動率電晶體,包含一通道層;一第一阻障層,形成於通道層上,第一阻障層包含一表面及自表面向通道層延伸的一凹陷區域,其中,沿自通道層往上的一方向,第一阻障層包含一第一阻障子層於通道層上、 一第二阻障子層於第一阻障子層上、及一第三阻障子層於第二阻障子層上;一空乏層,形成於阻障層上,其中,空乏層覆蓋第一阻障層之凹陷區域,且延伸覆蓋第一阻障層之表面的一部份;一源電極及一汲電極,分別形成阻障層上;以及,一閘電極,形成於空乏層上,且位於源電極及汲電極之間;其中,第一阻障子層、第二阻障子層、及第三阻障子層之材料分別包含選自氮化鋁鎵、氮化鋁銦或氮化鋁銦鎵之一的材料,且第一阻障子層、第二阻障子層、與第三阻障子層分別具有一第一鋁含量、一第二鋁含量、與一第三鋁含量。第三鋁含量低於第一鋁含量與第二鋁含量,且第一鋁含量相異於第二鋁含量。 A high-electron mobility transistor includes a channel layer; a first barrier layer is formed on the channel layer. The first barrier layer includes a surface and a recessed area extending from the surface to the channel layer. In the upward direction of the channel layer, the first barrier layer includes a first barrier sublayer on the channel layer, A second barrier sublayer is on the first barrier sublayer, and a third barrier sublayer is on the second barrier sublayer; a depletion layer is formed on the barrier layer, wherein the depletion layer covers the first barrier layer The recessed area, and extends to cover a part of the surface of the first barrier layer; a source electrode and a drain electrode are respectively formed on the barrier layer; and a gate electrode is formed on the depletion layer and is located on the source electrode And the drain electrode; wherein the materials of the first barrier sublayer, the second barrier sublayer, and the third barrier sublayer respectively include one selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, or aluminum indium gallium nitride Material, and the first barrier sub-layer, the second barrier sub-layer, and the third barrier sub-layer respectively have a first aluminum content, a second aluminum content, and a third aluminum content. The third aluminum content is lower than the first aluminum content and the second aluminum content, and the first aluminum content is different from the second aluminum content.

12:基底 12: Base

14:緩衝層 14: Buffer layer

16:通道層 16: channel layer

18、18a、18b:阻障層 18, 18a, 18b: barrier layer

18-1:表面 18-1: Surface

19:半導體層 19: Semiconductor layer

20:空乏層 20: Depleted layer

21:閘電極 21: Gate electrode

22:源電極 22: Source electrode

24:汲電極 24: Drain electrode

26:異質接面 26: Heterojunction

28:2DEG 28: 2DEG

100、200、300、400:HEMT 100, 200, 300, 400: HEMT

181:第一阻障子層 181: The first barrier sublayer

182:第二阻障子層 182: The second barrier sublayer

183:第三阻障子層 183: The third barrier sublayer

186:第二阻障層 186: The second barrier layer

184:第一蝕刻停止層 184: The first etch stop layer

185:第二蝕刻停止層 185: second etch stop layer

L1:寬度 L1: width

L2:寬度 L2: width

LD:距離 LD: distance

LTP:寬度 LTP: width

PR1、PR2:圖案化蝕刻保護層 PR1, PR2: patterned etching protection layer

REC:凹陷區域 REC: recessed area

REC1:第一凹陷區域 REC1: The first recessed area

REC2:第二凹陷區域 REC2: The second recessed area

REC3:第三凹陷區域 REC3: The third recessed area

TP:重疊區域 TP: overlapping area

第1圖顯示依據本揭露之一實施例的HEMT 100的剖面示意圖。 FIG. 1 shows a schematic cross-sectional view of a HEMT 100 according to an embodiment of the disclosure.

第2A圖至第2I圖為HEMT 100在各個不同製程階段的剖面示意圖。 2A to 2I are schematic cross-sectional views of the HEMT 100 at various stages of the manufacturing process.

第3圖至第5圖分別顯示依據本揭露之其他實施例的HEMT的剖面示意圖。 3 to 5 respectively show schematic cross-sectional views of HEMTs according to other embodiments of the present disclosure.

下文中,將參照圖式詳細地描述本揭露之實施例,以使得本領域技術人員能夠充分地理解本揭露之精神。本揭露並不限於以下之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依 據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。在此,「約」、「大約」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。另,「層」、「層別」之用語通常意謂在一區域內具有特定厚度的材料,其可由單一層或複數子層組成,只要該組成提供相同的功能即屬之。 Hereinafter, the embodiments of the present disclosure will be described in detail with reference to the drawings, so that those skilled in the art can fully understand the spirit of the present disclosure. The present disclosure is not limited to the following embodiments, but can be implemented in other forms. In this specification, there are some same symbols, which indicate components with the same or similar structure, function, and principle, and those with general knowledge and ability in the industry can follow Inferred according to the teaching of this manual. For the sake of simplicity in the description, the elements with the same symbols will not be repeated. Furthermore, when it is mentioned that a first material layer is located on or on a second material layer, it includes the case where the first material layer is in direct contact with the second material layer. Or, there may be one or more other material layers spaced apart. In this case, the first material layer and the second material layer may not be in direct contact. Here, the terms "about" and "approximately" usually mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%. The quantity given here is an approximate quantity, which means that the meaning of "about" and "approximately" can still be implied in the absence of specific instructions. In addition, the terms "layer" and "layer type" usually mean a material with a specific thickness in a region, which can be composed of a single layer or a plurality of sub-layers, as long as the composition provides the same function.

第1圖顯示依據本揭露之一實施例的HEMT 100的剖面示意圖。HEMT 100包含有一基底12,其可包含半導體材料或是非半導體材料,其中,半導體材料包含矽(Si)、碳化矽(SiC)、氮化鎵(GaN)、或砷化鎵(GaAs);非半導體材料包含藍寶石(Al2O3)。於一實施例中,因矽材料具有高熱傳導、散熱比較好的特性,故選其做為高功率元件的基底材料。而且,當基底12為矽基底時,HEMT100還可跟矽基半導體元件,例如N型與P型金氧半導體元件或互補式金氧半導體元件(CMOS),整合於同一基底上。 FIG. 1 shows a schematic cross-sectional view of a HEMT 100 according to an embodiment of the disclosure. The HEMT 100 includes a substrate 12, which may include a semiconductor material or a non-semiconductor material. The semiconductor material includes silicon (Si), silicon carbide (SiC), gallium nitride (GaN), or gallium arsenide (GaAs); The material contains sapphire (Al2O3). In one embodiment, the silicon material is selected as the base material of the high-power device because it has high heat conduction and better heat dissipation characteristics. Moreover, when the substrate 12 is a silicon substrate, the HEMT 100 can also be integrated with silicon-based semiconductor devices, such as N-type and P-type metal oxide semiconductor devices or complementary metal oxide semiconductor devices (CMOS).

