TWI727773B - Composite substrate and manufacturing method thereof - Google Patents

Composite substrate and manufacturing method thereof Download PDF

Info

Publication number
TWI727773B
TWI727773B TW109114385A TW109114385A TWI727773B TW I727773 B TWI727773 B TW I727773B TW 109114385 A TW109114385 A TW 109114385A TW 109114385 A TW109114385 A TW 109114385A TW I727773 B TWI727773 B TW I727773B
Authority
TW
Taiwan
Prior art keywords
layer
sub
nitride
substrate
gallium
Prior art date
Application number
TW109114385A
Other languages
Chinese (zh)
Other versions
TW202141567A (en
Inventor
曾頎堯
李文中
鄭樵陽
顏弘昕
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW109114385A priority Critical patent/TWI727773B/en
Application granted granted Critical
Publication of TWI727773B publication Critical patent/TWI727773B/en
Publication of TW202141567A publication Critical patent/TW202141567A/en

Links

Images

Abstract

The invention discloses a composite substrate for growing III-V group material on thereof. The composite substrate includes a substrate, a nucleation layer and a barrier layer. The nucleation layer is disposed on the substrate, and the nucleation layer includes aluminum ions or gallium ions. The barrier layer is disposed between the substrate and the nucleation layer, and the barrier layer has a diffusion barrier property of aluminum ions or gallium ions.

Description

複合基板及其製造方法 Composite substrate and manufacturing method thereof

本發明有關於一種複合基板,特別有關於用於成長三五(III-V)族材料的複合基板及其製造方法。 The present invention relates to a composite substrate, and particularly relates to a composite substrate used for growing three-five (III-V) materials and a manufacturing method thereof.

近年來,5G的應用處於蓬勃發展的階段。目前在5G晶片的製造中,最受矚目的材料之一為氮化鎵材料,其材料特性具有高頻率、高帶寬、高效率以及低損耗特性。目前氮化鎵材料射頻元件主要分為兩個技術路線,其一係為在半絕緣碳化矽基板上成長氮化鎵,另一分支在矽基板上成長氮化鎵。相較於在半絕緣碳化矽上成長氮化鎵,在矽基板上成長氮化鎵較有成本上的優勢,並且可以相容於目前的晶圓代工廠之產線。 In recent years, the application of 5G is in a stage of vigorous development. At present, in the manufacture of 5G wafers, one of the most noticed materials is gallium nitride, which has high frequency, high bandwidth, high efficiency and low loss characteristics. Currently, GaN-based radio frequency components are mainly divided into two technical routes. One is to grow gallium nitride on a semi-insulating silicon carbide substrate, and the other branch is to grow gallium nitride on a silicon substrate. Compared with growing gallium nitride on semi-insulating silicon carbide, growing gallium nitride on a silicon substrate has a cost advantage and is compatible with the current production lines of foundries.

一般而言,在矽基板上成長氮化鎵時,例如,成長含氮化鎵的高電子移動率晶體電晶體(High electron mobility transistor;HEMT),因為鎵會與矽基板反應而消耗矽原子,導致鎵對矽基板產生類似蝕刻的效果。為了克服這個現象,在成長氮化鎵之前,先在矽基板上成 長氮化鋁,以避免在矽基板上直接成長氮化鎵。但在形成氮化鋁的製程中,製程的高溫會趨使某些離子產生擴散效應,例如,鋁離子與鎵離子,這些離子可能擴散至矽基板中,導致矽基板的阻值下降,使得元件之射頻的效率發生損耗。 Generally speaking, when growing gallium nitride on a silicon substrate, for example, growing a high electron mobility transistor (HEMT) containing gallium nitride, because gallium reacts with the silicon substrate and consumes silicon atoms. As a result, gallium has an etching-like effect on the silicon substrate. In order to overcome this phenomenon, before the growth of gallium nitride, the first step is to grow on a silicon substrate. Long aluminum nitride to avoid direct growth of gallium nitride on the silicon substrate. However, in the process of forming aluminum nitride, the high temperature of the process tends to cause diffusion effects of certain ions, such as aluminum ions and gallium ions. These ions may diffuse into the silicon substrate, resulting in a decrease in the resistance of the silicon substrate, making the device The efficiency of the radio frequency is lost.

因此,目前需要一種嶄新的複合基板及製造複合基板的方法。 Therefore, there is a need for a new composite substrate and a method for manufacturing the composite substrate.

在本發明內容的各種實施例中,一種用於成長III-V族材料的複合基板,複合基板包含基板、成核層及阻障層。成核層設置於基板上,成核層包含鋁離子或鎵離子。阻障層設置於基板與成核層之間,阻障層具有鋁離子或鎵離子的擴散阻障性。 In various embodiments of the present invention, a composite substrate for growing III-V materials, the composite substrate includes a substrate, a nucleation layer, and a barrier layer. The nucleation layer is arranged on the substrate, and the nucleation layer contains aluminum ions or gallium ions. The barrier layer is arranged between the substrate and the nucleation layer, and the barrier layer has diffusion barrier properties of aluminum ions or gallium ions.

在本發明內容的多個實施例中,基板包含半絕緣碳化矽基板、半絕緣氧化鎵基板、絕緣層上覆矽基板、p型矽基板、n型矽基板或氮化硼基板。 In various embodiments of the present invention, the substrate includes a semi-insulating silicon carbide substrate, a semi-insulating gallium oxide substrate, a silicon-on-insulating substrate, a p-type silicon substrate, an n-type silicon substrate, or a boron nitride substrate.

在本發明內容的多個實施例中,阻障層包含由氧化矽、氧化鋁、氧化鎵、氮化鈦或氮化硼所製成的單層,單層具有厚度為0.1Å至1000Å。 In various embodiments of the present invention, the barrier layer includes a single layer made of silicon oxide, aluminum oxide, gallium oxide, titanium nitride, or boron nitride, and the single layer has a thickness of 0.1 Å to 1000 Å.

在本發明內容的多個實施例中,阻障層包含第一子層及第二子層,第二子層位於第一子層上,其中第一子層包含由氧化矽、氧化鋁或氧化鎵所製成的單層;以及第二子層包含由氮化矽、氮化鈦或氮化硼所製成的單層。 In many embodiments of the present invention, the barrier layer includes a first sublayer and a second sublayer, the second sublayer is located on the first sublayer, and the first sublayer includes silicon oxide, aluminum oxide, or oxide. A single layer made of gallium; and the second sub-layer includes a single layer made of silicon nitride, titanium nitride, or boron nitride.

