TWI720681B - Power converter with over temperature protection compensation - Google Patents
Power converter with over temperature protection compensation Download PDFInfo
- Publication number
- TWI720681B TWI720681B TW108140705A TW108140705A TWI720681B TW I720681 B TWI720681 B TW I720681B TW 108140705 A TW108140705 A TW 108140705A TW 108140705 A TW108140705 A TW 108140705A TW I720681 B TWI720681 B TW I720681B
- Authority
- TW
- Taiwan
- Prior art keywords
- primary
- voltage
- temperature
- control unit
- circuit
- Prior art date
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Protection Of Static Devices (AREA)
- Amplifiers (AREA)
Abstract
Description
本發明係有關一種具有過溫度保護補償的電源轉換器,尤指一種設置於轉換單元初級側的具有過溫度保護補償的電源轉換器。 The present invention relates to a power converter with over-temperature protection and compensation, in particular to a power converter with over-temperature protection and compensation arranged on the primary side of a conversion unit.
在電源轉換器的技術領域中,電源轉換器內部控制器的過溫度保護(Over Temperature Protection;OTP)機制一直都是不可或缺的。但是,無論在電源轉換器的輸入電壓為低電壓或高電壓,電源轉換器必須要到達一固定溫度以上,才能夠觸發過溫度保護的阻值。因此,電源轉換器在輸入電壓變化的情況下,會造成實際觸發過溫度保護機制的觸發點不同,如此將使得控制器延誤啟動過溫度保護機制,進而提高了電源轉換器損壞的風險。 In the technical field of power converters, the over temperature protection (OTP) mechanism of the internal controller of the power converter has always been indispensable. However, no matter whether the input voltage of the power converter is low voltage or high voltage, the power converter must reach a fixed temperature or higher to be able to trigger the resistance value of the over-temperature protection. Therefore, when the input voltage of the power converter changes, the actual trigger point of the over-temperature protection mechanism will be different. This will cause the controller to delay the activation of the over-temperature protection mechanism, thereby increasing the risk of damage to the power converter.
具體而言,由於電源轉換器在輸入電壓為低電壓或高電壓,時的轉換效率不同,或電源轉換器在過載時,使得過溫度保護的觸發點實際上會因為輸入電壓的不同或輸出電流的不同而有所差異。通常,在電源轉換器輸入電壓為高電壓,轉換效率好,使得能量的轉換所造成的熱損失少。反之,在電源轉換器輸入電壓為低電壓時,轉換效率較差,使得能量的轉換所造成的熱損 失較多。因此,會造成電源轉換器在上述狀況的差異之下,實際觸發過溫度保護機制的觸發點不同。 Specifically, because the conversion efficiency of the power converter is different when the input voltage is low or high, or the power converter is overloaded, the trigger point of the over-temperature protection is actually due to the difference in input voltage or output current. The difference varies. Generally, the input voltage of the power converter is high, and the conversion efficiency is good, so that the heat loss caused by the energy conversion is small. On the contrary, when the input voltage of the power converter is low, the conversion efficiency is poor, which makes the heat loss caused by the energy conversion Lose more. Therefore, the power converter will actually trigger the over-temperature protection mechanism at different trigger points under the above-mentioned difference.
尤其在安規IEC62368以後的規範中,限制電源轉換器在不正常的情況發生時,控制器塑膠外殼的最高表面溫度不得超過攝氏87度。因此,在上述規範,且電源轉換器輸入電壓為高電壓,或者輸出電流為過載時,很容易造成電源轉換器實際上已經過載了,但是過溫度保護機制卻並未啟動。而為了避免這樣的情況發生,可能必須將過溫度保護機制的觸發點設計在電源轉換器輸入電壓為低電壓的觸發點。但是若設計在此觸發點之下,而電源轉換器處於輸入電壓為高電壓時,卻是離實際上的過溫度保護機制的觸發點有一大段的誤差,使得過溫度保護機制失去意義。 Especially in the safety regulations after IEC62368, when the power converter is abnormal, the maximum surface temperature of the controller's plastic casing shall not exceed 87 degrees Celsius. Therefore, in the above-mentioned specifications, when the input voltage of the power converter is high, or the output current is overloaded, it is easy to cause the power converter to actually be overloaded, but the over-temperature protection mechanism is not activated. In order to avoid such a situation, it may be necessary to design the trigger point of the over-temperature protection mechanism at the trigger point where the input voltage of the power converter is low. However, if the design is below this trigger point and the power converter is at a high input voltage, there is a large margin of error from the actual trigger point of the over-temperature protection mechanism, making the over-temperature protection mechanism meaningless.
因此,如何設計出一種具有過溫度保護補償的電源轉換器,設置於轉換單元的初級側,且根據不同電壓值的輸入電壓或不同負載的輸出電流進行過溫度保護點位的補償,以動態地調整過溫度保護點,乃為本案發明人所欲行研究的重要課題。 Therefore, how to design a power converter with over-temperature protection compensation, which is set on the primary side of the conversion unit, and compensates the over-temperature protection points according to the input voltage of different voltage values or the output current of different loads, so as to dynamically Adjusting the temperature protection point is an important subject that the inventor intends to study.
為了解決上述問題,本發明係提供一種具有過溫度保護補償的電源轉換器,以克服習知技術的問題。因此,本發明之具有過溫度保護補償的電源轉換器,包括:主轉換單元,接收輸入電壓,且包括初級側,初級側耦接初級整流濾波電路。初級側控制單元,耦接初級側。初級偵測電路,耦接初級側控制單元,初級偵測電路包括:電阻,耦接初級整流濾波電路或主轉換單元。及分壓元件,耦接電阻。及過溫度調整線路,耦接初級側控制單元。其 中,初級側控制單元通過初級偵測電路得知初級電壓變化值,且初級側控制單元根據初級電壓變化值的變化而對應地提供電流變化值至過溫度調整線路;過溫度調整線路根據電流變化值而提供溫控電壓,使初級側控制單元根據溫控電壓判斷是否啟動過溫度保護。其中,分壓元件為分壓電阻或電容,且電阻與分壓元件之間的節點耦接初級側控制單元;電阻接收對應輸入電壓的偵測電壓,且根據偵測電壓而通過節點提供初級電壓變化值。 In order to solve the above-mentioned problems, the present invention provides a power converter with over-temperature protection compensation to overcome the problems of the prior art. Therefore, the power converter with over-temperature protection compensation of the present invention includes: a main conversion unit, which receives an input voltage, and includes a primary side, which is coupled to a primary rectifier filter circuit. The primary side control unit is coupled to the primary side. The primary detection circuit is coupled to the primary side control unit, and the primary detection circuit includes a resistor, which is coupled to the primary rectification filter circuit or the main conversion unit. And the voltage dividing element, coupled to the resistor. And the temperature adjustment circuit is coupled to the primary side control unit. its In this case, the primary side control unit learns the change value of the primary voltage through the primary detection circuit, and the primary side control unit correspondingly provides the current change value to the over temperature adjustment circuit according to the change of the primary voltage change value; the over temperature adjustment circuit changes according to the current change The value of the temperature control voltage is provided, so that the primary side control unit judges whether to activate the over-temperature protection according to the temperature control voltage. Among them, the voltage dividing element is a voltage dividing resistor or a capacitor, and the node between the resistor and the voltage dividing element is coupled to the primary side control unit; the resistor receives the detection voltage corresponding to the input voltage, and provides the primary voltage through the node according to the detection voltage Change value.
