TWI730534B - Power supply circuit and digital input buffer, control chip and information processing device using it - Google Patents

Power supply circuit and digital input buffer, control chip and information processing device using it Download PDF

Info

Publication number
TWI730534B
TWI730534B TW108144993A TW108144993A TWI730534B TW I730534 B TWI730534 B TW I730534B TW 108144993 A TW108144993 A TW 108144993A TW 108144993 A TW108144993 A TW 108144993A TW I730534 B TWI730534 B TW I730534B
Authority
TW
Taiwan
Prior art keywords
terminal
voltage
coupled
mosfet element
resistor
Prior art date
Application number
TW108144993A
Other languages
Chinese (zh)
Other versions
TW202123607A (en
Inventor
楊偉
樊磊
Original Assignee
大陸商北京集創北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商北京集創北方科技股份有限公司 filed Critical 大陸商北京集創北方科技股份有限公司
Priority to TW108144993A priority Critical patent/TWI730534B/en
Application granted granted Critical
Publication of TWI730534B publication Critical patent/TWI730534B/en
Publication of TW202123607A publication Critical patent/TW202123607A/en

Links

Images

Abstract

本發明主要揭示一種供電電路,用於將工作電壓調整為一低壓差工作電壓,從而提供該低壓差工作電壓至一施密特電路單元,使得該施密特電路單元之一邏輯高電平(Logic-high)輸出信號的最小值可以達到1.2 V、1.1V、或1.05V,且同時令該施密特電路單元之一邏輯低電平(Logic-low)輸出信號的最大值可以達到0.6 V。並且,將工作電壓調整為所述低壓差工作電壓時,係同時兼容補償N-MOSFET元件和P-MOSFET元件之工藝角變化,讓最差狀況工藝角SNFP和FNSP改變成SS與FF工藝角,藉此方式調控施密特電路單元之輸入翻轉點電壓,使其在全工藝角範圍內之變化能夠受到有效控制而不會有明顯的變動。 The present invention mainly discloses a power supply circuit for adjusting the working voltage to a low-dropout working voltage, thereby providing the low-dropout working voltage to a Schmitt circuit unit, so that one of the Schmitt circuit units is logic high. -high) The minimum value of the output signal can reach 1.2V, 1.1V, or 1.05V, and at the same time, the maximum value of the logic-low output signal of one of the Schmitt circuit units can reach 0.6V. In addition, when the operating voltage is adjusted to the low dropout operating voltage, it is compatible with compensating the process angle changes of N-MOSFET and P-MOSFET elements at the same time, so that the worst-case process angles SNFP and FNSP are changed to SS and FF process angles. In this way, the input switching point voltage of the Schmitt circuit unit is regulated, so that the change in the full process angle range can be effectively controlled without significant changes.

Description

供電電路及利用其之數位輸入緩衝器、控制晶片和資訊處理裝置Power supply circuit and digital input buffer, control chip and information processing device using it

本發明係關於數位輸入緩衝器之技術領域,尤指應用於提供一低壓差工作電壓至一施密特電路單元的一種供電電路。The present invention relates to the technical field of digital input buffers, and particularly refers to a power supply circuit applied to provide a low dropout operating voltage to a Schmitt circuit unit.

傳統的施密特電路主要是由運算放大器和複數個電阻所組成的一個包含正回饋的比較器電路。就實務應用而言,運算放大器具有體積較大和功耗高的缺點,因此其並不利於應用在集成電路的芯片製造。有鑑於此,一種CMOS施密特電路於是被提出。圖1顯示習知的一種CMOS施密特電路的電路拓樸圖,且圖2為習知的CMOS施密特電路的等效電路符號。如圖1所示,習知的CMOS施密特電路2包括:一第一P型MOSFET元件2M1、一第二P型MOSFET元件2M2、一第一N型MOSFET元件2M3、一第二N型MOSFET元件2M4、一反相器20、一第三P型MOSFET元件2M5、以及一第三N型MOSFET元件2M6。The traditional Schmitt circuit is mainly composed of an operational amplifier and a plurality of resistors, a comparator circuit containing positive feedback. In terms of practical applications, operational amplifiers have the disadvantages of large size and high power consumption, so they are not conducive to application in integrated circuit chip manufacturing. In view of this, a CMOS Schmitt circuit is proposed. FIG. 1 shows the circuit topology of a conventional CMOS Schmitt circuit, and FIG. 2 is the equivalent circuit symbol of the conventional CMOS Schmitt circuit. As shown in FIG. 1, the conventional CMOS Schmitt circuit 2 includes: a first P-type MOSFET element 2M1, a second P-type MOSFET element 2M2, a first N-type MOSFET element 2M3, and a second N-type MOSFET Element 2M4, an inverter 20, a third P-type MOSFET element 2M5, and a third N-type MOSFET element 2M6.

更詳細地說明,計算該CMOS施密特電路2之一輸入翻轉點電壓V INV時,可令該第一P型MOSFET元件2M1和該第二P型MOSFET元件2M2為一相同的P型MOSFET元件,且同時令該第一N型MOSFET元件2M3和該第二N型MOSFET元件2M4為一相同的N型MOSFET元件。如此,在忽略該第三P型MOSFET元件2M5與該第三N型MOSFET元件2M6的元件參數的情況下,可以推導出如下所示之輸入翻轉點電壓V INV的數學運算式:

Figure 02_image001
。 In more detail, when calculating the input inversion point voltage V INV of the CMOS Schmitt circuit 2, the first P-type MOSFET element 2M1 and the second P-type MOSFET element 2M2 can be the same P-type MOSFET element , And at the same time let the first N-type MOSFET element 2M3 and the second N-type MOSFET element 2M4 be the same N-type MOSFET element. In this way, ignoring the element parameters of the third P-type MOSFET element 2M5 and the third N-type MOSFET element 2M6, the mathematical expression of the input inversion point voltage V INV can be derived as follows:
Figure 02_image001
.

於前述數學運算式之中,V DD為由一低壓供電電路所提供的工作電壓,V TN和V TP分別N型MOSFET元件與P型MOSFET元件的閥值電壓,且γ=β PN,其中β P為P型MOSFET元件的增益因子,其為μ PC OX(W P/L P),而β N為N型MOSFET元件的增益因子,其為μ NC OX(W N/L N)。其中,μ P為反轉層的電洞遷移率,μ N為反轉層的電子遷移率,Cox為閘極氧化層的厚度,W P(W N)為閘極寬度,且L P(L nN)為閘極長度。因此,由前述數學運算式可知,該低壓供電電路所提供的工作電壓V DD、P型MOSFET元件和N型MOSFET元件的元件尺寸、及/或P型MOSFET元件和N型MOSFET元件的閥值電壓皆會影響所述輸入翻轉點電壓V INV的最終數值。 In the foregoing mathematical expressions, V DD is the operating voltage provided by a low-voltage power supply circuit, V TN and V TP are the threshold voltages of N-type MOSFET and P-type MOSFET respectively, and γ=β PN , Where β P is the gain factor of the P-type MOSFET element, which is μ P C OX (W P /L P ), and β N is the gain factor of the N-type MOSFET element, which is μ N C OX (W N /L N ). Among them, μ P is the hole mobility of the inversion layer, μ N is the electron mobility of the inversion layer, Cox is the thickness of the gate oxide layer, W P (W N ) is the gate width, and L P (L nN ) is the gate length. Therefore, it can be known from the foregoing mathematical expression that the operating voltage V DD provided by the low-voltage power supply circuit, the element size of the P-type MOSFET element and the N-type MOSFET element, and/or the threshold voltage of the P-type MOSFET element and the N-type MOSFET element Both will affect the final value of the input inversion point voltage V INV.

如圖1所示之CMOS施密特電路2經常被應用為一數位輸入緩衝器,其利用該第三P型MOSFET元件2M5以及該第三N型MOSFET元件2M6令邏輯高電平(Logic-high)輸出信號V OUT與邏輯低電平(Logic-low)輸出信號V OUT之間具有一定的遲滯,從而防止反復的高/低電平切換導致輸出信號VOUT在輸入翻轉點附近產生毛刺(glitch)。值得說明的是,由該低壓供電電路所提供的工作電壓V DD通常被要求在2.5V至5.5V之間,這個工作電壓V DD的範圍可以讓圖1所示之CMOS施密特電路2所輸出的邏輯低電平(Logic-low)輸出信號V OUT的最大值為0.6V,且令所輸出的邏輯高電平(Logic-high)輸出信號V OUT的最小值為2.0V。 The CMOS Schmitt circuit 2 shown in Figure 1 is often used as a digital input buffer, which uses the third P-type MOSFET element 2M5 and the third N-type MOSFET element 2M6 to make a logic high level (Logic-high ) There is a certain hysteresis between the output signal V OUT and the logic-low output signal V OUT to prevent repeated high/low level switching from causing glitches in the output signal VOUT near the input flip point . It is worth noting that the working voltage V DD provided by the low-voltage power supply circuit is usually required to be between 2.5V and 5.5V. The range of this working voltage V DD can allow the CMOS Schmitt circuit 2 shown in Figure 1 to be The maximum value of the output logic-low output signal V OUT is 0.6V, and the minimum value of the output logic-high output signal V OUT is 2.0V.

然而,由該低壓供電電路所提供的範圍為2.5V~5.5V的工作電壓V DD無法使得邏輯低電平(Logic-low)輸出信號V OUT的最大值為0.6V以及邏輯高電平(Logic-high)輸出信號V OUT的最小值為1.5V。有鑑於此,圖3即顯示習知的一種包含低壓差穩壓器的施密特電路。如圖3所示,一低壓差穩壓器(Low-dropout regulator, LDO)3被應用於提供一個低壓差工作電壓V LDO至所述CMOS施密特電路2,從而使得邏輯低電平(Logic-low)輸出信號V OUT的最大值為0.6V,且同時令邏輯高電平(Logic-high)輸出信號V OUT的最小值為1.5V。 However, the working voltage V DD in the range of 2.5V~5.5V provided by the low-voltage power supply circuit cannot make the maximum value of the logic -low output signal V OUT be 0.6V and the logic high level (Logic-low). -high) The minimum value of the output signal V OUT is 1.5V. In view of this, Figure 3 shows a conventional Schmitt circuit including a low dropout voltage regulator. As shown in FIG. 3, a low-dropout regulator (LDO) 3 is applied to provide a low-dropout operating voltage V LDO to the CMOS Schmitt circuit 2, so that a logic low (Logic low) voltage V LDO is applied to the CMOS Schmitt circuit 2. -low) The maximum value of the output signal V OUT is 0.6V, and at the same time, the minimum value of the logic-high output signal V OUT is 1.5V.