在本發明內容的多個實施例中,其中第一子層具有厚度在為1Å至100Å的範圍內;以及第二子層具有厚度在為1Å至100Å的範圍內。 In various embodiments of the present invention, the first sub-layer has a thickness in the range of 1 Å to 100 Å; and the second sub-layer has a thickness in the range of 1 Å to 100 Å.

在本發明內容的多個實施例中,阻障層包含第一子層、第二子層及第三子層,第二子層位於第一子層上,且第三子層位於第二子層上,其中第一子層包含由氧化矽、氧化鋁或氧化鎵所製成的單層;第二子層包含由氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼所製成的單層;以及第三子層包含由氮化矽、氮化鈦或氮化硼所製成的單層。 In many embodiments of the present invention, the barrier layer includes a first sublayer, a second sublayer, and a third sublayer, the second sublayer is located on the first sublayer, and the third sublayer is located on the second sublayer. The first sub-layer contains a single layer made of silicon oxide, aluminum oxide or gallium oxide; the second sub-layer contains a single layer made of silicon oxide, aluminum oxide, gallium oxide, silicon nitride, titanium nitride or nitride. A single layer made of boron; and the third sub-layer includes a single layer made of silicon nitride, titanium nitride, or boron nitride.

在本發明內容的多個實施例中,第一子層具有厚度為1Å至100Å;第二子層具有厚度為1Å至100Å;以及第三子層具有厚度為1Å至100Å。 In various embodiments of the present disclosure, the first sub-layer has a thickness of 1 Å to 100 Å; the second sub-layer has a thickness of 1 Å to 100 Å; and the third sub-layer has a thickness of 1 Å to 100 Å.

在本發明內容的多個實施例中,成核層包含由AlN、GaN、AltGa1-tN或AluInvGa1-u-vN所製成的單層,其中0≦t<1;0<u<1;0<v<1;以及成核層具有厚度為10Å至10000Å。 In many embodiments of the present invention, the nucleation layer includes a single layer made of AlN, GaN, Al t Ga 1-t N or Al u In v Ga 1-uv N, where 0≦t<1 ; 0<u<1;0<v<1; and the nucleation layer has a thickness of 10Å to 10000Å.

在本發明內容的多個實施例中,阻障層具有超晶格(super lattice)結構,其由交互堆疊的第一子層及第二子層所組成,其中第一子層與第二子層選自由AlN、GaN、AlGaN、AlGaInN、氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼及其組合所組成的群組。 In many embodiments of the present invention, the barrier layer has a super lattice structure, which is composed of a first sub-layer and a second sub-layer alternately stacked, wherein the first sub-layer and the second sub-layer are alternately stacked. The layer is selected from the group consisting of AlN, GaN, AlGaN, AlGaInN, silicon oxide, aluminum oxide, gallium oxide, silicon nitride, titanium nitride, or boron nitride, and combinations thereof.

在本發明內容的多個實施例中,一種半導體複合基板,包含所述的複合基板及III-V族材料。III-V族材料設置於成核層上。 In many embodiments of the present invention, a semiconductor composite substrate includes the composite substrate and III-V group materials. Group III-V materials are arranged on the nucleation layer.

在本發明內容的多個實施例中,,其中III-V族材料包含氮化鎵、氮化硼、氮化鋁、氮化銦、氮化鋁鎵、氮化銦鎵、氮化鋁銦、氮化鋁銦鎵、砷化鎵或磷化銦。 In many embodiments of the present invention, the III-V group material includes gallium nitride, boron nitride, aluminum nitride, indium nitride, aluminum gallium nitride, indium gallium nitride, aluminum indium nitride, Aluminum indium gallium nitride, gallium arsenide or indium phosphide.

在本發明內容的多個實施例中,一種用於成長III-V族材料的複合基板之製造方法,包含以下步驟:提供基板;使用有機金屬氣相沈積法、分子束磊晶法、高溫爐管、化學氣相沈積法或物理氣相沈積法形成阻障層在基板上;使用有機金屬氣相沈積法、物理氣相沈積法或分子束磊晶法形成成核層在阻障層上,成核層包含鋁離子或鎵離子;以及使用有機金屬氣相沈積法或分子束磊晶法形成III-V族材料在成核層上,其中當成核層的鋁離子或鎵離子經阻障層往基板擴散時,阻障層捕集(trap)從成核層來的鋁離子或鎵離子。 In various embodiments of the present invention, a method for manufacturing a composite substrate for growing III-V materials includes the following steps: providing a substrate; using organic metal vapor deposition method, molecular beam epitaxy method, high temperature furnace Tube, chemical vapor deposition or physical vapor deposition to form a barrier layer on the substrate; use organometallic vapor deposition, physical vapor deposition or molecular beam epitaxy to form a nucleation layer on the barrier layer, The nucleation layer contains aluminum ions or gallium ions; and the use of organometallic vapor deposition or molecular beam epitaxy to form III-V materials on the nucleation layer, where the aluminum ions or gallium ions used as the nucleation layer pass through the barrier layer When diffusing to the substrate, the barrier layer traps aluminum ions or gallium ions from the nucleation layer.

在本發明內容的多個實施例中,阻障層包含由氧化矽、氧化鋁、氧化鎵、氮化鈦或氮化硼所製成的單層,單層具有厚度為0.1Å至1000Å。 In various embodiments of the present invention, the barrier layer includes a single layer made of silicon oxide, aluminum oxide, gallium oxide, titanium nitride, or boron nitride, and the single layer has a thickness of 0.1 Å to 1000 Å.

在本發明內容的多個實施例中,形成阻障層更包含形成第一子層在基板上,其中第一子層包含由氧化矽、氧化鋁或氧化鎵所製成的單層,第一子層具有厚度為1Å至100Å;以及形成第二子層在第一子層上,其中第二子層 包含由氮化矽、氮化鈦或氮化硼所製成的單層,第二子層具有厚度為1Å至100Å。 In various embodiments of the present invention, forming the barrier layer further includes forming a first sub-layer on the substrate, wherein the first sub-layer includes a single layer made of silicon oxide, aluminum oxide or gallium oxide, and the first The sub-layer has a thickness of 1 Å to 100 Å; and a second sub-layer is formed on the first sub-layer, wherein the second sub-layer Containing a single layer made of silicon nitride, titanium nitride, or boron nitride, the second sub-layer has a thickness of 1 Å to 100 Å.