於一實施例中,初級整流濾波電路包括:初級整流電路,接收輸入電源。及初級濾波電路,耦接初級整流電路與初級側。其中,初級整流電路將輸入電壓整流為整流電壓,且初級濾波電路將整流電壓濾波為直流電壓。 In one embodiment, the primary rectification filter circuit includes: a primary rectification circuit, which receives the input power. And the primary filter circuit is coupled to the primary rectifier circuit and the primary side. Among them, the primary rectifier circuit rectifies the input voltage into a rectified voltage, and the primary filter circuit filters the rectified voltage into a DC voltage.
於一實施例中,初級偵測電路耦接初級濾波電路,且初級偵測電路根據直流電壓而提供初級電壓變化值;或者,初級偵測電路耦接初級整流電路,且初級偵測電路根據輸入電壓而提供初級電壓變化值。 In one embodiment, the primary detection circuit is coupled to the primary filter circuit, and the primary detection circuit provides the primary voltage change value according to the DC voltage; or, the primary detection circuit is coupled to the primary rectifier circuit, and the primary detection circuit is based on the input Voltage and provide the primary voltage change value.
於一實施例中,過溫度調整線路包括溫控電阻,溫控電阻根據環境溫度而產生溫控阻值,且電流變化值流過溫控阻值而產生溫控電壓。 In one embodiment, the over-temperature adjustment circuit includes a temperature-controlled resistor, the temperature-controlled resistor generates a temperature-controlled resistance value according to the ambient temperature, and the current change value flows through the temperature-controlled resistance value to generate a temperature-controlled voltage.
於一實施例中,初級側控制單元包括比較單元,且當比較單元判斷溫控電壓低於參考電壓時,初級側控制單元關閉主轉換單元,以啟動過溫度保護。 In one embodiment, the primary side control unit includes a comparison unit, and when the comparison unit determines that the temperature control voltage is lower than the reference voltage, the primary side control unit turns off the main conversion unit to activate the over-temperature protection.
於一實施例中,輸入電壓較高時,初級側控制單元所提供的電流變化值較高,且輸入電壓較低時,初級側控制單元所提供的電流變化值較低。 In one embodiment, when the input voltage is higher, the current change value provided by the primary-side control unit is higher, and when the input voltage is lower, the current change value provided by the primary-side control unit is lower.
於一實施例中,更包括:輔助繞組,耦接初級偵測電路與主轉換單元。其中,輔助繞組通過主轉換單元而得到輔助電壓,且初級偵測電路根據輔助電壓而提供初級電壓變化值。 In one embodiment, it further includes an auxiliary winding, which is coupled to the primary detection circuit and the main conversion unit. Wherein, the auxiliary winding obtains the auxiliary voltage through the main conversion unit, and the primary detection circuit provides the primary voltage change value according to the auxiliary voltage.
於一實施例中,初級偵測電路更包括:二極體,耦接電阻。其中,二極體限制偵測電壓的極性。 In one embodiment, the primary detection circuit further includes: a diode coupled to a resistor. Among them, the diode limits the polarity of the detection voltage.
為了解決上述問題,本發明係提供另一種具有過溫度保護補償的電源轉換器,以克服習知技術的問題。因此,本發明之具有過溫度保護補償的電源轉換器,包括:主轉換單元,包括初級側,初級側耦接初級整流濾波電路。初級側控制單元,耦接初級側。初級偵測電路,耦接初級側控制單元。及過溫度調整線路,耦接初級側控制單元。其中,初級側控制單元通過初級偵測電路得知對應輸入電壓的初級電壓變化值,且初級側控制單元根據初級電壓變化值而提供電流固定值至過溫度調整線路;過溫度調整線路根據輸入電壓的變化而對應地產生電阻變化值,且根據電流固定值與電阻變化值而提供溫控電壓,使初級側控制單元根據溫控電壓判斷是否啟動過溫度保護。 In order to solve the above-mentioned problems, the present invention provides another power converter with over-temperature protection compensation to overcome the problems of the prior art. Therefore, the power converter with over-temperature protection compensation of the present invention includes: a main conversion unit including a primary side, and the primary side is coupled to a primary rectifier filter circuit. The primary side control unit is coupled to the primary side. The primary detection circuit is coupled to the primary side control unit. And the temperature adjustment circuit is coupled to the primary side control unit. Among them, the primary side control unit learns the primary voltage change value corresponding to the input voltage through the primary detection circuit, and the primary side control unit provides a fixed current value to the over-temperature adjustment circuit according to the primary voltage change value; the over-temperature adjustment circuit is based on the input voltage The resistance change value is generated correspondingly to the change of, and the temperature control voltage is provided according to the fixed current value and the resistance change value, so that the primary side control unit judges whether to activate the over-temperature protection according to the temperature control voltage.
於一實施例中,過溫度調整線路包括:溫度補償線路,耦接初級側控制單元。及溫控電阻,耦接溫度補償線路。其中,溫度補償線路根據輸入電壓的變化而對應地產生電阻變化值,且溫控電阻根據環境溫度而產生溫控阻值;電流固定值流過電阻變化值與溫控阻值而產生溫控電壓。 In an embodiment, the over-temperature adjustment circuit includes: a temperature compensation circuit, which is coupled to the primary side control unit. And a temperature control resistor, coupled to the temperature compensation circuit. Among them, the temperature compensation circuit correspondingly generates a resistance change value according to the change of the input voltage, and the temperature control resistance generates a temperature control resistance value according to the ambient temperature; the fixed value of current flows through the resistance change value and the temperature control resistance value to generate a temperature control voltage .
於一實施例中,輸入電壓較高時,溫度補償線路所提供的電阻變化值較高,且輸入電壓較低時,溫度補償線路所提供的電阻變化值較低。 In one embodiment, when the input voltage is higher, the resistance change value provided by the temperature compensation circuit is higher, and when the input voltage is lower, the resistance change value provided by the temperature compensation circuit is lower.
於一實施例中,溫度補償線路包括:偵測電路,耦接初級整流濾波電路或主轉換單元。壓控開關,耦接偵測電路。控制單元,耦接壓控開關。及補償電阻,耦接控制單元。其中,偵測電路接收對應輸入電壓的偵測電壓,且根據偵測電壓而提供電壓變化值;壓控開關根據電壓變化值而提供控制訊號,且控制單元根據控制訊號而調整補償電阻的電阻變化值。 In one embodiment, the temperature compensation circuit includes a detection circuit coupled to the primary rectification filter circuit or the main conversion unit. The voltage control switch is coupled to the detection circuit. The control unit is coupled to the pressure control switch. And a compensation resistor, coupled to the control unit. Among them, the detection circuit receives the detection voltage corresponding to the input voltage, and provides a voltage change value according to the detection voltage; the voltage control switch provides a control signal according to the voltage change value, and the control unit adjusts the resistance change of the compensation resistor according to the control signal value.
於一實施例中,補償電阻包括:第一補償電阻,耦接初級側控制單元、溫控電阻及控制單元。及第二補償電阻,耦接初級側控制單元、溫控 電阻及控制單元。其中,控制單元根據控制訊號而控制第一補償電阻並聯或不並聯第二補償電阻,以調整電阻變化值。 In one embodiment, the compensation resistor includes: a first compensation resistor, coupled to the primary side control unit, the temperature control resistor, and the control unit. And the second compensation resistor, coupled to the primary side control unit and the temperature control Resistance and control unit. Wherein, the control unit controls the first compensation resistor to be connected in parallel or not in parallel to the second compensation resistor according to the control signal to adjust the resistance change value.