可惜的是,圖3所示包含低壓差穩壓器的施密特電路並無法同時滿足邏輯低電平(Logic-low)輸出信號V OUT的最大值為0.6V及邏輯高電平(Logic-high)輸出信號V OUT的最小值為1.2V、1.1V或1.05V的要求。因此,應進一步考慮的是,如何選用5V電子元件設計出新式的低壓供電電路,使得包含此新式低壓供電電路的(CMOS)施密特電路能夠同時滿足邏輯低電平(Logic-low)輸出信號V OUT的最大值為0.6V及邏輯高電平(Logic-high)輸出信號V OUT的最小值為1.2V、1.1V或1.05V的要求。 Unfortunately, the Schmitt circuit including the low dropout regulator shown in Figure 3 cannot simultaneously satisfy the logic-low output signal V OUT with a maximum value of 0.6V and a logic high level (Logic-low). high) The minimum value of the output signal V OUT is the requirement of 1.2V, 1.1V or 1.05V. Therefore, further consideration should be given to how to select 5V electronic components to design a new low-voltage power supply circuit so that the (CMOS) Schmitt circuit containing this new low-voltage power supply circuit can simultaneously meet the logic-low output signal The maximum value of V OUT is 0.6V and the minimum value of the logic-high output signal V OUT is 1.2V, 1.1V or 1.05V.

因此,本領域亟需用於數位輸入緩衝器之中的一種新式供電電路。 Therefore, there is an urgent need in the art for a new type of power supply circuit used in digital input buffers.

本發明之主要目的在於提供一種供電電路,其用以將一工作電壓調整成一低壓差工作電壓,並提供該低壓差工作電壓至一施密特電路單元,使得該施密特電路單元之一邏輯高電平(Logic-high)輸出信號的最小值可以達到1.2V、1.1V、或1.05V,且同時令該施密特電路單元之一邏輯低電平(Logic-low)輸出信號的最大值可以達到0.6V。 The main purpose of the present invention is to provide a power supply circuit for adjusting a working voltage to a low-dropout working voltage, and providing the low-dropout working voltage to a Schmitt circuit unit, so that one of the Schmitt circuit units has a logic high The minimum value of the Logic-high output signal can reach 1.2V, 1.1V, or 1.05V, and at the same time, the maximum value of the logic-low output signal of one of the Schmitt circuit units can reach 0.6V.

本發明之另一目的在於提供一種供電電路,其用以將一工作電壓調整為一低壓差工作電壓,調整過程同時兼容補償N型MOSFET元件和P型MOSFET元件之工藝角變化,讓最差狀況工藝角之N型MOSFET元件及P型MOSFET元件從SNFP或FNSP工藝角改變成SS或FF工藝角,藉此方式調控施密特電路單元之輸入翻轉點電壓,使其在全工藝角範圍內之變化能夠受到有效控制而不會有明顯的變動。 Another object of the present invention is to provide a power supply circuit, which is used to adjust a working voltage to a low dropout working voltage. The adjustment process is compatible with compensating for the process angle changes of the N-type MOSFET element and the P-type MOSFET element, so that the worst case The N-type MOSFET element and P-type MOSFET element in the process corner are changed from the SNFP or FNSP process angle to the SS or FF process angle, thereby adjusting the input switching point voltage of the Schmitt circuit unit to make it within the range of the full process angle Changes can be effectively controlled without significant changes.

為達成上述目的,本發明提出所述供電電路之一第一實施例,用於提供一低壓差工作電壓至一施密特電路單元,且其包括:一第一MOSFET元件,以其一汲極端和一源極端分別耦接一工作電壓和一接地端電壓;一電流源,耦接於該第一MOSFET元件的一閘極端和該工作電壓之間;一第二MOSFET元件,以其一源極端同時耦接該電流源與該第一MOSFET元件的該閘極端,且其一汲極端和一閘極端係相互耦接;以及一第一電阻,以其一端同時耦接該第二MOSFET元件的該汲極端和該閘極端,且其另一端耦接該接地端電壓;其中,該第一MOSFET元件的該源極端為所述供電電路的一輸出端,用以提供所述低壓差工作電壓至該施密特電路單元。 In order to achieve the above objective, the present invention proposes a first embodiment of the power supply circuit, which is used to provide a low dropout operating voltage to a Schmitt circuit unit, and it includes: a first MOSFET element with a drain terminal And a source terminal are respectively coupled to a working voltage and a ground terminal voltage; a current source is coupled between a gate terminal of the first MOSFET element and the working voltage; a second MOSFET element with a source terminal thereof Simultaneously coupled to the current source and the gate terminal of the first MOSFET element, and a drain terminal and a gate terminal thereof are coupled to each other; and a first resistor whose one end is simultaneously coupled to the second MOSFET element The drain terminal and the gate terminal, and the other terminal thereof is coupled to the ground terminal voltage; wherein, the source terminal of the first MOSFET element is an output terminal of the power supply circuit for providing the low dropout operating voltage to the application Mitter circuit unit.

在第一實施例中,所述供電電路更包括: 一第二電阻,耦接於該第一電阻和該接地端電壓之間;一第三電阻,耦接於該第一MOSFET元件的該源極端和該接地端電壓之間;一第四電阻,耦接於該第一MOSFET元件的該汲極端和該工作電壓之間;以及一電容,耦接於該第一MOSFET元件的該閘極端和該接地端電壓之間;其中,該電流源包含一電阻以及跨於該電阻的一帶隙參考電壓。 In the first embodiment, the power supply circuit further includes: A second resistor, coupled between the first resistor and the ground terminal voltage; a third resistor, coupled between the source terminal of the first MOSFET element and the ground terminal voltage; a fourth resistor, Coupled between the drain terminal of the first MOSFET element and the operating voltage; and a capacitor, coupled between the gate terminal of the first MOSFET element and the ground terminal voltage; wherein, the current source includes a Resistance and a band gap reference voltage across the resistance.

為達成上述目的,本發明進一步提出所述供電電路之一第二實施例,用於提供一低壓差工作電壓至一施密特電路單元,且其包括:一第一MOSFET元件,以其一汲極端和一源極端分別耦接一工作電壓和一接地端電壓;一電流源,耦接於該第一MOSFET元件的一閘極端和該工作電壓之間;以及一第二MOSFET元件,以其一源極端同時耦接該電流源與該第一MOSFET元件的該閘極端,以其一汲極端耦接該接地端電壓,且以其一閘極端耦接一箝制參考電壓;其中,該第一MOSFET元件的該源極端為所述供電電路的一輸出端,用以提供所述低壓差工作電壓至該施密特電路單元。 In order to achieve the above objective, the present invention further provides a second embodiment of the power supply circuit, which is used to provide a low dropout operating voltage to a Schmitt circuit unit, and it includes: a first MOSFET element with one drain A terminal and a source terminal are respectively coupled to a working voltage and a ground terminal voltage; a current source is coupled between a gate terminal of the first MOSFET element and the working voltage; and a second MOSFET element with one of The source terminal is simultaneously coupled to the current source and the gate terminal of the first MOSFET element, a drain terminal thereof is coupled to the ground terminal voltage, and a gate terminal thereof is coupled to a clamp reference voltage; wherein, the first MOSFET The source terminal of the element is an output terminal of the power supply circuit for providing the low dropout operating voltage to the Schmitt circuit unit.

在第二實施例中,所述供電電路更包括:一第一電阻,耦接該第二MOSFET元件的該汲極端和該接地端電壓之間;一第二電阻,耦接於該第一MOSFET元件的該源極端和該接地端電壓之間;一第三電阻,耦接於該第一MOSFET元件的該汲極端和該工作電壓之間;以及一電容,耦接於該第一MOSFET元件的該閘極端和該接地端電壓之間。In the second embodiment, the power supply circuit further includes: a first resistor coupled between the drain terminal of the second MOSFET element and the ground terminal voltage; and a second resistor coupled to the first MOSFET Between the source terminal and the ground terminal voltage of the element; a third resistor coupled between the drain terminal of the first MOSFET element and the operating voltage; and a capacitor coupled to the first MOSFET element Between the gate terminal and the ground terminal voltage.

為達成上述目的,本發明進一步提出所述供電電路之一第三實施例,用於提供一低壓差工作電壓至一施密特電路單元,且其包括:To achieve the above objective, the present invention further provides a third embodiment of the power supply circuit, which is used to provide a low dropout operating voltage to a Schmitt circuit unit, and it includes:

一運算放大器,具有耦接一參考電壓的一正輸入端、一負輸入端和一輸出端;An operational amplifier having a positive input terminal, a negative input terminal and an output terminal coupled to a reference voltage;

一第一MOSFET元件,以其一源極端耦接該運算放大器的該輸出端,且其一汲極端和一閘極端係相互耦接;A first MOSFET element, a source terminal of which is coupled to the output terminal of the operational amplifier, and a drain terminal and a gate terminal of which are coupled to each other;

一第一電阻,其一端同時耦接第一MOSFET元件的該汲極端及該閘極端,且其另一端耦接該運算放大器的該負輸入端;以及A first resistor, one end of which is simultaneously coupled to the drain terminal and the gate terminal of the first MOSFET element, and the other end of which is coupled to the negative input terminal of the operational amplifier; and

一第二電阻,耦接於該第一電阻和一接地端電壓之間;A second resistor, coupled between the first resistor and a ground terminal voltage;

其中,該第一MOSFET元件的該源極端與該運算放大器的該輸出端之間的一共接點為所述供電電路的一輸出端,用以提供所述低壓差工作電壓至該施密特電路單元。Wherein, a common contact between the source terminal of the first MOSFET element and the output terminal of the operational amplifier is an output terminal of the power supply circuit for providing the low dropout operating voltage to the Schmitt circuit unit .