在本發明內容的多個實施例中,形成阻障層更包含形成第三子層在第二子層上,其中第三子層包含由氮化矽、氮化鈦或氮化硼所製成的單層,第三子層具有厚度為1Å至100Å。 In various embodiments of the present invention, forming the barrier layer further includes forming a third sub-layer on the second sub-layer, wherein the third sub-layer is made of silicon nitride, titanium nitride, or boron nitride The third sub-layer has a thickness of 1 Å to 100 Å.

在本發明內容的多個實施例中,阻障層具有超晶格(super lattice)結構,其由交互堆疊的第一子層及第二子層所組成,其中第一子層與第二子層選自由AlN、GaN、AlGaN、AlGaInN、氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼及其組合所組成的群組。 In many embodiments of the present invention, the barrier layer has a super lattice structure, which is composed of a first sub-layer and a second sub-layer alternately stacked, wherein the first sub-layer and the second sub-layer are alternately stacked. The layer is selected from the group consisting of AlN, GaN, AlGaN, AlGaInN, silicon oxide, aluminum oxide, gallium oxide, silicon nitride, titanium nitride, or boron nitride, and combinations thereof.

以下將以實施方式對上述之說明做詳細的描述,並對本發明之技術方案提供更進一步的解釋。 Hereinafter, the above description will be described in detail by way of implementation, and a further explanation will be provided for the technical solution of the present invention.

10:基板 10: substrate

12:阻障層 12: Barrier layer

12A:第一子層 12A: The first sub-layer

12B:第二子層 12B: The second sub-layer

12C:第三子層 12C: third sublayer

14:成核層 14: Nucleation layer

16:III-V族材料 16: III-V group materials

100:複合基板 100: Composite substrate

M100:方法 M100: method

S102:操作 S102: Operation

S104:操作 S104: Operation

S106:操作 S106: Operation

S108:操作 S108: Operation

為使本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,請詳閱以下的詳細敘述並搭配對應的圖式。 In order to make the above and other objectives, features, advantages, and embodiments of the present invention more obvious and understandable, please read the following detailed description and match the corresponding drawings.

第1圖繪示根據本發明一些實施例之用於成長III-V族材料的複合基板。 Figure 1 shows a composite substrate for growing III-V materials according to some embodiments of the present invention.

第2A及2B圖繪示根據本發明一些實施例的具有複層的阻障層之複合基板。 2A and 2B illustrate a composite substrate with multiple barrier layers according to some embodiments of the present invention.

第3圖繪示根據本發明一些實施例之用於成長III-V族材料的複合基板的製造方法的流程圖。 FIG. 3 shows a flowchart of a manufacturing method for growing a composite substrate of group III-V materials according to some embodiments of the present invention.

本發明提供一種用於成長III-V族材料的複合基板,藉由在基板與成核層中間設置阻障層,可以降低鋁離子或鎵離子擴散至基板的效應,減少擴散離子對於基板阻值之影響,並且提升半導體元件之射頻的效率。 The present invention provides a composite substrate for growing III-V materials. By providing a barrier layer between the substrate and the nucleation layer, the effect of the diffusion of aluminum ions or gallium ions to the substrate can be reduced, and the resistance of the diffused ions to the substrate can be reduced The impact of this, and improve the efficiency of the radio frequency of semiconductor components.

第1圖繪示根據本發明一些實施例之用於成長III-V族材料的複合基板100。如第1圖所示,複合基板100包含基板10、成核層14及阻障層12。成核層14設置於基板10上,阻障層12設置於基板10與成核層14之間。複合基板100係用於成長III-V族材料16。III-V族材料16設置在成核層14上。 FIG. 1 shows a composite substrate 100 for growing III-V materials according to some embodiments of the present invention. As shown in FIG. 1, the composite substrate 100 includes a substrate 10, a nucleation layer 14 and a barrier layer 12. The nucleation layer 14 is disposed on the substrate 10, and the barrier layer 12 is disposed between the substrate 10 and the nucleation layer 14. The composite substrate 100 is used to grow III-V group materials 16. The III-V group material 16 is provided on the nucleation layer 14.

基板10可以為單晶基板,例如,矽基板。在一些實施例中,基板10為具有高阻值的矽基板。在特定的實施例中,矽基板的阻值大於1000Ω-cm。 The substrate 10 may be a single crystal substrate, for example, a silicon substrate. In some embodiments, the substrate 10 is a silicon substrate with high resistance. In a specific embodiment, the resistance of the silicon substrate is greater than 1000 Ω-cm.

在一些實施例中,基板10包含半絕緣碳化矽基板、半絕緣氧化鎵基板、絕緣層上覆矽基板(Silicon on Insulation;SOI)、p型矽基板、n型矽基板或氮化硼基板。 In some embodiments, the substrate 10 includes a semi-insulating silicon carbide substrate, a semi-insulating gallium oxide substrate, a silicon on insulation (SOI) substrate, a p-type silicon substrate, an n-type silicon substrate, or a boron nitride substrate.

成核層14用以在基板10上方成長III-V族材料16。詳細地說,在基板10上形成成核層14之後,可以在成核層14上成長任何用於形成半導體裝置的III-V族材料。 The nucleation layer 14 is used to grow the III-V group material 16 on the substrate 10. In detail, after the nucleation layer 14 is formed on the substrate 10, any III-V material used to form a semiconductor device can be grown on the nucleation layer 14.

成核層14可以為單晶或多晶層。在一些實施例中,成核層14包含鋁離子或鎵離子。在特定實施例中,成核層14包含由AlN、GaN、AltGa1-tN或 AluInvGa1-u-vN所製成的單層,其中0≦t<1;0<u<1;0<v<1。 The nucleation layer 14 may be a single crystal or polycrystalline layer. In some embodiments, the nucleation layer 14 includes aluminum ions or gallium ions. In a particular embodiment, the nucleation layer 14 comprises t Ga 1-t N monolayer or Al u In v Ga 1-uv N is made of AlN, GaN, Al, where 0 ≦ t <1; 0 < u <1;0<v<1.

