TWI728991B - 用於5g無線電存取技術(rat)中基於波束的無細胞操作之隨機存取程序 - Google Patents

用於5g無線電存取技術(rat)中基於波束的無細胞操作之隨機存取程序 Download PDF

Info

Publication number
TWI728991B
TWI728991B TW105124238A TW105124238A TWI728991B TW I728991 B TWI728991 B TW I728991B TW 105124238 A TW105124238 A TW 105124238A TW 105124238 A TW105124238 A TW 105124238A TW I728991 B TWI728991 B TW I728991B
Authority
TW
Taiwan
Prior art keywords
transmission
preamble
prach
target
aps
Prior art date
Application number
TW105124238A
Other languages
English (en)
Other versions
TW201720211A (zh
Inventor
鄭惠貞
苗洪雷
艾力克斯 大衛
Original Assignee
美商蘋果公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘋果公司 filed Critical 美商蘋果公司
Publication of TW201720211A publication Critical patent/TW201720211A/zh
Application granted granted Critical
Publication of TWI728991B publication Critical patent/TWI728991B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本發明描述一種用於第五代無線電存取技術中基於波束的無細胞操作之隨機存取程序。在一範例中,在使用者設備(UE)共同地決定用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格式、及傳輸時序。使用該決定的前文傳輸功率、前文格式、及傳輸時序,將多個PRACH前文傳輸各者傳輸至目標存取點(AP)。基於該傳輸的PRACH前文傳輸,該UE接收具有時序提前(TA)值及各目標AP的波束之指示的至少一個隨機存取回應(RAR)訊息。