接著在基底12上磊晶形成一緩衝層14、一通道層16、以及一阻障層18。在本實施例中,緩衝層14的厚度約0.1μm~10μm。由於後續形成之通道層16的半導體材料跟作為基底12的材料有不同的晶格常數(lattice constant)與熱膨脹係數(thermal expansion coefficient),故藉由設置緩衝層14以降低因為熱膨脹係數差異所產生的應力(strain),及減少晶格常數不匹配(mismatch)所可能產生的晶格缺陷(defects)。緩衝層14可為單一層或複數子層構成的疊層結構。當緩 衝層14為單一層時,其材料可以是單一材料。當緩衝層14為複數子層構成的疊層時,各子層的材料可以不同。於一實施例中,緩衝層14的材料選自氮化鎵(GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、氮化鋁銦(AlInN)、及氮化鋁銦鎵(AlInGaN)所組成之群組的材料。舉例來說,緩衝層14可為由氮化鋁鎵(AlGaN)層與氮化鎵(GaN)層交互堆疊所構成的疊層。此外,緩衝層14可摻雜如碳的其他元素,其中,碳摻雜的濃度可依成長方向漸變或固定。緩衝層14靠近基底12側可進一步包含一成核層(圖未示),舉例來說,成核層可由單一材料,例如AlN,構成單一層,其厚度約50nm~500nm,或是可由一低溫磊晶成長的AlN子層(厚度約40nm)及一高溫磊晶成長的AlN子層(厚度約150nm)交互堆疊構成的疊層結構。 Then, a buffer layer 14, a channel layer 16, and a barrier layer 18 are epitaxially formed on the substrate 12. In this embodiment, the thickness of the buffer layer 14 is about 0.1 μm-10 μm. Since the semiconductor material of the channel layer 16 to be formed subsequently has a different lattice constant and thermal expansion coefficient from the material used as the substrate 12, the buffer layer 14 is provided to reduce the difference in thermal expansion coefficient. Strain, and reduce the lattice defects that may be caused by the mismatch of lattice constants. The buffer layer 14 may be a single layer or a laminated structure composed of multiple sub-layers. Suspend When the punch layer 14 is a single layer, its material may be a single material. When the buffer layer 14 is a laminated layer composed of a plurality of sub-layers, the material of each sub-layer may be different. In one embodiment, the material of the buffer layer 14 is selected from the group consisting of gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), and aluminum indium gallium nitride (AlInN). AlInGaN) is a group of materials. For example, the buffer layer 14 may be a stack formed by alternately stacking aluminum gallium nitride (AlGaN) layers and gallium nitride (GaN) layers. In addition, the buffer layer 14 can be doped with other elements such as carbon, wherein the concentration of carbon doping can be gradually or fixed according to the growth direction. The buffer layer 14 near the substrate 12 may further include a nucleation layer (not shown). For example, the nucleation layer may be composed of a single material, such as AlN, with a thickness of about 50nm~500nm, or it may be a low temperature The AlN sub-layer (thickness about 40nm) grown by epitaxial growth and a high-temperature epitaxially grown AlN sublayer (about 150nm thick) are alternately stacked to form a laminated structure.

如第1圖所示,通道層16位於緩衝層14上。通道層16由週期表上第III-V族的元素所形成的化合物所構成,其具有第一晶格常數且厚度介於約50nm至約10μm間。在本實施例中,通道層16的材料包含氮化銦鎵(InxGa1-xN,0≦x<1)。阻障層18形成在通道層16上方,阻障層18是由週期表上第III-V族的元素所形成之化合物所構成,其具有小於於第一晶格常數的第二晶格常數,在本實施例中,阻障層18的材料包括氮化鋁鎵(AlGaN)或氮化鋁銦(AlInN)的三元材料,或氮化鋁銦鎵(AlInGaN)的的四元材料。阻障層18可為由單一材料所構成的單一層,或是由不同材料之複數子層所構成的一疊層。在一實施例中,阻障層18為由多層子層構成的一疊層,阻障層18包含一第一阻障子層181、一第二阻障子層182、以及一第三阻障子層183。第一阻障子層181、第二阻障子層182、以及第三阻障子層183之材料分別包括選自AlGaN、AlInN或AlInGaN之一,其中,第一阻障子層181、第二阻障子層182、及第三阻障子層183分別具有一第一鋁含 量、一第二鋁含量、與一第三鋁含量。例如,第一阻障子層181包含AlxGa1-xN(0.15≦x≦0.5)材料,第二阻障子層182包含AlyGa1-yN(0≦y≦0.3)材料,第三阻障子層183包含AlzGa1-zN(≦z≦0.15)材料。為使HEMT 100之阻障層18的表面具有較少的表面陷阱(surface trap)及較低的動態導通電阻(dynamic RON),第三阻障子層183的第三鋁含量需低於第一阻障子層181的第一鋁含量與第二阻障子層182的第二鋁含量。另,第一阻障子層181的第一鋁含量與第二阻障子層182的第二鋁含量可以相同或相異。於一實施例中,第一阻障子層181厚度可介於1nm與20nm之間,第二阻障子層182厚度可介於20nm與100nm之間,及第三阻障子層183厚度可介於20nm與200nm之間。阻障層18與通道層16因彼此間自發性極化及壓電極化現象的造成兩者於異質接面26處的能帶彎曲與不連續,而使通道層16在靠近接面處形成二維電子氣28。 As shown in FIG. 1, the channel layer 16 is located on the buffer layer 14. The channel layer 16 is composed of a compound formed from elements of groups III-V on the periodic table, which has a first lattice constant and has a thickness ranging from about 50 nm to about 10 μm. In this embodiment, the material of the channel layer 16 includes indium gallium nitride (In x Ga 1-x N, 0≦x<1). The barrier layer 18 is formed on the channel layer 16. The barrier layer 18 is composed of a compound formed from elements of group III-V on the periodic table, and has a second lattice constant smaller than the first lattice constant, In this embodiment, the material of the barrier layer 18 includes a ternary material of aluminum gallium nitride (AlGaN) or aluminum indium nitride (AlInN), or a quaternary material of aluminum indium gallium nitride (AlInGaN). The barrier layer 18 may be a single layer composed of a single material, or a stack composed of multiple sub-layers of different materials. In one embodiment, the barrier layer 18 is a stack composed of multiple sub-layers, and the barrier layer 18 includes a first barrier sub-layer 181, a second barrier sub-layer 182, and a third barrier sub-layer 183 . The materials of the first barrier sub-layer 181, the second barrier sub-layer 182, and the third barrier sub-layer 183 respectively include one selected from AlGaN, AlInN or AlInGaN, wherein the first barrier sub-layer 181 and the second barrier sub-layer 182 , And the third barrier sub-layer 183 respectively have a first aluminum content, a second aluminum content, and a third aluminum content. For example, the first barrier sublayer 181 includes Al x Ga 1-x N (0.15≦x≦0.5) material, the second barrier layer 182 includes Al y Ga 1-y N (0≦y≦0.3) material, and the third barrier layer 182 includes Al y Ga 1-y N (0≦y≦0.3) material. The barrier sublayer 183 includes Al z Ga 1-z N (≦z≦0.15) material. In order to make the surface of the barrier layer 18 of the HEMT 100 have fewer surface traps and lower dynamic RON, the third aluminum content of the third barrier sublayer 183 needs to be lower than that of the first barrier layer. The first aluminum content of the barrier layer 181 and the second aluminum content of the second barrier layer 182. In addition, the first aluminum content of the first barrier sublayer 181 and the second aluminum content of the second barrier sublayer 182 may be the same or different. In one embodiment, the thickness of the first barrier sub-layer 181 may be between 1 nm and 20 nm, the thickness of the second barrier sub-layer 182 may be between 20 nm and 100 nm, and the thickness of the third barrier sub-layer 183 may be between 20 nm Between and 200nm. The barrier layer 18 and the channel layer 16 are caused by the spontaneous polarization and piezoelectric polarization between each other to cause the band bending and discontinuity at the heterojunction 26, so that the channel layer 16 forms two near the junction. Dimensional electronic gas 28.