在第三實施例中,所述供電電路更包括一第三電阻,其耦接於該第二電阻和該接地端電壓之間。In the third embodiment, the power supply circuit further includes a third resistor coupled between the second resistor and the ground terminal voltage.

為達成上述目的,本發明進一步提出所述供電電路之一第四實施例,用於提供一低壓差工作電壓至一施密特電路單元,且其包括:To achieve the above objective, the present invention further provides a fourth embodiment of the power supply circuit, which is used to provide a low dropout operating voltage to a Schmitt circuit unit, and includes:

一穩定電壓提供單元,包括:A stable voltage supply unit, including:

一第一運算放大器,具有耦接一參考電壓的一正輸入端、一負輸入端和一輸出端;A first operational amplifier having a positive input terminal, a negative input terminal and an output terminal coupled to a reference voltage;

一第一電阻,耦接於該第一運算放大器的該輸出端和該負輸入端之間;及A first resistor coupled between the output terminal and the negative input terminal of the first operational amplifier; and

一第二電阻,以其一端耦接一地端,且其另一端同時耦接該第一電阻和該第一運算放大器的該輸出端;以及A second resistor, one end of which is coupled to a ground terminal, and the other end of which is simultaneously coupled to the first resistor and the output terminal of the first operational amplifier; and

一電壓電流轉換單元,耦接於該第一運算放大器的該負輸入端和該第二電阻之間的一共接點、一工作電壓、和一接地端電壓之間,用以提供一電流至該共接點;A voltage-current conversion unit, coupled to a common contact between the negative input terminal of the first operational amplifier and the second resistor, a working voltage, and a ground terminal voltage, for providing a current to the Common contact

其中,所述供電電路係以該第一運算放大器的該輸出端提供所述低壓差工作電壓至該施密特電路單元。Wherein, the power supply circuit uses the output terminal of the first operational amplifier to provide the low dropout operating voltage to the Schmitt circuit unit.

在第三實施例中,該電壓電流轉換單元包括:In the third embodiment, the voltage-current conversion unit includes:

一第二運算放大器,具有一正輸入端、一負輸入端和一輸出端;A second operational amplifier having a positive input terminal, a negative input terminal and an output terminal;

一第一MOSFET元件,以其一閘極端和一汲極端分別耦接該第二運算放大器的該輸出端和該負輸入端;A first MOSFET element, a gate terminal and a drain terminal of which are respectively coupled to the output terminal and the negative input terminal of the second operational amplifier;

一第三電阻,其一端耦接一工作電壓,且其另一端同時耦接該第二運算放大器的該負輸入端和該第一MOSFET元件的一源極端;A third resistor, one end of which is coupled to a working voltage, and the other end of which is simultaneously coupled to the negative input terminal of the second operational amplifier and a source terminal of the first MOSFET element;

一電流鏡,同時耦接該第一MOSFET元件的該汲極端、一接地端電壓、以及該第一運算放大器的該負輸入端、該第一電阻和該第二電阻之間的一共接點;A current mirror coupled to the drain terminal of the first MOSFET element, a ground terminal voltage, and a common connection point between the negative input terminal of the first operational amplifier, the first resistor and the second resistor at the same time;

一第二MOSFET元件,其一閘極端耦接該第二運算放大器的該正輸入端,其一源極端耦接該工作電壓,且其一汲極端同時耦接該第二運算放大器的該正輸入端和該接地端電壓;及A second MOSFET element, a gate terminal of which is coupled to the positive input terminal of the second operational amplifier, a source terminal of which is coupled to the operating voltage, and a drain terminal of which is simultaneously coupled to the positive input of the second operational amplifier Terminal and the ground terminal voltage; and

一電流源,其一端耦接該接地端電壓,且其另一端同時耦接該第二MOSFET元件的該汲極端和該第二運算放大器的該正輸入端。A current source, one end of which is coupled to the ground terminal voltage, and the other end of which is simultaneously coupled to the drain terminal of the second MOSFET element and the positive input terminal of the second operational amplifier.

本發明同時提供一種數位輸入緩衝器,其包含如前所述之供電電路。The present invention also provides a digital input buffer, which includes the power supply circuit as described above.

在可行的實施例中,所述數位輸入緩衝器係應用在選自於數位類比轉換電路、上電復位電路、超聲波傳感器電路、光電傳感器電路、電容式指紋傳感器電路、光學式指紋傳感器電路、電子開關電路、信號切換控制電路、IGBT驅動控制電路、電流閾值檢測電路、和電壓閾值檢測電路所組成的群組之中的一種電子電路裝置。In a feasible embodiment, the digital input buffer is applied to a digital analog conversion circuit, a power-on reset circuit, an ultrasonic sensor circuit, a photoelectric sensor circuit, a capacitive fingerprint sensor circuit, an optical fingerprint sensor circuit, and electronics. An electronic circuit device in the group consisting of a switching circuit, a signal switching control circuit, an IGBT drive control circuit, a current threshold detection circuit, and a voltage threshold detection circuit.

為達成上述目的,本發明進一步提出一種控制晶片,其具有一控制電路及如前述之供電電路,其中該控制電路係由該供電電路供電。To achieve the above objective, the present invention further provides a control chip, which has a control circuit and the aforementioned power supply circuit, wherein the control circuit is powered by the power supply circuit.

為達成上述目的,本發明進一步提出一種資訊處理裝置,其具有如前述之控制晶片。To achieve the above objective, the present invention further provides an information processing device, which has the aforementioned control chip.

為使  貴審查委員能進一步瞭解本發明之結構、特徵、目的、與其優點,茲附以圖式及較佳具體實施例之詳細說明如後。In order to enable your reviewer to further understand the structure, features, purpose, and advantages of the present invention, the drawings and detailed descriptions of preferred specific embodiments are attached as follows.

圖4顯示本發明之一種供電電路的第一實施例之電路拓樸圖。於第一實施例中,本發明之供電電路100用以提供一低壓差工作電壓V LDO至一施密特電路單元2,且其包括:一第一MOSFET元件101、一電流源102、一第二MOSFET元件103、一第一電阻104、一第二電阻105、一第三電阻106、一第四電阻107、以及一電容108。如圖4所示,該第一MOSFET元件101為一N型MOSFET元件,其一汲極端和一源極端分別耦接一工作電壓V DD和一接地端電壓V SS。並且,該電流源102耦接於該第一MOSFET元件101的一閘極端和該工作電壓V DD之間。特別說明的是,所述電流源102包含一電阻以及跨於該電阻的一帶隙參考電壓V BG。簡單地說,該電流源102的輸出電流值為V BG/R,其中R為前述電阻之電阻值。 FIG. 4 shows a circuit topology diagram of the first embodiment of a power supply circuit of the present invention. In the first embodiment, the power supply circuit 100 of the present invention is used to provide a low dropout operating voltage V LDO to a Schmitt circuit unit 2, and it includes: a first MOSFET element 101, a current source 102, and a second Two MOSFET elements 103, a first resistor 104, a second resistor 105, a third resistor 106, a fourth resistor 107, and a capacitor 108. As shown in FIG. 4, the first MOSFET element 101 is an N-type MOSFET element, a drain terminal and a source terminal of which are respectively coupled to a working voltage V DD and a ground terminal voltage V SS . Moreover, the current source 102 is coupled between a gate terminal of the first MOSFET element 101 and the operating voltage V DD . Specifically, the current source 102 includes a resistor and a band gap reference voltage V BG across the resistor. Simply put, the output current value of the current source 102 is V BG /R, where R is the resistance value of the aforementioned resistor.

另一方面,該第二MOSFET元件103為一P型MOSFET元件。如圖4所示,該第二MOSFET元件103的一源極端同時耦接該電流源102與該第一MOSFET元件101的該閘極端,且其一汲極端和一閘極端係相互耦接。更詳細地說明,該第一電阻104的一端同時耦接該第二MOSFET元件103的該汲極端和該閘極端,且其另一端耦接該接地端電壓VSS。並且,該第二電阻105耦接於該第一電阻104和該接地端電壓VSS之間,該第三電阻106耦接於該第一MOSFET元件101的該源極端和該接地端電壓VSS之間,該第四電阻107耦接於該第一MOSFET元件101的該汲極端和該工作電壓VDD之間,且該電容108耦接於該第一MOSFET元件101的該閘極端和該接地端電壓VSS之間。 On the other hand, the second MOSFET element 103 is a P-type MOSFET element. As shown in FIG. 4, a source terminal of the second MOSFET element 103 is simultaneously coupled to the current source 102 and the gate terminal of the first MOSFET element 101, and a drain terminal and a gate terminal thereof are coupled to each other. In more detail, one end of the first resistor 104 is simultaneously coupled to the drain terminal and the gate terminal of the second MOSFET element 103, and the other end is coupled to the ground terminal voltage V SS . Moreover, the second resistor 105 is coupled between the first resistor 104 and the ground terminal voltage V SS , and the third resistor 106 is coupled between the source terminal of the first MOSFET element 101 and the ground terminal voltage V SS In between, the fourth resistor 107 is coupled between the drain terminal of the first MOSFET element 101 and the operating voltage V DD , and the capacitor 108 is coupled between the gate terminal of the first MOSFET element 101 and the ground Between terminal voltage V SS.