於一實施例中,溫度補償線路更包括:二極體,耦接偵測電路。其中,二極體限制偵測電壓的極性。 In one embodiment, the temperature compensation circuit further includes a diode coupled to the detection circuit. Among them, the diode limits the polarity of the detection voltage.
為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to have a better understanding of the technology, means and effects adopted by the present invention to achieve the intended purpose, please refer to the following detailed description and drawings of the present invention. I believe that the purpose, features and characteristics of the present invention can be obtained from this in depth and For specific understanding, however, the accompanying drawings are only provided for reference and illustration, and are not intended to limit the present invention.
100、100’:電源轉換器 100, 100’: Power converter
1:初級整流濾波電路 1: Primary rectifier filter circuit
12:初級整流電路 12: Primary rectifier circuit
14:初級濾波電路 14: Primary filter circuit
2:主轉換單元 2: Main conversion unit
22:功率開關 22: Power switch
3:次級整流濾波電路 3: Secondary rectifier filter circuit
4:控制模組 4: Control module
42、42’:初級側控制單元 42, 42’: Primary side control unit
422:比較單元 422: comparison unit
44、44’:初級偵測電路 44, 44’: Primary detection circuit
442:電阻 442: Resistance
444:分壓元件 444: voltage divider element
D:二極體 D: Diode
Rs:偵側電阻 Rs: Detection side resistance
46、46’:過溫度調整線路 46, 46’: Over-temperature adjustment circuit
462:溫度補償線路 462: temperature compensation circuit
462A:偵測電路 462A: Detection circuit
462A-1:電阻 462A-1: Resistance
462A-2:分壓元件 462A-2: Voltage divider element
462B:壓控開關 462B: Voltage control switch
462C:控制單元 462C: control unit
Q1:第一開關 Q1: The first switch
Q2:第二開關 Q2: The second switch
X:輸入端 X: input
Y:輸出端 Y: output
Z:控制端 Z: control end
462D:補償電阻 462D: Compensation resistor
Rc1:第一補償電阻 Rc1: The first compensation resistor
Rc2:第二補償電阻 Rc2: second compensation resistor
Rt:溫控電阻 Rt: temperature control resistance
48:次級側控制單元 48: Secondary side control unit
5:輔助繞組 5: auxiliary winding
200:負載 200: load
Vin:輸入電壓 Vin: input voltage
Vo:輸出電壓 Vo: output voltage
Vb:整流電壓 Vb: Rectified voltage
Vd:直流電壓 Vd: DC voltage
Va:輔助電壓 Va: auxiliary voltage
Vs:偵測電壓 Vs: Detection voltage
Vc:初級電壓變化值 Vc: Primary voltage change value
Vc1:電壓變化值 Vc1: Voltage change value
Vt:溫控電壓 Vt: temperature control voltage
Vr:參考電壓 Vr: Reference voltage
Vcc:工作電壓 Vcc: working voltage
Io:輸出電流 Io: output current
Ic:電流變化值 Ic: current change value
If:電流固定值 If: current fixed value
Ip:初級側電流 Ip: Primary side current
Ss:切換訊號 Ss: Switch signal
Sf:回授訊號 Sf: Feedback signal
St:過溫度訊號 St: Over temperature signal
Sc:控制訊號 Sc: control signal
A、B:節點 A, B: Node
圖1為本發明具有過溫度保護補償的電源轉換器第一實施例之電路方塊圖;圖2A為本發明初級偵測電路偵測方式第一實施例之電路方塊圖;圖2B為本發明初級偵測電路偵測方式第二實施例之電路方塊圖;圖2C為本發明初級偵測電路偵測方式第三實施例之電路方塊圖;圖2D為本發明初級偵測電路偵測方式第四實施例之電路方塊圖;圖3A為本發明初級偵測電路第一實施例之電路圖;圖3B為本發明初級偵測電路第二實施例之電路圖; 圖4為本發明過溫度調整線路與初級側控制單元之過溫度比較電路圖;圖5為本發明具有過溫度保護補償的電源轉換器第二實施例之電路方塊圖;及圖6為本發明溫度補償線路的電路方塊圖。 Fig. 1 is a circuit block diagram of the first embodiment of a power converter with over-temperature protection compensation according to the present invention; Fig. 2A is a circuit block diagram of the first embodiment of the primary detection circuit detection method of the present invention; Fig. 2B is a primary circuit diagram of the present invention The circuit block diagram of the second embodiment of the detection method of the detection circuit; FIG. 2C is the circuit block diagram of the third embodiment of the primary detection circuit detection method of the present invention; FIG. 2D is the fourth embodiment of the primary detection circuit detection method of the present invention The circuit block diagram of the embodiment; FIG. 3A is the circuit diagram of the first embodiment of the primary detection circuit of the present invention; FIG. 3B is the circuit diagram of the second embodiment of the primary detection circuit of the present invention; 4 is a circuit diagram of the over-temperature comparison circuit of the over-temperature adjustment circuit and the primary side control unit of the present invention; FIG. 5 is a circuit block diagram of the second embodiment of the power converter with over-temperature protection compensation according to the present invention; and FIG. 6 is the temperature of the present invention The circuit block diagram of the compensation circuit.