Description

用於5G無線電存取技術(RAT)中基於波束的無細胞操作之隨機存取程序
本描述相關於無線通訊的領域,且特別相關於使用隨機存取上行鏈路訊息建立無線連接。
設想其將在傳統蜂巢式頻帶及6GHz以上之頻帶中操作的新的5G無線電存取技術(RAT)可能使用先進的多重輸入多重輸出(MIMO)(例如,大規模MIMO)、協調多點(CoMP)傳輸及接收設計、及多連接性,以提供高單位區域流量容量及一致的使用者體驗。具有大數量天線之基於窄波束的系統操作可藉由潛在地減少干擾並致能更多使用者空間地多工而增加空間效率。成束係致能中至高頻帶中之操作的主技術成分。
在習知的蜂巢式系統中,UE(使用者設備)在隨機存取程序期間典型地企圖每次與單一細胞或單一存取點(AP)連接。在與主要細胞(PCell)或主要增強節點B(MeNB)/主要細胞群組(MCG)建立無線電資源控制 (RRC)連接後,UE可由PCell或MeNB/MCG引導以分別針對載波聚合或多連接性操作進一步實施與次要細胞(SCell)或次要eNB(SeNB)的某些無競爭隨機存取。此等程序可針對多連接性直接施用至新的5G RAT技術。
100‧‧‧電子裝置
102‧‧‧應用電路
104‧‧‧基頻電路
104a‧‧‧第二代(2G)基頻處理器及第三代(3G)基頻處理器
104b‧‧‧第四代(4G)基頻處理器
104c‧‧‧基頻處理器
104d‧‧‧記憶體或儲存媒體
104e‧‧‧中央處理單元(CPU)
104f‧‧‧音訊數位訊號處理器(DSP)
104g‧‧‧記憶體/儲存器
106‧‧‧射頻(RF)電路
106a‧‧‧混合器電路
106b‧‧‧放大器電路
106c‧‧‧濾波器電路
106d‧‧‧合成器電路
108‧‧‧前端模組(FEM)電路
110‧‧‧天線
111、112‧‧‧存取點
113‧‧‧行動裝置
116‧‧‧連接
121、122、123、124‧‧‧無線電通道
131、132、133、134‧‧‧AP
135‧‧‧UE
141、142‧‧‧傳輸波束
152‧‧‧第三列
153、154‧‧‧列
B1-B24‧‧‧UL Rx波束群組
b1、b2、b3、b4‧‧‧波束
實施例在該隨附圖式的圖中係藉由範例而非藉由限制的方式說明,其中相似的參考數字參考至相似元件。
圖1係根據實施例在無細胞環境中之MIMO通訊的圖。
圖2係根據實施例針對不同頻率隨時間組態之PRACH無線電資源的圖。
圖3係根據實施例在無細胞環境中之MIMO通訊的另一圖。
圖4係根據實施例之圖3的傳輸信號的時序圖。
圖5係根據實施例之PRACH前文傳輸的處理流程圖。
圖6係根據實施例在UE及多個AP之間用於PRACH前文傳輸的信號的發訊圖。
圖7係根據實施例在UE及多個AP之間用於PRACH前文傳輸的信號的另一發訊圖。
圖8係根據實施例之電子裝置,諸如,UE或AP,的方塊圖。
圖9係根據實施例藉由UE接收RAR訊息的處理流程 圖。
【發明內容及實施方式】
可經由基於理想回載的CoMP設計或基於非理想回載的多連接性來實現的彈性傳輸/接收點切換及多點波束聚合對克服在中/高頻帶中的通道遮蔽會係有利的並自然地支援無縫行動性。於本文描述用於基於波束的無細胞操作之系統框架的一部分。其可應用至低/中/高頻帶及分時雙工(TDD)/分頻雙工(FDD)系統。
在沒有巨集覆蓋區之獨立超密集高頻帶(例如,厘米或毫米波)小細胞部署中,由於缺少巨集細胞,未決定穩定/最佳主要eNB,因此SCell或SCG可受進一步的組態及存取。如本文所描述的,與多個AP的隨機存取程序可同時實施以在隨機存取程序期間決定合適的PCell/MeNB/MCG。在一個基於回載/去程的CoMP情景中,其中不同的AP可共享相同的細胞ID,且因此視為係分散的單一細胞,UE可針對彈性上行鏈路接收點切換保持與分散式細胞同步的多波束鏈路。
圖1係在無細胞環境中之MIMO通訊的圖。也可將此視為係密集小細胞環境。二個存取點111、112經由無線電通道121、122、123、124與受制於多路徑的行動裝置113通訊。存取點也經由其可係有線或無線的若干分離連接116而彼此連接。
如圖1所示,部署二個小細胞AP 111、112,並與理 想或非理想回載鏈路116連接。各AP可傳輸許多特定波束參考信號121、122、123、124至其覆蓋區,此等特定波束參考信號各者係藉由特定時間-頻率無線電資源中的信號序列特徵化。各波束具有界定為波束識別符(ID)的獨特ID,其可藉由數個獨特變數決定。此等變數可包括細胞ID、其更可係細胞ID之函數的序列索引、及時間-頻率資源索引等。結果,不同AP之中的所有此等波束係可藉由UE而區分或識別的。
由於AP射頻(RF)鏈路容量及目標成束增益或波束覆蓋的限制,此等波束參考信號不可全部同時傳輸。如圖1所示,若AP1及AP2使用不同細胞ID,並以非理想回載鏈路連接,四個不同波束121、122、123、124可由UE接收及偵測。為了參照之用途,將此等波束編號為b1、b2、b3、及b4。
然而,若AP1及AP2係以相同細胞ID組態,並以理想回載或去程鏈路連接,則AP1及AP2由該UE察知為係具有不同天線的單一細胞。再者,若b1及b3使用相同時間-頻率資源的相同信號序列傳輸,則彼等由該UE偵測及識別為單一波束參考信號。在此情形中,UE將組合b1及b3並將該等信號認知為三個不同的波束參考信號,亦即,b1、b2、及b4。
介紹
在本文的實施例中,揭示與隨機存取程序有關的處 理。特別係描述用於快速上行鏈路(UL)接收(Rx)波束取得、UE特定前文格式選擇、前文傳輸功率、及時序設定的實體隨機存取通道(PRACH)無線電資源組態及選擇,並描述隨機存取回應(RAR)訊息及message3(Msg3)設計。此等可用於支援用於基於5G RAT波束之無細胞操作的CoMP操作及/或快速多連接建立。
在一範例中,UE可同時使用多個波束對多個AP實施隨機存取。協同叢集內的所有AP可具有共同的PRACH資源。此允許將一前文標定至多個AP。
該網路為每UL Rx波束群組組態一個PRACH時間-頻率無線電資源。UE基於DL Tx(傳輸)/Rx波束量測藉由選擇適宜的PRACH資源依次隱含地指示可能的UL Rx波束或Rx波束方向。
然後UE根據其天線架構、其成束容量、及其功率餘量自律地為每個傳輸前文選擇PRACH前文格式。該網路藉由測試些許允許的前文格式盲目地偵測前文。
UE也可決定前文傳輸功率,使得所有標定的接收AP可用充分的接收功率接收前文。此不需要UE違反組態在各AP的上行鏈路功率限制而完成。所標定的AP係由UE使用DL波束量測選擇。
針對多鏈路上行鏈路同步及連接建立,RAR(隨機存取回應)訊息可運載多個時序提前(TA)值。各TA值可與對應的UL Rx波束ID共同傳訊,UE可自其導出對應的DL Tx(下行鏈路傳輸)波束ID並識別對應的DL Rx (下行鏈路接收)時序。
針對與非理想回載鏈路連接的協同AP,UE可接收多個RAR訊息,並以分離的Msg3 PUSCH(實體上行鏈路共享通道)傳輸回應各RAR訊息。各Msg3可將波束ID(或關聯的細胞ID)包括在所有接收的RAR訊息中以將用於該UE的服務波束(或細胞)組通知給各AP。閒置UE可藉由比較DL波束量測結果為成功地接收其RAR訊息的AP來決定主要AP(或細胞)及次要AP(或細胞)。
在LTE中,通常將PRACH引導至特定網路節點。另外,隨機存取前文格式係特別為各細胞選擇的。該格式取決於目標細胞的覆蓋,並在交接或次要細胞加入期間以系統資訊區塊(SIB)廣播或經由專用RRC(無線電資源控制)傳訊指示。
在部分實施例中,針對UL Rx波束調校避免過度的前文序列重複。此導致UL Rx波束的更有資源效率(依據無線電資源及UE功率消耗)的取得。當特定UE前文格式係藉由將UE成束容量列入考慮而選擇時,更降低UE功率消耗。因此仍能到達目標覆蓋區。
運載多個TA值及彼等的DL時序參考的RAR訊息可在分散式單一細胞情景中加速多鏈路上行鏈路同步並增強時序及頻率追蹤效能。如本文描述的隨機存取程序之Msg3中的新元素允許同時多連接建立在密集部署的低功率節點網路中。此在當網路節點係以非理想回載連接連接 時是可運作地。
在以下範例中,假設經由用於協同傳輸及接收的理想或非理想回載鏈路連接之協同叢集內的所有AP具有若干共同的PRACH資源,諸如,時間-頻率無線電資源及前文序列。另外,AP的叢集可具有用於其他共同(亦即,網路特定)層1(L1)/層2(L2)參數的相同組態,但此不係必要的。在一實施例中,叢集內的所有AP可具有相同的細胞ID。UE可基於PSS/SSS(主要同步信號/次要同步信號)偵測及DL Tx/Rx波束量測取得DL Rx波束。服務叢集可由UE或網路的任一者選擇。針對RRC連接的UE,網路可基於UE的無線電資源管理(RRM)量測反饋決定服務叢集。
快速多鏈路時間、頻率、及空間同步及多鏈路建立可用於在下文描述的資料通訊中增強彈性傳輸及接收點切換。結果,可克服由於時間通道阻隔的無線電鏈路問題,諸如,間歇連接。為提供此效益,UE傳輸前文至與一或多個服務波束相關聯的所有AP。該有關的服務波束係由UE接收之滿足特定接收信號品質標準的DL Tx波束。
表1顯示範例實體層系統參數組,包括符號、次框、及框持續時間,其於下文用於說明範例PRACH傳輸結構。
Figure 105124238-A0202-12-0008-1
PRACH資源組態及選擇
如此範例中所描述的,將在AP的UL Rx波束取得及基於UL Rx成束的接收點選擇用於基於波束的無細胞網路操作。此係部分由於AP典型地具有較高的成束增益。在中至高頻帶中,可使用UL Tx及Rx成束二者以更佳地確保特定覆蓋。允許UL Rx波束取得的一種直接方式係針對該UE傳輸用於指定UL Tx波束的重複前文序列,使得一或多個AP可用不同組的Rx波束接收各前文序列。然而,此典型地導致較長的前文傳輸時間並可導致不必要的UE功率消耗。此等負面結果獲得在所有受測試的Rx波束中僅有幾個UL Rx波束可適用於該UE。
若網路為各UL Rx波束群組組態PRACH時間-頻率無線電資源,則UE可隱含地指示可能的UL Rx波束或Rx波束方向。此比當AP接收器實施盲目Rx波束搜尋時更快速並使用較少的消耗。假設DL Tx波束索引及UL Rx波束索引之間的特定關係,UE可基於DL Tx波束量測選擇一或多個UL Rx波束或波束方向,並更根據所取得的DL Tx-Rx波束對決定一或多個波束方向以傳輸PRACH前文。一種此數關係係互易性。DL Tx波束方向針對指定的波束索引與UL Rx波束方向相同。UL Tx/Rx波束在校正的Tx/Rx天線的TDD系統中可與DL Rx/Tx波束相同。針對可假設DL/UL空間傳播參數的互易性,諸如,到達角度(AoA)及發射角度(AoD),的其他FDD或TDD系統,來自所選擇的DL Tx波束參考信號的DL AoA估計可用於選擇UL Tx波束並用於對應UL Rx波束方向的識別。
在部分實施例中,網路傳輸指示PRACH資源配置的一或多個參數。該等參數可包括系統框數目、次框數目、開始PRB數目的一或多者,或此等或更多參數的任何組合。彼等可在SIB(系統資訊區塊)中或經由專用RRC傳訊傳輸。針對給定的PRACH無線電資源,AP使用組態的UL Rx波束群組的Rx波束以盲目地偵測接收的前文。UE可更識別一或多個UL Rx波束群組及用於前文傳輸的對應無線電資源。UL Rx波束索引及UL Rx波束群組之間的關係可預先界定且為網路及UE二者所已知。若UE觀察到 最佳DL Tx波束從一波束至另一波束的改變,然後可將最佳波束的更新回報給網路,則UE可針對更新的UL Rx波束群組在PRACH資源中實施隨機存取。另外,若UL Rx波束改變,則網路可重組態UL探測參考信號(SRS)資源。