該第一MOSFET元件101(亦即,N型MOSFET元件)的該源極端為所述供電電路100的一輸出端,用以提供所述低壓差工作電壓VLDO至該施密特電路單元2。依據本發明之設計,電流源102所輸出的定電流之值為VBG/R,且由圖4可知所述定電流係依序流過第二MOSFET元件103(亦即,P型MOSFET元件)、第一電阻104和第二電阻105,因此可推算低壓差工作電壓VLDO=Ibxu*(R1+R2)+Vgsp-Vgsn。於前述運算式中,Ibxu為電流源102所輸出的定電流,R1為第一電阻104的電阻值,R2為第二電阻105的電阻值,Vgsp=VTP+Vov,且Vgsn=VTN+Vov。更詳細地說明,VTP和VTN分別為P型MOSFET元件和N型MOSFET元件的閥值電壓,而Vov則為MOSFET元件之過驅動電壓。並且,前述運算式可以進一步地被推導成如下之數學運算式:VLDO=VBG*(R1+R2)/R+VTP-VTN……………(1)。 The source terminal of the first MOSFET element 101 (ie, the N-type MOSFET element) is an output terminal of the power supply circuit 100 for providing the low dropout operating voltage V LDO to the Schmitt circuit unit 2. According to the design of the present invention, the value of the constant current output by the current source 102 is V BG /R, and it can be seen from FIG. 4 that the constant current flows sequentially through the second MOSFET element 103 (that is, the P-type MOSFET element) , The first resistor 104 and the second resistor 105, so the low dropout operating voltage V LDO =Ibxu*(R1+R2)+Vgsp-Vgsn can be calculated. In the foregoing calculation formula, Ibxu is the constant current output by the current source 102, R1 is the resistance value of the first resistor 104, R2 is the resistance value of the second resistor 105, Vgsp=V TP +Vov, and Vgsn=V TN + Vov. In more detail, V TP and V TN are the threshold voltages of the P-type MOSFET and N-type MOSFET, respectively, and Vov is the overdrive voltage of the MOSFET. Moreover, the aforementioned calculation formula can be further derived into the following mathematical calculation formula: VLDO=VBG*(R1+R2)/R+VTP-VTN…………(1).

施密特電路單元2的示範性電路拓樸係繪示於圖1之中,且已知施密特電路單元2的輸入翻轉點電壓VINV可利用如下之數學運算式計算而得:

Figure 108144993-A0305-02-0009-1
An exemplary circuit topology of the Schmitt circuit unit 2 is shown in FIG. 1, and it is known that the input inversion point voltage V INV of the Schmitt circuit unit 2 can be calculated by the following mathematical expression:
Figure 108144993-A0305-02-0009-1

本發明之供電電路100提供低壓差工作電壓VLDO至施密特電路單元2,因此可將上式(1)代入式(2)之中,進而獲得如下之數學運算式:

Figure 108144993-A0305-02-0009-3
The power supply circuit 100 of the present invention provides the low dropout operating voltage V LDO to the Schmitt circuit unit 2, so the above formula (1) can be substituted into the formula (2) to obtain the following mathematical expression:
Figure 108144993-A0305-02-0009-3

於前述式(3)中,γ=β PN。並且,β P為P型MOSFET元件的增益因子,其為μ PC OX(W P/L P)。另一方面,β N為N型MOSFET元件的增益因子,其為μ NC OX(W N/L N)。必須加以說明的是,在工作電壓V DD不變的情况下,工藝角(Process corner)的其一最差狀況(worst case)為SNFP,亦即NMOS慢且PMOS快。此最差狀況工藝角決定了施密特電路單元2之邏輯高電平(Logic-high)輸出信號V OUT的最小值是否可以達到1.2 V、1.1V、或1.05V。另一方面,在工作電壓V DD不變的情况下,工藝角的另一最差狀況(worst case)為FNSP,亦即NMOS快且PMOS曼。此最差狀況工藝角決定了施密特電路單元2之邏輯低電平(Logic-low)輸出信號V OUT的最大值是否可以達到0.6V。 In the aforementioned formula (3), γ=β PN. Also, β P is the gain factor of the P-type MOSFET element, which is μ P C OX (W P /L P ). On the other hand, β N is the gain factor of the N-type MOSFET element, which is μ N C OX (W N /L N ). It must be noted that when the working voltage V DD remains unchanged, one of the worst cases of the process corner is SNFP, that is, the NMOS is slow and the PMOS is fast. The worst-case process angle determines whether the minimum value of the logic-high output signal V OUT of the Schmitt circuit unit 2 can reach 1.2 V, 1.1 V, or 1.05 V. On the other hand, when the operating voltage V DD is unchanged, another worst case of the process angle is FNSP, that is, NMOS is fast and PMOS is man. This worst-case process angle determines whether the maximum value of the logic-low output signal V OUT of the Schmitt circuit unit 2 can reach 0.6V.

因此,由前述式(3)可知,本發明之供電電路100用以將所述工作電壓V DD調整為一低壓差工作電壓V LDO,調整過程同時兼容補償N型MOSFET元件和P型MOSFET元件之工藝角變化。如此設計,即使N型MOSFET元件的閥值電壓及/或P型MOSFET元件因為製程誤差而成為最差狀況(worst case)工藝角,本發明之供電電路100可以通過調降或者調升所述低壓差工作電壓V LDO的方式,讓最差狀況工藝角之N型MOSFET元件及P型MOSFET元件從SNFP或FNSP工藝角改變成SS或FF工藝角,藉此方式調控該施密特電路單元2之輸入翻轉點電壓V INV,使其在全工藝角範圍內之變化能夠受到有效控制而不會有明顯的變動。舉例而言,在一最差狀況(worst case)工藝角SNFP的情況下,通過本發明之供電電路100可以適當地調降所述低壓差工作電壓V LDO。並且,在另一最差狀況工藝角FNSP的情況下,本發明之供電電路100可以適當地調升所述低壓差工作電壓V LDOTherefore, it can be seen from the aforementioned formula (3) that the power supply circuit 100 of the present invention is used to adjust the operating voltage V DD to a low dropout operating voltage V LDO , and the adjustment process is compatible with compensating the N-type MOSFET element and the P-type MOSFET element. Process angle changes. With this design, even if the threshold voltage of the N-type MOSFET element and/or the P-type MOSFET element becomes the worst case process angle due to process errors, the power supply circuit 100 of the present invention can reduce or increase the low voltage Differential working voltage V LDO changes the N-type MOSFET element and P-type MOSFET element of the worst-case process angle from the SNFP or FNSP process angle to the SS or FF process angle, thereby regulating the input of the Schmitt circuit unit 2 The inversion point voltage V INV enables the change in the full process angle range to be effectively controlled without significant changes. For example, in the case of a worst case process angle SNFP, the power supply circuit 100 of the present invention can appropriately reduce the low dropout operating voltage V LDO . Moreover, in the case of another worst-case process angle FNSP, the power supply circuit 100 of the present invention can appropriately increase the low dropout operating voltage V LDO .

圖5顯示本發明之一種供電電路的第二實施例之電路拓樸圖。於第二實施例中,本發明之供電電路200用以提供一低壓差工作電壓V LDO至一施密特電路單元2,且其包括:一第一MOSFET元件201、一電流源202、一第二MOSFET元件203、一第一電阻204、一第二電阻206、一第三電阻207、以及一電容208。如圖5所示,該第一MOSFET元件201為一N型MOSFET元件,且其一汲極端和一源極端分別耦接一工作電壓V DD和一接地端電壓V SS。並且,該電流源202耦接於該第一MOSFET元件201的一閘極端和該工作電壓V DD之間。另一方面,該第二MOSFET元件203為一P型MOSFET元件,且其一源極端同時耦接該電流源202與該第一MOSFET元件201的該閘極端。並且,該第二MOSFET元件203之一汲極端和一閘極端分別耦接該接地端電壓VSS和一箝制參考電壓VREF_CLAMPFIG. 5 shows a circuit topology diagram of a second embodiment of a power supply circuit of the present invention. In the second embodiment, the power supply circuit 200 of the present invention is used to provide a low dropout operating voltage V LDO to a Schmitt circuit unit 2, and it includes: a first MOSFET element 201, a current source 202, and a second Two MOSFET elements 203, a first resistor 204, a second resistor 206, a third resistor 207, and a capacitor 208. As shown in FIG. 5, the first MOSFET element 201 is an N-type MOSFET element, and a drain terminal and a source terminal thereof are respectively coupled to a working voltage V DD and a ground terminal voltage V SS . Moreover, the current source 202 is coupled between a gate terminal of the first MOSFET element 201 and the operating voltage V DD . On the other hand, the second MOSFET element 203 is a P-type MOSFET element, and a source terminal thereof is simultaneously coupled to the current source 202 and the gate terminal of the first MOSFET element 201. Moreover, a drain terminal and a gate terminal of the second MOSFET element 203 are respectively coupled to the ground terminal voltage V SS and a clamp reference voltage V REF_CLAMP .

更詳細地說明,該第一電阻204耦接該第二MOSFET元件203的該汲極端和該接地端電壓VSS之間,該第二電阻206耦接於該第一MOSFET元件201的該源極端和該接地端電壓VSS之間,該第三電阻207耦接於該第一MOSFET元件201的該汲極端和該工作電壓VDD之間,且該電容208耦接於該第一MOSFET元件201的該閘極端和該接地端電壓VSS之間。 In more detail, the first resistor 204 is coupled between the drain terminal of the second MOSFET element 203 and the ground terminal voltage V SS , and the second resistor 206 is coupled to the source terminal of the first MOSFET element 201 And the ground terminal voltage VSS, the third resistor 207 is coupled between the drain terminal of the first MOSFET element 201 and the operating voltage V DD , and the capacitor 208 is coupled to the first MOSFET element 201 Between the gate terminal and the ground terminal voltage V SS.