茲有關本發明之技術內容及詳細說明,配合圖式說明如下:請參閱圖1為本發明具有過溫度保護補償的電源轉換器第一實施例之電路方塊圖。電源轉換器100接收輸入電壓Vin,且轉換輸入電壓Vin為輸出電壓Vo對負載200供電。其中,電源轉換器100為可接受寬輸入電壓Vin的電源轉換器100,其可接受的輸入電壓Vin範圍為90V~264V。電源轉換器100包括初級整流濾波電路1、主轉換單元2、次級整流濾波電路3及控制模組4。主轉換單元2的初級側耦接初級整流濾波電路1,且次級側耦接次級整流濾波電路3。控制模組4控制主轉換單元2將輸入電壓Vin由初級整流濾波電路1、主轉換單元2及次級整流濾波電路3的路徑轉換為輸出電壓Vo,且由次級整流濾波電路3提供輸出電壓Vo與輸出電流Io至負載200。初級整流濾波電路1包括初級整流電路12與初級濾波電路14,且初級濾波電路14耦接初級整流電路12與主轉換單元2的初級側。初級整流電路12將輸入電壓Vin整流為整流電壓Vb,且初級濾波電路14將整流電壓Vb濾波為直流電壓Vd。
The technical content and detailed description of the present invention are described as follows in conjunction with the drawings: Please refer to FIG. 1 for a circuit block diagram of the first embodiment of the power converter with over-temperature protection compensation of the present invention. The
控制模組4包括初級側控制單元42、初級偵測電路44、過溫度調整線路46及次級側控制單元48,且初級側控制單元42耦接主轉換單元2的功率開關22,以提供切換訊號Ss控制主轉換單元2將直流電壓Vd轉換為輸出電壓
Vo。次級側控制單元48耦接次級整流濾波電路3,且根據輸出電壓Vo而提供回授訊號Sf至初級側控制單元42,使初級側控制單元42根據回授訊號Sf而調整切換訊號Ss的佔空比,進而穩定輸出電壓Vo的電壓值。其中,次級側控制單元48與初級側控制單元42之間可加裝耦合單元(圖未示,例如但不限於光耦合器),以使初級側控制單元42與次級側控制單元48之間訊號的傳輸具有電氣隔離的效果。初級偵測電路44耦接初級側控制單元42,且初級側控制單元42通過初級偵測電路44得知對應於輸入電壓Vin高低變化)的初級電壓變化值Vc(由於包括了不同的偵測方式,因此輸入電壓Vin以虛線表示)。過溫度調整線路46耦接初級側控制單元42,且初級側控制單元42根據初級電壓變化值Vc而對應地提供電流變化值Ic至過溫度調整線路46。過溫度調整線路46根據電流變化值Ic而提供溫控電壓Vt至初級側控制單元42,使初級側控制單元42能夠根據溫控電壓Vt判斷是否啟動過溫度保護。
The
具體而言,初級側控制單元42所提供的電流變化值Ic的高低是隨著初級電壓變化值Vc高低的變動而變動,且電源轉換器100具有兩種可影響初級電壓變化值Vc的參數(以虛線表示)。其中之一為:初級電壓變化值Vc的高低是隨著輸入電壓Vin的高低的變動而變動。當輸入電壓Vin較高時,初級側控制單元42所提供該電流變化值Ic較高,且輸入電壓Vin較低時,初級側控制單元42所提供的電流變化值Ic較低。另一種為:初級電壓變化值Vc的高低是隨著輸出電流Io的變動而變動(意即,隨著負載200為輕載、重載或過載而變化)。當輸出電流Io較高時,初級偵測電路44所提供的初級電壓變化值Vc較高,使得初級側控制單元42所提供電流變化值Ic較高。當輸出電流Io較低時,初級偵測電路44所提供的初級電壓變化值Vc較低,使得初級側控制單元42所提供的電流變化值Ic較低。值得一提,於本發明之一實施例中,上述輸出電流Io的舉例可以是相反的。意即,當輸出電流Io較高時,初級偵測電路44所提供的初級電壓變化值
Vc較高,使得初級側控制單元42所提供電流變化值Ic較低,依此類推,在此不再加以贅述。
Specifically, the current change value Ic provided by the primary-
過溫度調整線路46根據電流變化值Ic與過溫度調整線路46所在位置的環境溫度而提供溫控電壓Vt至初級側控制單元42。因此,初級側控制單元42啟動過溫度保護的過溫度保護點是隨著輸入電壓Vin的高低而變動,或者初級側控制單元42啟動過溫度保護的過溫度保護點是隨著輸出電流Io的高低而變動。所以,通過上述補償的方式,可避免電源轉換器100在不同輸入電壓Vin或不同輸出電流Io的條件下,因效率的差異而導致過溫度保護無法正常觸發,進而避免延誤過溫度保護的風險。
The
進一步而言,本發明之具有過溫度保護補償的電源轉換器100由於是根據輸入電壓Vin或輸出電流Io的高低而補償過溫度保護的過溫度保護點,因此,只要可得知輸入電壓Vin或輸出電流Io高低的偵測方式,皆可應用於本發明之中。於本發明之一實施例中,至少包括四種偵測方式而得知輸入電壓Vin的高低,將於後文有進一步地說明。
Furthermore, the
請參閱圖2A為本發明初級偵測電路偵測方式第一實施例之電路方塊圖、圖2B為本發明初級偵測電路偵測方式第二實施例之電路方塊圖、圖2C為本發明初級偵測電路偵測方式第三實施例之電路方塊圖及圖2D為本發明初級偵測電路偵測方式第四實施例之電路方塊圖,復配合參閱圖1。如圖2A所示,初級偵測電路44耦接初級濾波電路14,且初級偵測電路44根據直流電壓Vd而提供初級電壓變化值Vc。當輸入電壓Vin高低發生變化時,初級濾波電路14上所儲存的直流電壓Vd的電壓值會隨著輸入電壓Vin的高低而改變。因此,輸入電壓Vin高低的變化可通過偵測初級濾波電路14上的直流電壓Vd而得知。如圖2B所示,初級偵測電路44耦接初級整流電路12,且初級偵測電路44根據輸入電壓Vin而提供初級電壓變化值Vc。當輸入電壓Vin高低發生變化時,初級偵測電路
通過直接偵測輸入電壓Vin可以精準地得知輸入電壓Vin高低的變化,進而提供較為精確的初級電壓變化值Vc。
Please refer to FIG. 2A for the circuit block diagram of the first embodiment of the primary detection circuit detection method of the present invention, FIG. 2B is the circuit block diagram of the second embodiment of the primary detection circuit detection method of the present invention, and FIG. 2C is the primary circuit diagram of the present invention The circuit block diagram of the third embodiment of the detection circuit detection method and FIG. 2D are the circuit block diagrams of the fourth embodiment of the primary detection circuit detection method of the present invention. Please refer to FIG. 1 for further cooperation. As shown in FIG. 2A, the
如圖2C所示,電源轉換器100更包括輔助繞組5。輔助繞組5耦接主轉換單元2的變壓器,且通過電磁耦合的方式獲得輔助電壓Va。初級偵測電路44耦接輔助繞組5,且根據輔助電壓Va而提供初級電壓變化值Vc。當輸入電壓Vin高低發生變化時,輔助繞組5所獲得的輔助電壓Va的電壓值會隨著輸入電壓Vin的高低而改變。因此,輸入電壓Vin高低的變化可通過偵測輔助繞組5上的輔助電壓Va而得知。而且,當輸出電流Io高低發生變化時,輔助繞組5所獲得的輔助電壓Va的電壓的佔空比(Duty Cycle)會隨著輸出電流Io的高低而改變。因此,輸出電流Io高低的變化可通過偵測輔助繞組5上的輔助電壓Va而得知。如圖2D所示,初級偵測電路44耦接主轉換單元2的功率開關22至接地點的路徑上,且初級偵測電路44根據由功率開關22流至接地點的初級側電流Ip而提供初級電壓變化值Vc。當輸入電壓Vin高低發生變化時,初級側電流Ip的變化會反比於輸入電壓Vin高低的變化。因此,輸入電壓Vin高低的變化可通過偵測流過初級偵測電路44上的初級側電流Ip而得知。而且,當輸出電流Io高低發生變化時,會隨著輸出電流Io的高低而改變。因此,輸出電流Io高低的變化可通過偵測初級側電流Ip的變化而得知。上述圖2C~2D的偵測方式可同時適用於偵測輸入電壓Vin的高低或輸出電流Io的高低,因此初級側控制單元42要根據何者做為來源,可根據實際電路狀況所決定。
As shown in FIG. 2C, the
由於初級偵測電路44至少包括上述圖2A~2D的偵測方式,因此其內部的電路必須因應上述的偵測方式而有所不同。請參閱圖3A為本發明初級偵測電路第一實施例之電路圖、圖3B為本發明初級偵測電路第二實施例之電路圖。如圖3A所示,初級偵測電路44包括電阻442與分壓元件444。電阻442耦接初級整流濾波電路1或該主轉換單元2(請參閱圖2A~2C的耦接關係),且分壓元
件444耦接電阻442。電阻442與分壓元件444之間的節點A耦接初級側控制單元42,且電阻442接收對應輸入電壓Vin的偵測電壓Vs(請參閱圖2A~2C,其電壓值意即為輸入電壓Vin、直流電壓Vd或輔助電壓Va,且輔助電壓Va的電壓的佔空比響應輸出電流Io的變化)。其電壓值經過電阻442與分壓元件444分壓後,於節點A提供初級電壓變化值Vc至初級側控制單元42。其中,分壓元件444可以為分壓電阻或電容。當分壓元件444為分壓電阻時,元件成本較為便宜,且動態響應較佳。當分壓元件444為電容時,其具有能量儲存的功能,因此相較於分壓電阻更能穩定初級電壓變化值Vc的數值,但動態響應較差。其中,圖3A的應用適用於上述圖2A~2C的實施例。