成核層14具有厚度在為約10Å至約10000Å的範圍內。較佳的厚度為約30Å至約1000Å的範圍內。較佳的數值為約30Å、90Å、120Å、150Å、180Å、210Å、240Å、270Å、300Å、400Å、500Å、600Å、700Å、800Å或900Å。 The nucleation layer 14 has a thickness in the range of about 10 Å to about 10000 Å. The preferred thickness is in the range of about 30Å to about 1000Å. Preferred values are about 30Å, 90Å, 120Å, 150Å, 180Å, 210Å, 240Å, 270Å, 300Å, 400Å, 500Å, 600Å, 700Å, 800Å, or 900Å.

成核層14可以使用有機金屬氣相沈積法、物理氣相沈積法或分子束磊晶法或其他任何合適方式來形成。 The nucleation layer 14 can be formed using an organometallic vapor deposition method, a physical vapor deposition method, a molecular beam epitaxy method, or any other suitable method.

如第1圖所示,在基板10上形成成核層14之後,接著,在成核層14上成長III-V族材料16。III-V族材料16設置於成核層14上,其中III-V族材料16包含氮化鎵、氮化硼、氮化鋁、氮化銦、氮化鋁鎵、氮化銦鎵、氮化鋁銦、氮化鋁銦鎵、砷化鎵或磷化銦。 As shown in FIG. 1, after the nucleation layer 14 is formed on the substrate 10, next, the III-V group material 16 is grown on the nucleation layer 14. The III-V group material 16 is disposed on the nucleation layer 14, wherein the III-V group material 16 includes gallium nitride, boron nitride, aluminum nitride, indium nitride, aluminum gallium nitride, indium gallium nitride, and Aluminum indium, aluminum indium gallium nitride, gallium arsenide or indium phosphide.

III-V族材料16可以使用有機金屬氣相沈積法、分子束磊晶法或其他任何合適方式來形成。值得注意的是,在成核層14上成長III-V族材料16時,由於基板10置於高溫的製程環境,例如,薄膜成長的腔室,成核層14中的鋁離子或鎵離子可能從成核層14向周圍的層擴散,例如,擴散至基板10。擴散至基板10的鋁離子或鎵離子會導致基板10的阻值下降,進而造成後續形成的半導體元件之性能降低,例如,射頻的效率衰減問題。 The III-V group material 16 can be formed using organometallic vapor deposition, molecular beam epitaxy, or any other suitable method. It is worth noting that when the III-V group material 16 is grown on the nucleation layer 14, because the substrate 10 is placed in a high-temperature process environment, such as a thin film growth chamber, aluminum ions or gallium ions in the nucleation layer 14 may be It diffuses from the nucleation layer 14 to surrounding layers, for example, to the substrate 10. The aluminum ions or gallium ions diffused to the substrate 10 will cause the resistance of the substrate 10 to decrease, which in turn causes the performance of the subsequently formed semiconductor device to decrease, for example, the problem of attenuation of radio frequency efficiency.

本發明提供一種複合基板100,具有位於基板10與成核層14之間的阻障層12,用以降低從成核層14中擴散至基板10的三價離子,例如,鋁離子或鎵離子。 The present invention provides a composite substrate 100 having a barrier layer 12 between the substrate 10 and the nucleation layer 14 to reduce trivalent ions, such as aluminum ions or gallium ions, diffused from the nucleation layer 14 to the substrate 10 .

在一些實施例中,阻障層12具有鋁離子或鎵離子的擴散阻障性。舉例來說,鋁離子或鎵離子在阻障層12中具有較低的擴散係數。在一些實施例中,阻障層12包含由氧化矽、氧化鋁、氧化鎵、氮化鈦或氮化硼所製成的單層。在一些實施例中,阻障層12實質上覆蓋基板10。 In some embodiments, the barrier layer 12 has diffusion barrier properties of aluminum ions or gallium ions. For example, aluminum ions or gallium ions have a lower diffusion coefficient in the barrier layer 12. In some embodiments, the barrier layer 12 includes a single layer made of silicon oxide, aluminum oxide, gallium oxide, titanium nitride, or boron nitride. In some embodiments, the barrier layer 12 substantially covers the substrate 10.

阻障層12可以使用高溫爐管、化學氣相沈積法或物理氣相沈積法或其他任何合適方式來形成。 The barrier layer 12 can be formed using a high temperature furnace tube, a chemical vapor deposition method or a physical vapor deposition method or any other suitable method.

阻障層12具有厚度在為約0.1Å至約1000Å的範圍內。而較佳厚度為約1Å至約100Å的範圍內。較佳的數值為約5Å、10Å、15Å、20Å、25Å、30Å、50Å、70Å、90Å或95Å。如果阻障層12的厚度太薄,將不足以阻障鋁離子或鎵離子的擴散;如果阻障層12的厚度太厚,則導致後續於阻障層12上不易成長單晶或是多晶的成核層14以及其上的III-V族材料16。 The barrier layer 12 has a thickness in the range of about 0.1 Å to about 1000 Å. The preferred thickness is in the range of about 1 Å to about 100 Å. Preferred values are about 5Å, 10Å, 15Å, 20Å, 25Å, 30Å, 50Å, 70Å, 90Å, or 95Å. If the thickness of the barrier layer 12 is too thin, it will not be sufficient to block the diffusion of aluminum ions or gallium ions; if the thickness of the barrier layer 12 is too thick, it will be difficult to subsequently grow single crystals or polycrystals on the barrier layer 12 The nucleation layer 14 and the III-V group material 16 thereon.

值得注意的是,阻障層12亦可以為複層的結構。複層使用不同材料的組合及不同厚度的搭配,使得三價離子的擴散至基板10之現象可以更進一步地下降。 It should be noted that the barrier layer 12 can also be a multi-layer structure. The combination of different materials and the combination of different thicknesses for the multi-layer allows the diffusion of trivalent ions to the substrate 10 to be further reduced.

第2A及2B圖繪示根據本發明一些實施例的具有複層的阻障層之複合基板100。 2A and 2B illustrate a composite substrate 100 with multiple barrier layers according to some embodiments of the present invention.

如第2A圖所示,阻障層12為具有二層的複層結構,阻障層12包含第一子層12A及第二子層12B,第二子 層12B位於第一子層12A上。在一些實施例中,第二子層12B實質上覆蓋第一子層12A。 As shown in Figure 2A, the barrier layer 12 has a two-layered multi-layer structure. The barrier layer 12 includes a first sublayer 12A and a second sublayer 12B. The layer 12B is located on the first sub-layer 12A. In some embodiments, the second sublayer 12B substantially covers the first sublayer 12A.