於第二實施例中,該第一MOSFET元件201的該源極端為所述供電電路200的一輸出端,用以提供所述低壓差工作電壓VLDO至該施密特電路單元2。由圖5的電路拓樸可知所述低壓差工作電壓VLDO=VREF_CLAMP+Vgsp-Vgsn。其中,VREF_CLAMP為用以控制第二MOSFET元件203之導通/關閉的一箝制參考電壓,Vgsp為第二MOSFET元件203的閘極-源極電壓差,且Vgsn為第一MOSFET元件201的閘極-源極電壓差。並且,前述運算式可以進一步地被推導成如下之數學運算式:VLDO=VREF_CLAMP+VTP-VTN……………(4)。 In the second embodiment, the source terminal of the first MOSFET element 201 is an output terminal of the power supply circuit 200 for providing the low dropout operating voltage V LDO to the Schmitt circuit unit 2. It can be known from the circuit topology of FIG. 5 that the low dropout operating voltage V LDO =V REF_CLAMP +V gsp -V gsn . Where V REF_CLAMP is a clamp reference voltage used to control the on/off of the second MOSFET element 203, V gsp is the gate-source voltage difference of the second MOSFET element 203, and V gsn is the voltage of the first MOSFET element 201 Gate-source voltage difference. Moreover, the aforementioned calculation formula can be further derived into the following mathematical calculation formula: V LDO =V REF_CLAMP +V TP -V TN …………(4).

本發明之供電電路200提供低壓差工作電壓VLDO至施密特電路單元2,因此可將上式(4)代入前面說明所述之式(2)中,進而獲得如下之數學運算式:

Figure 108144993-A0305-02-0011-4
The power supply circuit 200 of the present invention provides the low dropout operating voltage V LDO to the Schmitt circuit unit 2. Therefore, the above equation (4) can be substituted into the equation (2) described above to obtain the following mathematical expression:
Figure 108144993-A0305-02-0011-4

由前述式(5)可知,本發明之供電電路200用以將所述工作電壓VDD調整為一低壓差工作電壓VLDO,調整過程同時兼容補償N型MOSFET元件和P型MOSFET元件之工藝角變化。舉例而言,在一最差狀況(worst case)工藝角SNFP的情況下,通過本發明之供電電路100可以適當地調降所述低壓差工作電壓VLDO。並且,在另一最差狀況工藝角FNSP的情況下,本發明之供電電路100可以適當地調升所述低壓差工作電壓VLDO。如此設計,讓最差狀況工藝角之N型MOSFET元件及P型MOSFET元件從SNFP或FNSP工藝角改變成SS或FF工藝角,便能夠調控該施密特電路單元2之輸入翻轉點電壓V INV,使其在全工藝角範圍內之變化能夠受到有效控制而不會有明顯的變動。 It can be seen from the aforementioned formula (5) that the power supply circuit 200 of the present invention is used to adjust the operating voltage V DD to a low dropout operating voltage V LDO , and the adjustment process is compatible with compensating the process angle of the N-type MOSFET element and the P-type MOSFET element. Variety. For example, in the case of a worst case process angle SNFP, the power supply circuit 100 of the present invention can appropriately reduce the low dropout operating voltage V LDO . Moreover, in the case of another worst-case process angle FNSP, the power supply circuit 100 of the present invention can appropriately increase the low dropout operating voltage V LDO . With this design, the worst-case N-type MOSFET element and P-type MOSFET element are changed from the SNFP or FNSP process angle to the SS or FF process angle, and the input inversion point voltage V INV of the Schmidt circuit unit 2 can be adjusted. The changes in the full process angle range can be effectively controlled without significant changes.

圖6顯示本發明之一種供電電路的第三實施例之電路拓樸圖。於第三實施例中,本發明之供電電路300用以提供一低壓差工作電壓V LDO至一施密特電路單元2,且其包括:一運算放大器301、一第一MOSFET元件302、一第一電阻303、一第二電阻304、以及一第三電阻305。其中,該運算放大器301具有耦接一參考電壓V REF的一正輸入端、一負輸入端和一輸出端。該第一MOSFET元件302為一P型MOSFET元件,且其一源極端耦接該運算放大器301的該輸出端,而其一汲極端和一閘極端係相互耦接。另一方面,該第一電阻303之一端同時耦接第一MOSFET元件302的該汲極端及該閘極端,且其另一端耦接該運算放大器301的該負輸入端。圖6還繪示該第二電阻304耦接於該第一電阻303和一接地端電壓V SS之間,且該第三電阻305耦接於該第二電阻304和該接地端電壓V SS之間。 FIG. 6 shows a circuit topology diagram of a third embodiment of a power supply circuit of the present invention. In the third embodiment, the power supply circuit 300 of the present invention is used to provide a low dropout operating voltage V LDO to a Schmitt circuit unit 2, and it includes: an operational amplifier 301, a first MOSFET element 302, and a second A resistor 303, a second resistor 304, and a third resistor 305. The operational amplifier 301 has a positive input terminal, a negative input terminal and an output terminal coupled to a reference voltage V REF. The first MOSFET element 302 is a P-type MOSFET element, and a source terminal thereof is coupled to the output terminal of the operational amplifier 301, and a drain terminal and a gate terminal thereof are coupled to each other. On the other hand, one terminal of the first resistor 303 is simultaneously coupled to the drain terminal and the gate terminal of the first MOSFET element 302, and the other terminal is coupled to the negative input terminal of the operational amplifier 301. 6 also shows that the second resistor 304 is coupled between the first resistor 303 and a ground terminal voltage V SS , and the third resistor 305 is coupled between the second resistor 304 and the ground terminal voltage V SS between.

於第三實施例中,該第一MOSFET元件302的該源極端與該運算放大器301的該輸出端之間的一共接點為所述供電電路300的一輸出端,用以提供所述低壓差工作電壓V LDO至該施密特電路單元2。由圖6的電路拓樸可知,本發明在所述運算放大器301的反饋迴路上串接該第一MOSFET元件302。由於該第一MOSFET元件302為一二極體連接形式(Diode-connected)之P型MOSFET元件,因此所述低壓差工作電壓V LDO會隨著P型MOSFET元件的工藝角進行變化。所述低壓差工作電壓V LDO為:V REF*(R3+R2+R1)/(R1+R2)+V gsp。其中,R3為第一電阻303的電阻值,R2為第二電阻304的電阻值,R1為第三電阻301的電阻值,且V gsp=V TP+Vov。V TP為P型MOSFET元件的閥值電壓,而Vov則為MOSFET元件之過驅動電壓。並且,前述運算式可以進一步地被推導成如下之數學運算式: V LDO=V REF*(R3+R2+R1)/(R1+R2)+V TP+Vov……(6)。 In the third embodiment, a common contact between the source terminal of the first MOSFET element 302 and the output terminal of the operational amplifier 301 is an output terminal of the power supply circuit 300 to provide the low dropout voltage The working voltage V LDO is connected to the Schmitt circuit unit 2. It can be seen from the circuit topology of FIG. 6 that the first MOSFET element 302 is connected in series to the feedback loop of the operational amplifier 301 in the present invention. Since the first MOSFET element 302 is a diode-connected P-type MOSFET element, the low dropout operating voltage V LDO will vary with the process angle of the P-type MOSFET element. The low dropout operating voltage V LDO is: V REF *(R3+R2+R1)/(R1+R2)+V gsp . Among them, R3 is the resistance value of the first resistor 303, R2 is the resistance value of the second resistor 304, R1 is the resistance value of the third resistor 301, and V gsp =V TP +Vov. V TP is the threshold voltage of the P-type MOSFET element, and Vov is the overdrive voltage of the MOSFET element. Moreover, the aforementioned calculation formula can be further derived into the following mathematical calculation formula: V LDO =V REF *(R3+R2+R1)/(R1+R2)+V TP +Vov……(6).

本發明之供電電路300提供低壓差工作電壓V LDO至施密特電路單元2,因此可將上式(5)代入前面說明所述之式(2)中,進而獲得如下之數學運算式:

Figure 02_image007
…………………………(7)。 The power supply circuit 300 of the present invention provides the low dropout operating voltage V LDO to the Schmitt circuit unit 2. Therefore, the above formula (5) can be substituted into the formula (2) described above to obtain the following mathematical expression:
Figure 02_image007
…………………………(7).

由前述式(7)可知,本發明之供電電路300用以將所述工作電壓V DD調整為一低壓差工作電壓V LDO,調整過程同時兼容補償N型MOSFET元件和P型MOSFET元件之工藝角變化,具體效果是可以令最差狀況工藝角之N型MOSFET元件及P型MOSFET元件從SNFP或FNSP工藝角改變成SS或FF工藝角,從而能夠調控該施密特電路單元2之輸入翻轉點電壓V INV,使其在全工藝角範圍內之變化能夠受到有效控制而不會有明顯的變動。 It can be seen from the aforementioned formula (7) that the power supply circuit 300 of the present invention is used to adjust the operating voltage V DD to a low dropout operating voltage V LDO , and the adjustment process is compatible with compensating the process angle of the N-type MOSFET element and the P-type MOSFET element. The specific effect is to change the N-type MOSFET element and P-type MOSFET element of the worst-case process angle from the SNFP or FNSP process angle to the SS or FF process angle, so as to adjust the input switching point voltage of the Schmitt circuit unit 2. V INV , so that the change in the full process angle range can be effectively controlled without significant changes.

圖7顯示本發明之一種供電電路的第四實施例之電路拓樸圖。於第四實施例中,本發明之供電電路400用以提供一低壓差工作電壓V LDO至一施密特電路單元2,其主要由一穩定電壓提供單元410和一電壓電流轉換單元420組成。如圖7所示,該穩定電壓提供單元410包括:一第一運算放大器411、一第一電阻412以及一第二電阻413。其中,該第一運算放大器411具有耦接一參考電壓V REF的一正輸入端、一負輸入端和一輸出端,且該第一電阻412耦接於該第一運算放大器411的該輸出端和該負輸入端之間。並且,該第二電阻413之一端耦接一地端,且其另一端同時耦接該第一電阻412和該第一運算放大器411的該輸出端。依據本發明之設計,該電壓電流轉換單元420耦接於該第一運算放大器411的該負輸入端和該第二電阻413之間的一共接點、一工作電壓V DD、和一接地端電壓V SS之間,用以提供一電流至該共接點。並且,所述供電電路100係以該第一運算放大器411的該輸出端提供所述低壓差工作電壓V LDO至該施密特電路單元2。 FIG. 7 shows a circuit topology diagram of a fourth embodiment of a power supply circuit of the present invention. In the fourth embodiment, the power supply circuit 400 of the present invention is used to provide a low dropout operating voltage V LDO to a Schmitt circuit unit 2, and it is mainly composed of a stable voltage supply unit 410 and a voltage-current conversion unit 420. As shown in FIG. 7, the stable voltage supply unit 410 includes: a first operational amplifier 411, a first resistor 412 and a second resistor 413. The first operational amplifier 411 has a positive input terminal, a negative input terminal, and an output terminal coupled to a reference voltage V REF , and the first resistor 412 is coupled to the output terminal of the first operational amplifier 411 And the negative input terminal. Moreover, one end of the second resistor 413 is coupled to a ground end, and the other end thereof is simultaneously coupled to the first resistor 412 and the output end of the first operational amplifier 411. According to the design of the present invention, the voltage-current conversion unit 420 is coupled to a common connection point between the negative input terminal of the first operational amplifier 411 and the second resistor 413, a working voltage V DD , and a ground terminal voltage Between V and SS , it is used to provide a current to the common contact. In addition, the power supply circuit 100 uses the output terminal of the first operational amplifier 411 to provide the low dropout operating voltage V LDO to the Schmitt circuit unit 2.