Since the
初級偵測電路44更可包括二極體D(以虛線表示),且二極體D耦接電阻442。二極體D用以限制偵測電壓Vs的極性,以避免初級電壓變化值Vc產生錯誤極性的電壓。具體而言,由於輸入電壓Vin與輔助電壓Va可能會有負電壓。當為負電壓時,所產生的初級電壓變化值Vc的數值為負值,其有可能會造成初級側控制單元42無法接受負電壓而損壞(若初級側控制單元42本身具有限制初級電壓變化值Vc極性的功能,則不在此限)。因此,必須要使用二極體D來限制偵測電壓Vs的極性,以避免上述狀況發生。其中,二極體D的應用特別適用於上述圖2B、2C的實施例。
The
如圖3B所示,初級偵測電路44’包括偵側電阻Rs。偵側電阻Rs的一端耦接功率開關22,另一端耦接接地點,且偵側電阻Rs的兩端分別初級側控制單元42的兩個不同端點。由於初級側電流Ip的變化會正比於輸入電壓Vin高低的變化,因此當初級側電流Ip流過偵側電阻Rs時,偵側電阻Rs兩端的壓降(即為初級電壓變化值Vc)也會隨之產生變化。而且,初級側電流Ip的電流的佔空比響應輸出電流Io的變化。因此,初級側控制單元42可通過偵側電阻Rs兩端的壓降
得知輸入電壓Vin高低的變化或輸出電流Io高低的變化。其中,偵側電阻Rs的應用適用於上述圖2D的實施例。
As shown in Fig. 3B, the primary detection circuit 44' includes a detection side resistor Rs. One end of the detection side resistance Rs is coupled to the
請參閱圖4為本發明過溫度調整線路與初級側控制單元之過溫度比較電路圖,復配合參閱圖1~3B。過溫度調整線路46包括溫控電阻Rt(例如但不限於,負溫度係數電阻),且溫控電阻Rt根據所在位置的環境溫度而產生溫控阻值。當環境溫度越高時,溫控阻值越小,且當環境溫度越低時,溫控阻值越大。當電流變化值Ic流過溫控電阻Rt時,會在溫控電阻Rt兩端產生壓降,其壓降為溫控電壓Vt。初級側控制單元42包括比較單元422,且比較單元422的其中一輸入端接收溫控電壓Vt,比較單元422的另一輸入端接收參考電壓Vr。比較單元422比較溫控電壓Vt與參考電壓Vr而判斷是否提供過溫度訊號St,以使初級側控制單元42根據是否收到過溫度訊號St而關斷功率開關22,進而關閉主轉換單元2而提供過溫度保護。
Please refer to FIG. 4 for the circuit diagram of the over-temperature comparison circuit between the over-temperature adjustment circuit and the primary side control unit of the present invention, and refer to FIGS. 1 to 3B for the complex cooperation. The
具體而言,由於電流變化值Ic是隨著輸入電壓Vin或輸出電流Io的高低而有所變動,且溫控阻值是隨著環境溫度而改變,使得溫控電壓Vt同時會隨著輸入電壓Vin與環境溫度而變動。然後,再利用固定電壓值的參考電壓Vr比較溫控電壓Vt即可使初級側控制單元42得知是否需啟動過溫度保護。其中,參考電壓Vr的數值即為過溫度保護的點位。請參閱圖1~4,當輸入電壓Vin較高(例如但不限於,264V)時,圖2A~2C偵測方式所得到的初級電壓變化值Vc的電壓值較高,使得初級側控制單元42根據較高電壓值的初級電壓變化值Vc而產生較高電流值的電流變化值Ic。當輸入電壓Vin較低(例如但不限於,90V)時,圖2A~2C偵測方式所得到的初級電壓變化值Vc的電壓值較低,使得初級側控制單元42根據較低電壓值的初級電壓變化值Vc而產生較低電流值的電流變化值Ic。
Specifically, since the current change value Ic changes with the input voltage Vin or the output current Io, and the temperature control resistance changes with the ambient temperature, the temperature control voltage Vt will also change with the input voltage Vin varies with the ambient temperature. Then, the reference voltage Vr of a fixed voltage value is used to compare the temperature control voltage Vt to enable the primary
在環境溫度為定值的情況下(意即,溫控阻值為定值),輸入電壓Vin為264V時,初級側控制單元42所獲得的溫控電壓Vt較輸入電壓Vin為90V時還來的高,使得輸入電壓Vin為264V時的溫控電壓Vt的電壓值離過溫度保護點位(意即,參考電壓Vr)較輸入電壓Vin為90V時還要來的遠。因此,若在環境溫度變動的情況下,輸入電壓Vin為264V時需要較高的環境溫度(相對於輸入電壓Vin為90V)才能觸發過溫度保護。值得一提,在輸入電壓為90V時,洽與上述輸入電壓為264V時相反,在此不再加以贅述。此外,初級側控制單元42所提供的電流變化值Ic可為根據輸入電壓Vin線性變化而線性變化的數值(意即,電流變化值Ic的曲線正比於輸入電壓Vin線性變化的曲線),但也可為根據輸入電壓Vin線性變化而分段改變的數值(例如但不限於,改變的點位為90V、170V、264V),其可根據初級側控制單元42所設定的解析度而調整。
When the ambient temperature is a fixed value (that is, the temperature control resistance value is a fixed value), when the input voltage Vin is 264V, the temperature control voltage Vt obtained by the primary
上述相同的例子應用在圖3B的實施例時,由於初級側電流Ip的變化會正比於輸入電壓Vin高低的變化,因此輸入電壓Vin較高時,初級側電流Ip會較高。較高的初級側電流Ip會產生電壓值較高的初級電壓變化值Vc(意即,偵側電阻Rs兩端的壓降較高)。所以應用在圖3B的實施例時,初級側控制單元42會根據電壓值較高的初級電壓變化值Vc而提供較高電流值的電流變化值Ic(相對於輸入電壓Vin為90V),反之則提供較低電流值的電流變化值Ic。值得一提,後續的保護控制則與上述的實施例相同,在此不再加以贅述。此外,上述相同的例子應用在偵測輸出電流Io高低的實施例時,電流變化值Ic的變化正比於輸出電流Io的高低,其相似於上述輸入電壓Vin高低的差異,在此不再加以贅述。
When the same example described above is applied to the embodiment of FIG. 3B, since the change of the primary side current Ip will be proportional to the change of the input voltage Vin, when the input voltage Vin is higher, the primary side current Ip will be higher. A higher primary side current Ip will produce a higher primary voltage change value Vc (that is, a higher voltage drop across the detection side resistor Rs). Therefore, when applied to the embodiment of FIG. 3B, the primary
以圖4的電路搭配圖3A的電路為示意性的範例(意即,偵測輸入電壓Vin的高低),假設電源轉換器100外殼溫度設定在90度時初級側控制單元42提供過溫度保護,且過溫度保護的電壓為0.5V(意即,參考電壓為0.5V)。在此條件下,假設輸入電壓Vin為90V時,溫控電阻Rt的溫控阻值為1歐姆,且輸入
電壓Vin為264V時,溫控電阻Rt的溫控阻值為2歐姆。在輸入電壓Vin為90V時,初級側控制單元42根據初級電壓變化值Vc得知輸入電壓Vin為90V,且提供500mA的電流變化值Ic至溫控電阻Rt。此時,若電源轉換器100外殼溫度到達90度時,溫控電阻Rt與電流變化值Ic所產生的溫控電壓Vt即為0.5V(1歐姆*500mA)。因此,初級側控制單元42即提供過溫度保護。在輸入電壓Vin為264V時,初級側控制單元42根據初級電壓變化值Vc得知輸入電壓Vin為264V,且提供250mA的電流變化值Ic至溫控電阻Rt。此時,若電源轉換器100外殼溫度到達90度時,溫控電阻Rt與電流變化值Ic所產生的溫控電壓Vt即為0.5V(2歐姆*250mA)。因此,初級側控制單元42即提供過溫度保護。
Taking the circuit of FIG. 4 and the circuit of FIG. 3A as a schematic example (that is, detecting the level of the input voltage Vin), it is assumed that the primary-
