TW202037051A - Power converter with over temperature protection compensation - Google Patents

Power converter with over temperature protection compensation Download PDF

Info

Publication number
TW202037051A
TW202037051A TW108141050A TW108141050A TW202037051A TW 202037051 A TW202037051 A TW 202037051A TW 108141050 A TW108141050 A TW 108141050A TW 108141050 A TW108141050 A TW 108141050A TW 202037051 A TW202037051 A TW 202037051A
Authority
TW
Taiwan
Prior art keywords
voltage
control unit
temperature
side control
change value
Prior art date
Application number
TW108141050A
Other languages
Chinese (zh)
Other versions
TWI726482B (en
Inventor
彭左任
王思浩
Original Assignee
群光電能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群光電能科技股份有限公司 filed Critical 群光電能科技股份有限公司
Priority to CN202010006339.8A priority Critical patent/CN111525514B/en
Priority to US16/774,414 priority patent/US11050342B2/en
Publication of TW202037051A publication Critical patent/TW202037051A/en
Application granted granted Critical
Publication of TWI726482B publication Critical patent/TWI726482B/en
Priority to US17/327,630 priority patent/US11569734B2/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Protection Of Static Devices (AREA)
  • Amplifiers (AREA)

Abstract

A power converter with over temperature protection compensation includes a main conversion unit, a primary side control unit, a secondary side control unit, a secondary detection circuit, and an over temperature adjustment circuit. The secondary side control unit obtains a secondary voltage change value through the secondary detection circuit, and the secondary side control unit correspondingly provides a current change value to the over temperature adjustment circuit according to the secondary voltage change value. The over temperature adjustment circuit provides a temperature control voltage according to the current change value, so that the primary side control unit determines whether an over temperature protection is activated or not according to the temperature control voltage.

Description

具有過溫度保護補償的電源轉換器Power converter with over-temperature protection compensation

本發明係有關一種具有過溫度保護補償的電源轉換器,尤指一種設置於轉換單元次級側的具有過溫度保護補償的電源轉換器。The present invention relates to a power converter with over-temperature protection and compensation, in particular to a power converter with over-temperature protection and compensation arranged on the secondary side of a conversion unit.

在電源轉換器的技術領域中,電源轉換器內部控制器的過溫度保護(Over Temperature Protection;OTP)機制一直都是不可或缺的。但是,無論在電源轉換器的輸入電壓為低電壓或高電壓,或者輸出電流為輕載或滿載,電源轉換器必須要到達一固定溫度以上,才能夠觸發過溫度保護的阻值。因此,電源轉換器在輸入電壓變化或輸出電流變化的情況下,會造成實際觸發過溫度保護機制的觸發點不同,如此將使得控制器延誤啟動過溫度保護機制,進而提高了電源轉換器損壞的風險。In the technical field of power converters, the over temperature protection (OTP) mechanism of the internal controller of the power converter has always been indispensable. However, no matter whether the input voltage of the power converter is low voltage or high voltage, or the output current is light load or full load, the power converter must reach a fixed temperature or higher to trigger the resistance value of the over temperature protection. Therefore, when the input voltage or output current of the power converter changes, the actual trigger point of the over-temperature protection mechanism will be different. This will cause the controller to delay the activation of the over-temperature protection mechanism, thereby increasing the damage of the power converter. risk.

具體而言,由於電源轉換器在輸入電壓為低電壓或高電壓時,或者輸出電流為輕載或滿載時的轉換效率不同,使得過溫度保護的觸發點實際上會因為輸入電壓的不同或輸出電流的不同而有所差異。通常,在電源轉換器輸入電壓為高電壓,轉換效率好,使得能量的轉換所造成的熱損失少。反之,在電源轉換器輸入電壓為低電壓時,轉換效率較差,使得能量的轉換所造成的熱損失較多。因此,會造成電源轉換器在上述狀況的差異之下,實際觸發過溫度保護機制的觸發點不同。Specifically, because the power converter has different conversion efficiency when the input voltage is low or high voltage, or when the output current is light load or full load, the trigger point of the over-temperature protection will actually be due to the difference in input voltage or output The current varies. Generally, the input voltage of the power converter is high, and the conversion efficiency is good, so that the heat loss caused by the energy conversion is small. Conversely, when the input voltage of the power converter is low, the conversion efficiency is poor, which causes more heat loss due to energy conversion. Therefore, the actual trigger point of the over-temperature protection mechanism of the power converter is different under the above-mentioned difference.

尤其在安規IEC62368以後的規範中,限制電源轉換器在不正常的情況發生時,控制器塑膠外殼的最高表面溫度不得超過攝氏87度。因此,在上述規範,且電源轉換器輸入電壓為高電壓,或者輸出電流為滿載或輕載時,很容易造成電源轉換器實際上已經過載了,但是過溫度保護機制卻並未啟動。而為了避免這樣的情況發生,可能必須將過溫度保護機制的觸發點設計在電源轉換器輸入電壓為低電壓或輸出電流為輕載的觸發點。但是若設計在此觸發點之下,而電源轉換器處於輸入電壓為高電壓或輸出電流為滿載時,卻是離實際上的過溫度保護機制的觸發點有一大段的誤差,使得過溫度保護機制失去意義。Especially in the safety regulations after IEC62368, the maximum surface temperature of the controller's plastic casing shall not exceed 87 degrees Celsius when the power converter is abnormal. Therefore, in the above-mentioned specifications, when the input voltage of the power converter is high, or the output current is full load or light load, it is easy to cause the power converter to actually be overloaded, but the over-temperature protection mechanism is not activated. In order to avoid such a situation, it may be necessary to design the trigger point of the over-temperature protection mechanism at the trigger point where the input voltage of the power converter is low or the output current is light load. However, if the design is below this trigger point, and the power converter is at high input voltage or full output current, there is a large margin of error from the actual trigger point of the over-temperature protection mechanism, which makes the over-temperature protection The mechanism loses its meaning.

因此,如何設計出一種具有過溫度保護補償的電源轉換器,設置於轉換單元的次級側,且根據不同電壓值的輸入電壓或不同負載的輸出電流進行過溫度保護點位的補償,以動態地調整過溫度保護點,乃為本案發明人所欲行研究的重要課題。Therefore, how to design a power converter with over-temperature protection compensation, which is set on the secondary side of the conversion unit, and compensates the over-temperature protection points according to the input voltage of different voltage values or the output current of different loads, so as to dynamically The local adjustment of the temperature protection point is an important subject that the inventor intends to study.

為了解決上述問題,本發明係提供一種具有過溫度保護補償的電源轉換器,以克服習知技術的問題。因此,本發明之具有過溫度保護補償的電源轉換器,包括:主轉換單元,包括初級側與次級側,初級側耦接輸入電壓,次級側耦接次級整流濾波電路。初級側控制單元,耦接初級側。次級側控制單元,耦接初級側控制單元。次級偵測電路,耦接次級側。及過溫度調整線路,耦接次級側控制單元。其中,次級側控制單元通過次級偵測電路得知次級電壓變化值,且次級側控制單元根據次級電壓變化值而對應地提供電流變化值至過溫度調整線路;過溫度調整線路根據電流變化值而提供溫控電壓,使次級側控制單元根據溫控電壓判斷是否啟動過溫度保護。In order to solve the above problems, the present invention provides a power converter with over-temperature protection compensation to overcome the problems of the prior art. Therefore, the power converter with over-temperature protection compensation of the present invention includes a main conversion unit including a primary side and a secondary side, the primary side is coupled to the input voltage, and the secondary side is coupled to the secondary rectifier filter circuit. The primary side control unit is coupled to the primary side. The secondary side control unit is coupled to the primary side control unit. The secondary detection circuit is coupled to the secondary side. And the temperature adjustment circuit is coupled to the secondary side control unit. Wherein, the secondary side control unit learns the change value of the secondary voltage through the secondary detection circuit, and the secondary side control unit correspondingly provides the current change value to the over temperature adjustment circuit according to the secondary voltage change value; the over temperature adjustment circuit The temperature control voltage is provided according to the current change value, so that the secondary side control unit judges whether to activate the over temperature protection according to the temperature control voltage.

於一實施例中,次級側控制單元通過初級側控制單元關閉主轉換單元,以啟動過溫度保護。In one embodiment, the secondary-side control unit shuts down the main conversion unit through the primary-side control unit to activate the over-temperature protection.

於一實施例中,更包括:保護開關,耦接次級整流濾波電路。其中,次級側控制單元通過關斷保護開關,以啟動過溫度保護。In one embodiment, it further includes: a protection switch coupled to the secondary rectification filter circuit. Among them, the secondary side control unit turns off the protection switch to start over temperature protection.

於一實施例中,過溫度調整線路包括溫控電阻,溫控電阻根據環境溫度而產生溫控阻值,且電流變化值流過溫控阻值而產生溫控電壓。In one embodiment, the over-temperature adjustment circuit includes a temperature-controlled resistor, and the temperature-controlled resistor generates a temperature-controlled resistance according to the ambient temperature, and the current change value flows through the temperature-controlled resistance to generate a temperature-controlled voltage.

於一實施例中,次級側控制單元包括比較單元,且當比較單元判斷溫控電壓低於參考電壓時,次級側控制單元啟動過溫度保護。In one embodiment, the secondary side control unit includes a comparison unit, and when the comparison unit determines that the temperature control voltage is lower than the reference voltage, the secondary side control unit activates the over-temperature protection.