在一些實施例中,第一子層12A包含由氧化矽、氧化鋁或氧化鎵所製成的單層。 In some embodiments, the first sub-layer 12A includes a single layer made of silicon oxide, aluminum oxide, or gallium oxide.

在一些實施例中,第一子層12A具有厚度在為約1Å至約100Å的範圍內。較佳的數值為約5Å、10Å、15Å、20Å、25Å、30Å、50Å、70Å、90Å或95Å。 In some embodiments, the first sub-layer 12A has a thickness in the range of about 1 Å to about 100 Å. Preferred values are about 5Å, 10Å, 15Å, 20Å, 25Å, 30Å, 50Å, 70Å, 90Å, or 95Å.

在一些實施例中,第二子層12B包含由氮化矽、氮化鈦或氮化硼所製成的單層。 In some embodiments, the second sub-layer 12B includes a single layer made of silicon nitride, titanium nitride, or boron nitride.

第二子層12B具有厚度在為約1Å至約100Å的範圍內。較佳的數值為約5Å、10Å、15Å、20Å、25Å、30Å、50Å、70Å、90Å或95Å。 The second sub-layer 12B has a thickness in the range of about 1 Å to about 100 Å. Preferred values are about 5Å, 10Å, 15Å, 20Å, 25Å, 30Å, 50Å, 70Å, 90Å, or 95Å.

如第2B圖所示,阻障層12為具有三層的複層結構,阻障層12包含第一子層12A、第二子層12B及第三子層12C,第二子層12B位於第一子層12A上,第三子層12C位於第二子層12B上。在一些實施例中,第三子層12C實質上覆蓋第二子層12B。 As shown in Figure 2B, the barrier layer 12 has a three-layer multi-layer structure. The barrier layer 12 includes a first sub-layer 12A, a second sub-layer 12B, and a third sub-layer 12C. The second sub-layer 12B is located in the first sub-layer 12A, a second sub-layer 12B, and a third sub-layer 12C. On one sub-layer 12A, the third sub-layer 12C is located on the second sub-layer 12B. In some embodiments, the third sublayer 12C substantially covers the second sublayer 12B.

第一子層12A包含由氧化矽、氧化鋁或氧化鎵所製成的單層。 The first sub-layer 12A includes a single layer made of silicon oxide, aluminum oxide, or gallium oxide.

第一子層12A具有厚度在為約1Å至約100Å的範圍內。較佳的數值為約5Å、10Å、15Å、20Å、25Å、30Å、50Å、70Å、90Å或95Å。 The first sub-layer 12A has a thickness in the range of about 1 Å to about 100 Å. Preferred values are about 5Å, 10Å, 15Å, 20Å, 25Å, 30Å, 50Å, 70Å, 90Å, or 95Å.

第二子層12B包含由氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼所製成的單層。 The second sub-layer 12B includes a single layer made of silicon oxide, aluminum oxide, gallium oxide, silicon nitride, titanium nitride, or boron nitride.

第二子層12B具有厚度在為約1Å至約100Å的範圍內。較佳的數值為約5Å、10Å、15Å、20Å、25Å、30Å、50Å、70Å、90Å或95Å。 The second sub-layer 12B has a thickness in the range of about 1 Å to about 100 Å. Preferred values are about 5Å, 10Å, 15Å, 20Å, 25Å, 30Å, 50Å, 70Å, 90Å, or 95Å.

第三子層12C包含由氮化矽、氮化鈦或氮化硼所製成的單層。 The third sub-layer 12C includes a single layer made of silicon nitride, titanium nitride, or boron nitride.

第三子層12C具有厚度在為約1Å至約100Å的範圍內。較佳的數值為約5Å、10Å、15Å、20Å、25Å、30Å、50Å、70Å、90Å或95Å。 The third sub-layer 12C has a thickness in the range of about 1 Å to about 100 Å. Preferred values are about 5Å, 10Å, 15Å, 20Å, 25Å, 30Å, 50Å, 70Å, 90Å, or 95Å.

阻障層12各個子層12A、12B及12C可以使用高溫爐管、化學氣相沈積法或物理氣相沈積法或其他任何合適方式來形成。 The respective sub-layers 12A, 12B, and 12C of the barrier layer 12 can be formed using a high-temperature furnace tube, a chemical vapor deposition method or a physical vapor deposition method, or any other suitable method.

值得注意的是,阻障層12亦可以具有超結晶(super lattice)結構,其由交互堆疊的第一子層及第二子層所組成(出於簡化未繪示)。藉由阻障層12的超結晶結構,使得三價離子的擴散至基板10之現象可以更進一步地下降。 It is worth noting that the barrier layer 12 may also have a super lattice structure, which is composed of a first sub-layer and a second sub-layer alternately stacked (not shown for simplicity). With the super-crystalline structure of the barrier layer 12, the diffusion of trivalent ions to the substrate 10 can be further reduced.

在一些實施例中,具有超結晶結構的阻障層12之第一子層與第二子層選自由AlN、GaN、AlGaN、AlGaInN、氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼及其組合所組成的群組。 In some embodiments, the first sublayer and the second sublayer of the barrier layer 12 having a supercrystalline structure are selected from AlN, GaN, AlGaN, AlGaInN, silicon oxide, aluminum oxide, gallium oxide, silicon nitride, and nitride. The group consisting of titanium or boron nitride and combinations thereof.

在一些實施例中,使用有機金屬氣相沈積法、分子束磊晶法、高溫爐管、化學氣相沈積法或物理氣相沈積法來形成第一子層與第二子層交互堆疊的超結晶結構。 In some embodiments, metal-organic vapor deposition, molecular beam epitaxy, high-temperature furnace tube, chemical vapor deposition, or physical vapor deposition is used to form the superposition of the first sublayer and the second sublayer alternately stacked. Crystal structure.

在一些實施例中,具有超結晶結構的阻障層12的厚度分別為約1Å至約200Å的範圍內。較佳的數值為約5Å、10Å、20Å、40Å、60Å、80Å、100Å、120Å、140Å、160Å、180Å或200Å。 In some embodiments, the thickness of the barrier layer 12 having a super-crystalline structure is in the range of about 1 Å to about 200 Å, respectively. Preferred values are about 5Å, 10Å, 20Å, 40Å, 60Å, 80Å, 100Å, 120Å, 140Å, 160Å, 180Å, or 200Å.