上述同樣範例應用在初級電壓變化值Vc的高低隨著輸出電流Io的變動而變動的情況下,在輸出電流Io為過載時(通過佔空比而得知),初級側控制單元42根據初級電壓變化值Vc得知輸出電流Io為過載。此時,初級側控制單元42內部設定延遲時間。在輸出電流Io為過載,且超過延遲時間後,初級側控制單元42即將電流變化值Ic變更為200mA。由於在過載的情況,溫控電阻Rt的阻值必定會小於2歐姆(因為環境溫度升高,溫控電阻Rt的阻值變小)。因此,溫控電阻Rt與電流變化值Ic(假設過載時的溫控電阻Rt為1.5歐姆)所產生的溫控電壓Vt必定會小於過溫度保護點的0.5V(1.5歐姆*200mA)。因此,初級側控制單元42即提供過溫度保護。
The same example above is applied when the primary voltage change value Vc varies with the output current Io. When the output current Io is overloaded (known by the duty cycle), the primary-
請參閱圖5為本發明具有過溫度保護補償的電源轉換器第二實施例之電路方塊圖,復配合參閱圖1~4。本實施例與圖1的第一實施例差異在於,初級側控制單元42’根據初級電壓變化值Vc而產生電流固定值If,且提供電流固定值If至過溫度調整線路46’。意即,電流固定值If不會隨著輸入電壓Vin的電壓值變動而變動。過溫度調整線路46’除了具有根據所在位置的環境溫度而產生溫控阻值外,更具有根據輸入電壓Vin的電壓值高低而產生阻值的變化的電阻變 化值。過溫度調整線路46’根據電流固定值If與電阻變化值而提供溫控電壓Vt至初級側控制單元42’,使初級側控制單元42’能夠根據溫控電壓Vt判斷是否啟動過溫度保護。 Please refer to FIG. 5 for the circuit block diagram of the second embodiment of the power converter with over-temperature protection compensation according to the present invention, and for further cooperation, refer to FIGS. 1 to 4. The difference between this embodiment and the first embodiment in FIG. 1 is that the primary side control unit 42' generates a fixed current value If according to the primary voltage change value Vc, and provides the fixed current value If to the over-temperature adjustment circuit 46'. That is, the fixed current value If does not change with the change in the voltage value of the input voltage Vin. In addition to the temperature control resistance value generated by the over-temperature adjustment circuit 46' according to the ambient temperature at the location, it also has a resistance change that changes the resistance value according to the voltage value of the input voltage Vin. 化值。 The value. The over temperature adjustment circuit 46' provides a temperature control voltage Vt to the primary side control unit 42' according to the current fixed value If and the resistance change value, so that the primary side control unit 42' can determine whether to activate the over temperature protection according to the temperature control voltage Vt.
具體而言,過溫度調整線路46’包括溫度補償線路462與溫控電阻Rt,且溫度補償線路462耦接初級側控制單元42’與溫控電阻Rt。溫控電阻Rt與圖4的實施例相同,其根據所在位置的環境溫度而產生溫控阻值,且溫度補償線路462根據輸入電壓Vin的變化而對應地產生電阻變化值。當輸入電壓Vin較高時(例如但不限於,264V),溫度補償線路462所提供的電阻變化值較高,且輸入電壓Vin較低時(例如但不限於,264V),溫度補償線路462所提供的電阻變化值較低。當電流固定值If流過過溫度調整線路46’時,會在溫度補償線路462產生第一溫控電壓(意即,第一溫控電壓即為電阻變化值與電流固定值If的乘積),且在溫控電阻Rt兩端產生第二溫控電壓。第一溫控電壓加上第二溫控電壓即為溫控電壓Vt。然後,初級側控制單元42’根據溫控電壓Vt判斷是否啟動過溫度保護。
Specifically, the over-temperature adjustment circuit 46' includes a
值得一提,於本發明之一實施例中,溫度補償線路462不限定如圖5般的耦接方式,其可耦接於初級側控制單元42’與溫控電阻Rt之間,或耦接溫控電阻Rt與接地點之間。此外,於本發明之一實施例中,圖5第二實施例的電源轉換器100’未敘明的電路結構及控制方式同於圖1,且同樣適用圖2A~2D的初級電壓變化值Vc的偵測方式,以及初級偵測電路44的內部結構同樣適用圖3A~3B的電路結構,在此不再加以贅述。
It is worth mentioning that, in an embodiment of the present invention, the
請參閱圖6為本發明溫度補償線路的電路方塊圖,復配合參閱圖1~5。溫度補償線路462包括偵測電路462A、壓控開關462B、控制單元462C及補償電阻462D。偵測電路462A的一端耦接初級整流濾波電路1或主轉換單元2,且另一端耦接壓控開關462B的一端。壓控開關462B的另一端耦接工作電壓
Vcc與控制單元462C的一端,且控制單元462C的另一端耦接補償電阻462D、初級側控制單元42’及溫控電阻Rt。其中,初級側控制單元42’與溫控電阻Rt的耦接位置可相互調換,且由於溫度補償線路462可耦接溫控電阻Rt與接地點之間的關係,補償電阻462D的兩端也可分別耦接溫控電阻Rt與接地點。
Please refer to FIG. 6 for the circuit block diagram of the temperature compensation circuit of the present invention, and refer to FIGS. 1 to 5 for complex cooperation. The
具體而言,偵測電路462A的電路結構可以如同圖3A的電路結構。電阻462A-1同於電阻442,且分壓元件462A-2同於分壓元件444。電阻462A-1接收對應輸入電壓Vin的偵測電壓Vs(請參閱圖2A~2C,其電壓值意即為輸入電壓Vin、直流電壓Vd或輔助電壓Va,其中輔助電壓Va可以由輔助繞組耦接主轉換單元2變壓器的初級側或次級側繞組所獲得),且電阻462A-1與分壓元件462A-2之間的節點B提供電壓變化值Vc1至壓控開關462B。工作電壓Vcc與電壓變化值Vc1的數值差異而使壓控開關462B導通或不導通,以提供控制訊號Sc至控制單元462C。值得一提,溫度補償線路482也可如同圖3A包括二極體D(以虛線表示),其耦接於電阻482A-1,且功效如同圖3A,在此不再加以贅述。此外,工作電壓Vcc可以為外部提供的電壓(例如但不限於,利用額外的電源供應器所提供的電壓)或者由電源轉換器內部自我提供的電壓(例如但不限於,利用額外的輔助繞組通過耦接主轉換單元2而產生的電壓)。
Specifically, the circuit structure of the
控制單元462C包括第一開關Q1與第二開關Q2,且第一開關Q1的控制端Z耦接壓控開關462B,以接收控制訊號Sc。第二開關Q2的輸出端Y與控制端Z耦接第一開關Q1的輸入端X,且第二開關Q2的輸入端X與輸出端Y耦接補償電阻462D。補償電阻462D包括第一補償電阻Rc1與第二補償電阻Rc2,且第一補償電阻Rc1的一端耦接第二開關Q2的輸出端Y。第二補償電阻Rc2的一端耦接第二開關Q2的輸入端X,且第二補償電阻Rc2的另一端耦接第一補償電阻Rc1的另一端。控制單元462C根據控制訊號Sc而控制第一補償電阻Rc1並聯或不並聯第二補償電阻Rc2,以調整補償電阻462D的電阻變化值。
The
進一步而言,當輸入電壓Vin的電壓值較高時(例如但不限於,264V),會在B點產生較高電壓值的電壓變化值Vc1。較高電壓值的電壓變化值Vc1會使得壓控開關462B導通而提供低準位的控制訊號Sc(意即,接地點電壓值的控制訊號Sc)。低準位的控制訊號Sc會使得控制單元462C的第一開關Q1不導通,進而使得第二開關Q2也不導通。由於第二開關Q2不導通,使得第一補償電阻Rc1無法並聯第二補償電阻Rc2,因此使補償電阻462D提供第一補償電阻Rc1的電阻值的電阻變化值。當輸入電壓Vin的電壓值較低時(例如但不限於,90V),會在B點產生較低電壓值的電壓變化值Vc1。較低電壓值的電壓變化值Vc1會使得壓控開關462B不導通而提供高準位的控制訊號Sc(意即,工作電壓Vcc電壓值的控制訊號Sc)。高準位的控制訊號Sc會使得控制單元462C的第一開關Q1導通,進而使得第二開關Q2也導通。由於第二開關Q2的導通,使得第一補償電阻Rc1並聯第二補償電阻Rc2,因此使補償電阻462D提供第一補償電阻Rc1並聯第二補償電阻Rc2的電阻值的電阻變化值。