於一實施例中,輸入電壓較高時,次級側控制單元所提供的電流變化值較高,且輸入電壓較低時,次級側控制單元所提供的電流變化值較低。In one embodiment, when the input voltage is higher, the current change value provided by the secondary side control unit is higher, and when the input voltage is lower, the current change value provided by the secondary side control unit is lower.

於一實施例中,更包括:輔助繞組,耦接次級偵測電路與主轉換單元。其中,輔助繞組通過主轉換單元而得到對應輸入電壓變化或次級整流濾波電路所提供的輸出電流變化的輔助電壓,且次級偵測電路根據輔助電壓而提供次級電壓變化值。In one embodiment, it further includes an auxiliary winding coupled to the secondary detection circuit and the main conversion unit. Wherein, the auxiliary winding obtains the auxiliary voltage corresponding to the input voltage change or the output current change provided by the secondary rectification filter circuit through the main conversion unit, and the secondary detection circuit provides the secondary voltage change value according to the auxiliary voltage.

於一實施例中,次級偵測電路包括:電阻,耦接輔助繞組。及分壓元件,耦接電阻。其中,分壓元件為分壓電阻或電容,且電阻與分壓元件之間的節點耦接次級側控制單元;電阻接收輔助電壓,且根據輔助電壓而通過節點提供次級電壓變化值。In one embodiment, the secondary detection circuit includes a resistor coupled to the auxiliary winding. And the voltage dividing element, coupled to the resistor. The voltage dividing element is a voltage dividing resistor or a capacitor, and the node between the resistor and the voltage dividing element is coupled to the secondary side control unit; the resistor receives the auxiliary voltage, and provides the secondary voltage change value through the node according to the auxiliary voltage.

於一實施例中,次級輸入電壓偵測電路更包括:二極體,耦接電阻。其中,二極體限制輔助電壓的極性。In an embodiment, the secondary input voltage detection circuit further includes a diode coupled to a resistor. Among them, the diode limits the polarity of the auxiliary voltage.

於一實施例中,次級偵測電路耦接次級整流濾波電路,且根據次級整流濾波電路所提供的輸出電流的變化而得知次級電壓變化值。In one embodiment, the secondary detection circuit is coupled to the secondary rectification and filter circuit, and the secondary voltage change value is obtained according to the change of the output current provided by the secondary rectification and filter circuit.

於一實施例中,次級偵測電路包括:偵側電阻,耦接次級整流濾波電路與次級側控制單元。其中,輸出電流流經偵側電阻而產生次級電壓變化值。In one embodiment, the secondary detection circuit includes a detection side resistor, which is coupled to the secondary rectification filter circuit and the secondary side control unit. Among them, the output current flows through the detection side resistance to produce the secondary voltage change value.

於一實施例中,次級側控制單元根據負載提供的交握訊號而提供次級電壓變化值。In one embodiment, the secondary-side control unit provides the secondary voltage change value according to the handshaking signal provided by the load.

為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。In order to further understand the technology, means and effects of the present invention to achieve the intended purpose, please refer to the following detailed description and drawings of the present invention. I believe that the purpose, features and characteristics of the present invention can be obtained from this in depth and For specific understanding, however, the accompanying drawings are only provided for reference and illustration, and are not intended to limit the present invention.

茲有關本發明之技術內容及詳細說明,配合圖式說明如下:The technical content and detailed description of the present invention are described as follows with the drawings:

請參閱圖1為本發明具有過溫度保護補償的電源轉換器第一實施例之電路方塊圖。電源轉換器100接收輸入電壓Vin,且轉換輸入電壓Vin為輸出電壓Vo對負載200供電。其中,電源轉換器100為可接受寬輸入電壓Vin的電源轉換器100,其可接受的輸入電壓Vin範圍為90V~264V。電源轉換器100包括初級整流濾波電路1、主轉換單元2、次級整流濾波電路3及控制模組4。主轉換單元2的初級側耦接初級整流濾波電路1,且次級側耦接次級整流濾波電路3。控制模組4控制主轉換單元2將輸入電壓Vin由初級整流濾波電路1、主轉換單元2及次級整流濾波電路3的路徑轉換為輸出電壓Vo,且由次級整流濾波電路3提供輸出電壓Vo與輸出電流Io至負載200。初級整流濾波電路1將輸入電壓Vin整流濾波為直流電壓Vd,且主轉換單元2通過功率開關22的切換而將直流電壓Vd轉換為次級電壓Vs。次級整流濾波電路3將次級電壓Vs整流濾波為輸出電壓Vo,且將輸出電壓Vo與負載所需的輸出電流Io提供至負載200。Please refer to FIG. 1 for a circuit block diagram of a first embodiment of a power converter with over-temperature protection compensation according to the present invention. The power converter 100 receives the input voltage Vin, and converts the input voltage Vin into an output voltage Vo to supply power to the load 200. The power converter 100 is a power converter 100 that can accept a wide input voltage Vin, and the acceptable input voltage Vin range is 90V~264V. The power converter 100 includes a primary rectification filter circuit 1, a main conversion unit 2, a secondary rectification filter circuit 3 and a control module 4. The primary side of the main conversion unit 2 is coupled to the primary rectification and filter circuit 1, and the secondary side is coupled to the secondary rectification and filter circuit 3. The control module 4 controls the main conversion unit 2 to convert the input voltage Vin from the path of the primary rectification filter circuit 1, the main conversion unit 2 and the secondary rectification filter circuit 3 into the output voltage Vo, and the secondary rectification filter circuit 3 provides the output voltage Vo and output current Io to load 200. The primary rectifying and filtering circuit 1 rectifies and filters the input voltage Vin into a DC voltage Vd, and the main conversion unit 2 converts the DC voltage Vd into a secondary voltage Vs through the switching of the power switch 22. The secondary rectifying and filtering circuit 3 rectifies and filters the secondary voltage Vs into an output voltage Vo, and provides the output voltage Vo and the output current Io required by the load to the load 200.

控制模組4包括初級側控制單元42、次級側控制單元44、次級偵測電路46及過溫度調整線路48,且初級側控制單元42耦接主轉換單元2的功率開關22,以提供切換訊號Ss控制主轉換單元2將直流電壓Vd轉換為次級電壓Vs。次級側控制單元44耦接次級整流濾波電路3,且根據輸出電壓Vo而提供回授訊號Sf至初級側控制單元42,使初級側控制單元42根據回授訊號Sf而調整切換訊號Ss的佔空比,進而穩定輸出電壓Vo的電壓值。其中,次級側控制單元44與初級側控制單元42之間可加裝耦合單元(圖未示,例如但不限於光耦合器),以使初級側控制單元42與次級側控制單元44之間訊號的傳輸具有電氣隔離的效果。次級偵測電路46耦接次級側控制單元44,且次級側控制單元44通過次級偵測電路46獲得次級電壓變化值Vc。過溫度調整線路48耦接次級側控制單元44,且次級側控制單元44根據次級電壓變化值Vc而對應地提供電流變化值Ic至過溫度調整線路48。過溫度調整線路48根據電流變化值Ic而提供溫控電壓Vt至次級側控制單元44,使次級側控制單元44能夠根據溫控電壓Vt判斷是否啟動過溫度保護。The control module 4 includes a primary-side control unit 42, a secondary-side control unit 44, a secondary detection circuit 46, and an over-temperature adjustment circuit 48, and the primary-side control unit 42 is coupled to the power switch 22 of the main conversion unit 2 to provide The switching signal Ss controls the main conversion unit 2 to convert the DC voltage Vd into the secondary voltage Vs. The secondary side control unit 44 is coupled to the secondary rectification filter circuit 3, and provides a feedback signal Sf to the primary side control unit 42 according to the output voltage Vo, so that the primary side control unit 42 adjusts the switching signal Ss according to the feedback signal Sf The duty cycle, thereby stabilizing the voltage value of the output voltage Vo. Among them, a coupling unit (not shown in the figure, such as but not limited to an optical coupler) can be installed between the secondary side control unit 44 and the primary side control unit 42 so that the primary side control unit 42 and the secondary side control unit 44 The transmission of inter-signal has the effect of electrical isolation. The secondary detection circuit 46 is coupled to the secondary control unit 44, and the secondary control unit 44 obtains the secondary voltage change value Vc through the secondary detection circuit 46. The over-temperature adjustment circuit 48 is coupled to the secondary-side control unit 44, and the secondary-side control unit 44 correspondingly provides the current change value Ic to the over-temperature adjustment circuit 48 according to the secondary voltage change value Vc. The over-temperature adjustment circuit 48 provides a temperature control voltage Vt to the secondary side control unit 44 according to the current change value Ic, so that the secondary side control unit 44 can determine whether to activate the over temperature protection according to the temperature control voltage Vt.