圖2係針對在垂直軸上的不同頻率隨在水平軸上的時間組態之PRACH無線電資源的圖。此PRACH無線電資源組態顯示24個UL Rx波束群組,標示為B1至B24。各PRACH實例跨越3個UL次框(UL1、UL2、UL3)。將第17個UL Rx波束群組(B17)作為範例放大,以顯示各PRACH資源包括72個次載波並跨越一個UL槽,亦即,跨越6個PRB(實體資源區塊)。PRACH前文的次載波間隔可小於正常次載波間隔,例如,為正常次載波間隔的1/2、1/4、或更小部分。
圖3係另一無細胞網路環境的圖。在此範例中,有四個AP 131、132、133、134及單一個UE 135。該UE傳送二個傳輸波束141、142。此等二個傳輸波束描繪二個前文傳輸,一者具有用於標定AP1及AP2之Rx波束群組4的Tx波束1,且另一者具有用於標定AP3之Rx波束群組3的Tx波束2。當用於Rx波束群組3及4的PRACH資源位於相同槽中時,取決於UE容量及所需要的傳輸功率,在該槽內實施二前文的同時傳輸或循序傳輸。
在一實施例中,若UE尚未得到對應於所選擇的UL Rx波束群組的最佳UL Tx波束方向,則UE可在所選擇 的UL Rx群組的PRACH資源中傳輸重複的前文序列,各序列具有不同組的Tx波束方向。
前文格式選擇
在5G RAT中,UE根據其天線架構、成束容量、及估計的距離損耗自律地為各傳輸前文選擇PRACH前文格式可係有利的。各UE可依據成束增益、波束寬度、RF鏈路數目、及UE可同時傳輸而沒有功率分割的Tx波束數目,例如,天線面板(或次陣列)數目而具有不同成束容量及天線架構。因此,最佳前文格式對各UE可不同。例如,若UE具有在水平域中具有15度波束寬度的12dB成束增益及一個RF鏈路,則僅有一個Tx波束可傳輸一個前文序列持續時間,且因此,在掃視360度Tx方向的情形中,可使用最大24個序列重複。使用相同的波束寬度及成束增益,若UE具有2個RF鏈路的2個天線面板,則使用最大12個序列重複。此外,若UE總共具有4個RF鏈路,亦即,每天線面板2個RF鏈路,且每個Tx波束所需要的前文傳輸功率小至足以由經分割之功率所容納,則6個序列重複可掃描全部360度方向。
圖4係圖3的傳輸信號的時序圖。該圖式在水平時間軸上涵蓋一槽,並顯示在該一槽期間的範例UE傳輸。第一上行鏈路傳輸列對應於來自UE的第二傳輸波束PRACH 142。第二傳輸波束對應於朝向AP3 133引導的前文2。第三列152對應於在AP3 133接收的第一上行鏈路傳輸 列。有些延遲地接收前文2。
第二上行鏈路傳輸列對應於具有前文1之同時從UE至AP1 131及AP2 132的傳輸束PRACH 141。此信號在列153中在AP1接收並在列154中在AP2中接收。作為範例,由於較長的傳播時間或在UE及個別AP之間的較大距離,該信號在AP2以比在AP1更為延遲地接收。
若假設UE已取得DL Rx波束及對應的UL Tx波束方向,且若在給定的PRACH資源時間持續時間,例如,顯示在圖4中的1槽,內用於前文傳輸之顯著UL Tx波束方向的數目大於UE可同時傳輸的UL Tx波束數目,則可循序地傳輸部分或全部的多個前文。否則,可同時傳輸所有前文。在各前文傳輸中,包括序列持續時間及序列重複數目的前文格式可基於目標前文接收器功率、用於指定前文的可用傳輸功率、來自與目標UL Rx波束關聯之服務波束的路徑損耗估計、及UE Tx成束增益等因素由UE決定。
在一實施例中,其適用於協同AP叢集的預界定前文格式的子集可在SIB中傳訊,且UE自律地為各前文傳輸從廣播前文格式選出一個前文格式。AP盲目地偵測前文序列及前文格式(例如,序列重複之數目)。在另一實施例中,各前文格式係與可能具有不同的序列長度之分離的前文序列組關聯。為避免盲目偵測上的高複雜度,可將允許的前文格式限制成些許選擇,例如,1、4、6個序列重複。
圖4顯示具有與資料次載波間隔相同之次載波間隔的 範例PRACH前文傳輸,其中將一個符號(或序列)持續時間用於循環字首,並將1及4個序列重複分別用於前文1及前文2。若將共同序列組施用於不同前文格式,則UE在一個PRACH實例內對所有前文傳輸使用相同的序列。若不同序列組對不同的前文格式組態,則UE可為PRACH實例內的所有前文傳輸選擇不同序列組中的相同前文序列索引。
前文傳輸功率及時序
將用於UL Tx波束j之以dBm為單位的前文傳輸功率PPRACH,j決定如下,使得用於UL Tx波束j的所有標定接收AP能以充分接收的功率來接收前文:
Figure 105124238-A0202-12-0013-2
其中‧PREAMBLE_RECEIVED_TARGET_POWER指示目標前文接收功率‧PCMAX,a(i)係用於服務AP a的次框i之組態的UE最大傳輸功率[1],‧Aj係與Bj關聯的該組AP,其中Bj係與UL Tx波束j關聯的該組服務波束,‧Gj UE係用於UL Tx波束j之以dB為單位的UE Tx成束增益,‧PLb係針對服務波束b在UE中計算的下行鏈路路 徑損耗估計,沒有將DL Rx成束增益列入考慮,但包括其對UE透明的DL Tx成束增益,亦即,PLb=PLomni-Gb (AP),其中Gb (AP)標示服務波束b的DL Tx成束增益。
在一實施例中,用於接收指定服務波束的UE Rx成束增益等效於用於與該指定服務波束關聯之前文傳輸的UE Tx成束增益。因此,UE估計包括DL Tx及Rx成束增益二者的下行鏈路路徑損耗PL'b,並將前文傳輸功率設定如下:
Figure 105124238-A0202-12-0014-3
在另一實施例中,若服務叢集內的所有AP均針對上行鏈路功率限制P-Max、允許的最大功率降低(MPR)、及額外的MPR(A-MPR)參數以相同值組態,則針對指定的次框i,PCMAX,a(i)可對Aj中的所有AP均相同。
若UE傳輸標定其藉由UE取得的DL Rx時序不同之二或多個AP的前文,則該UE將最早的DL Rx時序選擇為用於前文傳輸的參考時序。此外,若UE在PRACH資源時間持續時間循序地傳輸多個前文,則前文傳輸次序係根據DL Rx時序次序。
例如,在圖4中,若UE在AP1、AP2、及AP3的所有服務波束之中具有AP1的服務波束之最早的DL Rx時序,根據AP1之服務波束的DL Rx時序,最先使用用於標定AP1及AP2之Rx波束群組4的Tx波束1傳輸前文1。AP1及AP2二者分別對接收及偵測的前文1計算有關的UL TA(上行鏈路時序提前)值,並將該TA值(或 TA值索引)分別傳訊為分離的RAR訊息或組合的RAR訊息。各TA值與對應的UL Rx波束ID共同傳訊,UE能自其導出對應的DL Tx波束ID並識別對應的DL Rx時序。當UE對後續至AP2的上行鏈路傳輸施用與AP2之UL Rx波束關聯的傳訊的TA值時,UE的參考DL時序係用於AP1的DL Rx時序。或者,UE根據AP1的Rx時序tDL,1及AP2的RX時序tDL,2之間的差如下地調整傳訊的TA值TA2:TA'2=TA2+(tDL,2-tDL,1)並相關於用於AP2的DL Rx時序施用調整的TA值TA'2
圖5係總結PRACH前文傳輸之程序的處理流程圖,包括PRACH資源組態及選擇、前文格式選擇、及前文傳輸時序及功率設定。
在圖5中,在202,接收與PRACH資源組態及一組前文格式有關的指示。由UE接收來自一或多個AP的此等指示。系統可係如所示的無細胞的或在蜂巢式系統中。在204,UE選擇用於PRACH前文傳輸的一或多個UL Tx/Rx波束對,並為各前文傳輸識別對應的PRACH資源。此基於接收的PRACH資源組態及前文格式完成。圖4顯示Tx波束141、142及PRACH資源的範例。
在206,將各前文設定成所選擇的前文格式。此可係具有特定短傳輸時間的前文格式或可使用另一準則。在208,為各選擇的UL Tx波束決定前文Tx功率。
在210,為特定或指定的前文決定所決定的傳輸功率在UE是否可用。若不可用,則處理前進至212。在212,將特定前文設定成其在所有符合條件的前文格式之中具有最短傳輸時間的前文格式。符合條件的前文格式係使用可用的Tx功率滿足目標接收功率要求的前文格式。在重設前文格式後,使用新設的前文格式重計算所需要的Tx功率。然後處理前進至214。
若在210決定所決定的傳輸功率可用於任何指定的前文,則針對該前文該處理前進至214。在214,將所需要的Tx功率設定為Tx功率。如圖4所示,為將在單一PRACH時間槽內循序地傳輸的所有前文決定傳輸次序及傳輸時序。
在216,傳輸具有在先前操作中決定之Tx功率值、前文格式、及Tx時序的PRACH前文。
在此傳輸後,所選擇的AP接著準備傳送具有TA值的RAR訊息,使得UE可完成多鏈路UL同步。
用於多鏈路上行鏈路同步及連接建立的程序
圖6及7描繪在分別與理想回載鏈路及非理想回載鏈路連接之協同AP的部署情景中的多鏈路上行鏈路同步並另外描繪多鏈路連接建立程序(針對RRC閒置UE)。
圖6係UE 302及多個AP 304之間的信號的發訊圖。將所有AP以AP叢集的形式指示為單一單元,因為傳輸係由UE處理,彷彿有單一個AP。
首先,UE接收DL波束參考信號。UE處理此等信號且當其備妥時,其在306根據所偵測的DL波束參考信號選擇用於PRACH傳輸的一或多個上行鏈路波束。
在308,UE傳送訊息。此將稱為Msg 1,其以一或多個選擇的PRACH資源來回應。在此訊息中,使用選擇的UL波束將一或多個PRACH前文傳送至AP,或換言之,至AP叢集。PRACH訊息(Msg 1)在AP叢集接收,且在310,AP叢集偵測PRACH前文。然後可為各偵測的PRACH前文決定有關的TA值。
在312,AP叢集傳回Msg 2,其以RA-RNTI(隨機存取無線電網路暫時識別符)來回應。此訊息具有一或多個TA值索引及對應的UL Rx(或DL Tx)波束ID。其也可具有暫時的C-RNTI x(細胞無線電網路暫時識別符x),及包括用於Msg3傳輸之TA索引的UL授權。
在314,UE接收Msg 2。在316,UE可用其由AP基於暫時的C-RNTI x*識別的Msg 3回應。該訊息具有UE ID或C-RNTI;及用於RRC(無線電資源控制)閒置UE的「RRC連接請求」訊息。為了成功解碼Msg 3,暫時的C-RNTI x*應與以其回應了Msg 3的暫時C-RNTI x相同。
然後AP叢集304可用其以暫時的C-RNTI x*或C-RNTI回應的Msg 4來回覆UE 302。此訊息可包括UE ID;及用於RRC閒置UE的「RRC連接設定」訊息。在此交換後,在320,UE已實現UL同步及針對閒置UE的RRC連接建立。
針對圖6之將單一細胞ID指派給協同AP叢集的理想回載/去程情景,AP叢集回應於UE之多個接收及偵測的前文308傳送一個RAR訊息314至UE。然而,RAR訊息314可運載用於一或多個AP的多個TA值(或TA值索引),且各TA值或其指示可與對應的UL Rx波束ID或DL Tx波束ID共同傳訊,使得UE能識別對應的DL Rx時序或前文傳輸時序。