Furthermore, when the voltage value of the input voltage Vin is relatively high (for example, but not limited to, 264V), a voltage change value Vc1 with a relatively high voltage value will be generated at point B. The higher voltage value of the voltage change value Vc1 will turn on the voltage-controlled
復配合參閱圖4~5,初級側控制單元42’內部的電路結構同於圖4。在環境溫度為定值的情況下(意即,溫控阻值為定值),輸入電壓Vin為264V時,電阻變化值較輸入電壓Vin為90V時還大,因此電流固定值If與溫控電阻Rt、電阻變化值的乘積較大,使得所獲得的溫控電壓Vt較輸入電壓Vin為90V時還來的高。所以,輸入電壓Vin為264V時的溫控電壓Vt的電壓值離過溫度保護點位(意即,參考電壓Vr)較輸入電壓Vin為90V時還要來的遠。因此,若在環境溫度變動的情況下,輸入電壓Vin為264V時需要較高的環境溫度(相對於輸入電壓Vin為90V)才能觸發過溫度保護。值得一提,在輸入電壓為90V時,洽與上述輸入電壓為264V時相反,在此不再加以贅述。此外,由於圖5實施例的初級側控制單元42’可使用傳統的控制器,其利用根據輸入電壓Vin電壓值高低而產生不同電阻變化值的溫度補償線路462,即可產生過溫度保護點隨著輸入電壓的
不同而變動之特點。所以,通過上述補償的方式,同樣可避免電源轉換器100在不同輸入電壓Vin的條件下,因效率的差異而導致過溫度保護無法正常觸發,進而避免延誤過溫度保護的風險。
Refer to Figures 4 to 5 for the complex coordination. The internal circuit structure of the primary side control unit 42' is the same as that shown in Figure 4. When the ambient temperature is a fixed value (that is, the temperature control resistance value is a fixed value), when the input voltage Vin is 264V, the resistance change value is larger than when the input voltage Vin is 90V, so the fixed current value If and temperature control The product of the resistance Rt and the resistance change value is large, so that the obtained temperature control voltage Vt is higher than when the input voltage Vin is 90V. Therefore, the voltage value of the temperature control voltage Vt when the input voltage Vin is 264V is farther from the over-temperature protection point (that is, the reference voltage Vr) than when the input voltage Vin is 90V. Therefore, if the ambient temperature fluctuates, when the input voltage Vin is 264V, a higher ambient temperature (90V relative to the input voltage Vin) is required to trigger the over-temperature protection. It is worth mentioning that when the input voltage is 90V, it is the opposite of the above-mentioned input voltage of 264V, which will not be repeated here. In addition, since the primary-side control unit 42' of the embodiment of FIG. 5 can use a conventional controller, it uses the
綜上所述,本發明的實施例的主要優點與功效在於,本發明之具有過溫度保護補償的電源轉換器由於是根據輸入電壓的高低或輸出電流的高低而補償過溫度保護的過溫度保護點。因此,初級側控制單元啟動過溫度保護的過溫度保護點是隨著輸入電壓的高低或輸出電流的高低而變動。所以,通過上述補償的方式,可避免電源轉換器在不同輸入電壓或不同輸出電流的條件下,因效率的差異而導致過溫度保護無法正常觸發,進而避免延誤過溫度保護的風險。 In summary, the main advantages and effects of the embodiments of the present invention are that the power converter with over-temperature protection compensation of the present invention compensates for the over-temperature protection of the over-temperature protection according to the level of the input voltage or the level of the output current. point. Therefore, the over-temperature protection point of the primary-side control unit to activate the over-temperature protection changes with the level of the input voltage or the level of the output current. Therefore, through the above compensation method, the over-temperature protection cannot be triggered normally due to the difference in efficiency under the conditions of different input voltages or different output currents of the power converter, thereby avoiding the risk of delaying the over-temperature protection.
惟,以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包括於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。此外,在申請專利範圍和說明書中提到的特徵可以分別單獨地或按照任何組合方式來實施。 However, the above are only detailed descriptions and drawings of the preferred embodiments of the present invention. However, the features of the present invention are not limited to these, and are not intended to limit the present invention. The full scope of the present invention should be referred to the following application The scope of the patent shall prevail. All embodiments that conform to the spirit of the scope of the patent application of the present invention and similar variations should be included in the scope of the present invention. Anyone familiar with the art in the field of the present invention can easily think of it. Changes or modifications can be covered in the following patent scope of this case. In addition, the features mentioned in the scope of the patent application and the specification can be implemented individually or in any combination.