具體而言,次級側控制單元44所提供的電流變化值Ic的高低是隨著次級電壓變化值Vc高低的變動而變動,且電源轉換器100具有兩種可影響次級電壓變化值Vc的參數(以虛線表示)。其中之一為:次級電壓變化值Vc的高低是隨著輸入電壓Vin的變動而變動。當輸入電壓Vin較高時,次級偵測電路46所提供的次級電壓變化值Vc較高,使得次級側控制單元44所提供該電流變化值Ic較高。當輸入電壓Vin較低時,次級偵測電路46所提供的次級電壓變化值Vc較低,使得次級側控制單元44所提供的電流變化值Ic較低。另一種為:次級電壓變化值Vc的高低是隨著輸出電流Io的變動而變動(意即,隨著負載200為輕載、重載或過載而變化)。當輸出電流Io較高時,次級偵測電路46所提供的次級電壓變化值Vc較高,使得次級側控制單元44所提供該電流變化值Ic較高。當輸出電流Io較低時,次級偵測電路46所提供的次級電壓變化值Vc較低,使得次級側控制單元44所提供的電流變化值Ic較低。值得一提,於本發明之一實施例中,上述輸入電壓Vin與輸出電流Io的舉例可以是相反的。意即,當輸入電壓Vin較高時,次級偵測電路46所提供的次級電壓變化值Vc較高,使得次級側控制單元44所提供該電流變化值Ic較低。以及,當輸出電流Io較高時,次級偵測電路46所提供的次級電壓變化值Vc較高,使得次級側控制單元44所提供電流變化值Ic較低。依此類推,在此不再加以贅述。Specifically, the level of the current change value Ic provided by the secondary-side control unit 44 changes with the change of the level of the secondary voltage change value Vc, and the power converter 100 has two types that can affect the secondary voltage change value Vc. The parameters (indicated by dotted lines). One of them is: the level of the secondary voltage variation value Vc varies with the variation of the input voltage Vin. When the input voltage Vin is higher, the secondary voltage change value Vc provided by the secondary detection circuit 46 is higher, so that the current change value Ic provided by the secondary side control unit 44 is higher. When the input voltage Vin is low, the secondary voltage change value Vc provided by the secondary detection circuit 46 is lower, so that the current change value Ic provided by the secondary side control unit 44 is lower. The other is: the secondary voltage variation value Vc varies with the variation of the output current Io (that is, it varies as the load 200 is light load, heavy load, or overload). When the output current Io is high, the secondary voltage change value Vc provided by the secondary detection circuit 46 is relatively high, so that the current change value Ic provided by the secondary side control unit 44 is relatively high. When the output current Io is low, the secondary voltage change value Vc provided by the secondary detection circuit 46 is lower, so that the current change value Ic provided by the secondary side control unit 44 is lower. It is worth mentioning that in an embodiment of the present invention, the above examples of the input voltage Vin and the output current Io may be opposite. That is, when the input voltage Vin is higher, the secondary voltage change value Vc provided by the secondary detection circuit 46 is higher, so that the current change value Ic provided by the secondary side control unit 44 is lower. And, when the output current Io is higher, the secondary voltage change value Vc provided by the secondary detection circuit 46 is higher, so that the current change value Ic provided by the secondary side control unit 44 is lower. And so on, so I won't repeat it here.

過溫度調整線路48根據電流變化值Ic與過溫度調整線路48所在位置的環境溫度而提供溫控電壓Vt至次級側控制單元44。因此,次級側控制單元44啟動過溫度保護的過溫度保護點是隨著輸入電壓Vin的高低而變動,或者次級側控制單元44啟動過溫度保護的過溫度保護點是隨著輸出電流Io的高低而變動。所以,通過上述補償的方式,可避免電源轉換器100在不同輸入電壓Vin或不同輸出電流Io的條件下,因效率的差異而導致過溫度保護無法正常觸發,進而避免延誤過溫度保護的風險。The over-temperature adjustment circuit 48 provides a temperature control voltage Vt to the secondary-side control unit 44 according to the current change value Ic and the ambient temperature where the over-temperature adjustment circuit 48 is located. Therefore, the over-temperature protection point of the secondary-side control unit 44 to activate the over-temperature protection varies with the input voltage Vin, or the over-temperature protection point of the secondary-side control unit 44 to activate the over-temperature protection varies with the output current Io The level varies. Therefore, through the above-mentioned compensation method, the over-temperature protection cannot be triggered normally due to the difference in efficiency under the conditions of different input voltage Vin or different output current Io of the power converter 100, thereby avoiding the risk of delaying the over-temperature protection.

進一步而言,本發明之具有過溫度保護補償的電源轉換器100由於是根據輸入電壓Vin或輸出電流Io的高低而補償過溫度保護的過溫度保護點,因此,只要可得知輸入電壓Vin或輸出電流Io高低的偵測方式,皆可應用於本發明之中,其偵測方式將於後文有進一步地說明。Furthermore, the power converter 100 with over-temperature protection compensation of the present invention compensates the over-temperature protection point of the over-temperature protection according to the input voltage Vin or the output current Io. Therefore, as long as the input voltage Vin or The detection method of the output current Io can be applied to the present invention, and the detection method will be further described later.

請參閱圖2A為本發明次級偵測電路偵測方式第一實施例之電路方塊圖、圖2B為本發明次級偵測電路偵測方式第二實施例之電路方塊圖及圖2C為本發明次級偵測電路偵測方式第三實施例之電路方塊圖,復配合參閱圖1。如圖2A所示,電源轉換器100更包括輔助繞組5。輔助繞組5耦接主轉換單元2的變壓器的次級側,且通過電磁耦合的方式獲得輔助電壓Va。次級偵測電路46耦接輔助繞組5,且根據輔助電壓Va而提供次級電壓變化值Vc。其中,當輸入電壓Vin高低發生變化時,輔助繞組5所獲得的輔助電壓Va的電壓值會隨著輸入電壓Vin的高低而改變。因此,輸入電壓Vin高低的變化可通過偵測輔助繞組5上的輔助電壓Va而得知。而且,當輸出電流Io高低發生變化時,輔助繞組5所獲得的輔助電壓Va的電壓的佔空比(Duty Cycle)會隨著輸出電流Io的高低而改變。因此,輸出電流Io高低的變化可通過偵測輔助繞組5上的輔助電壓Va而得知。此種偵測方式可同時適用於偵測輸入電壓Vin的高低或輸出電流Io的高低,因此次級側控制單元44要根據何者做為來源,可根據實際電路狀況所決定。Please refer to FIG. 2A for the circuit block diagram of the first embodiment of the secondary detection circuit detection method of the present invention, FIG. 2B for the circuit block diagram of the second embodiment of the secondary detection circuit detection method of the present invention, and FIG. 2C. The circuit block diagram of the third embodiment of the detection method of the invented secondary detection circuit is shown in FIG. 1 for complex cooperation. As shown in FIG. 2A, the power converter 100 further includes an auxiliary winding 5. The auxiliary winding 5 is coupled to the secondary side of the transformer of the main conversion unit 2 and obtains the auxiliary voltage Va through electromagnetic coupling. The secondary detection circuit 46 is coupled to the auxiliary winding 5 and provides a secondary voltage change value Vc according to the auxiliary voltage Va. Wherein, when the input voltage Vin changes, the voltage value of the auxiliary voltage Va obtained by the auxiliary winding 5 will change with the input voltage Vin. Therefore, the change of the input voltage Vin can be obtained by detecting the auxiliary voltage Va on the auxiliary winding 5. Moreover, when the output current Io changes, the duty cycle (Duty Cycle) of the auxiliary voltage Va obtained by the auxiliary winding 5 will change with the output current Io. Therefore, the change of the output current Io can be obtained by detecting the auxiliary voltage Va on the auxiliary winding 5. This detection method can be used to detect the level of the input voltage Vin or the level of the output current Io at the same time. Therefore, the secondary-side control unit 44 determines which source is the source, and can be determined according to actual circuit conditions.

如圖2B所示,次級偵測電路46耦接次級整流濾波電路3,且次級偵測電路46根據輸出電流Io而提供次級電壓變化值Vc。當輸出電流Io提供至負載200時,輸出電流Io流過次級偵測電路46。因此,輸出電流Io高低的變化可通過偵測流過次級偵測電路46上的輸出電流Io而得知。如圖2C所示,次級偵測電路46為次級側控制單元44內部的通訊單元,且次級側控制單元44通過通訊單元耦接負載200。次級側控制單元44通過通訊單元與負載200相互通訊,使得次級側控制單元44可根據負載200所提供的交握訊號Sg而得知次級電壓變化值Vc。具體而言,如圖2C所示的偵測方式,其負載200與次級側控制單元44必須為具有電力輸送(Power Delivery)功能的控制器。通過負載200與次級側控制單元44相互通訊,次級側控制單元44可通過負載200所提供的交握訊號Sg得知負載200的電壓、電流、溫度、功率等資訊,進而通過交握訊號Sg得知次級電壓變化值Vc。As shown in FIG. 2B, the secondary detection circuit 46 is coupled to the secondary rectification filter circuit 3, and the secondary detection circuit 46 provides the secondary voltage variation value Vc according to the output current Io. When the output current Io is provided to the load 200, the output current Io flows through the secondary detection circuit 46. Therefore, the change of the output current Io can be obtained by detecting the output current Io flowing through the secondary detection circuit 46. As shown in FIG. 2C, the secondary detection circuit 46 is a communication unit inside the secondary control unit 44, and the secondary control unit 44 is coupled to the load 200 through the communication unit. The secondary side control unit 44 communicates with the load 200 through the communication unit, so that the secondary side control unit 44 can learn the secondary voltage change value Vc according to the handshaking signal Sg provided by the load 200. Specifically, in the detection method shown in FIG. 2C, the load 200 and the secondary-side control unit 44 must be a controller with a power delivery function. Through the communication between the load 200 and the secondary-side control unit 44, the secondary-side control unit 44 can learn the voltage, current, temperature, power and other information of the load 200 through the handshaking signal Sg provided by the load 200, and then use the handshaking signal Sg knows the secondary voltage change value Vc.