以此方式,UE可相關於適宜的參考時序對後續的上行鏈路傳輸316施用TA值。此外,UE能基於在RAR訊息314中接收的UL Rx(或DL Tx)波束ID偵測可能的前文碰撞。
若UE接收其之前未為PRACH資源選擇的Rx波束群組的UL Rx波束ID,則另一UE可已使用不同的PRACH上的相同前文序列,否則可能會有解碼錯誤。因此,UE使用不同前文重開始隨機存取程序308。在RAR訊息314中,用於訊息3 PUSCH傳輸的UL授權包括指示將施用所有傳訊的TA值之中的哪個TA值的TA索引或相似指示。
圖7係UE 332及二個不同AP 334、336之間的信號的發訊圖。取決於特定實作,可有更多AP或多個AP叢集。發訊以UE接收DL波束參考信號開始。在338,UE選擇用於PRACH前文傳輸的一或多個UL波束及對應AP。該選擇係基於已由UE偵測的DL波束參考信號。如所示的,UE從傳輸一組服務波束的服務AP(細胞)之中 自律地選擇任何數目的服務AP。該選擇係基於DL Tx/Rx波束量測。
然後UE傳送訊息至各選擇的AP或AP叢集。在此範例中,Msg 1係以一或多個選擇的PRACH資源來回應。其具有一或多個PRACH前文,該前文具有傳送至AP1 334之選擇的UL波束方向。UE也傳送相同或相似的Msg 1至AP2 336。此訊息也具有一或多個PRACH前文,該前文具有選擇的UL波束方向。PRACH資源可共同地對所有的協同AP組態,雖然僅顯示二個。
在344,AP1接收PRACH前文並偵測PRACH前文。然後決定用於偵測到的PRACH前文的相關TA值,及任何其他適當標準。在346,AP2實施相同操作。
在348,AP1以其以RA-RNTI回應的Msg 2回覆UE。RA-RNTI值可基於對應PRACH資源的時間及頻率位置決定。此訊息(Msg2)包括TA及波束ID、暫時的C-RNTI x、及UL授權。在350,AP2傳送包括其自有之對此等值的決定的相似訊息Msg 2,亦即,(1)TA及波束ID、(2)暫時的C-RNTI y、(3)UL授權。
在352,UE從各AP接收此等訊息。其然後從回應PRACH前文的所有AP之中決定主要AP及次要AP。UE基於用於其RAR訊息348、350成功地接收之AP的DL波束量測來決定此等主要AP及次要AP。UE能使用接收的多個RAR訊息及其他量測以許多不同方式來決定主要及次要AP。
然後UE準備使用從個別AP接收的參數回覆AP。傳送至選擇的主要AP(AP1)的Msg 3 354具有UE ID或C-RNTI、指示在所有接收的RAR訊息中的波束ID(或關聯細胞UD)、及用於閒置UE的「RRC連接請求」訊息。此訊息係以暫時的C-RNTI x回應,且由用於解碼的AP1使用的暫時的C-RNTI x*應與用於成功解碼Msg 3的暫時C-RNTI x相同。傳送至第二AP(AP2)的Msg 3 356係以暫時C-RNTI y來回應。此訊息可具有在媒體存取控制控制元素(MAC CE)或C-RNTI中的UE ID,並具有指示在所有接收的RAR訊息中的波束ID(或關聯的細胞ID)。針對此訊息的成功解碼,由AP2針對解碼所使用的暫時的C-RNTI y*應與暫時的C-RNTI y相同。
在354、356,UE以分離的Msg 3 PUSCH傳輸回應各RAR訊息,其包括指示在所有接收的RAR訊息中的波束ID(或關聯的細胞ID)。針對RRC閒置UE,僅將「RRC連接請求」訊息傳送至主要AP。針對次要AP,沒有RRC訊息,並將Msg 3中的UE ID傳送為媒體存取控制(MAC)控制元素。
然後AP可回覆以建立RRC連接。「RRC連接設定」訊息僅從主要AP傳輸。在358,主要AP可用以暫時的C-RNTI x*或C-RNTI回應的Msg4來回覆。此訊息可具有在Msg 3 354中接收的UE ID;及用於閒置UE的「RRC連接設定」訊息。相似地,AP2 336可使用以其自有之暫時的C-RNTI y*或C-RNTI回應的Msg 4來回覆。 此訊息可具有在Msg 3 356中接收的UE ID,但沒有「RRC連接設定」,此係因為其係次要而非主要AP。在362的此交換後,UE具有與AP1及AP2同步的上行鏈路。另外,與所選擇的主要AP(在此情形中係AP1)建立RRC連接。相似方式可用於UE可自其接收DL波束參考信號之二個以上的AP或AP叢集。
當非理想回載鏈路使用在不同的AP之中時,從多個AP將各者運載TA值索引、暫時的C-RNTI、UL授權、及波束ID(或細胞ID)之分離選擇的多個RAR訊息348、350經由多個實體資料通道傳輸至UE。傳訊圖描繪於圖7中,且主傳訊元件如下:在各AP從連接請求Msg 3 354、356中的波束ID(或細胞ID)識別用於UE的一組服務AP後,服務AP能經由任何可用回載鏈路協調通訊。此允許進一步在UE的次要AP上組態或重選擇最佳主要AP。
上文描述的隨機存取程序產生僅與主要AP的單一RRC連接。同時,實現與多個AP的上行鏈路同步。此處理也可藉由包括「RRC連接請求」訊息在至多個AP(例如,AP2)的Msg3中用於產生多個RRC連接。例如,此可用於提供控制面RRC多樣性。
如本文所使用的,術語「電路」可指執行一或多個軟體或韌體程式的特定應用積體電路(ASIC)、電子電路、處理器(共享、專用、或成組)及/或記憶體(共享、專用、或成組)、組合邏輯電路、及/或提供所描述 功能之其他合適硬體組件的一部分,或包括彼等。在部分實施例中,電路可用一或多個軟體或韌體模組實作,或與電路關於的功能可由一或多個軟體或韌體模組實作。在部分實施例中,電路可包括邏輯,至少部分可用硬體操作。
本文描述的實施例可使用任何適當組態的硬體及/或軟體實作為系統。圖8描繪用於一實施例之電子裝置100的範例組件。在實施例中,電子裝置100可實作為、併入、或另外係使用者設備(UE)、演進節點B(eNB)、存取點(AP)的一部分。在部分實施例中,電子裝置100可包括應用電路102、基頻電路104、射頻(RF)電路106、前端模組(FEM)電路108、及一或多個天線110,至少如所示地耦接在一起。
應用電路102可包括一或多個應用處理器。例如,應用電路102可包括電路,諸如,但未受限於,一或多個單核心或多核心處理器。處理器(等)可包括通用處理器及專屬處理器(例如,圖形處理器、應用處理器等)的任何組合。處理器可與記憶體/儲存器耦接及/或包括彼等,並可組態成執行儲存在記憶體/儲存器中的指令以致能各種應用程式及/或作業系統在系統上運行。
基頻電路104可包括電路,諸如,但未受限於,一或多個單核心或多核心處理器。基頻電路104可包括一或多個基頻處理器及/或控制邏輯以處理從RF電路106之接收信號路徑接收的基頻信號並產生用於RF電路106之傳輸信號路徑的基頻信號。基頻處理電路104可與用於基頻信 號的產生及處理及用於控制RF電路106之操作的應用電路102介接。例如,在部分實施例,基頻電路104可包括第二代(2G)基頻處理器及第三代(3G)基頻處理器104a、第四代(4G)基頻處理器104b、及/或用於其他既存世代、在發展中的世代、或將於未來發展之世代(例如,第五代(5G)、6G等)的其他基頻處理器(等)104c。
基頻電路104(例如,一或多個基頻處理器104a-c)可負責各種無線電控制功能,其致能經由RF電路106而與一或多個無線電網路的通訊。無線電控制功能可包括,但未受限於,信號調變/解調變、編碼/解碼、射頻移位等。在部分實施例中,基頻電路104的調變/解調變電路可包括快速傅立葉轉換(FFT)、預編碼、及/或群集映射/解映射功能。在部分實施例中,基頻電路104的編碼/解碼電路可包括卷積、去尾卷積、渦輪、維特比(Viterbi)、及/或低密度同位核對(LDPC)編碼器/解碼器功能。調變/解調變及編碼器/解碼器功能的實施例並未限於此等範例,並可在其他實施例中包括其他合適功能。
在部分實施例中,基頻電路104可包括協定堆疊的元素,例如,演進通用地面無線電存取網路(EUTRAN)協定的元素,包括,例如,實體(PHY)、媒體存取控制(MAC)、無線電鏈路控制(RLC)、封包資料收斂協定(PDCP)、及/或無線電資源控制(RRC)元素。基頻處理器104的中央處理單元(CPU)104e可組態成運行用於 PHY、MAC、RLC、PDCP、及/或RRC層的傳訊之協定堆疊的元素。在部分實施例中,基頻電路可包括一或多個音訊數位訊號處理器(DSP)104f。音訊DSP(s)104f可包括用於壓縮/解壓縮及回聲抵銷的元件,並可在其他實施例中包括其他合適處理元件。
基頻電路104可更包括記憶體/儲存器104g。記憶體/儲存器104g可用於載入及儲存用於由基頻電路104的處理器實施之操作的資料/指令。該資料及指令可由處理器讀取並以電腦可讀格式儲存在記憶體或儲存媒體104d中或在獨立處理器或它處中以導致處理器實施本文描述的操作。用於一實施例的記憶體/儲存器可包括合適的揮發性記憶體及/或非揮發性記憶體的任何組合。記憶體/儲存器104g可包括各種層級之記憶體/儲存器的任何組合,包括,但未限於,具有嵌入式軟體指令(例如,韌體)的唯讀記憶體(ROM)、隨機存取記憶體(例如,動態隨機存取記憶體(DRAM))、快取記憶體、緩衝器等。記憶體/儲存器104g可在各種處理器之中共享或專用於特定處理器。
在部分實施例中,基頻電路的組件可適當地組合在單一晶片中、單一晶片組中、或設置在相同電路板上。在部分實施例中,可將基頻電路104及應用電路102的部分或所有的構成組件共同實作在,例如,系統單晶片(SOC)上。
在部分實施例中,基頻電路104可提供與一或多個無 線電技術相容的通訊。例如,在部分實施例中,基頻電路104可支援與演進通用地面無線電存取網路(EUTRAN)及/或其他無線都會區域網路(WMAN)、無線區域網路(WLAN)、無線個人區域網路(WPAN)的通訊。其中將基頻電路104組態成支援一個以上無線協定之無線電通訊的實施例可稱為多模式基頻電路。
RF電路106可致能使用經由非固體媒體的調變的電磁幅射與無線網路的通訊。在各種實施例中,RF電路106可包括交換器、過濾器、放大器等,以協助與無線網路的通訊。RF電路106可包括接收信號路徑,其可包括將從FEM電路108接收之將RF信號降轉換並提供基頻信號至基頻電路104的電路。RF電路106也可包括傳輸信號路徑,其可包括將由基頻電路104提供的基頻信號昇轉換並針對傳輸將RF輸出信號提供至FEM電路108的電路。
在部分實施例中,RF電路106可包括接收信號路徑及傳輸信號路徑。RF電路106的接收信號路徑可包括混合器電路106a、放大器電路106b、及濾波器電路106c。RF電路106的傳輸信號路徑可包括濾波器電路106c及混合器電路106a。RF電路106也可包括用於合成由接收信號路徑及傳輸信號路徑之混合器電路106a使用的頻率的合成器電路106d。在部分實施例中,接收信號路徑的混合器電路106a可組態成基於由合成器電路106d提供的合成頻率降轉換從FEM電路108接收的RF信號。放大器電路106b可組態成放大經降轉換的信號且濾波器電路106c 可係組態從經降轉換的信號移除不希望信號以產生輸出基頻信號的低通濾波器(LPF)或帶通濾波器(BPF)。輸出基頻信號可針對進一步處理提供至基頻電路104。在部分實施例中,輸出基頻信號可係零頻率基頻信號,雖然此不係必要的。在部分實施例中,接收信號路徑的混合器電路106a可包含被動混合器,雖然實施例的範例並未在此方面受限制。