第3圖繪示根據本發明一些實施例之用於成長III-V族材料16的複合基板100的製造方法M100的流程圖。方法M100包含操作S102、操作S104、操作S106及操作S108。 FIG. 3 shows a flowchart of a manufacturing method M100 of a composite substrate 100 for growing a III-V group material 16 according to some embodiments of the present invention. The method M100 includes operation S102, operation S104, operation S106, and operation S108.

方法M100始於操作S102,參照第1圖,提供基板10。基板10為具有高阻值的矽基板。在特定的實施例中,矽基板的阻值大於1000Ω-cm。 The method M100 starts in operation S102. Referring to FIG. 1, a substrate 10 is provided. The substrate 10 is a silicon substrate with high resistance. In a specific embodiment, the resistance of the silicon substrate is greater than 1000 Ω-cm.

接著,方法M100進行至操作S104,繼續參照第1圖,使用高溫爐管、化學氣相沈積法或物理氣相沈積法形成阻障層12在基板10上。在一些實施例中,使用物理層沈積法在矽基板上形成阻障層12,其為厚度約1nm的二氧化矽。 Then, the method M100 proceeds to operation S104, and referring to FIG. 1, the barrier layer 12 is formed on the substrate 10 by using a high temperature furnace tube, a chemical vapor deposition method or a physical vapor deposition method. In some embodiments, a physical layer deposition method is used to form the barrier layer 12 on the silicon substrate, which is silicon dioxide with a thickness of about 1 nm.

接著,方法M100進行至操作S106,繼續參照第1圖,使用有機金屬氣相沈積法、物理氣相沈積或分子束磊晶法形成成核層14在阻障層12上。在一些實施例中,使用物理層沈積法沉積成核層14,其為厚度約30nm的氮化鋁。在一些實施例中,使用有機金屬氣相沈積法成長成核層14,成核層14為AlxGa1-xN,此成核層的鋁含量在垂直於基板10的方向上具有梯度濃度,往遠離基板10的方向遞減。 Next, the method M100 proceeds to operation S106, and referring to FIG. 1 continuously, the nucleation layer 14 is formed on the barrier layer 12 by using metal organic vapor deposition, physical vapor deposition, or molecular beam epitaxy. In some embodiments, a physical layer deposition method is used to deposit the nucleation layer 14, which is aluminum nitride with a thickness of about 30 nm. In some embodiments, the nucleation layer 14 is grown by the metal organic vapor deposition method, and the nucleation layer 14 is Al x Ga 1-x N. The aluminum content of the nucleation layer has a gradient concentration in the direction perpendicular to the substrate 10 , Decreases in the direction away from the substrate 10.

接著,方法M100進行至操作S108,繼續參照第1圖,使用有機金屬氣相沈積法或分子束磊晶法形成III-V族材料16在成核層14上,其中當成核層14的鋁離子或鎵離子經阻障層12往基板10擴散時,阻障層12捕集(trap)從成核層14來的鋁離子或鎵離子。 Next, the method M100 proceeds to operation S108, and with continued reference to FIG. 1, the III-V group material 16 is formed on the nucleation layer 14 using the metal organic vapor deposition method or the molecular beam epitaxy method, wherein the aluminum ion of the nucleation layer 14 Or when gallium ions diffuse into the substrate 10 through the barrier layer 12, the barrier layer 12 traps aluminum ions or gallium ions from the nucleation layer 14.

在一些實施例中,III-V族材料16為高阻值GaN層。在一些實施例中,高阻值GaN層摻雜碳或鐵。在特定實施例中,碳摻雜濃度為約1E16[1/cm3]至約1E21[1/cm3]。在特定實施例中,鐵摻雜濃度為約1E16[1/cm3]至約1E19[1/cm3]。 In some embodiments, the III-V group material 16 is a high resistance GaN layer. In some embodiments, the high resistance GaN layer is doped with carbon or iron. In a specific embodiment, the carbon doping concentration is about 1E16 [1/cm3] to about 1E21 [1/cm3]. In a specific embodiment, the iron doping concentration is about 1E16 [1/cm3] to about 1E19 [1/cm3].

在其他實施例中,III-V族材料16為AlyGa1-yN,其中0.1<y<0.3。在特定實施例中,III-V族材料16為p-GaN或p-AlzGa1-zN。 In other embodiments, the III-V group material 16 is Al y Ga 1-y N, where 0.1<y<0.3. In a specific embodiment, the III-V group material 16 is p-GaN or p-Al z Ga 1-z N.

再次參照操作S104與第2A圖,在一些實施例中,形成阻障層12包含形成第一子層12A在基板10上,以及形成第二子層12B在第一子層12A上。在其他實施例中,參照第2B圖,形成阻障層12進一步包含形成第三子層12C在第二子層12B上。 Referring again to operation S104 and FIG. 2A, in some embodiments, forming the barrier layer 12 includes forming a first sub-layer 12A on the substrate 10 and forming a second sub-layer 12B on the first sub-layer 12A. In other embodiments, referring to FIG. 2B, forming the barrier layer 12 further includes forming a third sub-layer 12C on the second sub-layer 12B.

綜上所述,一種用於成長III-V族材料的複合基板,具有一阻障層佈置在基板與成核層之間,從而在後續的高溫製程中可以避免成核層的離子擴散至基板,以此改善基板的阻值受離子擴散而衰減的問題。 In summary, a composite substrate for growing III-V materials has a barrier layer arranged between the substrate and the nucleation layer, so as to prevent the ions of the nucleation layer from diffusing to the substrate during the subsequent high temperature process , In order to improve the problem that the resistance of the substrate is attenuated by ion diffusion.