由於次級偵測電路46至少包括上述圖2A~2C的偵測方式,因此除了圖2C的偵測方式是利用通訊線耦接負載200與次級側控制單元44之外,圖2A與圖2B內部的電路必須因應上述的偵測方式而有所不同。請參閱圖3A為本發明初級偵測電路第一實施例之電路圖、圖3B為本發明初級偵測電路第二實施例之電路圖。如圖3A所示,且配合參閱圖2A,次級偵測電路46包括電阻462與分壓元件464。電阻462耦接輔助繞組5(請參閱圖2A的耦接關係),且分壓元件464耦接電阻462。電阻462與分壓元件464之間的節點A耦接次級側控制單元44,且電阻462接收的輔助電壓Va。其中,輔助電壓Va的電壓值響應輸入電壓Vin的變化,且輔助電壓Va的電壓的佔空比響應輸出電流Io的變化輔助電壓Va經過電阻462與分壓元件464分壓後,於節點A提供次級電壓變化值Vc至次級側控制單元44。其中,分壓元件464可以為分壓電阻或電容。當分壓元件464為分壓電阻時,元件成本較為便宜,且動態響應較佳。當分壓元件464為電容時,其具有能量儲存的功能,因此相較於分壓電阻更能穩定次級電壓變化值Vc的數值,但動態響應較差。Since the secondary detection circuit 46 includes at least the detection methods of FIGS. 2A to 2C, in addition to the detection method of FIG. 2C that uses a communication line to couple the load 200 and the secondary side control unit 44, FIGS. 2A and 2B The internal circuit must be different according to the above detection method. Please refer to FIG. 3A for the circuit diagram of the first embodiment of the primary detection circuit of the present invention, and FIG. 3B for the circuit diagram of the second embodiment of the primary detection circuit of the present invention. As shown in FIG. 3A and in conjunction with FIG. 2A, the secondary detection circuit 46 includes a resistor 462 and a voltage divider 464. The resistor 462 is coupled to the auxiliary winding 5 (please refer to the coupling relationship in FIG. 2A ), and the voltage dividing element 464 is coupled to the resistor 462. The node A between the resistor 462 and the voltage dividing element 464 is coupled to the secondary side control unit 44, and the resistor 462 receives the auxiliary voltage Va. Wherein, the voltage value of the auxiliary voltage Va responds to the change of the input voltage Vin, and the duty ratio of the voltage of the auxiliary voltage Va responds to the change of the output current Io. The auxiliary voltage Va is divided by the resistor 462 and the voltage divider 464, and then provided at node A The secondary voltage change value Vc reaches the secondary side control unit 44. Wherein, the voltage dividing element 464 may be a voltage dividing resistor or a capacitor. When the voltage dividing element 464 is a voltage dividing resistor, the cost of the element is relatively cheap and the dynamic response is better. When the voltage divider 464 is a capacitor, it has the function of energy storage. Therefore, compared with the voltage divider resistor, it can stabilize the value of the secondary voltage change value Vc, but the dynamic response is poor.

次級偵測電路46更可包括二極體D(以虛線表示),且二極體D耦接電阻462。二極體D用以限制輔助電壓Va的極性,以避免次級電壓變化值Vc產生錯誤極性的電壓。具體而言,由於輔助電壓Va可能會有負電壓(由於功率開關22切換導通之故)。當為負電壓時,所產生的次級電壓變化值Vc的數值為負值,其有可能會造成次級側控制單元44無法接受負電壓而損壞(若次級側控制單元44本身具有限制次級電壓變化值Vc極性的功能,則不在此限)。因此,必須要使用二極體D來限制輔助電壓Va的極性,以避免上述狀況發生。The secondary detection circuit 46 may further include a diode D (indicated by a dashed line), and the diode D is coupled to the resistor 462. The diode D is used to limit the polarity of the auxiliary voltage Va, so as to prevent the secondary voltage change value Vc from generating a voltage of wrong polarity. Specifically, the auxiliary voltage Va may have a negative voltage (due to the switching of the power switch 22). When it is a negative voltage, the value of the secondary voltage change value Vc generated is a negative value, which may cause the secondary side control unit 44 to fail to accept the negative voltage and be damaged (if the secondary side control unit 44 itself has a limited number of times) The function of the polarity of the voltage change value Vc is not limited to this). Therefore, a diode D must be used to limit the polarity of the auxiliary voltage Va to avoid the above situation.

如圖3B所示,且配合參閱圖2B,次級偵測電路46’包括偵側電阻Rs。偵側電阻Rs耦接次級整流濾波電路3至負載200的路徑上,且偵側電阻Rs的兩端分別與次級側控制單元44的兩個不同端點連接。當輸出電流Io流過偵側電阻Rs時,偵側電阻Rs兩端的壓降(即為次級電壓變化值Vc)也會隨之產生變化。因此,次級側控制單元44可通過偵側電阻Rs兩端的壓降得知輸出電流Io高低的變化。As shown in FIG. 3B and in conjunction with FIG. 2B, the secondary detection circuit 46' includes a detection side resistor Rs. The detection side resistance Rs is coupled to the path from the secondary rectification filter circuit 3 to the load 200, and two ends of the detection side resistance Rs are respectively connected to two different ends of the secondary side control unit 44. When the output current Io flows through the detection side resistance Rs, the voltage drop across the detection side resistance Rs (that is, the secondary voltage change value Vc) will also change accordingly. Therefore, the secondary side control unit 44 can learn the change of the output current Io through the voltage drop across the sensing side resistor Rs.

請參閱圖4為本發明過溫度調整線路與初級側控制單元之過溫度比較電路圖,復配合參閱圖1~3B。過溫度調整線路48包括溫控電阻Rt(例如但不限於,負溫度係數電阻),且溫控電阻Rt根據所在位置的環境溫度而產生溫控阻值。當環境溫度越高時,溫控阻值越小,且當環境溫度越低時,溫控阻值越大。當電流變化值Ic流過溫控電阻Rt時,會在溫控電阻Rt兩端產生壓降,其壓降為溫控電壓Vt。次級側控制單元44包括比較單元442,且比較單元442的其中一輸入端接收溫控電壓Vt,比較單元442的另一輸入端接收參考電壓Vr。比較單元442比較溫控電壓Vt與參考電壓Vr而判斷是否提供過溫度訊號St,以使次級側控制單元44根據是否收到過溫度訊號St而提供過溫度保護。Please refer to FIG. 4 for a circuit diagram of the over-temperature comparison circuit between the over-temperature adjustment circuit and the primary-side control unit of the present invention. The temperature control circuit 48 includes a temperature control resistor Rt (for example, but not limited to, a negative temperature coefficient resistor), and the temperature control resistor Rt generates a temperature control resistance value according to the ambient temperature of the location. When the ambient temperature is higher, the temperature control resistance value is smaller, and when the ambient temperature is lower, the temperature control resistance value is larger. When the current change value Ic flows through the temperature control resistor Rt, a voltage drop will be generated across the temperature control resistor Rt, and the voltage drop is the temperature control voltage Vt. The secondary side control unit 44 includes a comparison unit 442, and one of the input terminals of the comparison unit 442 receives the temperature control voltage Vt, and the other input terminal of the comparison unit 442 receives the reference voltage Vr. The comparison unit 442 compares the temperature control voltage Vt with the reference voltage Vr to determine whether the over-temperature signal St is provided, so that the secondary side control unit 44 provides over-temperature protection according to whether the over-temperature signal St is received.

具體而言,由於電流變化值Ic是隨著輸入電壓Vin或輸出電流Io的高低而有所變動,且溫控阻值是隨著環境溫度而改變,使得溫控電壓Vt同時會隨著輸入電壓Vin與環境溫度而變動(或隨著輸出電流Io與環境溫度而變動)。然後,再利用固定電壓值的參考電壓Vr比較溫控電壓Vt即可使次級側控制單元44得知是否需啟動過溫度保護。其中,參考電壓Vr的數值即為過溫度保護的點位。Specifically, since the current change value Ic changes with the input voltage Vin or the output current Io, and the temperature control resistance changes with the ambient temperature, the temperature control voltage Vt also changes with the input voltage Vin varies with ambient temperature (or varies with output current Io and ambient temperature). Then, the reference voltage Vr of the fixed voltage value is used to compare the temperature control voltage Vt to enable the secondary side control unit 44 to know whether the over temperature protection needs to be activated. Among them, the value of the reference voltage Vr is the point of over temperature protection.

請參閱圖1~4,且以輸入電壓Vin為例。當輸入電壓Vin較高(例如但不限於,264V)時,圖2A偵測方式所得到的次級電壓變化值Vc的電壓值較高,使得次級側控制單元44根據較高電壓值的次級電壓變化值Vc而產生較高電流值的電流變化值Ic。當輸入電壓Vin較低(例如但不限於,90V)時,圖2A偵測方式所得到的次級電壓變化值Vc的電壓值較低,使得次級側控制單元44根據較低電壓值的次級電壓變化值Vc而產生較低電流值的電流變化值Ic。Please refer to Figures 1~4, and take the input voltage Vin as an example. When the input voltage Vin is relatively high (for example, but not limited to, 264V), the voltage value of the secondary voltage change value Vc obtained by the detection method in FIG. 2A is relatively high, so that the secondary side control unit 44 is based on the secondary voltage value of the higher voltage value. Step-by-step voltage change value Vc produces a higher current value current change value Ic. When the input voltage Vin is low (for example, but not limited to, 90V), the voltage value of the secondary voltage change value Vc obtained by the detection method of FIG. 2A is relatively low, so that the secondary side control unit 44 performs the second order according to the lower voltage value. The step voltage change value Vc generates a current change value Ic with a lower current value.

