TWI717020B - 細胞分選晶片及其製作方法 - Google Patents

細胞分選晶片及其製作方法 Download PDF

Info

Publication number
TWI717020B
TWI717020B TW108133654A TW108133654A TWI717020B TW I717020 B TWI717020 B TW I717020B TW 108133654 A TW108133654 A TW 108133654A TW 108133654 A TW108133654 A TW 108133654A TW I717020 B TWI717020 B TW I717020B
Authority
TW
Taiwan
Prior art keywords
guide layer
transparent conductive
layer
conductive substrate
light guide
Prior art date
Application number
TW108133654A
Other languages
English (en)
Other versions
TW202113354A (zh
Inventor
吳宏偉
林家豪
洪政源
田偉辰
賴弘岳
戴子鈞
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW108133654A priority Critical patent/TWI717020B/zh
Application granted granted Critical
Publication of TWI717020B publication Critical patent/TWI717020B/zh
Publication of TW202113354A publication Critical patent/TW202113354A/zh

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本發明揭示一種細胞分選晶片及其製作方法。細胞分選晶片,其包括第一透明導電基板、光導層、流道層和第二透明導電基板。第一透明導電基板具有一第一輸出口及一第二輸出口。光導層位於該第一透明導電基板上,其具有多個非晶態與奈米晶態結構,其光吸收係數約為103cm-1至105cm-1,其電阻率約為10Ω-cm至103Ω-cm,且在光波數為450cm-1至540cm-1的範圍內,其在485cm-1與495cm-1之間具有散射峰值。流道層位於光導層上。第二透明導電基板位於流道層上,其具有輸入口。