參照第1圖,阻障層18具有一凹陷區域REC,自阻障層18的表面18-1往通道層16凹陷延伸,並曝露出第一阻障子層181的一部分。依據深度,凹陷區域REC大致可以分為第一凹陷區域REC1與第二凹陷區域REC2,第二凹陷區域REC2的深度大於第一凹陷區域REC1的深度,並在第一凹陷區域REC1與第二凹陷區域REC2間形成一台階結構(stepped structure),台階結構的厚度約為第二阻障子層182的厚度。另外,第一凹陷區域REC1的深度約為第三阻障子層183的厚度,而第二凹陷區域REC2的深度約為第三阻障子層層183與第二阻障子層182的厚度總和。在第一凹陷區域REC1底部,曝露出第二阻障子層182的一部分,而在第二凹陷區域REC2底部,曝露出第一阻障子層181的一部分。 Referring to FIG. 1, the barrier layer 18 has a recessed area REC, which extends recessed from the surface 18-1 of the barrier layer 18 toward the channel layer 16, and exposes a part of the first barrier sublayer 181. According to the depth, the recessed area REC can be roughly divided into a first recessed area REC1 and a second recessed area REC2. The depth of the second recessed area REC2 is greater than the depth of the first recessed area REC1, and is in the first recessed area REC1 and the second recessed area. A stepped structure is formed between the REC2, and the thickness of the stepped structure is about the thickness of the second barrier sublayer 182. In addition, the depth of the first recessed area REC1 is approximately the thickness of the third barrier sublayer 183, and the depth of the second recessed area REC2 is approximately the sum of the thicknesses of the third barrier sublayer 183 and the second barrier sublayer 182. At the bottom of the first recessed region REC1, a part of the second barrier sublayer 182 is exposed, and at the bottom of the second recessed region REC2, a part of the first barrier sublayer 181 is exposed.

一空乏層(depletion layer)20形成於阻障層18上,並覆蓋阻障 層18之凹陷區域REC,同時也覆蓋了緊鄰凹陷區域REC的重疊區域TP,如同第1圖所示。空乏層20對於第一阻障層181來說具有反極化的效果,因此能降低或空乏(depleting)其正下方通道層16內的二維電子氣28的電子濃度。如此,之後形成的HEMT 100在未施加偏壓時將處於未導通的狀態,亦即HEMT 100為一常關型HEMT。空乏層20的材料包含p型III-V族半導體材料,例如摻鎂(Mg)的氮化鎵(GaN),摻鎂、鈹(Be)、鋅(Zn)、或鎘(Cd)的六方晶系氮化硼(hexagonal-BN,hBN),或包含p型II-VI族半導體材料,例如摻氮(N)或磷(P)的六方晶系氧化鋅(ZnO)。在本實施例中,空乏層20為一厚度介於50nm與300nm之間的摻鎂的氮化鎵層,其中,鎂元素的摻雜濃度介於1x1019atoms/cm3至1x1021atoms/cm3之間。 A depletion layer 20 is formed on the barrier layer 18 and covers the recessed area REC of the barrier layer 18 and also covers the overlap area TP adjacent to the recessed area REC, as shown in FIG. 1. The depletion layer 20 has a reverse polarization effect on the first barrier layer 181, and therefore can reduce or deplete the electron concentration of the two-dimensional electron gas 28 in the channel layer 16 directly below it. In this way, the later formed HEMT 100 will be in a non-conducting state when no bias is applied, that is, the HEMT 100 is a normally-off HEMT. The material of the depletion layer 20 includes p-type III-V semiconductor materials, such as magnesium (Mg) doped gallium nitride (GaN), magnesium, beryllium (Be), zinc (Zn), or cadmium (Cd) doped hexagonal crystals Based on boron nitride (hexagonal-BN, hBN), or containing p-type II-VI group semiconductor materials, for example, hexagonal zinc oxide (ZnO) doped with nitrogen (N) or phosphorus (P). In this embodiment, the depletion layer 20 is a magnesium-doped gallium nitride layer with a thickness between 50 nm and 300 nm, wherein the doping concentration of magnesium is between 1 ×10 19 atoms/cm 3 and 1 ×10 21 atoms/cm Between 3.

源電極22與汲電極24形成於空乏層20兩側的阻障層18上,藉由退火製程可以使源電極24與汲電極24跟其下方的阻障層18形成低阻值電接觸,例如歐姆接觸(Ohmic contact)。汲電極24與源電極22的材料包含一種或一種以上的導電材料,例如選自於鈦(Ti)、鋁(Al)、鎳(Ni)、或金(Au)所組成的群組的金屬或由上述金屬形成的合金。 The source electrode 22 and the drain electrode 24 are formed on the barrier layer 18 on both sides of the depletion layer 20. Through an annealing process, the source electrode 24 and the drain electrode 24 can form a low-resistance electrical contact with the barrier layer 18 below it, for example Ohmic contact. The material of the drain electrode 24 and the source electrode 22 includes one or more conductive materials, such as metals or metals selected from the group consisting of titanium (Ti), aluminum (Al), nickel (Ni), or gold (Au) An alloy formed from the above-mentioned metals.

閘電極21形成於空乏層20上,且位於源電極22與汲電極24之間。閘電極21的材料包含一或多層導電材料,例如鋁、鉭(Ta)、鎢(W)、鎳(Ni)、金(Au)、或鉑(Pt)等金屬材料或由上述金屬材料形成的合金,或是氮化鉭(TaN)、氮化鈦(TiN)矽化鎢(WSi2)等化合物材料。 The gate electrode 21 is formed on the depletion layer 20 and is located between the source electrode 22 and the drain electrode 24. The material of the gate electrode 21 includes one or more layers of conductive materials, such as metal materials such as aluminum, tantalum (Ta), tungsten (W), nickel (Ni), gold (Au), or platinum (Pt), or formed of the above-mentioned metal materials. Alloy, or compound materials such as tantalum nitride (TaN), titanium nitride (TiN) and tungsten silicide (WSi 2 ).

參照第1圖,於阻障層18之表面18-1上,空乏層20與阻障層18重疊的重疊區域TP,因阻障層18的厚度包含第一阻障子層181、第二阻障子層182及第三阻障子層183的厚度,相較於凹陷區域REC,空乏層20於重疊區域TP較遠離異質接面26,進而讓通道層16的2DEG 28受到空乏層20之反極化影響甚 微,得以保有一定的濃度。同時,在第二凹陷區域REC2中,因為空乏層20對於第一阻障層181來說具有反極化的效果,所以能空乏其正下方通道層16內的2DEG 28。另外,在第一凹陷區域REC1中,因為空乏層20與通道層16間隔有第一阻障子層181與第二阻障子層182,相較於第二凹陷區域REC2下方,第一凹陷區域REC1下方的2DEG 28的濃度受空乏層20的影響較少,不至於被空乏。因此,通道層16之鄰近異質接面26處的2DEG 28的濃度在自第二凹陷區域REC2經第一凹陷區域REC1至重疊區域TP的區域範圍內,會呈現梯度變化,亦即由無至淡再至濃,如第1圖所示。如此,第一凹陷區域REC1之台階結構的台面處的空乏層20,及重疊區域TP中的空乏層20將可視為場板(field plate)的功能,用以重塑(reshape)HEMT 100之閘電極21與汲電極24間的電場,而降低閘電極21靠近汲電極24側的邊緣的電場峰值,用以提高崩潰電壓(breakdown voltage)及降低電子捕捉(electron trapping)效應。 Referring to Figure 1, on the surface 18-1 of the barrier layer 18, the overlap area TP where the depletion layer 20 overlaps the barrier layer 18, because the thickness of the barrier layer 18 includes the first barrier layer 181 and the second barrier layer The thickness of the layer 182 and the third barrier sublayer 183 is compared with the recessed area REC, the depletion layer 20 is farther away from the heterojunction 26 in the overlap area TP, so that the 2DEG 28 of the channel layer 16 is affected by the reverse polarization of the depletion layer 20 very Micro, to maintain a certain concentration. At the same time, in the second recessed region REC2, because the depletion layer 20 has a reverse polarization effect for the first barrier layer 181, the 2DEG 28 in the channel layer 16 directly below it can be depleted. In addition, in the first recessed region REC1, because the depletion layer 20 and the channel layer 16 are separated by the first barrier sublayer 181 and the second barrier sublayer 182, compared with the second recessed region REC2, the first recessed region REC1 The concentration of 2DEG 28 is less affected by the depletion layer 20 and will not be depleted. Therefore, the concentration of the 2DEG 28 in the channel layer 16 adjacent to the heterojunction 26 will show a gradient change in the range from the second recessed region REC2 through the first recessed region REC1 to the overlap region TP, that is, from nothing to light. Then it becomes richer, as shown in Figure 1. In this way, the depletion layer 20 at the mesa of the step structure of the first recessed area REC1 and the depletion layer 20 in the overlapping area TP can be regarded as the function of a field plate, which is used to reshape the gate of the HEMT 100 The electric field between the electrode 21 and the drain electrode 24 reduces the peak value of the electric field at the edge of the gate electrode 21 close to the drain electrode 24 to increase the breakdown voltage and reduce the electron trapping effect.