更詳細地說明,該電壓電流轉換單元420包括:一第二運算放大器421、一第一MOSFET元件422、一第三電阻423、一第二MOSFET元件424、一電流源425、以及一電流鏡(包含一第三MOSFET元件426和一第四MOSFET元件427)。其中,該第二運算放大器421具有一正輸入端、一負輸入端和一輸出端,且該第一MOSFET元件422以其一閘極端和一汲極端分別耦接該第二運算放大器421的該輸出端和該負輸入端。另一方面,該第三電阻423之一端耦接一工作電壓V DD,且其另一端同時耦接該第二運算放大器421的該負輸入端和該第一MOSFET元件422的一源極端。如圖7所示,該第二MOSFET元件424之一閘極端耦接該第二運算放大器421的該正輸入端,且一源極端耦接該工作電壓V DD,而其一汲極端則同時耦接該第二運算放大器421的該正輸入端和該接地端電壓V SSIn more detail, the voltage-current conversion unit 420 includes: a second operational amplifier 421, a first MOSFET element 422, a third resistor 423, a second MOSFET element 424, a current source 425, and a current mirror ( Including a third MOSFET element 426 and a fourth MOSFET element 427). Wherein, the second operational amplifier 421 has a positive input terminal, a negative input terminal and an output terminal, and the first MOSFET element 422 is respectively coupled to the second operational amplifier 421 with a gate terminal and a drain terminal thereof. The output terminal and the negative input terminal. On the other hand, one end of the third resistor 423 is coupled to a working voltage V DD , and the other end thereof is simultaneously coupled to the negative input terminal of the second operational amplifier 421 and a source terminal of the first MOSFET element 422. As shown in FIG. 7, a gate terminal of the second MOSFET element 424 is coupled to the positive input terminal of the second operational amplifier 421, a source terminal is coupled to the operating voltage V DD , and a drain terminal thereof is simultaneously coupled Connect the positive input terminal of the second operational amplifier 421 and the ground terminal voltage V SS .

承上述說明,該電流源425之一端耦接該接地端電壓V SS,且其另一端同時耦接該第二MOSFET元件424的該汲極端和該第二運算放大器421的該正輸入端。圖7還繪示該電流鏡為一NMOS電流鏡,由該第三MOSFET元件426和該第四MOSFET元件427組成。其中,第三MOSFET元件426的源極端和汲極端分別耦接該接地端電壓V SS和該第一MOSFET元件422的該汲極端,且其閘極端耦接其汲極端。並且,第四MOSFET元件427的源極端和汲極端分別耦接該接地端電壓V SS和該第一運算放大器411的該負輸入端、該第一電阻412和該第二電阻413之間的共接點,且其閘極端耦接該第一MOSFET元件422的閘極端。 Following the above description, one terminal of the current source 425 is coupled to the ground terminal voltage V SS , and the other terminal thereof is simultaneously coupled to the drain terminal of the second MOSFET element 424 and the positive input terminal of the second operational amplifier 421. FIG. 7 also shows that the current mirror is an NMOS current mirror, which is composed of the third MOSFET element 426 and the fourth MOSFET element 427. The source terminal and the drain terminal of the third MOSFET element 426 are respectively coupled to the ground terminal voltage V SS and the drain terminal of the first MOSFET element 422, and the gate terminal is coupled to the drain terminal. In addition, the source terminal and the drain terminal of the fourth MOSFET element 427 are respectively coupled to the ground terminal voltage V SS and the negative input terminal of the first operational amplifier 411, the common value between the first resistor 412 and the second resistor 413. The gate terminal is coupled to the gate terminal of the first MOSFET element 422.

於第四實施例中,該電壓電流轉換單元420把第二MOSFET元件424的Vgsp電壓轉換成電流,且所述電流為Vgsp/R0;其中,Vgsp=V TP+Vov,且R0為第三電阻423的電阻值。透過該電流鏡之第四MOSFET元件427將所述電流傳送至該第一運算放大器411的該負輸入端與該第一電阻412及該第二電阻413之間的共接點,可推算出所述低壓差工作電壓V LDO=V REF*(R2+R1)/R1+V gsp*R2/R0。由此可知,調整R2/R0的比例可以改變低壓差工作電壓V LDO的最終值。在令R2/R0=1的情況下,,前述運算式可以進一步地被推導成如下之數學運算式: V REF*(R2+R1)/R1+V gsp……(8)。 In the fourth embodiment, the voltage-current conversion unit 420 converts the Vgsp voltage of the second MOSFET element 424 into a current, and the current is Vgsp/R0; where Vgsp=V TP +Vov, and R0 is the third resistor 423 resistance value. The current is transmitted to the common connection point between the negative input terminal of the first operational amplifier 411 and the first resistor 412 and the second resistor 413 through the fourth MOSFET element 427 of the current mirror, so that all The low dropout operating voltage V LDO =V REF *(R2+R1)/R1+V gsp *R2/R0. It can be seen that adjusting the ratio of R2/R0 can change the final value of the low dropout operating voltage V LDO. In the case that R2/R0=1, the aforementioned calculation formula can be further derived into the following mathematical calculation formula: V REF *(R2+R1)/R1+V gsp ……(8).

本發明之供電電路400提供低壓差工作電壓V LDO至施密特電路單元2,因此可將上式(8)代入前面說明所述之式(2)中,進而獲得如下之數學運算式:

Figure 02_image009
…………………………(9)。 The power supply circuit 400 of the present invention provides the low dropout operating voltage V LDO to the Schmitt circuit unit 2. Therefore, the above equation (8) can be substituted into the equation (2) described in the previous description to obtain the following mathematical expression:
Figure 02_image009
…………………………(9).

由前述式(9)可知,本發明之供電電路400用以將所述工作電壓V DD調整為一低壓差工作電壓V LDO,調整過程同時兼容補償N型MOSFET元件和P型MOSFET元件之工藝角變化,具體效果是可以令最差狀況工藝角之N型MOSFET元件及P型MOSFET元件從SNFP或FNSP工藝角改變成SS或FF工藝角,從而能夠調控該施密特電路單元2之輸入翻轉點電壓V INV,使其在全工藝角範圍內之變化能夠受到有效控制而不會有明顯的變動。 It can be seen from the aforementioned formula (9) that the power supply circuit 400 of the present invention is used to adjust the operating voltage V DD to a low dropout operating voltage V LDO , and the adjustment process is compatible with compensating the process angle of the N-type MOSFET element and the P-type MOSFET element. The specific effect is to change the N-type MOSFET element and P-type MOSFET element of the worst-case process angle from the SNFP or FNSP process angle to the SS or FF process angle, so as to adjust the input switching point voltage of the Schmitt circuit unit 2. V INV , so that the change in the full process angle range can be effectively controlled without significant changes.

依上述的說明,本發明可進一步提出一種數位輸入緩衝器,其包含一施密特電路單元2以及如前所述本發明之供電電路(100, 200, 300, 400)的任一實施例。在可行的實施例中,該數位輸入緩衝器係應用在一電子電路裝置之中,且該電子電路裝置可為下列任一者:數位類比轉換電路、上電復位電路、超聲波傳感器電路、光電傳感器電路、電容式指紋傳感器電路、光學式指紋傳感器電路、電子開關電路、信號切換控制電路、IGBT驅動控制電路、電流閾值檢測電路、和電壓閾值檢測電路。According to the above description, the present invention can further provide a digital input buffer, which includes a Schmitt circuit unit 2 and any embodiment of the power supply circuit (100, 200, 300, 400) of the present invention as described above. In a feasible embodiment, the digital input buffer is applied in an electronic circuit device, and the electronic circuit device can be any of the following: digital-to-analog conversion circuit, power-on reset circuit, ultrasonic sensor circuit, photoelectric sensor Circuit, capacitive fingerprint sensor circuit, optical fingerprint sensor circuit, electronic switch circuit, signal switching control circuit, IGBT drive control circuit, current threshold detection circuit, and voltage threshold detection circuit.

依上述的說明,本發明可進一步提出一種控制晶片,其具有前述的供電電路及一控制電路,其中該控制電路係由該供電電路供電以提供穩定、可靠的工作性能。Based on the above description, the present invention can further provide a control chip having the aforementioned power supply circuit and a control circuit, wherein the control circuit is powered by the power supply circuit to provide stable and reliable working performance.

依上述的說明,本發明可進一步提出一種資訊處理裝置,其具有前述的控制晶片以提供穩定、可靠的工作性能。Based on the above description, the present invention can further provide an information processing device with the aforementioned control chip to provide stable and reliable working performance.