在環境溫度為定值的情況下(意即,溫控阻值為定值),輸入電壓Vin為264V時,次級側控制單元44所獲得的溫控電壓Vt較輸入電壓Vin為90V時還來的高,使得輸入電壓Vin為264V時的溫控電壓Vt的電壓值離過溫度保護點位(意即,參考電壓Vr)較輸入電壓Vin為90V時還要來的遠。因此,若在環境溫度變動的情況下,輸入電壓Vin為264V時需要較高的環境溫度(相對於輸入電壓Vin為90V)才能觸發過溫度保護。值得一提,在輸入電壓為90V時,恰與上述輸入電壓為264V時相反,在此不再加以贅述。此外,次級側控制單元44所提供的電流變化值Ic可為根據輸入電壓Vin線性變化而線性變化的數值(意即,電流變化值Ic的曲線正比於輸入電壓Vin線性變化的曲線),但也可為根據輸入電壓Vin線性變化而分段改變的數值(例如但不限於,改變的點位為90V、170V、264V),其可根據次級側控制單元44所設定的解析度而調整。上述相同的例子應用在圖3B的實施例時,電流變化值Ic的變化正比於輸出電流Io的高低,其相似於上述輸入電壓Vin高低的差異,在此不再加以贅述。When the ambient temperature is a fixed value (that is, the temperature control resistance value is a fixed value), when the input voltage Vin is 264V, the temperature control voltage Vt obtained by the secondary side control unit 44 is lower than when the input voltage Vin is 90V When the input voltage Vin is 264V, the voltage value of the temperature control voltage Vt is farther from the over-temperature protection point (that is, the reference voltage Vr) than when the input voltage Vin is 90V. Therefore, if the ambient temperature fluctuates, when the input voltage Vin is 264V, a higher ambient temperature (90V relative to the input voltage Vin) is required to trigger the over-temperature protection. It is worth mentioning that when the input voltage is 90V, it is exactly the opposite of the above-mentioned input voltage of 264V, and will not be repeated here. In addition, the current change value Ic provided by the secondary side control unit 44 may be a value that changes linearly according to the linear change of the input voltage Vin (that is, the curve of the current change value Ic is proportional to the curve of the input voltage Vin), but It can also be a value that changes in sections according to the linear change of the input voltage Vin (for example, but not limited to, the changed points are 90V, 170V, 264V), which can be adjusted according to the resolution set by the secondary side control unit 44. When the above-mentioned same example is applied to the embodiment of FIG. 3B, the change of the current change value Ic is proportional to the level of the output current Io, which is similar to the above-mentioned difference of the level of the input voltage Vin, and will not be repeated here.

以圖4的電路搭配圖2A與圖3A的電路為例,且次級電壓變化值Vc的高低是隨著輸入電壓Vin的變動而變動。假設電源轉換器100外殼溫度設定在90度時次級側控制單元44提供過溫度保護,且過溫度保護的電壓為0.5V(意即,參考電壓為0.5V)。在此條件下,假設輸入電壓Vin為90V時,溫控電阻Rt的溫控阻值為1歐姆,且輸入電壓Vin為264V時,溫控電阻Rt的溫控阻值為2歐姆。在輸入電壓Vin為90V時,次級側控制單元44根據次級電壓變化值Vc得知輸入電壓Vin為90V,且提供500mA的電流變化值Ic至溫控電阻Rt。此時,若電源轉換器100外殼溫度到達90度時,溫控電阻Rt與電流變化值Ic所產生的溫控電壓Vt即為0.5V(1歐姆*500mA)。因此,次級側控制單元44即提供過溫度保護。在輸入電壓Vin為264V時,次級側控制單元44根據次級電壓變化值Vc得知輸入電壓Vin為264V,且提供250mA的電流變化值Ic至溫控電阻Rt。此時,若電源轉換器100外殼溫度到達90度時,溫控電阻Rt與電流變化值Ic所產生的溫控電壓Vt即為0.5V(2歐姆*250mA)。因此,次級側控制單元44即提供過溫度保護。Take the circuit of FIG. 4 with the circuits of FIGS. 2A and 3A as an example, and the level of the secondary voltage change value Vc changes with the change of the input voltage Vin. It is assumed that the secondary side control unit 44 provides over-temperature protection when the casing temperature of the power converter 100 is set at 90 degrees, and the voltage of the over-temperature protection is 0.5V (that is, the reference voltage is 0.5V). Under this condition, suppose that when the input voltage Vin is 90V, the temperature control resistance of the temperature control resistor Rt is 1 ohm, and when the input voltage Vin is 264V, the temperature control resistance of the temperature control resistor Rt is 2 ohms. When the input voltage Vin is 90V, the secondary side control unit 44 knows that the input voltage Vin is 90V according to the secondary voltage change value Vc, and provides a current change value Ic of 500 mA to the temperature control resistor Rt. At this time, if the housing temperature of the power converter 100 reaches 90 degrees, the temperature control voltage Vt generated by the temperature control resistance Rt and the current change value Ic is 0.5V (1 ohm*500mA). Therefore, the secondary side control unit 44 provides over-temperature protection. When the input voltage Vin is 264V, the secondary side control unit 44 knows that the input voltage Vin is 264V according to the secondary voltage change value Vc, and provides a current change value Ic of 250 mA to the temperature control resistor Rt. At this time, if the housing temperature of the power converter 100 reaches 90 degrees, the temperature control voltage Vt generated by the temperature control resistance Rt and the current change value Ic is 0.5V (2 ohm*250mA). Therefore, the secondary side control unit 44 provides over-temperature protection.

上述同樣範例應用在次級電壓變化值Vc的高低隨著輸出電流Io的變動而變動的情況下(意即通過輔助電壓Va的電壓的佔空比得知負載狀況),其過溫度保護的計算方式相似於上述次級電壓變化值Vc的高低隨著輸入電壓Vin的變動而變動的情況。在輸出電流Io為過載時(通過佔空比而得知),次級側控制單元44根據次級電壓變化值Vc得知輸出電流Io為過載。此時,次級側控制單元44內部設定延遲時間。在輸出電流Io為過載,且超過延遲時間後,次級側控制單元44即將電流變化值Ic變更為200mA。由於在過載的情況,溫控電阻Rt的阻值必定會小於2歐姆(因為環境溫度升高,溫控電阻Rt的阻值變小)。因此,溫控電阻Rt與電流變化值Ic(假設過載時的溫控電阻Rt為1.5歐姆)所產生的溫控電壓Vt必定會小於過溫度保護點的0.5V(1.5歐姆*200mA)。因此,次級側控制單元44即提供過溫度保護。The same example above is applied in the case where the secondary voltage change value Vc changes with the change of the output current Io (meaning that the load status is known by the duty cycle of the auxiliary voltage Va), and the calculation of the over-temperature protection The method is similar to the situation in which the level of the secondary voltage change value Vc changes with the change of the input voltage Vin. When the output current Io is overloaded (known by the duty cycle), the secondary side control unit 44 knows that the output current Io is overloaded according to the secondary voltage change value Vc. At this time, the secondary side control unit 44 sets a delay time internally. After the output current Io is overloaded and exceeds the delay time, the secondary side control unit 44 changes the current change value Ic to 200 mA. Due to the overload condition, the resistance value of the temperature control resistor Rt must be less than 2 ohms (because the ambient temperature rises, the resistance value of the temperature control resistor Rt becomes smaller). Therefore, the temperature control voltage Vt generated by the temperature control resistance Rt and the current change value Ic (assuming that the temperature control resistance Rt is 1.5 ohms during overload) must be less than 0.5V (1.5 ohm*200mA) of the over temperature protection point. Therefore, the secondary side control unit 44 provides over-temperature protection.

在圖4的電路搭配圖2B與圖3B的電路的情況下,其過溫度保護的計算方式相似於上述次級電壓變化值Vc的高低隨著輸出電流Io的變動而變動的情況。意即,當負載為輕載時,輸出電流Io較低,使得偵側電阻Rs兩端的壓降(即為次級電壓變化值Vc)較低。當負載為滿載時,輸出電流Io較高,使得偵側電阻Rs兩端的壓降(即為次級電壓變化值Vc)較高。當負載為過載時,次級側控制單元44內部同樣會設定延遲時間。當超過延遲時間仍過載,則次級側控制單元44即會調降電流變化值Ic。其餘的計算即控制方式同於上述次級電壓變化值Vc的高低隨著輸出電流Io的變動而變動的情況,在此不再加以贅述。When the circuit of FIG. 4 is combined with the circuits of FIG. 2B and FIG. 3B, the calculation method of the over-temperature protection is similar to the above-mentioned situation where the level of the secondary voltage change value Vc changes with the change of the output current Io. That is, when the load is light, the output current Io is lower, so that the voltage drop across the detection side resistor Rs (that is, the secondary voltage change value Vc) is lower. When the load is full, the output current Io is higher, so that the voltage drop across the detection side resistor Rs (that is, the secondary voltage change value Vc) is higher. When the load is overloaded, the secondary side control unit 44 also sets a delay time. When the delay time is exceeded and the load is still overloaded, the secondary side control unit 44 will reduce the current change value Ic. The rest of the calculation, that is, the control method, is the same as the situation in which the level of the secondary voltage change value Vc changes with the change of the output current Io, and will not be repeated here.