參照第1圖,第二凹陷區域REC2的寬度L2係介於0.2μm到5μm之間;第一凹陷區域REC1的寬度L1係介於0.5μm到3μm之間;靠近汲電極24之重疊區域TP的寬度LTP係介於0.5μm到5μm之間;且汲電極24到空乏層20之間的距離LD係介於3μm到30μm之間。於本實施例中,第二凹陷區域REC2的寬度L2為1.5μm;第一凹陷區域REC1的寬度L1為1μm;靠近汲電極24之重疊區域TP的寬度LTP為2μm;且汲電極24到空乏層20之間的距離LD為15μm。 Referring to Figure 1, the width L2 of the second recessed area REC2 is between 0.2 μm and 5 μm; the width L1 of the first recessed area REC1 is between 0.5 μm and 3 μm; The width LTP is between 0.5 μm and 5 μm; and the distance LD between the drain electrode 24 and the depletion layer 20 is between 3 μm and 30 μm. In this embodiment, the width L2 of the second recessed area REC2 is 1.5 μm; the width L1 of the first recessed area REC1 is 1 μm; the width LTP of the overlapping area TP close to the drain electrode 24 is 2 μm; and the drain electrode 24 reaches the depletion layer The distance LD between 20 is 15 μm.

習知HEMT於重複之開關過程中,易因其阻障層的表面陷阱捕捉電子的關係而使部分2DEG的濃度降低,進而使源電極與汲電極間的電流值會比起始的電流值來的低,造成所謂的電流崩塌(current collapse),亦即HEMT的動態導通電阻隨之變高。在第1圖中,因第三阻障子層183的鋁含量是在阻障 子層181、182、183中最低的,故第三阻障子層183具有較好的磊晶品質及較低的陷阱密度(trap density),此外,第三阻障子層183與通道層16間因隔有第一阻障子層181及第二阻障子層182而遠離2DEG 28,故,第三阻障子層183因其表面陷阱所捕捉電子對2DEG 28之濃度的影響有限,如此,可使HEMT 100具有較低的動態導通電阻或是較少的電流崩塌效應。 In the conventional HEMT during the repeated switching process, it is easy to reduce the concentration of part of the 2DEG due to the trapping of electrons on the surface of the barrier layer, so that the current value between the source electrode and the drain electrode will be lower than the initial current value. It is low, causing the so-called current collapse (current collapse), that is, the dynamic on-resistance of the HEMT increases accordingly. In Figure 1, the aluminum content of the third barrier sublayer 183 is in the barrier The sub-layers 181, 182, and 183 are the lowest, so the third barrier sub-layer 183 has better epitaxial quality and lower trap density. In addition, the third barrier sub-layer 183 and the channel layer 16 The first barrier sub-layer 181 and the second barrier sub-layer 182 are separated away from the 2DEG 28. Therefore, the third barrier sub-layer 183 has a limited influence on the concentration of the 2DEG 28 due to the electrons trapped on the surface of the third barrier sub-layer 183. In this way, the HEMT 100 Has lower dynamic on-resistance or less current collapse effect.

第2A圖至第2I圖為第1圖之HEMT 100在各個不同製程階段的剖面示意圖。 2A to 2I are schematic cross-sectional views of the HEMT 100 in FIG. 1 at various stages of the manufacturing process.

第2A圖顯示在基底12上磊晶成長緩衝層14、通道層16、第一阻障子層181、第二阻障子層182及第三阻障子層183,其中,第一阻障子層181、第二阻障子層182與第三阻障子層183構成了阻障層18。第一阻障子層層181包含AlxGa1-xN材料,其中,鋁含量x可以介於15%到50%之間,而厚度可以介於1nm到20nm之間。第二阻障子層182包含AlyGa1-yN材料,其中,鋁含量y可以介於0%到30%之間,而厚度可以介於20nm到100nm之間。第三阻障子層183包含AlzGa1-zN材料,其中,鋁含量z可以介於0%到15%之間,而厚度可以介於20nm到200nm之間。 Figure 2A shows that the buffer layer 14, the channel layer 16, the first barrier sub-layer 181, the second barrier sub-layer 182, and the third barrier sub-layer 183 are epitaxially grown on the substrate 12. The first barrier sub-layer 181, the second barrier sub-layer 183 The second barrier sublayer 182 and the third barrier sublayer 183 constitute the barrier layer 18. The first barrier sublayer 181 includes Al x Ga 1-x N material, where the aluminum content x can be between 15% and 50%, and the thickness can be between 1 nm and 20 nm. The second barrier sublayer 182 includes Al y Ga 1-y N material, where the aluminum content y can be between 0% and 30%, and the thickness can be between 20 nm and 100 nm. The third barrier sublayer 183 includes Al z Ga 1-z N material, where the aluminum content z can be between 0% and 15%, and the thickness can be between 20 nm and 200 nm.

第2B圖接續第2A圖,顯示在阻障層18上形成圖案化蝕刻保護層PR1。舉例來說,將光阻塗佈在阻障層18上,再以微影製程及曝光顯影後而產生圖案化蝕刻保護層PR1。在另一個實施例中,圖案化蝕刻保護層PR1可以是一硬光罩(hard mask)層,舉例來說,圖案化蝕刻保護層PR1是經過微影與蝕刻製程所圖案化的一氮化矽層。 FIG. 2B is a continuation of FIG. 2A and shows that a patterned etching protection layer PR1 is formed on the barrier layer 18. For example, a photoresist is coated on the barrier layer 18, and then a patterned etching protection layer PR1 is generated after a photolithography process and exposure and development. In another embodiment, the patterned etching protection layer PR1 may be a hard mask layer. For example, the patterned etching protection layer PR1 is a silicon nitride patterned through a lithography and etching process. Floor.