在部分實施例中,傳輸信號路徑的混合器電路106a可組態成基於由合成器電路106d提供的合成頻率昇轉換輸入基頻信號以產生用於FEM電路108的RF輸出信號。基頻信號可由基頻電路104提供並可由濾波器電路106c濾波。濾波器電路106c可包括低通濾波器(LPF),雖然實施例的範圍並未在此方面受限制。
在部分實施例中,接收信號路徑的混合器電路106a及傳輸信號路徑的混合器電路106a可包括二或多個混合器並可分別針對正交降轉換/昇轉換配置。在部分實施例中,接收信號路徑的混合器電路106a及傳輸信號路徑的混合器電路106a可包括二或多個混合器並可針對鏡像抑制(例如,Hartley鏡像抑制)配置。在部分實施例中,接收信號路徑的混合器電路106a及傳輸信號路徑的混合器電路106a可分別針對直接降轉換及/或直接昇轉換配置。在部分實施例中,接收信號路徑的混合器電路106a及傳輸信號路徑的混合器電路106a可針對超外差操作組態。
在部分實施例中,輸出基頻信號及輸入基頻信號可係類比基頻信號,雖然實施例的範圍並未在此方面受限制。在部分替代實施例中,輸出基頻信號及輸入基頻信號可係數位基頻信號。在此等替代實施例中,RF電路106可包括類比至數位轉換器(ADC)及數位至類比轉換器(DAC)電路,且基頻電路104可包括數位基頻介面以與RF電路106通訊。
在部分雙模式實施例中,可提供用於處理各頻譜之信號的分離式無線電IC電路,雖然實施例的範圍並未在此方面受限制。
在部分實施例中,合成器電路106d可係分數式N合成器或分數式N/N+1合成器,雖然當其他種類的頻率合成器可係適合的時,實施例的範圍並未在此方面受限制。例如,合成器電路106d可係差異積分合成器、倍頻器、或包含具有除頻器之鎖相迴路的合成器。
合成器電路106d可組態成基於頻率輸入及除法器控制輸入合成供RF電路106之混合器電路106a使用的輸出頻率。在部分實施例中,合成器電路106d可係分數式N/N+1合成器。
在部分實施例中,頻率輸入可由電壓控制的振盪器(VCO)提供,雖然其並不是必要的。除法器控制輸入可取決於期望的輸出頻率由基頻電路104或應用處理器102提供。在部分實施例中,除法器控制輸入(例如,N)可基於由應用處理器102指示的通道從查找表決定。
RF電路106的合成器電路106d可包括除法器、延遲鎖定迴路(DLL)、多工器、及相位累積器。在部分實施例中,除法器可係雙模除法器(DMD),且相位累積器可係數位相位累積器(DPA)。在部分實施例中,可將DMD組態成以N或N+1的值一者來除輸入信號(例如,基於進位輸出)以提供分數除法比率。在部分範例實施例中,DLL可包括一組級聯、可調、延遲元件、相位偵測器、充電泵、及D型正反器。在此等實施例中,延遲元件可組態成將VCO週期拆散為Nd個相等的相位封包,其中Nd係延遲線中的延遲元件數目。以此方式,DLL提供負反饋以協助確保通過延遲線的總延遲係一個VCO循環。
在部分實施例中,合成器電路106d可組態成將載波頻率產生為輸出頻率,然而在其他實施例中,輸出頻率可係載波頻率的倍數(例如,二倍載波頻率、四倍載波頻率)並與正交產生器及除法器電路結合使用而以載波頻率產生具有多個彼此相關之不同相位的多個信號。在部分實施例中,輸出頻率可係LO頻率(fLO)。在部分實施例中,RF電路106可包括IQ/極性轉換器。
FEM電路108可包括接收信號路徑,其可包括組態成在從一或多個天線110接收的RF信號上操作、放大接收的信號、並提供接收信號的放大版本至RF電路106以供進一步處理的電路。FEM電路108也可包括傳輸信號路徑,其可包括組態成針對由一或多個天線110之一或多者的傳輸將用於由RF電路106提供之傳輸的信號放大的電 路。
在部分實施例中,FEM電路108可包括TX/RX切換器以在傳輸模式及接收模式操作之間切換。FEM電路可包括接收信號路徑及傳輸信號路徑。FEM電路的接收信號路徑可包括低雜訊放大器(LNA)以放大接收的RF信號並將經放大的接收的RF信號提供為輸出(例如,至RF電路106)。FEM電路108的傳輸信號路徑可包括功率放大器(PA)以放大輸入RF信號(例如,由RF電路106提供),及一或多個濾波器以產生用於後續傳輸的RF信號(例如,藉由一或多個天線110的一或多者)。
在部分實施例中,電子裝置100可包括額外元件,諸如例如,記憶體/儲存器、顯示器、照相機、感測器、及/或輸入/輸出(I/O)介面。
在其中將電子裝置100實作為、併入、或係UE之其他部分的部分實施例中,基頻電路104可共同決定用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格式、及/或傳輸時序。RF電路106可使用決定的前文傳輸功率(等)、前文格式(等)、及/或傳輸時序(等)傳輸一或多個PRACH前文傳輸至一或多個目標存取點(AP);並基於傳輸的PRACH前文傳輸接收具有一或多個時序提前(TA)值及/或一或多個目標AP的波束之指示的一或多個隨機存取回應(RAR)訊息。
在部分實施例中,圖8的電子裝置可組態成實施本文 描述的一或多個處理、技術、及/或方法,或其一部分。一種此種處理描畫於圖9中。例如,在其中將電子裝置實作在、併入、或另外係UE的其他部分、或係其一部分的實施例中,處理可包括在402在使用者設備(UE)共同地決定用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格式、及/或傳輸時序。在404,UE使用決定的前文傳輸功率(等)、前文格式(等)、及/或傳輸時序(等)傳輸一或多個PRACH前文傳輸至一或多個目標存取點(AP)。在406,UE基於傳輸的PRACH前文傳輸接收具有一或多個時序提前(TA)值及/或一或多個目標AP之波束的指示的一或多個隨機存取回應(RAR)訊息。
以下的詳細描述參考隨附圖式。相同的參考數字可在不同圖式中使用以識別相同或相似元件。在以下描述中,為了解釋且非限制的目的,陳述具體細節,諸如,特定結構、架構、介面、技術等,以提供對所宣稱的實施例的各種樣態的徹底理解。然而,可在脫離此等具體細節的其他範例中實踐所宣稱之實施例的各種樣態對熟悉本技術之具有本揭示發明的利益之人士將係明顯的。在特定實例中,省略已為人所熟知之裝置、電路、及方法的描述以不以不必要的細節混淆本實施例的描述。
範例
範例1可包括在使用者設備(UE)的方法,包含 接收實體隨機存取通道(PRACH)資源組態及一組前文格式上的指示,其中該PRACH資源組態包含每上行鏈路接收波束群組一個獨特的PRACH時間-頻率無線電資源,基於下行鏈路傳輸及接收波束量測,為一或多個PRACH前文傳輸選擇一或多個上行鏈路傳輸及接收波束對及對應的PRACH資源,決定共用用於該一或多個PRACH前文傳輸各者的前文傳輸功率、前文格式、及傳輸時序,根據該決定的傳輸功率、前文格式、及傳輸時序傳輸該一或多個PRACH前文至一或多個目標存取點(AP),接收運載一或多個時序提前(TA)值及該一或多個目標AP的波束上之指示的一或多個隨機存取回應(RAR)訊息,其與該一或多個TA值關聯,回應於該一或多個接收的RAR訊息,傳輸一或多個上行鏈路訊息,並藉由成功地接收發送至該UE的一或多個競爭解析度訊息完成多鏈路上行鏈路同步。
範例2可包括範例1或本文某些其他範例的方法,其中決定該傳輸時序包含基於UE容量決定是否同時或循序傳輸指定給PRACH時間槽的PRACH前文,並更決定用於該PRACH時間槽內之循序傳輸前文的傳輸次序。
範例3可包括範例2或本文某些其他範例的方法,其中決定該循序傳輸前文的該傳輸次序係基於與該循序傳輸前文關聯之下行鏈路參考接收時序的次序。
範例4可包括範例1或本文某些其他範例的方法,更包含基於該一或多個目標AP之子集的下行鏈路波束量測結果決定主要AP(或主要AP群組)及次要AP,其中該一或多個目標AP的該子集偵測該一或多個成功地傳輸且彼等的RAR訊息成功地接收之前文的至少一者。
範例5可包括範例1或本文某些其他範例的方法,更包含接收一個組合RAR訊息,其包括該一或多個TA值及該關聯波束上的該指示,及當該一或多個目標AP經由理想回載鏈接連接時,傳輸一個上行鏈路回應訊息。
範例6可包括範例1或本文某些其他範例的方法,其中該一或多個上行鏈路回應訊息包括在該一或多個RAR訊息中接收的該一或多個目標AP之該波束上的指示。
範例7可包括範例1或本文某些其他範例的方法,更包含選擇其在以可用傳輸功率滿足目標接收功率需求之該指示的前文格式的子集之中具有最短傳輸時間的該前文格式。
範例8可包括範例1或本文某些其他範例的方法,其中決定該前文傳輸功率係基於UE傳輸成束增益、一組服務波束的路徑損耗估算、及在該一或多個目標AP之子集組態的上行鏈路功率限制,其中該組服務波束係由該一或多個目標AP的該子集產生。
範例9可包括一種方法,包含:在使用者設備(UE)共同地決定用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格 式、及/或傳輸時序;由UE使用該決定的前文傳輸功率(等)、前文格式(等)、及/或傳輸時序(等)傳輸該一或多個PRACH前文傳輸至一或多個目標存取點(AP);及由該UE基於該傳輸的PRACH前文傳輸接收具有一或多個時序提前(TA)值及/或該一或多個目標AP之波束的指示的一或多個隨機存取回應(RAR)訊息。
範例10可包括範例9或本文某些其他範例的方法,更包含:由該UE接收PRACH資源組態及/或一或多個PRACH前文格式的指示。
範例11可包括範例10或本文某些其他範例的方法,其中該PRACH資源組態包括與個別一或多個上行鏈路接收波束群組有關之一或多個PRACH時間-頻率無線電資源的指示。
範例12可包括範例10或本文某些其他範例的方法,更包含由該UE基於下行鏈路傳輸及/或接收波束量測選擇用於該一或多個PRACH前文傳輸的一或多個傳輸及接收波束對及對應的PRACH資源。
範例13可包括範例9或本文某些其他範例的方法,更包含由該UE傳輸基於該一或多個RAR訊息的一或多個上行鏈路訊息;及基於發送至該UE之一或多個競爭解析度訊息的成功接收,由該UE完成多重鏈接上行鏈路同步。
範例14可包括範例13或本文某些其他範例的方法,其中該一或多個上行鏈路訊息包括在該一或多個RAR訊 息中接收的該一或多個目標AP之該波束的指示。
範例15可包括範例9或本文某些其他範例的方法,其中該傳輸時序係基於由該UE基於UE容量來決定是否同時或循序傳輸指定給PRACH時間槽的PRACH前文,並更由該UE決定該PRACH時間槽內之循序傳輸前文的傳輸次序。
範例16可包括範例15或本文某些其他範例的方法,更包含由該UE決定該循序傳輸前文的該傳輸次序係基於與該循序傳輸前文關聯之下行鏈路參考接收時序的次序。
範例17可包括範例9或本文某些其他範例的方法,更包含由該UE基於該一或多個目標AP之子集的下行鏈路波束量測結果決定主要AP(或主要AP群組)及次要AP,其中該一或多個目標AP的該子集偵測該一或多個成功地傳輸且彼等的RAR訊息成功地接收之前文的至少一者。
範例18可包括範例9或本文某些其他範例的方法,更包含由該UE接收一個組合RAR訊息,其包括該一或多個TA值及/或該關聯波束上的該指示;及當該一或多個目標AP經由理想回載鏈接連接時,由該UE傳輸一個上行鏈路回應訊息。