10:基板 10: substrate

12:阻障層 12: Barrier layer

14:成核層 14: Nucleation layer

16:III-V族材料 16: III-V group materials

100:複合基板 100: Composite substrate

Claims (15)

一種複合基板,包含:一基板;一成核層,設置於該基板上,包含鋁離子或鎵離子;以及一阻障層,設置於該基板與該成核層之間,具有鋁離子或鎵離子的擴散阻障性,包含:一第一子層,包含由氧化矽、氧化鋁或氧化鎵所製成的單層;及一第二子層,位於該第一子層上,包含由氮化矽、氮化鈦或氮化硼所製成的單層。 A composite substrate, comprising: a substrate; a nucleation layer disposed on the substrate and containing aluminum ions or gallium ions; and a barrier layer disposed between the substrate and the nucleation layer and containing aluminum ions or gallium ions The diffusion barrier properties of ions include: a first sub-layer, including a single layer made of silicon oxide, aluminum oxide or gallium oxide; and a second sub-layer, located on the first sub-layer, including a layer made of nitrogen A single layer made of silicon fluoride, titanium nitride or boron nitride. 如請求項1所述的複合基板,其中該基板包含半絕緣碳化矽基板、半絕緣氧化鎵基板、絕緣層上覆矽基板、p型矽基板、n型矽基板或氮化硼基板。 The composite substrate according to claim 1, wherein the substrate comprises a semi-insulating silicon carbide substrate, a semi-insulating gallium oxide substrate, a silicon-on-insulating substrate, a p-type silicon substrate, an n-type silicon substrate, or a boron nitride substrate. 如請求項1所述的複合基板,其中該阻障層包含由氧化矽、氧化鋁、氧化鎵、氮化鈦或氮化硼所製成的單層,該單層具有一厚度在為0.1Å至1000Å的範圍內。 The composite substrate according to claim 1, wherein the barrier layer comprises a single layer made of silicon oxide, aluminum oxide, gallium oxide, titanium nitride, or boron nitride, and the single layer has a thickness of 0.1 Å To the range of 1000Å. 如請求項1所述的複合基板,其中該第一子層具有一厚度在為1Å至100Å的範圍內;以及該第二子層具有一厚度在為1Å至100Å的範圍內。 The composite substrate according to claim 1, wherein the first sub-layer has a thickness in the range of 1 Å to 100 Å; and the second sub-layer has a thickness in the range of 1 Å to 100 Å. 如請求項1所述的複合基板,其中該阻障層包含一第一子層、一第二子層及一第三子層,該第二子層位於該第一子層上,且該第三子層位於該第二子層上,其中該第一子層包含由氧化矽、氧化鋁或氧化鎵所製成的單層;該第二子層包含由氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼所製成的單層;以及該第三子層包含由氮化矽、氮化鈦或氮化硼所製成的單層。 The composite substrate according to claim 1, wherein the barrier layer includes a first sub-layer, a second sub-layer, and a third sub-layer, the second sub-layer is located on the first sub-layer, and the first sub-layer Three sub-layers are located on the second sub-layer, wherein the first sub-layer includes a single layer made of silicon oxide, aluminum oxide or gallium oxide; the second sub-layer includes a single layer made of silicon oxide, aluminum oxide, gallium oxide, A single layer made of silicon nitride, titanium nitride, or boron nitride; and the third sub-layer includes a single layer made of silicon nitride, titanium nitride, or boron nitride. 如請求項5所述的複合基板,其中該第一子層具有一厚度在為1Å至100Å的範圍內;該第二子層具有一厚度在為1Å至100Å的範圍內;以及該第三子層具有一厚度在為1Å至100Å的範圍內。 The composite substrate according to claim 5, wherein the first sublayer has a thickness in the range of 1Å to 100Å; the second sublayer has a thickness in the range of 1Å to 100Å; and the third sublayer The layer has a thickness in the range of 1 Å to 100 Å. 如請求項1所述的複合基板,其中該成核層包含由AlN、GaN、AltGa1-tN或AluInvGa1-u-vN所製成的單層,其中0≦t<1;0<u<1;0<v<1;以及該成核層具有一厚度在為10Å至10000Å的範圍內。 The composite substrate according to claim 1, wherein the nucleation layer comprises a single layer made of AlN, GaN, Al t Ga 1-t N or Al u In v Ga 1-uv N, wherein 0≦t<1;0<u<1;0<v<1; and the nucleation layer has a thickness in the range of 10Å to 10000Å. 如請求項1所述的複合基板,其中該阻障層具有超晶格(super lattice)結構,其由交互堆疊的一第一子層及一第二子層所組成,其中該第一子層與第二子層選自由AlN、GaN、AlGaN、AlGaInN、氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼及其組合所 組成的群組。 The composite substrate according to claim 1, wherein the barrier layer has a super lattice structure, which is composed of a first sublayer and a second sublayer alternately stacked, wherein the first sublayer And the second sublayer is selected from AlN, GaN, AlGaN, AlGaInN, silicon oxide, aluminum oxide, gallium oxide, silicon nitride, titanium nitride or boron nitride and combinations thereof The group formed. 一種半導體複合基板,包含:如請求項1至6任一項所述的複合基板;以及一III-V族材料,設置於該成核層上。 A semiconductor composite substrate, comprising: the composite substrate according to any one of claims 1 to 6; and a III-V group material disposed on the nucleation layer. 如請求項9所述的半導體複合基板,其中該III-V族材料包含氮化鎵、氮化硼、氮化鋁、氮化銦、氮化鋁鎵、氮化銦鎵、氮化鋁銦、氮化鋁銦鎵、砷化鎵或磷化銦。 The semiconductor composite substrate according to claim 9, wherein the III-V group material includes gallium nitride, boron nitride, aluminum nitride, indium nitride, aluminum gallium nitride, indium gallium nitride, aluminum indium nitride, Aluminum indium gallium nitride, gallium arsenide or indium phosphide. 一種複合基板之製造方法,包含:提供一基板;使用有機金屬氣相沈積法、分子束磊晶法、高溫爐管、化學氣相沈積法或物理氣相沈積法形成一阻障層在該基板上,其中所形成之該阻障層包含形成一第一子層在該基板上,該第一子層包含由氧化矽、氧化鋁或氧化鎵所製成的單層,以及形成一第二子層在該第一子層上,該第二子層包含由氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼所製成的單層;使用有機金屬氣相沈積法、物理氣相沈積法或分子束磊晶法形成一成核層在該阻障層上,該成核層包含鋁離子或鎵離子;以及 使用有機金屬氣相沈積法或分子束磊晶法形成一III-V族材料在該成核層上,其中當該成核層的鋁離子或鎵離子經該阻障層往該基板擴散時,該阻障層捕集(trap)從該成核層來的鋁離子或鎵離子。 A method for manufacturing a composite substrate includes: providing a substrate; forming a barrier layer on the substrate using metal organic vapor deposition, molecular beam epitaxy, high temperature furnace tube, chemical vapor deposition, or physical vapor deposition Above, wherein the barrier layer formed includes forming a first sub-layer on the substrate, the first sub-layer including a single layer made of silicon oxide, aluminum oxide or gallium oxide, and forming a second sub-layer The layer is on the first sub-layer, and the second sub-layer includes a single layer made of silicon oxide, aluminum oxide, gallium oxide, silicon nitride, titanium nitride, or boron nitride; an organometallic vapor deposition method is used , Physical vapor deposition or molecular beam epitaxy to form a nucleation layer on the barrier layer, the nucleation layer containing aluminum ions or gallium ions; and Use organometal vapor deposition or molecular beam epitaxy to form a III-V material on the nucleation layer, wherein when the aluminum ions or gallium ions of the nucleation layer diffuse to the substrate through the barrier layer, The barrier layer traps aluminum ions or gallium ions from the nucleation layer. 如請求項11所述的製造方法,其中該阻障層包含由氧化矽、氧化鋁、氧化鎵、氮化鈦或氮化硼所製成的單層,該單層具有一厚度為0.1Å至1000Å。 The manufacturing method according to claim 11, wherein the barrier layer comprises a single layer made of silicon oxide, aluminum oxide, gallium oxide, titanium nitride, or boron nitride, and the single layer has a thickness of 0.1 Å to 1000Å. 如請求項11所述的製造方法,其中該第一子層具有一厚度為1Å至100Å,且該第二子層具有一厚度為1Å至100Å。 The manufacturing method according to claim 11, wherein the first sub-layer has a thickness of 1 Å to 100 Å, and the second sub-layer has a thickness of 1 Å to 100 Å. 如請求項13所述的製造方法,其中形成該阻障層更包含:形成一第三子層在該第二子層上,其中該第三子層包含由氮化矽、氮化鈦或氮化硼所製成的單層,該第三子層具有一厚度為1Å至100Å。 The manufacturing method according to claim 13, wherein forming the barrier layer further comprises: forming a third sublayer on the second sublayer, wherein the third sublayer includes silicon nitride, titanium nitride, or nitrogen. A single layer made of boron oxide, the third sub-layer has a thickness of 1 Å to 100 Å. 如請求項11所述的製造方法,其中該阻障層具有一超晶格(super lattice)結構,其由交互堆疊的一第一子層及一第二子層所組成,其中該第一子層與第二子層選自由AlN、GaN、AlGaN、AlGaInN、氧化矽、氧化鋁、氧化鎵、氮化矽、氮化鈦或氮化硼及其 組合所組成的群組。 The manufacturing method according to claim 11, wherein the barrier layer has a super lattice structure composed of a first sublayer and a second sublayer alternately stacked, wherein the first sublayer The layer and the second sub-layer are selected from AlN, GaN, AlGaN, AlGaInN, silicon oxide, aluminum oxide, gallium oxide, silicon nitride, titanium nitride or boron nitride and The group formed by the combination.
TW109114385A 2020-04-29 2020-04-29 Composite substrate and manufacturing method thereof TWI727773B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109114385A TWI727773B (en) 2020-04-29 2020-04-29 Composite substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109114385A TWI727773B (en) 2020-04-29 2020-04-29 Composite substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI727773B true TWI727773B (en) 2021-05-11
TW202141567A TW202141567A (en) 2021-11-01