100:電源轉換器 100: power converter
1:初級整流濾波電路 1: Primary rectifier filter circuit
12:初級整流電路 12: Primary rectifier circuit
14:初級濾波電路 14: Primary filter circuit
2:主轉換單元 2: Main conversion unit
22:功率開關 22: Power switch
3:次級整流濾波電路 3: Secondary rectifier filter circuit
4:控制模組 4: Control module
42:初級側控制單元 42: Primary side control unit
422:比較單元 422: comparison unit
44:初級偵測電路 44: Primary detection circuit
46:過溫度調整線路 46: Over temperature adjustment circuit
48:次級側控制單元 48: Secondary side control unit
200:負載 200: load
Vin:輸入電壓 Vin: input voltage
Vo:輸出電壓 Vo: output voltage
Vb:整流電壓 Vb: Rectified voltage
Vd:直流電壓 Vd: DC voltage
Vc:初級電壓變化值 Vc: Primary voltage change value
Vt:溫控電壓 Vt: temperature control voltage
Io:輸出電流 Io: output current
Ic:電流變化值 Ic: current change value
Ss:切換訊號 Ss: Switch signal
Sf:回授訊號 Sf: Feedback signal
Claims (14)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911113318.XA CN111525805B (en) | 2019-02-01 | 2019-11-14 | Power converter with over-temperature protection compensation |
CN202111093737.9A CN113922647A (en) | 2019-02-01 | 2019-11-14 | Power converter with over-temperature protection compensation |
US16/738,885 US11050341B2 (en) | 2019-02-01 | 2020-01-09 | Power converter with over temperature protection compensation |
US17/327,622 US11757350B2 (en) | 2019-02-01 | 2021-05-21 | Power converter with over temperature protection compensation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962800048P | 2019-02-01 | 2019-02-01 | |
US62/800,048 | 2019-02-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202030961A TW202030961A (en) | 2020-08-16 |
TWI720681B true TWI720681B (en) | 2021-03-01 |
Family
ID=73002540
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108132489A TWI723533B (en) | 2019-02-01 | 2019-09-09 | Flyback power-converting device with zero-voltage switching and method for flyback converting power with zero-voltage switching |
TW108140705A TWI720681B (en) | 2019-02-01 | 2019-11-08 | Power converter with over temperature protection compensation |
TW108140595A TWI728543B (en) | 2019-02-01 | 2019-11-08 | Method of resistance compensation for measuring output current and conversion circuit |
TW110102649A TWI774209B (en) | 2019-02-01 | 2019-11-08 | Power converter with over temperature protection compensation |
TW108141050A TWI726482B (en) | 2019-02-01 | 2019-11-12 | Power converter with over temperature protection compensation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108132489A TWI723533B (en) | 2019-02-01 | 2019-09-09 | Flyback power-converting device with zero-voltage switching and method for flyback converting power with zero-voltage switching |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108140595A TWI728543B (en) | 2019-02-01 | 2019-11-08 | Method of resistance compensation for measuring output current and conversion circuit |
TW110102649A TWI774209B (en) | 2019-02-01 | 2019-11-08 | Power converter with over temperature protection compensation |
TW108141050A TWI726482B (en) | 2019-02-01 | 2019-11-12 | Power converter with over temperature protection compensation |
Country Status (1)
Country | Link |
---|---|
TW (5) | TWI723533B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742997B (en) * | 2021-02-08 | 2021-10-11 | 台達電子工業股份有限公司 | Soft-switching power converter |
TWI780614B (en) * | 2021-03-03 | 2022-10-11 | 亞碩綠能股份有限公司 | Voltage measuring method and system for switch mode power supply |
TWI775343B (en) * | 2021-03-09 | 2022-08-21 | 全漢企業股份有限公司 | Power supply and power saving method thereof |
TWI806715B (en) * | 2022-07-21 | 2023-06-21 | 通嘉科技股份有限公司 | Package applied to a flyback power converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825466A (en) * | 2012-11-02 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of power converter with temperature control and method for controlling power converter |
TW201624898A (en) * | 2014-12-24 | 2016-07-01 | 力林科技股份有限公司 | Flyback-based power conversion apparatus |
TW201643583A (en) * | 2015-06-11 | 2016-12-16 | 通嘉科技股份有限公司 | Power supplies and control methods suitable for sequentially transmitting command bits from secondary side to primary side |
CN109217677A (en) * | 2017-07-05 | 2019-01-15 | 立锜科技股份有限公司 | Flyback type electric source supply circuit and its primary side control circuit |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2453603Y (en) * | 2000-09-04 | 2001-10-10 | 北京鼎立信科技有限公司 | Single end normal direction dc to dc inverter |
TW200841554A (en) * | 2008-02-26 | 2008-10-16 | Shang-Pin Sun | A controller of motor and charger for the electric vehicle |
US20090257254A1 (en) * | 2008-04-15 | 2009-10-15 | National Taiwan University Of Science And Technology | Voltage-clamp power converters |
JP2013527613A (en) * | 2010-05-18 | 2013-06-27 | エスエムエー ソーラー テクノロジー アーゲー | Photovoltaic system and method for diagnosing contact of apparatus |
TWI533751B (en) * | 2014-06-10 | 2016-05-11 | 達方電子股份有限公司 | Power converter capable of reducing a driving current of light emitting diodes in a high temperature |
US9774270B2 (en) * | 2015-06-15 | 2017-09-26 | Apple Inc. | Systems and methods of operation for power converters having series-parallel mode active clamps |
EP3229336B1 (en) * | 2016-02-05 | 2020-09-30 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Charging method and adapter |
JP6958090B2 (en) * | 2016-08-23 | 2021-11-02 | 株式会社Gsユアサ | Overcurrent detector and power storage device |
TWI621328B (en) * | 2017-04-18 | 2018-04-11 | 立錡科技股份有限公司 | Flyback Power Converter Circuit with Active Clamping and Zero Voltage Switching and Control Circuit thereof |
-
2019
- 2019-09-09 TW TW108132489A patent/TWI723533B/en active
- 2019-11-08 TW TW108140705A patent/TWI720681B/en active
- 2019-11-08 TW TW108140595A patent/TWI728543B/en active
- 2019-11-08 TW TW110102649A patent/TWI774209B/en active
- 2019-11-12 TW TW108141050A patent/TWI726482B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825466A (en) * | 2012-11-02 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of power converter with temperature control and method for controlling power converter |
TW201624898A (en) * | 2014-12-24 | 2016-07-01 | 力林科技股份有限公司 | Flyback-based power conversion apparatus |
TW201643583A (en) * | 2015-06-11 | 2016-12-16 | 通嘉科技股份有限公司 | Power supplies and control methods suitable for sequentially transmitting command bits from secondary side to primary side |
CN109217677A (en) * | 2017-07-05 | 2019-01-15 | 立锜科技股份有限公司 | Flyback type electric source supply circuit and its primary side control circuit |
Also Published As
Publication number | Publication date |
---|---|
TW202037051A (en) | 2020-10-01 |
TW202030961A (en) | 2020-08-16 |
TWI723533B (en) | 2021-04-01 |
TWI728543B (en) | 2021-05-21 |
TWI774209B (en) | 2022-08-11 |
TW202135440A (en) | 2021-09-16 |
TW202037053A (en) | 2020-10-01 |
TWI726482B (en) | 2021-05-01 |
TW202030487A (en) | 2020-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI720681B (en) | Power converter with over temperature protection compensation | |
US9572224B2 (en) | Bleeder protection using thermal foldback | |
TWI521853B (en) | Flyback-based power conversion apparatus | |
US20060209581A1 (en) | Terminal for multiple functions in a power supply | |
KR101803538B1 (en) | Power supply device and driving method thereof | |
US11569734B2 (en) | Power converter with over temperature protection compensation | |
JP2561729B2 (en) | Tap switching AC power stabilization device | |
CN105245112A (en) | Self-adaptive high-precision constant current circuit and switching power supply | |
TW201725839A (en) | Power supply apparatus | |
EP1063758B1 (en) | Power supply device | |
CN111525805B (en) | Power converter with over-temperature protection compensation | |
TWI729807B (en) | Flyback power converter and active clamp snubber and overcharging protection circuit thereof | |
JP2002252980A (en) | Current transformer input type power unit | |
US20160043645A1 (en) | Power conversion apparatus and over power protection method thereof | |
CN105471284A (en) | power conversion device and over-power protection method thereof | |
TWI625032B (en) | Low phase surge protection device | |
TW202125962A (en) | Voltage converting apparatus | |
US8441814B2 (en) | Power supply having a voltage monitoring circuit | |
CN114374323A (en) | Isolated power supply circuit and electronic equipment | |
TWI574495B (en) | Power conversion apparatus | |
CN111769734B (en) | Switch power supply control circuit and control chip capable of simultaneously preventing output overvoltage and undervoltage | |
JP6781947B2 (en) | Power supply | |
CN113300592A (en) | Power supply circuit and electrical equipment | |
JP2013192329A (en) | Switching power supply device | |
TW201546595A (en) | Cable drop compensation circuit and power circuit using the same |