範例19可包括範例9的方法或本文的某些其他範例,更包含選擇其在以可用傳輸功率滿足目標接收功率需求之該指示的前文格式的子集之中具有最短傳輸時間的該前文格式。
範例20可包括範例9或本文某些其他範例的方法,其中決定該前文傳輸功率係基於UE傳輸成束增益、一組服務波束的路徑損耗估算、及在該一或多個目標AP之子集組態的上行鏈路功率限制的一或多者,其中該組服務波束係由該一或多個目標AP的該子集產生。
範例21可包括一種使用者設備(UE),包含:基頻電路以共同決定用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格式、及/或傳輸時序;及與該基頻電路耦接的射頻(RF)電路,該RF電路使用該決定的前文傳輸功率(等)、前文格式(等)、及/或傳輸時序(等)以傳輸一或多個PRACH前文傳輸至一或多個目標存取點(AP);並基於該傳輸的PRACH前文傳輸來接收具有一或多個時序提前(TA)值及/或該一或多個目標AP的波束之指示的一或多個隨機存取回應(RAR)訊息。
範例22可包括範例21或本文某些其他範例的UE,其中該RF電路更接收PRACH資源組態及/或一或多個PRACH前文格式的指示。
範例23可包括範例22或本文某些其他範例的UE,其中該PRACH資源組態包括與個別一或多個上行鏈路接收波束群組有關之一或多個PRACH時間-頻率無線電資源的指示。
範例24可包括範例22或本文某些其他範例的UE,其中該基頻電路更基於下行鏈路傳輸及/或接收波束量測 選擇用於該一或多個PRACH前文傳輸的一或多個傳輸及接收波束對及對應的PRACH資源。
範例25可包括範例21或本文某些其他範例的UE,其中該RF電路更傳輸基於該一或多個RAR訊息的一或多個上行鏈路訊息;及基於發送至該UE之一或多個競爭解析度訊息的成功接收,完成多重鏈接上行鏈路同步。
範例26可包括範例25或本文某些其他範例的UE,其中該一或多個上行鏈路訊息包括在該一或多個RAR訊息中接收的該一或多個目標AP之該波束的指示。
範例27可包括範例21或本文某些其他範例的UE,其中該傳輸時序係基於其基於UE容量是否同時或循序傳輸指定給PRACH時間槽之PRACH前文的決定,及用於該PRACH時間槽內的循序傳輸前文之傳輸次序的進一步決定。
範例28可包括範例27或本文某些其他範例的UE,其中該基頻電路更決定該循序傳輸前文的該傳輸次序係基於與該循序傳輸前文關聯之下行鏈路參考接收時序的次序。
範例29可包括範例21或本文某些其他範例的UE,其中該基頻電路更基於該一或多個目標AP之子集的下行鏈路波束量測結果決定主要AP(或主要AP群組)及次要AP,其中該一或多個目標AP的該子集偵測該一或多個成功地傳輸且彼等的RAR訊息成功地接收之前文的至少一者。
範例30可包括範例21或本文某些其他範例的UE,其中該RF電路更接收一個組合RAR訊息,其包括該一或多個TA值及/或該關聯波束上的該指示;及當該一或多個目標AP經由理想回載鏈接連接時,傳輸一個上行鏈路回應訊息。
範例31可包括範例21或本文某些其他範例的UE,其中該基頻電路更選擇其在以可用傳輸功率滿足目標接收功率需求之該指示的前文格式的子集之中具有最短傳輸時間的該前文格式。
範例32可包括範例21或本文某些其他範例的UE,其中該基頻電路決定該前文傳輸功率係基於UE傳輸成束增益、一組服務波束的路徑損耗估算、及在該一或多個目標AP之子集組態的上行鏈路功率限制的一或多者,其中該組服務波束係由該一或多個目標AP的該子集產生。
範例33可包括演進節點B(eNB),包含基頻電路及/或射頻(RF)電路以產生、處理、傳送、及/或接收描述在或相關於範例1-32之任一者的任何訊息或指示。
範例34可包括目標存取點(AP),包含基頻電路及/或射頻(RF)電路以產生、處理、傳送、及/或接收描述在或相關於範例1-32之任一者的任何訊息或指示。
範例35可包括一種方法,包含藉由演進節點B(eNB)產生、處理、傳送、及/或接收描述在或相關於範例1-32之任一者的任何訊息或指示。
範例36可包括一種方法,包含藉由目標存取點 (AP)產生、處理、傳送、及/或接收描述在或相關於範例1-32之任一者的任何訊息或指示。
範例37可包括一種設備,包含機構以實施描述在或相關於範例1-36之任一者的方法或本文描述之任何其他方法或處理的一或多個元素。
範例38可包括一或多個非暫態電腦可讀媒體,其包含指令以導致在由電子裝置之一或多個處理器執行該等指令時,導致該電子裝置實施描述在或相關於範例1-36之任一者的方法或本文描述之任何其他方法或處理的一或多個元素。
範例39可包括一種設備,包含邏輯、模組、及/或電路以實施描述在或相關於範例1-36之任一者的方法或本文描述之任何其他方法或處理的一或多個元素。
範例40可包括描述在或相關於範例1-36之任一者或其部位或部分的方法、技術、或處理。
範例41可包括如本文顯示及描述之在無線網路中通訊的方法。
範例42可包括如本文顯示及描述之用於提供無線通訊的系統。
範例43可包括如本文顯示及描述之用於提供無線通訊的裝置。
範例44相關於一或多種具有指令的電腦可讀媒體,當執行該指令時,導致使用者設備(UE)用以:在該使用者設備(UE)決定共同地用於一或多個實體隨機存取 通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格式、及傳輸時序;使用該決定的前文傳輸功率、前文格式、及傳輸時序由該UE將多個PRACH前文傳輸各者傳輸至目標存取點(AP);及基於該傳輸的PRACH前文傳輸由該UE接收具有時序提前(TA)值及各目標AP的波束之指示的至少一個隨機存取回應(RAR)訊息。
在範例45中,範例44或本文描述之任何範例的專利標的可更包括該UE進一步導致成由該UE接收PRACH資源組態及一或多個PRACH前文格式的指示。
在範例46中,範例44或本文描述之任何範例的專利標的可更包括該PRACH資源組態包括與個別一或多個上行鏈路接收波束群組有關之一或多個PRACH時間-頻率無線電資源的指示。
在範例47中,範例46或本文描述之任何範例的專利標的可更包括該UE進一步導致成由該UE選擇用於該一或多個PRACH前文傳輸的一或多個傳輸及接收波束對及對應的PRACH資源。
在範例48中,範例47或本文描述之任何範例的專利標的可更包括該傳輸及接收波束對係基於下行鏈路傳輸及接收波束量測的至少一者來選擇。
在範例49中,範例44或本文描述之任何範例的專利標的可更包括該UE進一步導致成:由該UE傳輸基於該接收的RAR訊息之一者的一或多個上行鏈路訊息各者;及基於發送至該UE之競爭解析度訊息的成功接收,由該 UE完成多重鏈接上行鏈路同步。
在範例50中,範例49或本文描述之任何範例的專利標的可更包括該一或多個上行鏈路訊息各者包括包括在該接收的RAR訊息中的該目標AP之該波束的指示。
在範例51中,範例50或本文描述之任何範例的專利標的可更包括該一或多個上行鏈路訊息各者包括包括在任何接收的RAR訊息中的所有AP之該波束的指示。
在範例52中,範例44或本文描述之任何範例的專利標的可更包括傳輸時序係基於由該UE基於UE容量來決定是否同時或循序傳輸指定給PRACH時間槽的PRACH前文,並更針對循序傳輸由該UE決定該PRACH時間槽內之循序傳輸前文的傳輸次序。
在範例53中,範例52或本文描述之任何範例的專利標的可更包括該UE進一步導致成由該UE基於與該循序傳輸前文關聯之下行鏈路參考接收時序的次序來決定該循序傳輸前文的該傳輸次序。
在範例54中,範例44或本文描述之任何範例的專利標的可更包括該UE進一步導致成由該UE基於該一或多個目標AP之子集的下行鏈路波束量測結果來決定主要AP及次要AP,其中該一或多個目標AP的該子集偵測該一或多個成功地傳輸且彼等的RAR訊息成功地接收之前文的至少一者。
在範例55中,範例44或本文描述之任何範例的專利標的可更包括該UE進一步導致成:由該UE接收一個組 合RAR訊息,其包括該一或多個TA值及該關聯波束上的該指示;及當該一或多個目標AP經由理想回載鏈接連接時,由該UE傳輸一個上行鏈路回應訊息。
在範例56中,範例44或本文描述之任何範例的專利標的可更包括該UE進一步地導致成選擇其在該指示的前文格式的子集之中具有最短傳輸時間且其以可用傳輸功率滿足目標接收功率需求的該前文格式。
在範例57中,範例44或本文描述之任何範例的專利標的可更包括決定該前文傳輸功率係基於UE傳輸成束增益、一組服務波束的路徑損耗估算、及在該一或多個目標AP之子集組態的上行鏈路功率限制的一或多者,且其中該組服務波束係由該一或多個目標AP的該子集產生。
範例58關於用於從多個存取點得到時序提前及波束之使用者設備(UE)的基頻電路,該基頻電路組態成:在該使用者設備(UE)決定共同地用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格式、及傳輸時序;使用該決定的前文傳輸功率、前文格式、及傳輸時序由該UE產生多個PRACH前文傳輸各者以傳輸至目標存取點(AP);及基於該傳輸的PRACH前文傳輸由該UE處理具有時序提前(TA)值及各目標AP的波束之指示的至少一個接收的隨機存取回應(RAR)訊息。
在範例59中,範例58或本文描述之任何範例的專利標的可更包括由該UE處理PRACH資源組態及一或多個 PRACH前文格式的接收指示。
在範例60中,範例58或本文描述之任何範例的專利標的可更包括該PRACH資源組態包括與個別一或多個上行鏈路接收波束群組有關之一或多個PRACH時間-頻率無線電資源的指示。
範例61關於一種使用者設備(UE),包含:基頻電路,其組態成:在該使用者設備(UE)決定共同地用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的前文傳輸功率、前文格式、及傳輸時序;使用該決定的前文傳輸功率、前文格式、及傳輸時序由該UE產生多個PRACH前文傳輸各者以傳輸至目標存取點(AP);及基於該傳輸的PRACH前文傳輸由該UE處理具有時序提前(TA)值及各目標AP的波束之指示的至少一個接收的隨機存取回應(RAR)訊息;及射頻電路,具有耦接至該基頻電路及天線的接收信號路徑,用以傳送該前文傳輸及用以接收該隨機存取回應訊息。
在範例62中,範例61或本文描述之任何範例的專利標的可更包括傳輸時序係基於由該UE基於UE容量來決定是否同時或循序傳輸指定給PRACH時間槽的PRACH前文,並更針對循序傳輸由該UE決定該PRACH時間槽內之循序傳輸前文的傳輸次序。
在範例63中,範例61或本文描述之任何範例的專利標的可更包括決定該前文傳輸功率係基於UE傳輸成束增益、一組服務波束的路徑損耗估算、及在該一或多個目標 AP之子集組態的上行鏈路功率限制的一或多者,且其中該組服務波束係由該一或多個目標AP的該子集產生。
範例64關於一種設備,具有用於執行本文描述之範例的任何一或多者之功能的機構。
上文對一或多個實作的描述提供說明及描述,但未企圖徹底揭示或將本實施例的範圍限制在所揭示的精準形式。修改及變化根據以上教示係可能的或可從實施例的各種實作的實踐取得。
111、112‧‧‧存取點
113‧‧‧行動裝置
116‧‧‧連接
121、122、123、124‧‧‧無線電通道
b1、b2、b3、b4‧‧‧波束