第2C圖接續第2B圖,顯示將圖案化蝕刻保護層PR1未保護 處的第三阻障子層183移除後的剖面示意圖。舉例來說,可以採用感應耦合電漿(inductively coupled plasma,ICP)、反應離子蝕刻(reactive-ion etching,RIE)或是原子層蝕刻(Atomic layer etching,ALE)機台,對圖案化蝕刻保護層PR1未保護處的第三阻障子層183進行蝕刻,以形成凹陷區域REC並曝露出部分的第二阻障子層182,結果如同第2C圖所示。 Figure 2C is a continuation of Figure 2B, showing that the patterned etching protection layer PR1 is not protected A schematic cross-sectional view of the third barrier sublayer 183 at the position after being removed. For example, inductively coupled plasma (ICP), reactive-ion etching (RIE), or atomic layer etching (ALE) machines can be used to etch the patterned protective layer The third barrier sublayer 183 in the unprotected area of PR1 is etched to form a recessed area REC and expose part of the second barrier sublayer 182. The result is as shown in FIG. 2C.

第2D圖接續第2C圖,顯示在阻障層18與蝕刻保護層PR1上形成圖案化蝕刻保護層PR2,以保護蝕刻保護層PR1、凹陷區域REC區內之第三阻障子層183側壁及第二阻障子層182的一部分,換言之,將曝露出第二阻障子層182的另一部分。圖案化蝕刻保護層PR2可以是一光阻層或是一硬光罩層。圖案化蝕刻保護層PR2的材料可以跟圖案化蝕刻保護層PR1的材料相同或是相異。 Figure 2D is a continuation of Figure 2C, showing that a patterned etching protection layer PR2 is formed on the barrier layer 18 and the etching protection layer PR1 to protect the etching protection layer PR1, the sidewalls of the third barrier sublayer 183 in the recessed area REC and the first A part of the second barrier sub-layer 182, in other words, will expose another part of the second barrier sub-layer 182. The patterned etching protection layer PR2 can be a photoresist layer or a hard mask layer. The material of the patterned etching protection layer PR2 may be the same as or different from the material of the patterned etching protection layer PR1.

第2E圖接續第2D圖,顯示將圖案化蝕刻保護層PR2未保護處的第二阻障子層182移除,以形成第二凹陷區域REC2並曝露出部分的第一阻障子層181。如上述,移除圖案化蝕刻保護層PR2未保護處的第二阻障子層182的方式可以是ICP、RIE或是ALE等方式。第2F圖接續第2E圖,顯示移除圖案化保護層PR1與圖案化保護層PR2後的剖面示意圖。舉例來說,可以採用濕蝕刻或是乾蝕刻製程移除圖案化保護層PR1與圖案化保護層PR2,但不限於此。從第2F圖可看出,凹陷區域REC實質包含了第一凹陷區域REC1及第二凹陷區域REC2,其中,第一凹陷區域REC1的底部曝露出部分的第二阻障子層182,第二凹陷區域REC2的底部則曝露出部分第一阻障子層181,而第一凹陷區域REC1及第二凹陷區域REC2間形成台階結構。 FIG. 2E is a continuation of FIG. 2D, showing that the second barrier sublayer 182 at the unprotected portion of the patterned etching protection layer PR2 is removed to form a second recessed area REC2 and expose a portion of the first barrier sublayer 181. As mentioned above, the method of removing the second barrier sublayer 182 where the patterned etching protection layer PR2 is not protected can be ICP, RIE, ALE, or the like. FIG. 2F is a continuation of FIG. 2E, showing a schematic cross-sectional view after removing the patterned protective layer PR1 and the patterned protective layer PR2. For example, the patterned protective layer PR1 and the patterned protective layer PR2 can be removed by wet etching or dry etching, but it is not limited thereto. It can be seen from Figure 2F that the recessed area REC substantially includes the first recessed area REC1 and the second recessed area REC2, wherein the bottom of the first recessed area REC1 exposes a part of the second barrier sublayer 182, and the second recessed area A portion of the first barrier sublayer 181 is exposed at the bottom of REC2, and a step structure is formed between the first recessed area REC1 and the second recessed area REC2.

第2G圖接續第2F圖,顯示在阻障層18上以磊晶再成長 (epitaxial regrowth)的方式形成一半導體層19,其厚度介於50nm與300nm之間。半導體層19的材料包含p型III-V族半導體材料,例如,摻鎂的氮化鎵,摻鎂、鈹、鋅、或鎘的六方晶系氮化硼,或包含p型II-VI族半導體材料,例如摻氮或磷的六方晶系氧化鋅。第2H圖接續第2G圖,顯示將半導體層19圖案化後,在阻障層18上形成空乏層20的剖面圖。舉例來說,以微影與蝕刻製程,移除遠離凹陷區域REC的半導體層19而保留凹陷區域REC處及其鄰近區的半導體層19以形成空乏層20。如同2H圖所示,空乏層20覆蓋凹陷區域REC中之阻障層18,即第一阻障層181及第二阻障層182,且延伸覆蓋阻障層18的表面18-1的一部分上,亦即第三阻障子層183的一部分上,以形成重疊區域TP。 Figure 2G is a continuation of Figure 2F, showing that the barrier layer 18 is epitaxially grown again (epitaxial regrowth) method to form a semiconductor layer 19 with a thickness between 50 nm and 300 nm. The material of the semiconductor layer 19 includes a p-type III-V group semiconductor material, for example, magnesium-doped gallium nitride, a hexagonal boron nitride doped with magnesium, beryllium, zinc, or cadmium, or a p-type II-VI group semiconductor material Materials such as hexagonal zinc oxide doped with nitrogen or phosphorus. FIG. 2H is a continuation of FIG. 2G, showing a cross-sectional view of the depletion layer 20 formed on the barrier layer 18 after the semiconductor layer 19 is patterned. For example, a photolithography and etching process is used to remove the semiconductor layer 19 away from the recessed area REC, while leaving the semiconductor layer 19 at the recessed area REC and its adjacent area to form the depletion layer 20. As shown in Figure 2H, the depletion layer 20 covers the barrier layer 18 in the recessed area REC, that is, the first barrier layer 181 and the second barrier layer 182, and extends to cover a portion of the surface 18-1 of the barrier layer 18 , That is, on a part of the third barrier sublayer 183 to form an overlapping area TP.

第2I圖接續第2H圖,顯示在空乏層20兩側的阻障層18的表面18-1上,形成源電極22與汲電極24。藉由退火製程,源電極24與汲電極24跟其下方的阻障層18形成低阻值電接觸,例如歐姆接觸。接續在第2I圖之後,於空乏層20上形成了閘電極21,而完成了第1圖中的HEMT 100。源電極22、汲電極24與閘電極21的材料選擇已於上文中詳述,不再贅述。 Fig. 2I is a continuation of Fig. 2H, showing that the source electrode 22 and the drain electrode 24 are formed on the surface 18-1 of the barrier layer 18 on both sides of the depletion layer 20. Through the annealing process, the source electrode 24 and the drain electrode 24 form a low-resistance electrical contact, such as an ohmic contact, with the barrier layer 18 thereunder. Following Figure 2I, a gate electrode 21 is formed on the depletion layer 20, and the HEMT 100 in Figure 1 is completed. The material selection of the source electrode 22, the drain electrode 24, and the gate electrode 21 has been described in detail above, and will not be repeated.