請參閱圖5A為本發明過溫度保護方式第一實施例之電路方塊圖、請參閱圖5B為本發明過溫度保護方式第二實施例之電路方塊圖,復配合參閱圖1~4。次級側控制單元44啟動過溫度保護至少具有兩種保護方式,其保護方式可根據電路實際狀況而選擇至少其中之一的保護方式進行過溫度保護。如圖5A所示,當次級側控制單元44收到比較單元442所提供的過溫度訊號St時,次級側控制單元44提供對應過溫度訊號St的保護訊號Sp至初級側控制單元42。初級側控制單元42收到保護訊號Sp後,通過關斷主轉換單元2的功率開關22而關閉該主轉換單元2,使得主轉換單元2不再工作,以提供過溫度保護。如圖5B所示,次級整流濾波電路3至負載200的路徑上串聯了保護開關6。保護開關6用以在電源轉換器100發生故障時,提供故障保護之用,其在具有電力輸送(Power Delivery)功能的電源轉換器100中,是必須要具備的元件。因此,在電源轉換器100發生過溫度時,也可利用此保護開關6進行過溫度的保護。當次級側控制單元44收到比較單元442所提供的過溫度訊號St時,次級側控制單元44提供對應過溫度訊號St的保護訊號Sp至保護開關6,使次級側控制單元44通過關斷保護開關6而斷路次級整流濾波電路3至負載200的路徑,進而啟動過溫度保護。Please refer to FIG. 5A for the circuit block diagram of the first embodiment of the over-temperature protection method of the present invention. Please refer to FIG. 5B for the circuit block diagram of the second embodiment of the over-temperature protection method of the present invention. The secondary side control unit 44 has at least two protection modes for starting the over-temperature protection, and the protection mode can select at least one of the protection modes for over-temperature protection according to the actual circuit conditions. As shown in FIG. 5A, when the secondary-side control unit 44 receives the over-temperature signal St provided by the comparison unit 442, the secondary-side control unit 44 provides a protection signal Sp corresponding to the over-temperature signal St to the primary-side control unit 42. After receiving the protection signal Sp, the primary side control unit 42 turns off the main conversion unit 2 by turning off the power switch 22 of the main conversion unit 2 so that the main conversion unit 2 no longer works to provide over-temperature protection. As shown in FIG. 5B, a protective switch 6 is connected in series on the path from the secondary rectification filter circuit 3 to the load 200. The protection switch 6 is used to provide fault protection when the power converter 100 fails. It is a necessary component in the power converter 100 with a power delivery function. Therefore, when an over-temperature occurs in the power converter 100, the protection switch 6 can also be used to protect the over-temperature. When the secondary side control unit 44 receives the over temperature signal St provided by the comparison unit 442, the secondary side control unit 44 provides the protection signal Sp corresponding to the over temperature signal St to the protection switch 6, so that the secondary side control unit 44 passes The protection switch 6 is turned off to disconnect the path from the secondary rectification filter circuit 3 to the load 200, and the over-temperature protection is activated.

請參閱圖6為本發明具有過溫度保護補償的電源轉換器第二實施例之電路方塊圖,復配合參閱圖1~5B。本實施例與圖1的第一實施例差異在於,次級側控制單元44’根據次級電壓變化值Vc而產生電流固定值If,且提供電流固定值If至過溫度調整線路48’。意即,電流固定值If不會隨著輸入電壓Vin的電壓值或輸出電流Io的變動而變動。過溫度調整線路48’除了具有根據所在位置的環境溫度而產生溫控阻值外,更具有根據輸入電壓Vin的電壓值高低而產生阻值的變化的電阻變化值。過溫度調整線路48’根據電流固定值If與電阻變化值而提供溫控電壓Vt至次級側控制單元44’,使次級側控制單元44’能夠根據溫控電壓Vt判斷是否啟動過溫度保護。Please refer to FIG. 6 for a circuit block diagram of the second embodiment of the power converter with over-temperature protection compensation according to the present invention, and for complex cooperation, refer to FIGS. 1 to 5B. The difference between this embodiment and the first embodiment in FIG. 1 is that the secondary side control unit 44' generates a fixed current value If according to the secondary voltage change value Vc, and provides the fixed current value If to the over-temperature adjustment circuit 48'. That is, the fixed current value If does not change with the voltage value of the input voltage Vin or the output current Io. The over-temperature adjustment circuit 48' not only has a temperature control resistance value generated according to the ambient temperature of the location, but also has a resistance change value that changes the resistance value according to the voltage value of the input voltage Vin. The over-temperature adjustment circuit 48' provides a temperature control voltage Vt to the secondary side control unit 44' according to the current fixed value If and the resistance change value, so that the secondary side control unit 44' can determine whether to activate the over-temperature protection according to the temperature control voltage Vt .

具體而言,過溫度調整線路48’包括溫度補償線路482與溫控電阻Rt,且溫度補償線路482耦接次級側控制單元44’與溫控電阻Rt。溫控電阻Rt與圖4的實施例相同,其根據所在位置的環境溫度而產生溫控阻值,且溫度補償線路482根據輸入電壓Vin的變化而對應地產生電阻變化值。當輸入電壓Vin較高時(例如但不限於,264V),溫度補償線路482所提供的電阻變化值較高,且輸入電壓Vin較低時(例如但不限於,264V),溫度補償線路482所提供的電阻變化值較低。當電流固定值If流過過溫度調整線路48’時,會在溫度補償線路482產生第一溫控電壓(意即,第一溫控電壓即為電阻變化值與電流固定值If的乘積),且在溫控電阻Rt兩端產生第二溫控電壓。第一溫控電壓加上第二溫控電壓即為溫控電壓Vt。然後,次級側控制單元44’根據溫控電壓Vt判斷是否啟動過溫度保護。Specifically, the over-temperature adjustment circuit 48' includes a temperature compensation circuit 482 and a temperature control resistor Rt, and the temperature compensation circuit 482 is coupled to the secondary side control unit 44' and the temperature control resistor Rt. The temperature control resistor Rt is the same as the embodiment in FIG. 4, it generates a temperature control resistance value according to the ambient temperature of the location, and the temperature compensation circuit 482 correspondingly generates a resistance change value according to the change of the input voltage Vin. When the input voltage Vin is high (for example, but not limited to, 264V), the resistance change value provided by the temperature compensation circuit 482 is relatively high, and when the input voltage Vin is low (for example, but not limited to, 264V), the temperature compensation circuit 482 is The provided resistance change value is low. When the fixed current value If flows through the temperature adjustment circuit 48', a first temperature control voltage will be generated on the temperature compensation circuit 482 (that is, the first temperature control voltage is the product of the resistance change value and the fixed current value If), And a second temperature control voltage is generated across the temperature control resistor Rt. The first temperature control voltage plus the second temperature control voltage is the temperature control voltage Vt. Then, the secondary side control unit 44' judges whether to activate the over-temperature protection according to the temperature control voltage Vt.

值得一提,於本發明之一實施例中,溫度補償線路482不限定如圖6般的耦接方式,其可耦接於次級側控制單元44’與溫控電阻Rt之間,或耦接溫控電阻Rt與接地點之間。此外,於本發明之一實施例中,圖6第二實施例的電源轉換器100’未敘明的電路結構及控制方式同於圖1,且同樣適用圖2A~2C的次級電壓變化值Vc的偵測方式,以及次級偵測電路46的內部結構同樣適用圖3A~3B的電路結構,在此不再加以贅述。It is worth mentioning that, in an embodiment of the present invention, the temperature compensation circuit 482 is not limited to the coupling manner as shown in FIG. 6, and it can be coupled between the secondary side control unit 44' and the temperature control resistor Rt, or Connect the temperature control resistor Rt to the grounding point. In addition, in an embodiment of the present invention, the undescribed circuit structure and control method of the power converter 100' of the second embodiment in FIG. 6 are the same as those in FIG. 1, and the secondary voltage change values of FIGS. 2A~2C are also applicable. The detection method of Vc and the internal structure of the secondary detection circuit 46 are also applicable to the circuit structure of FIGS. 3A to 3B, and will not be repeated here.

綜上所述,本發明的實施例的主要優點與功效在於,本發明之具有過溫度保護補償的電源轉換器由於是根據輸入電壓的高低而補償過溫度保護的過溫度保護點。因此,次級側控制單元啟動過溫度保護的過溫度保護點是隨著輸入電壓的高低而變動。所以,通過上述補償的方式,可避免電源轉換器在不同輸入電壓的條件下,因效率的差異而導致過溫度保護無法正常觸發,進而避免延誤過溫度保護的風險。In summary, the main advantages and effects of the embodiments of the present invention are that the power converter with over-temperature protection compensation of the present invention compensates the over-temperature protection point of the over-temperature protection according to the level of the input voltage. Therefore, the over-temperature protection point of the secondary-side control unit to activate the over-temperature protection varies with the input voltage. Therefore, through the above compensation method, the over-temperature protection cannot be triggered normally due to the difference in efficiency under the condition of different input voltages of the power converter, thereby avoiding the risk of delaying the over-temperature protection.