Claims (18)

  1. 一種具有指令的電腦可讀媒體,當執行該指令時,導致使用者設備(UE)用以:在該使用者設備(UE)決定共同地用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的一前文傳輸功率、一前文格式、及一傳輸時序;使用該決定的前文傳輸功率、前文格式、及傳輸時序由該UE將多個PRACH前文傳輸各者傳輸至一或多個目標存取點(AP);及基於該等傳輸的PRACH前文傳輸由該UE接收具有時序提前(TA)值及各目標AP的波束之指示的至少一個隨機存取回應(RAR)訊息;其中針對該等PRACH前文傳輸的每一個,決定該前文傳輸功率係基於一UE傳輸成束增益、與該PRACH前文傳輸相關的一組服務波束的多個路徑損耗估算、及針對該一或多個目標AP之一子集組態的多個上行鏈路功率限制這三者中一或多者,且其中該組服務波束係由該一或多個目標AP的該子集產生,以致於該一或多個目標AP的該子集的全部都能接收該PRACH前文傳輸。
  2. 如申請專利範圍第1項的媒體,該UE進一步導致成由該UE接收PRACH資源組態及一或多個PRACH前文格式的指示。
  3. 如申請專利範圍第2項的媒體,其中該PRACH資源組態包括與個別一或多個上行鏈路接收波束群組有關之 一或多個PRACH時間-頻率無線電資源的指示。
  4. 如申請專利範圍第2項的媒體,該UE進一步導致成由該UE選擇用於該一或多個PRACH前文傳輸的一或多個傳輸及接收波束對及對應的PRACH資源。
  5. 如申請專利範圍第4項的媒體,其中該傳輸及接收波束對係基於下行鏈路傳輸及接收波束量測的至少一者來選擇。
  6. 如申請專利範圍第1項的媒體,該UE進一步導致成:由該UE傳輸各基於該接收的RAR訊息之一者的一或多個上行鏈路訊息;及基於發送至該UE之競爭解析度訊息的成功接收,由該UE完成多重鏈接上行鏈路同步。
  7. 如申請專利範圍第6項的媒體,其中該一或多個上行鏈路訊息各者包括包括在該接收的RAR訊息中的該目標AP之該波束的指示。
  8. 如申請專利範圍第6項的媒體,其中該一或多個上行鏈路訊息各者包括包括在任何接收的RAR訊息中的所有AP之該波束的指示。
  9. 如申請專利範圍第1項的媒體,其中該傳輸時序係基於由該UE基於UE容量決定是否同時或循序傳輸指定給PRACH時間槽的PRACH前文,並更針對循序傳輸由該UE決定針對該PRACH時間槽內之循序傳輸前文的傳輸次序。
  10. 如申請專利範圍第9項的媒體,該UE進一步導致成由該UE基於與該循序傳輸前文關聯之下行鏈路參考接收時序的次序來決定針對該循序傳輸前文的該傳輸次序。
  11. 如申請專利範圍第1項的媒體,該UE進一步導致成由該UE基於針對該一或多個目標AP之子集的下行鏈路波束量測結果來決定主要AP及次要AP,其中該一或多個目標AP的該子集偵測該一或多個成功地傳輸且彼等的RAR訊息成功地接收之前文的至少一者。
  12. 如申請專利範圍第1項的媒體,該UE進一步導致成:由該UE接收一個組合RAR訊息,其包括對該一或多個TA值及該關聯波束的該指示;及當該一或多個目標AP經由理想回載鏈接連接時,由該UE傳輸一個上行鏈路回應訊息。
  13. 如申請專利範圍第1項的媒體,該UE進一步地導致成選擇其在該指示的前文格式的子集之中具有最短傳輸時間且其以可用傳輸功率滿足目標接收功率需求的該前文格式。
  14. 一種用於從多個存取點得到時序提前值及波束之使用者設備(UE)的基頻電路,該基頻電路組態成:在該使用者設備(UE)決定共同地用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的一前文傳輸功率、一前文格式、及一傳輸時序;使用該決定的前文傳輸功率、前文格式、及傳輸時序 由該UE產生多個PRACH前文傳輸各者以傳輸至一或多個目標存取點(AP);及基於該傳輸的PRACH前文傳輸由該UE處理具有時序提前(TA)值及各目標AP的波束之指示的至少一個接收的隨機存取回應(RAR)訊息;其中針對該等PRACH前文傳輸的每一個,決定該前文傳輸功率係基於一UE傳輸成束增益、與該PRACH前文傳輸相關的一組服務波束的多個路徑損耗估算、及針對該一或多個目標AP之一子集組態的多個上行鏈路功率限制這三者中一或多者,且其中該組服務波束係由該一或多個目標AP的該子集產生,以致於該一或多個目標AP的該子集的全部都能接收該PRACH前文傳輸。
  15. 如申請專利範圍第14項的基頻電路,更組態成由該UE處理PRACH資源組態及一或多個PRACH前文格式的接收指示。
  16. 如申請專利範圍第14項的基頻電路,其中該PRACH資源組態包括與個別一或多個上行鏈路接收波束群組有關之一或多個PRACH時間-頻率無線電資源的指示。
  17. 一種使用者設備(UE),包含:基頻電路,組態成:在該使用者設備(UE)決定共同地用於一或多個實體隨機存取通道(PRACH)前文傳輸之個別者的一前文傳輸功率、一前文格式、及一傳輸時序; 使用該決定的前文傳輸功率、前文格式、及傳輸時序由該UE產生多個PRACH前文傳輸各者以傳輸至一或多個目標存取點(AP);及基於該傳輸的PRACH前文傳輸由該UE處理具有時序提前(TA)值及各目標AP的波束之指示的至少一個接收的隨機存取回應(RAR)訊息;及射頻電路,具有耦接至該基頻電路及天線的接收信號路徑,以傳送該前文傳輸及接收該隨機存取回應訊息;其中針對該等PRACH前文傳輸的每一個,決定該前文傳輸功率係基於一UE傳輸成束增益、與該PRACH前文傳輸相關的一組服務波束的多個路徑損耗估算、及針對該一或多個目標AP之一子集組態的多個上行鏈路功率限制這三者中一或多者,且其中該組服務波束係由該一或多個目標AP的該子集產生,以致於該一或多個目標AP的該子集的全部都能接收該PRACH前文傳輸。
  18. 如申請專利範圍第17項的UE,其中該傳輸時序係基於由該UE基於UE容量來決定是否同時或循序傳輸指定給PRACH時間槽的PRACH前文,並更針對循序傳輸由該UE決定針對該PRACH時間槽內之循序傳輸前文的傳輸次序。
TW105124238A 2015-09-10 2016-07-29 用於5g無線電存取技術(rat)中基於波束的無細胞操作之隨機存取程序 TWI728991B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562216919P 2015-09-10 2015-09-10
US62/216,919 2015-09-10
WOPCT/US16/25292 2016-03-31
PCT/US2016/025292 WO2017044155A1 (en) 2015-09-10 2016-03-31 Random access procedure for beam based cell-less operation in 5g rat