第3圖顯示依據本揭露之另一實施例的HEMT 200的剖面示意圖,第3圖與第1圖相同或相似之處,可以參考第1圖之教導而得知,不再贅述。於上一實施例中,於形成第一凹陷區域REC1的蝕刻製程中,可能會沒有完全去除第三阻障子層183,也可能會過蝕刻(over etch)了部分的第二阻障子層182;同理,於形成第二凹陷區域REC2的蝕刻製程中,可能會沒有完全去除第二阻障子層182,也可能會過蝕刻了部分的第一阻障子層181。參照第3圖,阻障層18a中加入一或多層蝕刻停止層,藉此有效控制第一凹陷區域REC1與第一凹陷區域REC2中的蝕刻深度。在第3圖中,由下而上,阻障層18a依序包含第一阻障子層 181、第一蝕刻停止層184、第二阻障子層182、第二蝕刻停止層185、以及第三阻障子層183,但不限於此,換言之,阻障層18a不必然同時包含第一蝕刻停止層184及第二蝕刻停止層185。第一蝕刻停止層184及/或第二蝕刻停止層185的材料包含氮化鋁(AlN),其厚度可以介於0.5nm到2nm之間。在本實施例中,第一蝕刻停止層184與第二蝕刻停止層185的厚度為1nm。在蝕刻第三阻障子層183或第二阻障子層182之過程中,可藉由終點偵測(End-Point detection,EPD)方式偵測特定元素的信號或特定反應物氣體的產生,以判定是否已蝕刻至第一蝕刻停止層184或第二蝕刻停止層185。舉例來說,可利用光放射光譜儀(Optical Emission Spectroscopy,OES)來偵測Ga及Al的信號的強度相對關係,當Ga的信號強度大幅降低或Al的信號強度逐漸降低後又再增加時,即可明確知道第二蝕刻停止層185上的第三阻障子層183或第一蝕刻停止層184上的第二阻障子層182已被蝕刻乾淨,或已到達蝕刻停止層以精確的控制蝕刻深度。 FIG. 3 shows a schematic cross-sectional view of a HEMT 200 according to another embodiment of the present disclosure. The same or similarities between FIG. 3 and FIG. 1 can be learned by referring to the teaching of FIG. 1 and will not be repeated. In the previous embodiment, in the etching process for forming the first recessed region REC1, the third barrier sublayer 183 may not be completely removed, or part of the second barrier sublayer 182 may be overetched; Similarly, in the etching process for forming the second recessed region REC2, the second barrier sublayer 182 may not be completely removed, or part of the first barrier sublayer 181 may be overetched. Referring to FIG. 3, one or more etching stop layers are added to the barrier layer 18a, thereby effectively controlling the etching depth in the first recessed region REC1 and the first recessed region REC2. In Figure 3, from bottom to top, the barrier layer 18a sequentially includes the first barrier sublayer 181. The first etch stop layer 184, the second barrier sublayer 182, the second etch stop layer 185, and the third barrier sublayer 183, but not limited to this, in other words, the barrier layer 18a does not necessarily include the first etch stop at the same time Layer 184 and second etch stop layer 185. The material of the first etch stop layer 184 and/or the second etch stop layer 185 includes aluminum nitride (AlN), and the thickness thereof may be between 0.5 nm and 2 nm. In this embodiment, the thickness of the first etch stop layer 184 and the second etch stop layer 185 is 1 nm. In the process of etching the third barrier sub-layer 183 or the second barrier sub-layer 182, the end-point detection (EPD) method can be used to detect the signal of a specific element or the generation of a specific reactant gas to determine Whether it has been etched to the first etch stop layer 184 or the second etch stop layer 185. For example, optical emission spectroscopy (OES) can be used to detect the relative relationship between the signal intensity of Ga and Al. When the signal intensity of Ga decreases significantly or the signal intensity of Al gradually decreases and then increases again, that is It can be clearly known that the third barrier sublayer 183 on the second etch stop layer 185 or the second barrier sublayer 182 on the first etch stop layer 184 has been etched clean, or has reached the etch stop layer to precisely control the etching depth.

第4圖顯示依據本揭露之另一實施例的HEMT 300的剖面示意圖。第4圖與第1、3圖相同或相似之處,可以參考先前第1、3圖之教導而得知,不再贅述。在第4圖中,由下而上,阻障層18b依序包含第一阻障子層181、第一蝕刻停止層184、第二阻障子層182、第二蝕刻停止層185、第三阻障子層183、以及第二阻障層186。參照第3圖及第2D、2E圖所述的製程說明,HEMT 300的製程更包含將第二凹陷區域REC2所曝露的第一阻障子層181移除,以形成一第三凹陷區域REC3。凹陷區域REC實質包含第一凹陷區域REC1、第二凹陷區域REC2及第二凹陷區域REC3。接著,以磊晶再成長的方式,將一第二阻障層186形成於凹陷區域REC中及第三阻障子層183上。之後,再形成空乏層20於第二阻障層186上,以對應地覆蓋凹陷區域REC及部分第三阻障子層183。如第4圖所示。第 二阻障層186包含氮化鋁鎵材料,其中,鋁的含量介於0.5%與20%之間(亦即AlwGa1-wN,0.05≦w≦0.2),而第二阻障層186的厚度可以介於5nm到20nm之間。在一實施例中,第二阻障層186中的鋁含量大於第三阻障子層183的鋁含量。 FIG. 4 shows a schematic cross-sectional view of a HEMT 300 according to another embodiment of the present disclosure. The same or similarities between Fig. 4 and Figs. 1 and 3 can be learned by referring to the teaching of Figs. 1 and 3, and will not be repeated here. In Figure 4, from bottom to top, the barrier layer 18b sequentially includes a first barrier layer 181, a first etch stop layer 184, a second barrier layer 182, a second etch stop layer 185, and a third barrier layer. Layer 183, and second barrier layer 186. Referring to the process descriptions described in FIG. 3 and FIGS. 2D and 2E, the process of HEMT 300 further includes removing the first barrier sublayer 181 exposed by the second recessed region REC2 to form a third recessed region REC3. The recessed area REC substantially includes a first recessed area REC1, a second recessed area REC2, and a second recessed area REC3. Then, a second barrier layer 186 is formed in the recessed area REC and on the third barrier sublayer 183 by epitaxial re-growth. After that, a depletion layer 20 is formed on the second barrier layer 186 to cover the recessed area REC and a part of the third barrier sublayer 183 correspondingly. As shown in Figure 4. The second barrier layer 186 includes an aluminum gallium nitride material, wherein the content of aluminum is between 0.5% and 20% (that is, Al w Ga 1-w N, 0.05≦w≦0.2), and the second barrier The thickness of layer 186 may be between 5 nm and 20 nm. In an embodiment, the aluminum content in the second barrier layer 186 is greater than the aluminum content in the third barrier sublayer 183.

參照第4圖,凹陷區域REC實質包含第一凹陷區域REC1、第二凹陷區域REC2與第三凹陷區域REC3,其中,第三凹陷區域REC3的深度大於第二凹陷區域REC2的深度,第二凹陷區域REC2的深度大於第一凹陷區域REC1的深度,第一凹陷區域REC1與第二凹陷區域REC2間,及第二凹陷區域REC2與第三凹陷區域REC3間分別形成一台階結構。第一凹陷區域REC1的深度約為第三阻障子層183的厚度,第二凹陷區域REC2的深度約為第三阻障子層層183與第二阻障子層182的厚度總和,而第三凹陷區域REC3的深度約為第三阻障子層183、第二阻障子層182與第一阻障子層181的厚度總和。第一凹陷區域REC1底部曝露出第二阻障子層182的一部分,第二凹陷區域REC2底部曝露出第一阻障子層181的一部分,而第三凹陷區域REC3底部曝露出通道層16的一部分。接著,在第三阻障子層183與空乏層20上分別形成源電極22及汲電極24與閘電極21,以完成HEMT 300。源電極22、汲電極24與閘電極21的材料選擇已於上文中詳述,不再贅述。 Referring to Figure 4, the recessed area REC substantially includes a first recessed area REC1, a second recessed area REC2, and a third recessed area REC3. The depth of the third recessed area REC3 is greater than the depth of the second recessed area REC2, and the second recessed area The depth of REC2 is greater than the depth of the first recessed region REC1. A step structure is formed between the first recessed region REC1 and the second recessed region REC2, and between the second recessed region REC2 and the third recessed region REC3. The depth of the first recessed area REC1 is approximately the thickness of the third barrier sublayer 183, the depth of the second recessed area REC2 is approximately the sum of the thicknesses of the third barrier sublayer 183 and the second barrier sublayer 182, and the third recessed area The depth of REC3 is approximately the sum of the thicknesses of the third barrier sublayer 183, the second barrier sublayer 182, and the first barrier sublayer 181. The bottom of the first recessed region REC1 exposes a part of the second barrier sublayer 182, the bottom of the second recessed region REC2 exposes a part of the first barrier sublayer 181, and the bottom of the third recessed region REC3 exposes a part of the channel layer 16. Next, a source electrode 22, a drain electrode 24 and a gate electrode 21 are formed on the third barrier sublayer 183 and the depletion layer 20, respectively, to complete the HEMT 300. The material selection of the source electrode 22, the drain electrode 24, and the gate electrode 21 has been described in detail above, and will not be repeated.