惟,以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包括於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。此外,在申請專利範圍和說明書中提到的特徵可以分別單獨地或按照任何組合方式來實施。However, the above are only detailed descriptions and drawings of the preferred embodiments of the present invention. However, the features of the present invention are not limited to these, and are not intended to limit the present invention. The full scope of the present invention should be referred to the following application The scope of the patent shall prevail. All embodiments that conform to the spirit of the scope of the patent application of the present invention and similar variations should be included in the scope of the present invention. Anyone familiar with the art in the field of the present invention can easily think of it. Changes or modifications can be covered in the following patent scope of this case. In addition, the features mentioned in the patent application scope and the specification can be implemented individually or in any combination.

100、100’:電源轉換器100, 100’: Power converter

1:初級整流濾波電路1: Primary rectifier filter circuit

2:主轉換單元2: Main conversion unit

22:功率開關22: Power switch

3:次級整流濾波電路3: Secondary rectifier filter circuit

4:控制模組4: Control module

42:初級側控制單元42: Primary side control unit

44、44’:次級側控制單元44, 44’: Secondary side control unit

442:比較單元442: comparison unit

46、46’:次級偵測電路46, 46’: Secondary detection circuit

462:電阻462: Resistance

464:分壓元件464: voltage divider element

D:二極體D: Diode

Rs:偵側電阻Rs: Detection side resistance

48、48’:過溫度調整線路48, 48’: Over temperature adjustment circuit

482:溫度補償線路482: temperature compensation circuit

482A:偵測電路482A: Detection circuit

482A-1:電阻482A-1: Resistance

482A-2:分壓元件482A-2: Voltage divider element

482B:壓控開關482B: voltage control switch

482C:控制單元482C: control unit

Q1:第一開關Q1: The first switch

Q2:第二開關Q2: The second switch

X:輸入端X: Input

Y:輸出端Y: output

Z:控制端Z: control end

482D:補償電阻482D: Compensation resistor

Rc1:第一補償電阻Rc1: first compensation resistor

Rc2:第二補償電阻Rc2: second compensation resistor

Rt:溫控電阻Rt: temperature control resistance

5:輔助繞組5: auxiliary winding

6:保護開關6: Protection switch

200:負載200: load

Vin:輸入電壓Vin: input voltage

Vo:輸出電壓Vo: output voltage

Vd:直流電壓Vd: DC voltage

Vs:次級電壓Vs: secondary voltage

Va:輔助電壓Va: auxiliary voltage

Va:偵測電壓Va: Detection voltage

Vc:次級電壓變化值Vc: Secondary voltage change value

Vc1:電壓變化值Vc1: Voltage change value

Vt:溫控電壓Vt: temperature control voltage

Vr:參考電壓Vr: Reference voltage

Vcc:工作電壓Vcc: working voltage

Io:輸出電流Io: output current

Ic:電流變化值Ic: current change value

If:電流固定值If: current fixed value

Ss:切換訊號Ss: Switch signal

Sf:回授訊號Sf: Feedback signal

St:過溫度訊號St: Over temperature signal

Sc:控制訊號Sc: control signal

Sg:交握訊號Sg: Handshaking signal

Sp:保護訊號Sp: protection signal

A、B:節點A, B: Node

圖1為本發明具有過溫度保護補償的電源轉換器第一實施例之電路方塊圖;1 is a circuit block diagram of the first embodiment of a power converter with over-temperature protection compensation according to the present invention;

圖2A為本發明初級偵測電路偵測方式第一實施例之電路方塊圖;2A is a circuit block diagram of the first embodiment of the detection method of the primary detection circuit of the present invention;

圖2B為本發明初級偵測電路偵測方式第二實施例之電路方塊圖;2B is a circuit block diagram of the second embodiment of the detection method of the primary detection circuit of the present invention;

圖2C為本發明初級偵測電路偵測方式第三實施例之電路方塊圖;2C is a circuit block diagram of the third embodiment of the detection method of the primary detection circuit of the present invention;

圖3A為本發明初級偵測電路第一實施例之電路圖;3A is a circuit diagram of the first embodiment of the primary detection circuit of the present invention;

圖3B為本發明初級偵測電路第二實施例之電路圖;3B is a circuit diagram of the second embodiment of the primary detection circuit of the present invention;

圖4為本發明過溫度調整線路與初級側控制單元之過溫度比較電路圖;4 is a circuit diagram of the over-temperature comparison circuit between the over-temperature adjustment circuit and the primary-side control unit of the present invention;

圖5A為本發明過溫度保護方式第一實施例之電路方塊圖;5A is a circuit block diagram of the first embodiment of the over-temperature protection method of the present invention;

圖5B為本發明過溫度保護方式第二實施例之電路方塊圖;及5B is a circuit block diagram of the second embodiment of the over-temperature protection method of the present invention; and

圖6為本發明具有過溫度保護補償的電源轉換器第二實施例之電路方塊圖。6 is a circuit block diagram of a second embodiment of a power converter with over-temperature protection compensation according to the present invention.

100:電源轉換器 100: power converter

1:初級整流濾波電路 1: Primary rectifier filter circuit

2:主轉換單元 2: Main conversion unit

22:功率開關 22: Power switch

3:次級整流濾波電路 3: Secondary rectifier filter circuit

4:控制模組 4: Control module

42:初級側控制單元 42: Primary side control unit

44:次級側控制單元 44: Secondary side control unit

46:次級偵測電路 46: Secondary detection circuit

48:過溫度調整線路 48: Over temperature adjustment circuit

200:負載 200: load

Vin:輸入電壓 Vin: input voltage

Vo:輸出電壓 Vo: output voltage

Vd:直流電壓 Vd: DC voltage

Vs:次級電壓 Vs: secondary voltage

Vc:次級電壓變化值 Vc: Secondary voltage change value

Vt:溫控電壓 Vt: temperature control voltage

Ic:電流變化值 Ic: current change value

Ss:切換訊號 Ss: Switch signal

Sf:回授訊號 Sf: Feedback signal

Claims (12)