如此,上述已完整且清楚地說明本發明之一種供電電路;並且,經由上述可得知本發明具有下列優點:In this way, the above has completely and clearly described a power supply circuit of the present invention; and from the above, it can be seen that the present invention has the following advantages:

(1)本發明之供電電路可將一工作電壓調V DD整成一低壓差工作電壓V LDO,並提供該低壓差工作電壓V LDO至一施密特電路單元2,使得該施密特電路單元2之一邏輯高電平(Logic-high)輸出信號的最小值可以達到1.2 V、1.1V、或1.05V,且同時令該施密特電路單元2之一邏輯低電平(Logic-low)輸出信號的最大值可以達到0.6 V。 (1) The power supply circuit of the present invention can adjust a working voltage V DD into a low-dropout working voltage V LDO , and provide the low-dropout working voltage V LDO to a Schmitt circuit unit 2 so that the Schmitt circuit unit 2 The minimum value of a logic-high output signal can reach 1.2V, 1.1V, or 1.05V, and at the same time, a logic-low output signal of the Schmitt circuit unit 2 The maximum value can reach 0.6 V.

(2)本發明提供所述供電電路的四個示範性實施例,皆可用以將一工作電壓V DD調整為一低壓差工作電壓V LDO,調整過程同時兼容補償N型MOSFET元件和P型MOSFET元件之工藝角變化,讓最差狀況工藝角之N型MOSFET元件及P型MOSFET元件從SNFP或FNSP工藝角改變成SS或FF工藝角,藉此方式調控施密特電路單元2之輸入翻轉點電壓V INV,使其在全工藝角範圍內之變化能夠受到有效控制而不會有明顯的變動。 (2) The present invention provides four exemplary embodiments of the power supply circuit, all of which can be used to adjust an operating voltage V DD to a low dropout operating voltage V LDO , and the adjustment process is compatible with compensating N-type MOSFET components and P-type MOSFETs. The process angle of the device changes, so that the N-type MOSFET element and P-type MOSFET element of the worst-case process angle are changed from the SNFP or FNSP process angle to the SS or FF process angle, thereby adjusting the input flip point of the Schmitt circuit unit 2 The voltage V INV can be effectively controlled without any obvious change in the whole process angle range.

必須加以強調的是,前述本案所揭示者乃為較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。It must be emphasized that the foregoing disclosures in this case are preferred embodiments, and any partial changes or modifications that are derived from the technical ideas of this case and are easily inferred by those who are familiar with the art will not deviate from the patent of this case. Right category.

綜上所陳,本案無論目的、手段與功效,皆顯示其迥異於習知技術,且其首先發明合於實用,確實符合發明之專利要件,懇請  貴審查委員明察,並早日賜予專利俾嘉惠社會,是為至禱。In summary, regardless of the purpose, means, and effects of this case, it is shown that it is very different from the conventional technology, and its first invention is practical, and it does meet the patent requirements of the invention. Please check it out and grant the patent as soon as possible. Society is for the best prayer.

<本發明><The present invention>

2:施密特電路單元2: Schmidt circuit unit

100:供電電路100: power supply circuit

101:第一MOSFET元件101: The first MOSFET element

102:電流源102: current source

103:第二MOSFET元件103: The second MOSFET element

104:第一電阻104: first resistance

105:第二電阻105: second resistor

106:第三電阻106: third resistor

107:第四電阻107: Fourth resistor

108:電容108: Capacitor

200:供電電路200: power supply circuit

201:第一MOSFET元件201: The first MOSFET element

202:電流源202: current source

203:第二MOSFET元件203: The second MOSFET element

204:第一電阻204: first resistance

206:第二電阻206: second resistor

207:第三電阻207: third resistor

208:電容208: Capacitor

300:供電電路300: power supply circuit

301:運算放大器301: Operational amplifier

302:第一MOSFET元件302: The first MOSFET element

303:第一電阻303: first resistance

304:第二電阻304: second resistor

305:第三電阻305: third resistor

400:供電電路400: power supply circuit

410:穩定電壓提供單元410: Stable voltage supply unit

411:第一運算放大器411: The first operational amplifier

412:第一電阻412: first resistance

413:第 二電阻413: second resistor

420:電壓電流轉換單元420: voltage-current conversion unit

421:第二運算放大器421: second operational amplifier

422:第一MOSFET元件422: The first MOSFET element

423:第三電阻423: third resistor

424:第二MOSFET元件424: second MOSFET element

425:電流源425: current source

426:第三MOSFET元件426: third MOSFET element

427:第四MOSFET元件427: Fourth MOSFET element

<習知><Acquaintances>

2:CMOS施密特電路2: CMOS Schmitt circuit

2020

2M1:第一P型MOSFET元件2M1: The first P-type MOSFET element

2M2:第二P型MOSFET元件2M2: Second P-type MOSFET element

2M3:第一N型MOSFET元件2M3: The first N-type MOSFET element

2M4:第二N型MOSFET元件2M4: Second N-type MOSFET element

2M5:第三P型MOSFET元件2M5: The third P-type MOSFET element

2M6:第三N型MOSFET元件2M6: The third N-type MOSFET element

3:低壓差穩壓器3: Low dropout regulator

圖1為習知的一種CMOS施密特電路的電路拓樸圖; 圖2為習知的CMOS施密特電路的等效電路符號; 圖3為習知的一種包含低壓差穩壓器的施密特電路; 圖4為本發明之一種供電電路的第一實施例之電路拓樸圖; 圖5為本發明之一種供電電路的第二實施例之電路拓樸圖; 圖6為本發明之一種供電電路的第三實施例之電路拓樸圖;以及 圖7為本發明之一種供電電路的第四實施例之電路拓樸圖。 Figure 1 is a circuit topology diagram of a conventional CMOS Schmitt circuit; Figure 2 is the equivalent circuit symbol of the conventional CMOS Schmitt circuit; Figure 3 is a conventional Schmitt circuit including a low dropout regulator; 4 is a circuit topology diagram of the first embodiment of a power supply circuit of the present invention; Fig. 5 is a circuit topology diagram of a second embodiment of a power supply circuit of the present invention; Fig. 6 is a circuit topology diagram of a third embodiment of a power supply circuit of the present invention; and FIG. 7 is a circuit topology diagram of a fourth embodiment of a power supply circuit of the present invention.

2:施密特電路單元 2: Schmidt circuit unit

100:供電電路 100: power supply circuit

101:第一MOSFET元件 101: The first MOSFET element

102:電流源 102: current source

103:第二MOSFET元件 103: The second MOSFET element

104:第一電阻 104: first resistance

105:第二電阻 105: second resistor

106:第三電阻 106: third resistor

107:第四電阻 107: Fourth resistor

108:電容 108: Capacitor

Claims (9)