相較於第1圖與第3圖中的HEMT 100與HEMT 200,第4圖的HEMT 300,其臨界電壓(threshold voltage,Vth)會比較穩定。HEMT 100或200的臨界電壓,會受到第二凹陷區域REC2中的第一阻障子層181之厚度而影響。第二凹陷區域REC2中的第一阻障子層181之厚度則由第一阻障子層181的磊晶厚度以及後續的蝕刻製程所決定。相對的,HEMT 300於移除第一阻障子層181後,再磊晶成長第二阻障層186,HEMT 300的臨界電壓大致上是由凹陷區域 REC3中的第二阻障層186之磊晶厚度所決定,而未受後續蝕刻製成的影響。相較於HEMT 100與200的臨界電壓被磊晶製程與蝕刻製程的結果所決定,HEMT 300的臨界電壓只有被磊晶製程的結果所決定,所以會比較穩定。 Compared with the HEMT 100 and the HEMT 200 in FIG. 1 and FIG. 3, the threshold voltage (Vth) of the HEMT 300 in FIG. 4 is relatively stable. The threshold voltage of the HEMT 100 or 200 is affected by the thickness of the first barrier sublayer 181 in the second recessed region REC2. The thickness of the first barrier sublayer 181 in the second recessed region REC2 is determined by the epitaxial thickness of the first barrier sublayer 181 and the subsequent etching process. In contrast, after removing the first barrier sublayer 181, the HEMT 300 epitaxially grows the second barrier layer 186. The threshold voltage of the HEMT 300 is roughly determined by the recessed region The epitaxial thickness of the second barrier layer 186 in REC3 is determined, and is not affected by the subsequent etching process. Compared with the threshold voltage of HEMT 100 and 200 which is determined by the results of the epitaxial process and the etching process, the threshold voltage of HEMT 300 is only determined by the result of the epitaxial process, so it will be more stable.

在第1、3與4圖所顯示的HEMT 100、200、300中,阻障層18、18a或18b在凹陷區域REC內靠近汲電極24之部分,都具有台階結構。藉此,後續所形成的空乏層20,將於台階結構處形成場板的功能,從而使通道層16中的2DEG28的濃度對應地形成梯度變化,以重塑HEMT 100、200、300之閘電極21與汲電極24間的電場,而降低閘電極21之靠汲電極24側的邊緣的電場峰值,用以提升崩潰電壓及降低電子捕捉效應。但,本揭露並不限於此。第5圖顯示依據本揭露之另一實施例的HEMT 400的剖面圖。在第5圖中,第二凹陷區域REC2的兩側與第一凹陷區域REC1之間分別形成台階結構,因此,凹陷區域REC內靠近汲電極24與源電極22之兩側,阻障層18分別都具有台階結構。 In the HEMT 100, 200, 300 shown in FIGS. 1, 3, and 4, the barrier layer 18, 18a, or 18b in the recessed area REC near the drain electrode 24 has a stepped structure. Thereby, the depletion layer 20 formed subsequently will form the function of a field plate at the step structure, so that the concentration of the 2DEG28 in the channel layer 16 will correspondingly form a gradient change to reshape the gate electrodes of the HEMT 100, 200, and 300 The electric field between 21 and the drain electrode 24 reduces the peak value of the electric field at the edge of the gate electrode 21 on the side of the drain electrode 24 to increase the breakdown voltage and reduce the electron trapping effect. However, this disclosure is not limited to this. FIG. 5 shows a cross-sectional view of a HEMT 400 according to another embodiment of the present disclosure. In Figure 5, a step structure is formed between both sides of the second recessed region REC2 and the first recessed region REC1. Therefore, the barrier layer 18 is located on both sides of the drain electrode 24 and the source electrode 22 in the recessed region REC. All have a stepped structure.

以上所述僅為本揭露之較佳實施例,凡依本揭露申請專利範圍所做之均等變化與修飾,皆應屬本揭露之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present disclosure, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present disclosure should fall within the scope of the present disclosure.

12:基底 12: Base

14:緩衝層 14: Buffer layer

16:通道層 16: channel layer

18:阻障層 18: barrier layer

18-1:表面 18-1: Surface

20:空乏層 20: Depleted layer

21:閘電極 21: Gate electrode

22:源電極 22: Source electrode

24:汲電極 24: Drain electrode

26:異質接面 26: Heterojunction

28:2DEG 28: 2DEG

100:HEMT 100: HEMT

181:第一阻障子層 181: The first barrier sublayer

182:第二阻障子層 182: The second barrier sublayer

183:第三阻障子層 183: The third barrier sublayer

L1:寬度 L1: width

L2:寬度 L2: width

LD:距離 LD: distance

LTP:寬度 LTP: width

REC:凹陷區域 REC: recessed area

REC1:第一凹陷區域 REC1: The first recessed area

REC2:第二凹陷區域 REC2: The second recessed area

TP:重疊區域 TP: overlapping area

Claims (10)