Family

ID=77036357

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109114385A TWI727773B (en) 2020-04-29 2020-04-29 Composite substrate and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI727773B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804035B (en) * 2021-05-28 2023-06-01 韓商艾維工程股份有限公司 Iii-n semiconductor structure and method of manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140327013A1 (en) * 2011-06-30 2014-11-06 Soitec Method for manufacturing a thick eptaxial layer of gallium nitride on a silicon or similar substrate and layer obtained using said method
US20180026098A1 (en) * 2015-09-08 2018-01-25 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using rare-earth oxide and/or rare-earth nitride diffusion barrier regions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140327013A1 (en) * 2011-06-30 2014-11-06 Soitec Method for manufacturing a thick eptaxial layer of gallium nitride on a silicon or similar substrate and layer obtained using said method
US20180026098A1 (en) * 2015-09-08 2018-01-25 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using rare-earth oxide and/or rare-earth nitride diffusion barrier regions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804035B (en) * 2021-05-28 2023-06-01 韓商艾維工程股份有限公司 Iii-n semiconductor structure and method of manufacturing same

Also Published As

Publication number Publication date
TW202141567A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
WO2021249291A1 (en) Light-emitting diode epitaxial wafer, growth method therefor, and light-emitting diode chip
KR20040104959A (en) Doped Group III-V Nitride Material, And Microelectronic Device And Device Precursor Structures Comprising Same
CN109786529B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
US20070114563A1 (en) Semiconductor device and method of fabricating the same
CN109346576B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN112701160B (en) Gallium nitride-based high-electron-mobility transistor epitaxial wafer and preparation method thereof
CN109860359B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
WO2023231566A1 (en) Semiconductor epitaxial structure and preparation method therefor, and semiconductor device
TWI727773B (en) Composite substrate and manufacturing method thereof
CN109346568B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109103312B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109273571B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109671817A (en) A kind of LED epitaxial slice and preparation method thereof
WO2021226867A1 (en) Ultraviolet led and fabricating method therefor
JP2007311464A (en) Compound semiconductor device and its manufacturing method
CN109473511B (en) Gallium nitride-based light emitting diode epitaxial wafer and growth method thereof
CN109920884B (en) Light emitting diode epitaxial wafer and growth method thereof
CN109686823B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109830582B (en) Light emitting diode epitaxial wafer and growth method thereof
CN109786522A (en) A kind of GaN base light emitting epitaxial wafer and preparation method thereof
CN113284947B (en) Semiconductor transistor epitaxial structure, preparation method thereof and semiconductor transistor
CN109860356A (en) A kind of GaN base light emitting epitaxial wafer and preparation method thereof
CN109473516A (en) A kind of gallium nitride based LED epitaxial slice and its growing method
CN115101413A (en) Preparation method and device of enhanced field effect transistor
CN109411575B (en) Light emitting diode epitaxial wafer and preparation method thereof