Publications (2)

Publication Number Publication Date
TW201720211A TW201720211A (zh) 2017-06-01
TWI728991B true TWI728991B (zh) 2021-06-01

Family

ID=58239674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105124238A TWI728991B (zh) 2015-09-10 2016-07-29 用於5g無線電存取技術(rat)中基於波束的無細胞操作之隨機存取程序

Country Status (5)

Country Link
US (1) US10477591B2 (zh)
CN (1) CN107925605B (zh)
HK (1) HK1252787A1 (zh)
TW (1) TWI728991B (zh)
WO (1) WO2017044155A1 (zh)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016072216A1 (ja) * 2014-11-06 2017-07-27 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN111030743B (zh) 2015-09-11 2023-08-11 苹果公司 5g系统中用于初始获取的参考信号
US11197315B2 (en) * 2015-11-09 2021-12-07 Lenovo Innovations Limited (Hong Kong) Random access for wireless communication
ES2925003T3 (es) * 2015-11-18 2022-10-13 Ipcom Gmbh & Co Kg Acceso aleatorio a red de frecuencia única
EP3324697A4 (en) * 2015-12-08 2019-04-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd METHOD AND DEVICE FOR PRODUCING A CONNECTION
WO2017144103A1 (en) * 2016-02-25 2017-08-31 Sony Mobile Communications Inc. Coverage enhancement and beamforming
WO2017188697A1 (ko) * 2016-04-27 2017-11-02 엘지전자(주) 무선 통신 시스템에서 임의 접속을 수행하기 위한 방법 및 이를 지원하는 장치
CN107370573B (zh) * 2016-05-12 2022-10-11 大唐移动通信设备有限公司 一种下行数据传输的方法及设备
WO2017209417A1 (ko) * 2016-06-03 2017-12-07 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치
US10536862B2 (en) * 2016-09-30 2020-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, radio network node and methods performed therein
CN109891797B (zh) * 2016-10-12 2020-10-23 华为技术有限公司 基于波束的随机接入
CN107948987B (zh) * 2016-10-13 2021-08-03 华为技术有限公司 通信方法、装置及系统
CN108024325B (zh) * 2016-11-03 2020-04-03 华为技术有限公司 无线通信方法和装置
EP3536026B1 (en) * 2016-11-04 2021-03-31 Telefonaktiebolaget LM Ericsson (PUBL) Cell identification information
US11116006B2 (en) 2016-12-16 2021-09-07 Qualcomm Incorporated Uplink transmission parameter selection for random access initial message transmission and retransmission
US10681727B2 (en) 2016-12-19 2020-06-09 Qualcomm Incorporated Uplink transmission parameter selection during random access message transmission and retransmission
CN108964863B (zh) * 2017-01-05 2019-08-27 华为技术有限公司 一种上行测量信号的指示方法及装置
CN108282213B (zh) 2017-01-06 2021-09-21 华硕电脑股份有限公司 执行用于多个收发点的上行链路传送的方法和设备
US10313158B2 (en) * 2017-01-09 2019-06-04 Mediatek Inc. Method for data transmission and reception of random access procedure
US10368325B2 (en) * 2017-02-03 2019-07-30 Futurewei Technologies, Inc. System and method for beam adaptation in a beam-based communications system
US11540322B2 (en) * 2017-03-14 2022-12-27 Lg Electronics Inc. Method for performing random access procedure between terminal and base station in wireless communication system, and device supporting same
WO2018175705A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Nr (new radio) prach (physical random access channel) configuration and multi-beam operation
AU2017405790B2 (en) 2017-03-24 2022-06-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource indication method and apparatus, access network device, terminal and system
WO2018170880A1 (en) * 2017-03-24 2018-09-27 Mediatek Singapore Pte. Ltd. Methods and apparatus for enhanced random access procedure
US11064401B2 (en) 2017-04-01 2021-07-13 Samsung Electronics Co., Ltd. Random access method, network node and user equipment
CN108811172B (zh) * 2017-05-05 2022-01-21 北京三星通信技术研究有限公司 终端的随机接入方法及装置和基站的随机接入方法及装置
CN110574408B (zh) * 2017-04-28 2024-01-23 日本电气株式会社 用于随机接入过程的方法、终端设备、网络元件和装置
EP3620019A1 (en) 2017-05-05 2020-03-11 Nokia Technologies Oy On multiple prach preambles and random access responses
KR102270894B1 (ko) * 2017-05-08 2021-06-30 삼성전자 주식회사 무선통신 시스템에서 상향링크 전송전력 설정 방법 및 장치
CN108882259B (zh) * 2017-05-16 2020-10-27 维沃移动通信有限公司 一种随机接入的方法、终端、源基站和目标基站
US11647471B2 (en) * 2017-06-15 2023-05-09 Nec Corporation Methods and devices for physical random access channel power control
WO2018231553A2 (en) * 2017-06-16 2018-12-20 Intel IP Corporation Power ramping and control in new radio (nr) devices
US10980064B2 (en) * 2017-06-16 2021-04-13 Futurewei Technologies, Inc. Radio communications using random access in wireless networks
CN109104226A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质
US10425901B2 (en) * 2017-06-26 2019-09-24 Qualcomm Incorporated Uplink transmit power control during random access procedures
CN109275187B (zh) 2017-07-17 2021-01-08 维沃移动通信有限公司 一种随机接入方法、终端及计算机可读存储介质
US10555338B2 (en) * 2017-08-11 2020-02-04 Mediatek Inc. NR-PRACH multiple Msg1 transmission
CN109429355B (zh) * 2017-08-23 2022-02-01 维沃移动通信有限公司 一种随机接入的处理方法、用户终端及网络侧设备
US11510193B2 (en) * 2017-09-13 2022-11-22 Qualcomm Incorporated Techniques for establishing a beam pair link
US11026186B2 (en) * 2017-10-27 2021-06-01 Qualcomm Incorporated Power control for concurrent reception
CN109756977B (zh) * 2017-11-03 2021-11-12 维沃移动通信有限公司 随机接入方法和用户终端
US11202272B2 (en) * 2017-11-17 2021-12-14 Qualcomm Incorporated Beam-specific timing advance groups
KR102414677B1 (ko) * 2017-12-14 2022-06-29 삼성전자주식회사 무선통신시스템에서 신호를 송수신하는 방법 및 장치
WO2019119399A1 (en) * 2017-12-22 2019-06-27 Zte Corporation Methods and wireless communication device for carrying out beam failure recovery
CN109995405A (zh) * 2017-12-29 2019-07-09 索尼公司 用于无线通信系统的电子设备、方法、装置和存储介质
US10785080B2 (en) * 2018-01-11 2020-09-22 Qualcomm Incorporated Determining a number of RACH preamble messages for transmission
CN110035488B (zh) 2018-01-12 2024-05-17 华为技术有限公司 通信方法及装置
WO2019140546A1 (en) * 2018-01-16 2019-07-25 Zte Corporation System and method for performing a random access procedure
CN110087258A (zh) * 2018-01-25 2019-08-02 普天信息技术有限公司 一种用户的接入方法
US10893506B2 (en) * 2018-02-01 2021-01-12 Qualcomm Incorporated Multipurpose downlink control information bit fields
CN110149612B (zh) * 2018-02-11 2021-07-09 华为技术有限公司 波束确定方法及第一通信设备、第二通信设备
US11096033B2 (en) 2018-02-23 2021-08-17 Qualcomm Incorporated NR discovery resource pool configuration for CV2X
CN110198567B (zh) * 2018-02-26 2021-11-26 深圳市中兴微电子技术有限公司 一种随机接入检测方法和装置
US11147102B2 (en) * 2018-04-23 2021-10-12 Qualcomm Incorporated Random access coverage extension in wireless communications
CN110475338B (zh) 2018-05-11 2021-09-07 华为技术有限公司 上行传输的方法和用户设备
US11683842B2 (en) 2018-07-04 2023-06-20 Lg Electronics Inc. Method for performing uplink transmission in wireless communication system, and apparatus therefor
US20200052753A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Methods for full duplex beamforming and online calibration in millimeter wave systems
CN110838861B (zh) * 2018-08-17 2023-03-17 大唐移动通信设备有限公司 信号传输方法、波束确定方法及其装置
CN109088660A (zh) * 2018-09-13 2018-12-25 维沃移动通信有限公司 一种移动终端的通信方法及移动终端
CN115696607A (zh) * 2018-09-17 2023-02-03 华为技术有限公司 数据通信的方法和装置
WO2020056698A1 (en) * 2018-09-20 2020-03-26 Nokia Shanghai Bell Co., Ltd. Methods and apparatuses for random access procedure in a telecommunication system
EP3864901A4 (en) 2018-10-12 2022-07-06 Telefonaktiebolaget Lm Ericsson (Publ) METHODS AND DEVICES FOR CELL-FREE MASSIVE MIMO COMMUNICATIONS
US11558840B2 (en) * 2018-12-17 2023-01-17 Qualcomm Incorporated Timing advances for uplink transmissions
CN111294177B (zh) * 2019-01-11 2023-02-03 展讯通信(上海)有限公司 资源发送方法及装置、终端配置方法及装置
US10979913B2 (en) 2019-04-03 2021-04-13 At&T Intellectual Property I, L.P. Wireless network coverage based on a predetermined device cluster model selected according to a current key performance indicator
US11172417B2 (en) * 2019-05-02 2021-11-09 Ofinno, Llc Multiple access configuration information
CN110166088B (zh) * 2019-05-15 2021-09-28 南京邮电大学 以用户为中心的无小区mimo系统的功率控制算法
KR20220019774A (ko) * 2019-06-17 2022-02-17 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 랜덤 액세스 지시 방법, 장치 및 저장 매체
CN112350808B (zh) * 2019-08-06 2022-04-05 华为技术有限公司 信号传输的方法与装置
US11310833B2 (en) * 2019-08-29 2022-04-19 Qualcomm, Incorporated RACH procedure with timing alignment
US11632804B2 (en) * 2019-12-09 2023-04-18 Charter Communications Operating, Llc Apparatus and methods for multi-cell random access channel
US11696333B2 (en) * 2019-12-20 2023-07-04 Qualcomm Incorporated Beam sweep based random access msg 1 and msg 2
US20210195651A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Beam sweep based random access msg 2
EP4104543A1 (en) * 2020-02-12 2022-12-21 Telefonaktiebolaget LM Ericsson (PUBL) Time-of-arrival determination of a prach preamble
US11743742B2 (en) 2020-03-31 2023-08-29 Qualcomm Incorporated Beam sweep based random access msg 3 and msg 4
EP4122244A4 (en) * 2020-04-17 2024-02-28 Zte Corp METHOD AND DEVICE FOR ALLOWING ACCESS TO A WIRELESS COMMUNICATIONS NETWORK
US11757519B2 (en) * 2020-06-26 2023-09-12 Qualcomm Incorporated Beam failure handling
US11929803B2 (en) * 2020-07-29 2024-03-12 Qualcomm Incorporated Connected mode beam management for narrowband systems
WO2022083621A1 (zh) * 2020-10-23 2022-04-28 维沃移动通信有限公司 随机接入的方法、终端设备和网络设备
GB2602812A (en) * 2021-01-14 2022-07-20 Nec Corp Communication system
US11864225B2 (en) * 2021-04-22 2024-01-02 Qualcomm Incorporated Managing uplink spatial filter configuration
US11622288B2 (en) * 2021-06-03 2023-04-04 Qualcomm Incorporated Indicating blockage events as a cause for changes in rank information or channel quality information
WO2023168587A1 (en) * 2022-03-08 2023-09-14 Qualcomm Incorporated Timing reference selection for sidelink synchronization signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140010178A1 (en) * 2012-07-03 2014-01-09 Samsung Electronics Co., Ltd Apparatus and method for random access in wireless communication system using beamforming
US20140293915A1 (en) * 2009-04-23 2014-10-02 Interdigital Patent Holdings, Inc. Method and apparatus for random access in multicarrier wireless communications
WO2015113202A1 (zh) * 2014-01-28 2015-08-06 华为技术有限公司 物理随机接入信道增强传输的方法、网络设备,和终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
CN101448325B (zh) 2007-11-27 2012-11-21 电信科学技术研究院 一种随机接入过程中的处理方法和基站
CN101505499A (zh) * 2008-02-05 2009-08-12 华为技术有限公司 一种随机接入的控制方法、系统及设备
WO2009134001A1 (en) * 2008-04-28 2009-11-05 Lg Electronics Inc. Random access channel preamble selection
CN101572944B (zh) * 2008-04-29 2013-12-04 华为技术有限公司 随机接入中资源选择方法和终端设备
US8797942B2 (en) * 2009-09-25 2014-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Random access with full coverage on selected resources
KR102073027B1 (ko) * 2011-04-05 2020-02-04 삼성전자 주식회사 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타임 정렬 타이머 운용 방법 및 장치
US8995405B2 (en) 2012-01-25 2015-03-31 Ofinno Technologies, Llc Pathloss reference configuration in a wireless device and base station
CN103582112B (zh) * 2012-08-08 2018-02-16 中兴通讯股份有限公司 一种时间提前量的确定方法、用户设备及基站
KR102072417B1 (ko) * 2013-08-05 2020-02-04 삼성전자 주식회사 무선 통신 시스템에서 빠른 다중 기지국 검색 및 접속 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140293915A1 (en) * 2009-04-23 2014-10-02 Interdigital Patent Holdings, Inc. Method and apparatus for random access in multicarrier wireless communications
US20140010178A1 (en) * 2012-07-03 2014-01-09 Samsung Electronics Co., Ltd Apparatus and method for random access in wireless communication system using beamforming
WO2015113202A1 (zh) * 2014-01-28 2015-08-06 华为技术有限公司 物理随机接入信道增强传输的方法、网络设备,和终端

Also Published As

Publication number Publication date
TW201720211A (zh) 2017-06-01
CN107925605A (zh) 2018-04-17
US20180235013A1 (en) 2018-08-16
HK1252787A1 (zh) 2019-05-31
WO2017044155A1 (en) 2017-03-16
CN107925605B (zh) 2021-01-15
US10477591B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
TWI728991B (zh) 用於5g無線電存取技術(rat)中基於波束的無細胞操作之隨機存取程序
US11197235B2 (en) Low overhead system information acquisition for wireless communication
US10980064B2 (en) Radio communications using random access in wireless networks
CN111095818B (zh) 毫米波系统中的波束细化技术
KR102401700B1 (ko) 빔포밍 시스템의 새로운 무선 랜 액세스
KR102471918B1 (ko) 임의 접속 채널을 전송하는 방법과 사용자기기, 및 임의 접속 채널을 수신하는 방법 및 기지국
EP3681239A1 (en) Random access method and device
ES2751076T3 (es) Un dispositivo inalámbrico, un primer nodo de red y métodos relacionados
US20190082333A1 (en) Beam management techniques in millimeter wave systems
JP2020507953A (ja) ビーム調整要求のためのシステムおよび方法
BR112019014060A2 (pt) método e aparelho de transmissão de sinal
WO2019062003A1 (zh) 数据传输的方法、终端设备和网络设备
JP2019537896A (ja) ピーク対平均電力比低減のための同期信号送信技法
CN109479327B (zh) 用于增强物理随机接入信道传输的装置
TW201841541A (zh) 增強型隨機存取方法及設備
WO2018230726A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
KR20230152002A (ko) Rach 기회들에 대한 다운링크 송신 표시
CN109075845B (zh) 用于通信的装置、设备和计算机可读存储介质
JP7149324B2 (ja) 端末及び基地局装置
WO2022215151A1 (ja) 端末装置、基地局装置、及び無線通信方法
KR102667243B1 (ko) 빔포밍 시스템의 새로운 무선 랜덤 액세스