一種高電子移動率電晶體,包含:一通道層;一第一阻障層,形成於該通道層上,該第一阻障層包含一表面及一凹陷區域,自該表面向該通道層延伸,其中,沿自該通道層往上的一方向,該第一阻障層包含一第一阻障子層於該通道層上、一第二阻障子層於該第一阻障子層上、及一第三阻障子層於該第二阻障子層上;一空乏層,形成於該第一阻障層上,其中,該空乏層覆蓋該第一阻障層之該凹陷區域,且延伸覆蓋該第一阻障層之該表面的一部份;一源電極及一汲電極,分別形成該第一阻障層上;以及一閘電極,形成於該空乏層上,且位於該源電極及該汲電極之間;其中,該第一阻障子層、該第二阻障子層、及該第三阻障子層之材料分別包含選自氮化鋁鎵、氮化鋁銦或氮化鋁銦鎵之一的材料;其中,該第一阻障子層、該第二阻障子層、及該第三阻障子層分別具有一第一鋁含量、一第二鋁含量、與一第三鋁含量,該第三鋁含量低於該第一鋁含量與該第二鋁含量,且該第一鋁含量相異於該第二鋁含量。 A high electron mobility transistor, comprising: a channel layer; a first barrier layer formed on the channel layer, the first barrier layer comprising a surface and a recessed area extending from the surface to the channel layer , Wherein, along a direction upward from the channel layer, the first barrier layer includes a first barrier sublayer on the channel layer, a second barrier sublayer on the first barrier sublayer, and a The third barrier sublayer is on the second barrier sublayer; a depletion layer is formed on the first barrier layer, wherein the depletion layer covers the recessed area of the first barrier layer and extends to cover the second barrier layer A part of the surface of a barrier layer; a source electrode and a drain electrode are respectively formed on the first barrier layer; and a gate electrode is formed on the depletion layer and is located on the source electrode and the drain electrode Between the electrodes; wherein, the material of the first barrier sublayer, the second barrier sublayer, and the third barrier sublayer includes one selected from aluminum gallium nitride, aluminum indium nitride, or aluminum indium gallium nitride The material; wherein the first barrier sub-layer, the second barrier sub-layer, and the third barrier sub-layer have a first aluminum content, a second aluminum content, and a third aluminum content, the third The aluminum content is lower than the first aluminum content and the second aluminum content, and the first aluminum content is different from the second aluminum content. 如申請專利範圍第1項之該高電子移動率電晶體,其中,更包含一第一蝕刻停止層,形成於該第一阻障子層與第二阻障子層之間,或,形成於該第二阻障子層與第三阻障子層之間。 For example, the high electron mobility transistor of item 1 of the scope of patent application further includes a first etch stop layer formed between the first barrier sublayer and the second barrier sublayer, or formed on the first barrier sublayer Between the second barrier sublayer and the third barrier sublayer. 如申請專利範圍第1項之該高電子移動率電晶體,其中,該 凹陷區域包含一第一凹陷區域以及一第二凹陷區域,該第一凹陷區域以及該第二凹陷區域自該表面往下延伸且分別具有一第一深度以及一第二深度,且該第二深度大於該第一深度。 For example, the high electron mobility transistor of item 1 of the scope of patent application, in which, the The recessed area includes a first recessed area and a second recessed area. The first recessed area and the second recessed area extend downward from the surface and respectively have a first depth and a second depth, and the second depth Greater than the first depth. 如申請專利範圍第1項之該高電子移動率電晶體,其中,該空乏層包含一p型摻雜層。 For example, in the high electron mobility transistor of the first item of the patent application, the depletion layer includes a p-type doped layer. 如申請專利範圍第1項之該高電子移動率電晶體,更包含一第二阻障層,其中,該凹陷區域曝露出該通道層的一部份,該第二阻障層形成於該凹陷區域內,且接觸該通道層的該露出部份。 For example, the high electron mobility transistor in the scope of the patent application further includes a second barrier layer, wherein the recessed region exposes a part of the channel layer, and the second barrier layer is formed in the recess Within the region and in contact with the exposed part of the channel layer. 如申請專利範圍第5項之該高電子移動率電晶體,其中,該第二阻障層之材料包含AlwGa1-wN,其中w介於0.05與0.2之間。 For example, the high electron mobility transistor of the fifth item of the scope of patent application, wherein the material of the second barrier layer includes Al w Ga 1-w N, where w is between 0.05 and 0.2. 如申請專利範圍第5項之該高電子移動率電晶體,其中,該第二阻障層包含一第四鋁含量,大於該第三阻障子層的該第三鋁含量。 For example, in the high electron mobility transistor of item 5 of the scope of patent application, the second barrier layer includes a fourth aluminum content that is greater than the third aluminum content of the third barrier sublayer. 如申請專利範圍第3項之該高電子移動率電晶體,其中,自一剖視觀之,該第一凹陷區域及該第二凹陷區域鄰接處形成一台階結構。 For example, the high electron mobility transistor of the third item of the scope of patent application, wherein, from a cross-sectional view, a stepped structure is formed at the adjacent portion of the first recessed area and the second recessed area. 如申請專利範圍第8項之該高電子移動率電晶體,其中,該台階結構靠近該汲電極。 For example, the high electron mobility transistor of the 8th patent application, wherein the step structure is close to the drain electrode. 如申請專利範圍第2項之該高電子移動率電晶體,其中,該第一蝕刻停止層的材料包含氮化鋁。 For example, the high electron mobility transistor of the second patent application, wherein the material of the first etch stop layer includes aluminum nitride.
TW107136263A 2018-10-16 2018-10-16 Enhancement-mode high electron mobility transistors and manufacturing methods thereof TWI732141B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107136263A TWI732141B (en) 2018-10-16 2018-10-16 Enhancement-mode high electron mobility transistors and manufacturing methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107136263A TWI732141B (en) 2018-10-16 2018-10-16 Enhancement-mode high electron mobility transistors and manufacturing methods thereof

Publications (2)

Publication Number Publication Date
TW202017181A TW202017181A (en) 2020-05-01
TWI732141B true TWI732141B (en) 2021-07-01

Family

ID=71895642

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136263A TWI732141B (en) 2018-10-16 2018-10-16 Enhancement-mode high electron mobility transistors and manufacturing methods thereof

Country Status (1)

Country Link
TW (1) TWI732141B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952366A (en) * 2020-08-19 2020-11-17 深圳方正微电子有限公司 Field effect transistor and preparation method thereof
TWI763272B (en) * 2021-01-22 2022-05-01 合晶科技股份有限公司 Enhancement mode transistor and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153330A (en) * 2006-12-15 2008-07-03 Oki Electric Ind Co Ltd Nitride semiconductor high electron mobility transistor
US20120112202A1 (en) * 2010-11-05 2012-05-10 Samsung Electronics Co., Ltd. E-Mode High Electron Mobility Transistors And Methods Of Manufacturing The Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153330A (en) * 2006-12-15 2008-07-03 Oki Electric Ind Co Ltd Nitride semiconductor high electron mobility transistor
US20120112202A1 (en) * 2010-11-05 2012-05-10 Samsung Electronics Co., Ltd. E-Mode High Electron Mobility Transistors And Methods Of Manufacturing The Same

Also Published As

Publication number Publication date
TW202017181A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
US9728613B2 (en) High electron mobility transistor structure
US9543391B2 (en) High electron mobility transistor having reduced threshold voltage variation and method of manufacturing the same
KR101092467B1 (en) Enhancement normally off nitride semiconductor device and manufacturing method thereof
US20220376084A1 (en) Semiconductor device and method for manufacturing the same
WO2011010418A1 (en) Nitride semiconductor device and method for manufacturing same
WO2011148443A1 (en) Field effect transistor
JP2011238931A (en) Enhancement mode field effect device and method of manufacturing the same
JP2009231395A (en) Semiconductor device and method for manufacturing semiconductor device
WO2021189182A1 (en) Semiconductor device and manufacturing method therefor
JP4474292B2 (en) Semiconductor device
US11742397B2 (en) Semiconductor device and manufacturing method thereof
US20200335616A1 (en) Semiconductor devices and methods for fabricating the same
US20130069116A1 (en) Method of forming a semiconductor structure
JP5183975B2 (en) Enhanced mode field effect device and manufacturing method thereof
TWI732141B (en) Enhancement-mode high electron mobility transistors and manufacturing methods thereof
TWI626747B (en) Hetero-junction semiconductor device and method of manufacturing a hetero-junction semiconductor device
US20240030329A1 (en) Semiconductor device and method for manufacturing the same
KR20140115585A (en) Multiple field plate transistor and manufacturing method thereof
JP5158470B2 (en) Manufacturing method of nitride semiconductor device
TWM508782U (en) Semiconductor device
TW202329461A (en) High electron mobility transistor and method for fabricating the same
JP5732228B2 (en) Manufacturing method of nitride semiconductor device
JP2011108712A (en) Nitride semiconductor device
US20220199822A1 (en) Semiconductor device and method for manufacturing the same
WO2022000403A1 (en) Semiconductor device structures and methods of manufacturing the same