一種供電電路,用於提供一低壓差工作電壓至一施密特電路單元,且其包括:一第一MOSFET元件,以其一汲極端和一源極端分別耦接一工作電壓和一接地端電壓;一電流源,耦接於該第一MOSFET元件的一閘極端和該工作電壓之間;一第二MOSFET元件,以其一源極端同時耦接該電流源與該第一MOSFET元件的該閘極端,且其一汲極端和一閘極端係相互耦接;以及一第一電阻,以其一端同時耦接該第二MOSFET元件的該汲極端和該閘極端,且其另一端耦接該接地端電壓;其中,該第一MOSFET元件的該源極端為所述供電電路的一輸出端,用以提供所述低壓差工作電壓至該施密特電路單元。 A power supply circuit for providing a low dropout operating voltage to a Schmitt circuit unit, and comprising: a first MOSFET element, a drain terminal and a source terminal of which are respectively coupled to a working voltage and a ground terminal voltage ; A current source, coupled between a gate terminal of the first MOSFET element and the operating voltage; a second MOSFET element, a source terminal of which is simultaneously coupled to the current source and the gate of the first MOSFET element Terminal, and a drain terminal and a gate terminal are coupled to each other; and a first resistor, one end of which is simultaneously coupled to the drain terminal and the gate terminal of the second MOSFET element, and the other end is coupled to the ground Terminal voltage; wherein, the source terminal of the first MOSFET element is an output terminal of the power supply circuit for providing the low dropout operating voltage to the Schmitt circuit unit. 如申請專利範圍第1項所述之供電電路,更包括:一第二電阻,耦接於該第一電阻和該接地端電壓之間;一第三電阻,耦接於該第一MOSFET元件的該源極端和該接地端電壓之間;一第四電阻,耦接於該第一MOSFET元件的該汲極端和該工作電壓之間;以及一電容,耦接於該第一MOSFET元件的該閘極端和該接地端電壓之間;其中,該電流源包含一電阻以及跨於該電阻的一帶隙參考電壓。 The power supply circuit described in item 1 of the scope of patent application further includes: a second resistor, coupled between the first resistor and the ground terminal voltage; a third resistor, coupled to the first MOSFET element Between the source terminal and the ground terminal voltage; a fourth resistor, coupled between the drain terminal of the first MOSFET element and the operating voltage; and a capacitor, coupled to the gate of the first MOSFET element Between the terminal and the ground terminal voltage; wherein, the current source includes a resistor and a band gap reference voltage across the resistor. 一種供電電路,用於提供一低壓差工作電壓至一施密特電路單元,且其包括:一第一MOSFET元件,以其一汲極端和一源極端分別耦接一工作電壓和一接地端電壓;一電流源,耦接於該第一MOSFET元件的一閘極端和該工作電壓之間;以及 一第二MOSFET元件,以其一源極端同時耦接該電流源與該第一MOSFET元件的該閘極端,以其一汲極端耦接該接地端電壓,且以其一閘極端耦接一箝制參考電壓;其中,該第一MOSFET元件的該源極端為所述供電電路的一輸出端,用以提供所述低壓差工作電壓至該施密特電路單元。 A power supply circuit for providing a low dropout operating voltage to a Schmitt circuit unit, and comprising: a first MOSFET element, a drain terminal and a source terminal of which are respectively coupled to a working voltage and a ground terminal voltage ; A current source, coupled between a gate terminal of the first MOSFET element and the operating voltage; and A second MOSFET element, with a source terminal thereof simultaneously coupled to the current source and the gate terminal of the first MOSFET element, a drain terminal thereof coupled to the ground terminal voltage, and a gate terminal thereof coupled to a clamp Reference voltage; wherein, the source terminal of the first MOSFET element is an output terminal of the power supply circuit for providing the low dropout operating voltage to the Schmitt circuit unit. 如申請專利範圍第3項所述之供電電路,更包括:一第一電阻,耦接該第二MOSFET元件的該汲極端和該接地端電壓之間;一第二電阻,耦接於該第一MOSFET元件的該源極端和該接地端電壓之間;一第三電阻,耦接於該第一MOSFET元件的該汲極端和該工作電壓之間;以及一電容,耦接於該第一MOSFET元件的該閘極端和該接地端電壓之間。 The power supply circuit described in item 3 of the scope of patent application further includes: a first resistor coupled between the drain terminal of the second MOSFET element and the ground terminal voltage; and a second resistor coupled to the first resistor Between the source terminal of a MOSFET element and the ground terminal voltage; a third resistor coupled between the drain terminal of the first MOSFET element and the operating voltage; and a capacitor coupled to the first MOSFET Between the gate terminal and the ground terminal voltage of the component. 一種供電電路,用於提供一低壓差工作電壓至一數位輸入緩衝器,且其包括:一穩定電壓提供單元,包括:一第一運算放大器,具有耦接一參考電壓的一正輸入端、一負輸入端和一輸出端;一第一電阻,耦接於該第一運算放大器的該輸出端和該負輸入端之間;及一第二電阻,以其一端耦接一地端,且其另一端同時耦接該第一電阻和該第一運算放大器的該輸出端;以及一電壓電流轉換單元,耦接於該第一運算放大器的該負輸入端和該第二電阻之間的一共接點、一工作電壓、和一接地端電壓之間,用以提供一電流至該共接點;其中,所述供電電路係以該第一運算放大器的該輸出端提供所述低壓差工作電壓至該施密特電路單元;其中,該電壓電流轉換單元包括:一第二運算放大器,具有一正輸入端、一負輸入端和一輸出端; 一第一MOSFET元件,以其一閘極端和一汲極端分別耦接該第二運算放大器的該輸出端和該負輸入端;一第三電阻,其一端耦接一工作電壓,且其另一端同時耦接該第二運算放大器的該負輸入端和該第一MOSFET元件的一源極端;一電流鏡,同時耦接該第一MOSFET元件的該汲極端、一接地端電壓、以及該第一運算放大器的該負輸入端、該第一電阻和該第二電阻之間的一共接點;一第二MOSFET元件,其一閘極端耦接該第二運算放大器的該正輸入端,其一源極端耦接該工作電壓,且其一汲極端同時耦接該第二運算放大器的該正輸入端和該接地端電壓;及一電流源,其一端耦接該接地端電壓,且其另一端同時耦接該第二MOSFET元件的該汲極端和該第二運算放大器的該正輸入端。 A power supply circuit is used to provide a low dropout operating voltage to a digital input buffer, and includes: a stable voltage supply unit, including: a first operational amplifier having a positive input terminal coupled to a reference voltage, a A negative input terminal and an output terminal; a first resistor coupled between the output terminal and the negative input terminal of the first operational amplifier; and a second resistor, one end of which is coupled to a ground terminal, and The other end is simultaneously coupled to the first resistor and the output end of the first operational amplifier; and a voltage-to-current conversion unit, coupled to a common connection between the negative input end of the first operational amplifier and the second resistor Point, a working voltage, and a ground terminal voltage to provide a current to the common contact; wherein, the power supply circuit provides the low dropout working voltage to the output terminal of the first operational amplifier The Schmitt circuit unit; wherein, the voltage-current conversion unit includes: a second operational amplifier having a positive input terminal, a negative input terminal and an output terminal; A first MOSFET element with a gate terminal and a drain terminal respectively coupled to the output terminal and the negative input terminal of the second operational amplifier; a third resistor, one end of which is coupled to a working voltage, and the other end of the third resistor Simultaneously coupled to the negative input terminal of the second operational amplifier and a source terminal of the first MOSFET element; a current mirror, simultaneously coupled to the drain terminal of the first MOSFET element, a ground terminal voltage, and the first A common connection point between the negative input terminal of the operational amplifier, the first resistor and the second resistor; a second MOSFET element, one gate terminal of which is coupled to the positive input terminal of the second operational amplifier, and one source One terminal is coupled to the working voltage, and one of its drain terminals is simultaneously coupled to the positive input terminal of the second operational amplifier and the ground terminal voltage; and a current source, one terminal of which is coupled to the ground terminal voltage, and the other terminal of which is simultaneously The drain terminal of the second MOSFET element and the positive input terminal of the second operational amplifier are coupled. 一種數位輸入緩衝器,其包含如申請專利範圍第1至5項中任一項所述之供電電路。 A digital input buffer includes the power supply circuit as described in any one of items 1 to 5 in the scope of the patent application. 如申請專利範圍第6項所述之數位輸入緩衝器,其係應用在選自於數位類比轉換電路、上電復位電路、超聲波傳感器電路、光電傳感器電路、電容式指紋傳感器電路、光學式指紋傳感器電路、電子開關電路、信號切換控制電路、IGBT驅動控制電路、電流閾值檢測電路、和電壓閾值檢測電路所組成的群組之中的一種電子電路裝置。 The digital input buffer as described in item 6 of the scope of patent application is used in selected from digital analog conversion circuits, power-on reset circuits, ultrasonic sensor circuits, photoelectric sensor circuits, capacitive fingerprint sensor circuits, and optical fingerprint sensors An electronic circuit device in the group consisting of a circuit, an electronic switch circuit, a signal switching control circuit, an IGBT drive control circuit, a current threshold detection circuit, and a voltage threshold detection circuit. 一種控制晶片,其具有一控制電路及如申請專利範圍第1至5項中任一項所述之供電電路,其中該控制電路係由該供電電路供電。 A control chip is provided with a control circuit and the power supply circuit according to any one of items 1 to 5 in the scope of patent application, wherein the control circuit is powered by the power supply circuit. 一種資訊處理裝置,其具有如申請專利範圍第8項所述之控制晶片。 An information processing device having a control chip as described in item 8 of the scope of patent application.
TW108144993A 2019-12-09 2019-12-09 Power supply circuit and digital input buffer, control chip and information processing device using it TWI730534B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108144993A TWI730534B (en) 2019-12-09 2019-12-09 Power supply circuit and digital input buffer, control chip and information processing device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108144993A TWI730534B (en) 2019-12-09 2019-12-09 Power supply circuit and digital input buffer, control chip and information processing device using it

Publications (2)

Publication Number Publication Date
TWI730534B true TWI730534B (en) 2021-06-11
TW202123607A TW202123607A (en) 2021-06-16

Family

ID=77516578

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144993A TWI730534B (en) 2019-12-09 2019-12-09 Power supply circuit and digital input buffer, control chip and information processing device using it

Country Status (1)

Country Link
TW (1) TWI730534B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI329967B (en) * 2007-05-01 2010-09-01 Sitronix Technology Corp
EP2551743B1 (en) * 2011-07-27 2014-07-16 ams AG Low-dropout regulator and method for voltage regulation
US20150310324A1 (en) * 2013-01-09 2015-10-29 Excelio Technology (Shenzhen) Co., Ltd. Radio frequency identification tag and low dropout regulator (ldo) circuit consuming ultra-low power
US9715245B2 (en) * 2015-01-20 2017-07-25 Taiwan Semiconductor Manufacturing Company Limited Circuit for generating an output voltage and method for setting an output voltage of a low dropout regulator
CN110456854A (en) * 2019-08-22 2019-11-15 上海华力微电子有限公司 Low pressure difference linear voltage regulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI329967B (en) * 2007-05-01 2010-09-01 Sitronix Technology Corp
EP2551743B1 (en) * 2011-07-27 2014-07-16 ams AG Low-dropout regulator and method for voltage regulation
US20150310324A1 (en) * 2013-01-09 2015-10-29 Excelio Technology (Shenzhen) Co., Ltd. Radio frequency identification tag and low dropout regulator (ldo) circuit consuming ultra-low power
US9715245B2 (en) * 2015-01-20 2017-07-25 Taiwan Semiconductor Manufacturing Company Limited Circuit for generating an output voltage and method for setting an output voltage of a low dropout regulator
CN110456854A (en) * 2019-08-22 2019-11-15 上海华力微电子有限公司 Low pressure difference linear voltage regulator

Also Published As

Publication number Publication date
TW202123607A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US7292083B1 (en) Comparator circuit with Schmitt trigger hysteresis character
JP3575453B2 (en) Reference voltage generation circuit
JP4421365B2 (en) Level conversion circuit
KR920005257B1 (en) Stable current source circuit
US8403559B2 (en) Two-terminal semiconductor sensor device
JP2005128939A (en) Semiconductor integrated circuit
US20200081477A1 (en) Bandgap reference circuit
JP2005148942A (en) Constant voltage circuit
CN110320955B (en) Low-dropout linear voltage stabilizing circuit and integrated circuit
US20140368271A1 (en) Amplifier circuit with overshoot suppression
US7683687B2 (en) Hysteresis characteristic input circuit including resistors capable of suppressing penetration current
US9448575B2 (en) Bipolar transistor adjustable shunt regulator circuit
TWI716323B (en) Voltage generator
TWI730534B (en) Power supply circuit and digital input buffer, control chip and information processing device using it
CN210534613U (en) Low dropout linear voltage stabilizing circuit and integrated circuit
WO2020156588A1 (en) Voltage reference circuit and low-power-consumption power source system
US9767861B2 (en) Regulated voltage supply with low power consumption and small chip area
JP2003233429A (en) Power supply circuit and bias circuit
US10310529B1 (en) Linear voltage regulator for low-power digital circuit of chip
US20130154604A1 (en) Reference current generation circuit and reference voltage generation circuit
TWI739215B (en) Amplifying apparatus and voltage-to-current converter apparatus
TW201640247A (en) Low drop output voltage regulator and output buffer including low drop output voltage regulator
TWI669588B (en) Linear regulator for low-power digital circuit of chip
CN210983128U (en) Low dropout linear voltage stabilizing circuit and integrated circuit
TWM567888U (en) Linear voltage manager for chip low power consumption digital circuits