一種具有過溫度保護補償的電源轉換器,包括: 一主轉換單元,包括一初級側與一次級側,該初級側耦接一輸入電壓,該次級側耦接一次級整流濾波電路; 一初級側控制單元,耦接該初級側; 一次級側控制單元,耦接該初級側控制單元; 一次級偵測電路,耦接該次級側;及 一過溫度調整線路,耦接該次級側控制單元; 其中,該次級側控制單元通過該次級偵測電路得知一次級電壓變化值,且該次級側控制單元根據該次級電壓變化值而對應地提供一電流變化值至該過溫度調整線路;該過溫度調整線路根據該電流變化值而提供一溫控電壓,使該次級側控制單元根據該溫控電壓判斷是否啟動一過溫度保護。A power converter with over-temperature protection compensation, including: A main conversion unit, including a primary side and a secondary side, the primary side is coupled to an input voltage, and the secondary side is coupled to the primary rectifier filter circuit; A primary side control unit, coupled to the primary side; A secondary side control unit, coupled to the primary side control unit; A secondary detection circuit, coupled to the secondary side; and Once the temperature adjustment circuit is passed, it is coupled to the secondary side control unit; Wherein, the secondary side control unit learns the change value of the primary voltage through the secondary detection circuit, and the secondary side control unit correspondingly provides a current change value to the over-temperature adjustment according to the secondary voltage change value Circuit; The over-temperature adjustment circuit provides a temperature-controlled voltage according to the current change value, so that the secondary-side control unit determines whether to activate an over-temperature protection according to the temperature-controlled voltage. 如請求項1所述的電源轉換器,其中該次級側控制單元通過該初級側控制單元關閉該主轉換單元,以啟動該過溫度保護。The power converter according to claim 1, wherein the secondary-side control unit shuts down the main conversion unit through the primary-side control unit to activate the over-temperature protection. 如請求項1所述的電源轉換器,更包括: 一保護開關,耦接該次級整流濾波電路; 其中,該次級側控制單元通過關斷該保護開關,以啟動該過溫度保護。The power converter according to claim 1, further including: A protection switch, coupled to the secondary rectifier filter circuit; Wherein, the secondary side control unit turns off the protection switch to start the over temperature protection. 如請求項1所述的電源轉換器,其中該過溫度調整線路包括一溫控電阻,該溫控電阻根據環境溫度而產生一溫控阻值,且該電流變化值流過該溫控阻值而產生該溫控電壓。The power converter according to claim 1, wherein the over-temperature adjustment circuit includes a temperature-control resistance, the temperature-control resistance generates a temperature-control resistance value according to the ambient temperature, and the current change value flows through the temperature-control resistance value And generate the temperature control voltage. 如請求項1所述的電源轉換器,其中該次級側控制單元包括一比較單元,且當該比較單元判斷該溫控電壓低於一參考電壓時,該次級側控制單元啟動該過溫度保護。The power converter according to claim 1, wherein the secondary side control unit includes a comparison unit, and when the comparison unit determines that the temperature control voltage is lower than a reference voltage, the secondary side control unit starts the overtemperature protection. 如請求項1所述的電源轉換器,其中該輸入電壓較高時,該次級側控制單元所提供的該電流變化值較高,且該輸入電壓較低時,該次級側控制單元所提供的該電流變化值較低。The power converter according to claim 1, wherein when the input voltage is higher, the current change value provided by the secondary-side control unit is higher, and when the input voltage is lower, the secondary-side control unit is The current change value provided is low. 如請求項1所述的電源轉換器,更包括: 一輔助繞組,耦接該次級偵測電路與該主轉換單元; 其中,該輔助繞組通過該主轉換單元而得到對應該輸入電壓變化或該次級整流濾波電路所提供的一輸出電流變化的一輔助電壓,且該次級偵測電路根據該輔助電壓而提供該次級電壓變化值。The power converter according to claim 1, further including: An auxiliary winding coupled to the secondary detection circuit and the main conversion unit; Wherein, the auxiliary winding obtains an auxiliary voltage corresponding to the input voltage change or the output current change provided by the secondary rectification filter circuit through the main conversion unit, and the secondary detection circuit provides the auxiliary voltage according to the auxiliary voltage. Secondary voltage change value. 如請求項7所述的電源轉換器,其中該次級偵測電路包括: 一電阻,耦接該輔助繞組;及 一分壓元件,耦接該電阻; 其中,該分壓元件為一分壓電阻或一電容,且該電阻與該分壓元件之間的一節點耦接該次級側控制單元;該電阻接收該輔助電壓,且根據該輔助電壓而通過該節點提供該次級電壓變化值。The power converter according to claim 7, wherein the secondary detection circuit includes: A resistor coupled to the auxiliary winding; and A voltage dividing element, coupled to the resistor; Wherein, the voltage dividing element is a voltage dividing resistor or a capacitor, and a node between the resistor and the voltage dividing element is coupled to the secondary-side control unit; the resistor receives the auxiliary voltage, and changes according to the auxiliary voltage The secondary voltage change value is provided through the node. 如請求項8所述的電源轉換器,其中該次級輸入電壓偵測電路更包括: 一二極體,耦接該電阻; 其中,該二極體限制該輔助電壓的極性。The power converter according to claim 8, wherein the secondary input voltage detection circuit further includes: A diode, coupled to the resistor; Wherein, the diode limits the polarity of the auxiliary voltage. 如請求項1所述的電源轉換器,其中該次級偵測電路耦接該次級整流濾波電路,且根據該次級整流濾波電路所提供的一輸出電流的變化而得知該次級電壓變化值。The power converter according to claim 1, wherein the secondary detection circuit is coupled to the secondary rectification and filter circuit, and the secondary voltage is obtained according to a change in an output current provided by the secondary rectification and filter circuit Change value. 如請求項10所述的電源轉換器,其中該次級偵測電路包括: 一偵側電阻,耦接該次級整流濾波電路與該次級側控制單元; 其中,該輸出電流流經該偵側電阻而產生該次級電壓變化值。The power converter according to claim 10, wherein the secondary detection circuit includes: A detection side resistor, coupled to the secondary rectification filter circuit and the secondary side control unit; Wherein, the output current flows through the detection side resistance to generate the secondary voltage change value. 如請求項1所述的電源轉換器,其中該次級側控制單元根據一負載提供的一交握訊號而提供該次級電壓變化值。The power converter according to claim 1, wherein the secondary side control unit provides the secondary voltage change value according to a handshaking signal provided by a load.
TW108141050A 2019-02-01 2019-11-12 Power converter with over temperature protection compensation TWI726482B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010006339.8A CN111525514B (en) 2019-02-01 2020-01-03 Power converter with over-temperature protection compensation
US16/774,414 US11050342B2 (en) 2019-02-01 2020-01-28 Power converter with over temperature protection compensation
US17/327,630 US11569734B2 (en) 2019-02-01 2021-05-21 Power converter with over temperature protection compensation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962800048P 2019-02-01 2019-02-01
US62/800,048 2019-02-01

Publications (2)

Publication Number Publication Date
TW202037051A true TW202037051A (en) 2020-10-01
TWI726482B TWI726482B (en) 2021-05-01

Family

ID=73002540

Family Applications (5)

Application Number Title Priority Date Filing Date
TW108132489A TWI723533B (en) 2019-02-01 2019-09-09 Flyback power-converting device with zero-voltage switching and method for flyback converting power with zero-voltage switching
TW110102649A TWI774209B (en) 2019-02-01 2019-11-08 Power converter with over temperature protection compensation
TW108140595A TWI728543B (en) 2019-02-01 2019-11-08 Method of resistance compensation for measuring output current and conversion circuit
TW108140705A TWI720681B (en) 2019-02-01 2019-11-08 Power converter with over temperature protection compensation
TW108141050A TWI726482B (en) 2019-02-01 2019-11-12 Power converter with over temperature protection compensation

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW108132489A TWI723533B (en) 2019-02-01 2019-09-09 Flyback power-converting device with zero-voltage switching and method for flyback converting power with zero-voltage switching
TW110102649A TWI774209B (en) 2019-02-01 2019-11-08 Power converter with over temperature protection compensation
TW108140595A TWI728543B (en) 2019-02-01 2019-11-08 Method of resistance compensation for measuring output current and conversion circuit
TW108140705A TWI720681B (en) 2019-02-01 2019-11-08 Power converter with over temperature protection compensation

Country Status (1)

Country Link
TW (5) TWI723533B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742997B (en) * 2021-02-08 2021-10-11 台達電子工業股份有限公司 Soft-switching power converter
TWI780614B (en) * 2021-03-03 2022-10-11 亞碩綠能股份有限公司 Voltage measuring method and system for switch mode power supply
TWI775343B (en) * 2021-03-09 2022-08-21 全漢企業股份有限公司 Power supply and power saving method thereof
TWI806715B (en) * 2022-07-21 2023-06-21 通嘉科技股份有限公司 Package applied to a flyback power converter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2453603Y (en) * 2000-09-04 2001-10-10 北京鼎立信科技有限公司 Single end normal direction dc to dc inverter
TW200841554A (en) * 2008-02-26 2008-10-16 Shang-Pin Sun A controller of motor and charger for the electric vehicle
US20090257254A1 (en) * 2008-04-15 2009-10-15 National Taiwan University Of Science And Technology Voltage-clamp power converters
WO2011144649A1 (en) * 2010-05-18 2011-11-24 Sma Solar Technology Ag Method for diagnosis of contacts of a photovoltaic system and apparatus
US9184665B2 (en) * 2012-11-02 2015-11-10 System General Corp. Control circuit of power converter with temperature control and method for controlling power converter
TWI533751B (en) * 2014-06-10 2016-05-11 達方電子股份有限公司 Power converter capable of reducing a driving current of light emitting diodes in a high temperature
TWI521853B (en) * 2014-12-24 2016-02-11 力林科技股份有限公司 Flyback-based power conversion apparatus
TWI598719B (en) * 2015-06-11 2017-09-11 通嘉科技股份有限公司 Power supplies and control methods suitable for sequentially transmitting command bits from secondary side to primary side
US9774270B2 (en) * 2015-06-15 2017-09-26 Apple Inc. Systems and methods of operation for power converters having series-parallel mode active clamps
MY181704A (en) * 2016-02-05 2021-01-04 Guangdong Oppo Mobile Telecommunications Corp Ltd Charge method, adapter and mobile terminal
JP6958090B2 (en) * 2016-08-23 2021-11-02 株式会社Gsユアサ Overcurrent detector and power storage device
TWI621328B (en) * 2017-04-18 2018-04-11 立錡科技股份有限公司 Flyback Power Converter Circuit with Active Clamping and Zero Voltage Switching and Control Circuit thereof
CN109217677B (en) * 2017-07-05 2020-11-03 立锜科技股份有限公司 Flyback power supply circuit and primary side control circuit thereof

Also Published As

Publication number Publication date
TW202030487A (en) 2020-08-16
TWI723533B (en) 2021-04-01
TWI726482B (en) 2021-05-01
TW202135440A (en) 2021-09-16
TW202030961A (en) 2020-08-16
TWI728543B (en) 2021-05-21
TWI720681B (en) 2021-03-01
TW202037053A (en) 2020-10-01
TWI774209B (en) 2022-08-11

Similar Documents

Publication Publication Date Title
TWI726482B (en) Power converter with over temperature protection compensation
TWI521853B (en) Flyback-based power conversion apparatus
US7339359B2 (en) Terminal for multiple functions in a power supply
US9124184B2 (en) DC/DC converter
JP6578111B2 (en) Insulated DC / DC converter and feedback circuit thereof, power supply using the same, power adapter, and electronic device
US9572224B2 (en) Bleeder protection using thermal foldback
US20150326008A1 (en) Fault protection circuit
TWI646767B (en) Power control device and power control system
US11569734B2 (en) Power converter with over temperature protection compensation
KR101984313B1 (en) Circuit for sensing overload and short, circuit and method for protecting converter
US20150131335A1 (en) Power supply circuit, electronic processing apparatus, and power supply method
US9350251B2 (en) Power conversion apparatus and over power protection method thereof
US11757350B2 (en) Power converter with over temperature protection compensation
TWI625032B (en) Low phase surge protection device
TWI489758B (en) Power controller, power supply and control method capable of brownin and brownout detection
TWI473402B (en) Power converting apparatus
TW202135439A (en) Low power consumption protection circuit
US20230268840A1 (en) Power supply circuit
TWI720676B (en) Over temperature compensation control circuit
JP2013192329A (en) Switching power supply device
TWM590326U (en) Conversion module with over-temperature protection circuit
US20090180219A1 (en) Apparatus for detecting error occurring to power converter and detecting method thereof
KR20160093206A (en) Inverter control device with scr failure detection circuit