Description

細胞分選晶片及其製作方法
本發明係關於一種細胞分選晶片及其製作方法。
癌症屬於全球重大疾病,其預防與治療為健康醫療的重要議題。依據臨床醫學,循環腫瘤細胞之數量與癌症發展呈現高度正相關。因此,若是能夠準確分離並量測血液中循環腫瘤細胞的數量,將可大幅提升預後存活率及臨床治療效益。另一方面,在醫學檢驗上,組織活體檢驗是基因測試的黃金標準。然而,在過去幾年中,通過提供活體組織檢驗已經成為使用非侵入性的主要方式,例如血液,唾液和尿液等。液體組織檢查基於這樣的前提下,如循環腫瘤細胞(Circulating Tumor Cell,CTC)或無細胞脫氧核糖核酸(cfDNA)形式的腫瘤材料被發現於患者的血液循環當中。
特別的是,循環腫瘤細胞作為液體活檢的使用在過去幾年中受到關注。然而,在大多數癌症患者中,循環腫瘤細胞在外圍血液中以每毫升0.1至1個細胞的低濃度發生,因此,它們的檢測對於任何分析系統都是一個挑戰。因 此,蒐集循環腫瘤細胞的另一種方法是利用它們的物理特性將它們與正常白血球細胞區分開來。例如,腫瘤細胞最初被認為比造血細胞更大並且不容易變形。
習知技術已有使用磁珠自動分選循環腫瘤細胞與光致介電泳力(LIDEP force)分離大小不同的微粒子的技術,然而上述技術都未針對如何從晶片製造過程與分析過程進行詳細分析與探討,特別是可以產生光致介電泳力的光導層之分析,因製造過程會影響著後續研究的可行性與產業利用性。有鑑於此,發明人在針對上述之研究問題,詳加實驗與評估後,提出一套可提升分選效率之方法進行晶片優化與設計。
有鑑於上述習知技藝之問題,本發明之主要目的在於提供一種細胞分選晶片及其製作方法,其可藉由光量測、電量測和表面量測來預先判別細胞分選晶片的分選效率、細胞生存率和細胞純度,並據以調整細胞分選晶片的製作,進而提升細胞分選晶片的整體效能。
為達上述目的,本發明提供一種細胞分選晶片,其包括第一透明導電基板、光導層、流道層和第二透明導電基板。第一透明導電基板具有一第一輸出口及一第二輸出口。光導層位於該第一透明導電基板上,其具有多個非晶態與奈米晶態結構,其光吸收係數約為103cm-1至105cm-1,其電阻率約為10Ω-cm至103Ω-cm,且在光波數為450cm-1至540cm-1的範圍內,其在485cm-1與495cm-1 之間具有散射峰值。流道層位於光導層上。第二透明導電基板位於流道層上,其具有輸入口。
在一實施例中,上述第一透明導電基板與上述第二透明導電基板面積之每一者的片電阻值約為4Ω/□至7Ω/□。
在一實施例中,上述流道層的材料為聚二甲基矽氧烷或聚甲基丙烯酸甲酯。
在一實施例中,上述流道層的厚度約為40微米至120微米。
在一實施例中,上述光導層的厚度約為500奈米至1000奈米。
為達上述目的,本發明另提供一種細胞分選晶片之製作方法,其包含下列步驟。首先,提供第一透明導電基板,其具有第一輸出口及第二輸出口。接著,在第一透明導電基板上形成光導層,此光導層具有多個非晶態與奈米晶態結構。之後,對光導層進行光吸收係數、電阻率及拉曼位移的量測,以判別光導層的光吸收係數是否約為103cm-1至105cm-1,光導層的電阻率是否約為10Ω-cm至103Ω-cm,以及在光波數為450cm-1至540cm-1的範圍內,光導層在485cm-1與495cm-1之間是否具有散射峰值。接著,在判別出光導層之光吸收係數約為103cm-1至105cm-1,光導層之電阻率約為10Ω-cm至103Ω-cm,以及在光波數為450cm-1至540cm-1的範圍內,該光導層在485cm-1與495cm-1之間具有散射峰值的條件下,在光導層上形成流道層。之後,在 流道層上形成第二透明導電基板,此第二透明導電基板具有輸入口。
在一實施例中,上述光導層是利用超高頻電漿化學氣相沉積設備形成。在形成上述光導層的期間,超高頻電漿化學氣相沉積設備之射頻電源約為40.68MHz或60MHz,其腔體壓力約為600毫托、800毫托或1000毫托,且其射頻功率約為68瓦至80瓦。
在一實施例中,上述超高頻電漿化學氣相沉積設備使用之沉積氣體包含氫氣和矽甲烷,其中氫氣和矽甲烷在上述超高頻電漿化學氣相沉積設備之製程腔體中的數量比值約為0.2至0.3。
在一實施例中,上述超高頻電漿化學氣相沉積設備的沉積間距約為15毫米。
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。
100‧‧‧循環腫瘤細胞分選方法
110、120、130、140、150、160‧‧‧步驟
200‧‧‧細胞分選晶片
210‧‧‧第一透明導電基板
212‧‧‧第一輸出口
214‧‧‧第二輸出口
220‧‧‧光導層
230‧‧‧流道層
240‧‧‧第二透明導電基板
242‧‧‧輸入口
AC‧‧‧副流道
CA、CB‧‧‧細胞
CV1~CV3‧‧‧曲線
D‧‧‧直徑
MC‧‧‧主流道
NE‧‧‧負極端
OM‧‧‧電阻計
PE‧‧‧正極端
PWR‧‧‧電源
SR‧‧‧分選區域
W‧‧‧寬度
為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:〔圖1〕為依據本發明實施例之細胞分選晶片之製作方法的流程圖;〔圖2〕為依據本發明實施例之細胞分選晶片的剖面示意圖; 〔圖3〕為使用超高頻電漿化學氣相沉積設備在不同製程壓力下形成之光導層的光吸收係數與電阻率之關係圖;〔圖4〕為位於光導層上之金屬墊的示意圖;〔圖5〕為對光導層進行電量測的示意圖;〔圖6〕為使用超高頻電漿化學氣相設備在不同腔體壓力下形成之光導層在光波數為450cm-1至540cm-1之範圍內的曲線圖;〔圖7A〕和〔圖7B〕例示流道層中的主流道與副流道構成之不同平面圖案;〔圖8〕為使用〔圖2〕之細胞分選晶片進行細胞分選的示意圖;〔圖9〕為使用超高頻電漿化學氣相沉積設備在不同腔體壓力下形成之光導層的場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FE-SEM)之平面俯視圖;〔圖10〕為使用超高頻電漿化學氣相沉積設備在不同腔體壓力下形成之光導層與表面粗糙度的關係圖;以及〔圖11〕為使用超高頻電漿化學氣相沉積設備在不同腔體壓力下形成之光導層與分選效率、細胞純度與細胞生存率之關係圖。
雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明可之較佳實施例,並 請了解本文所揭示者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖示及/或所描述之特定實施例中。
可被理解的是,雖然在本文可使用「第一」、「第二」等用語來描述各種元件、零件、區域和/或部分,但此些用語不應限制此些元件、零件、區域和/或部分。此些用語僅用以區別一元件、零件、區域和/或部分與另一元件、零件、區域和/或部分。
在本文中所使用的用語僅是為了描述特定實施例,非用以限制申請專利範圍。除非另有限制,否則單數形式的「一」或「該」用語也可用來表示複數形式。
請參照圖1和圖2,圖1為依據本發明實施例之細胞分選晶片之製作方法100的流程圖,且圖2為本發明實施例之細胞分選晶片200的剖面示意圖。在以下說明中,細胞分選晶片之製作方法100是以細胞分選晶片200為例,但本發明並不限於此。在其他實施例中,細胞分選晶片之製作方法100可用於製作其他相似的細胞分選晶片,且/或細胞分選晶片200可以其他相似的方法製作。
細胞分選方法100包含步驟110至步驟160,其中步驟110為提供第一透明導電基板210,步驟120為在第一透明導電基板210上形成光導層220,步驟130為在光導層220上使用光、電與表面進行量測,步驟140為在光導層220上形成流道層230,步驟150為在流道層上形成第二透明導電基板240,而步驟160為進行分選效能量測,包含分選效率、細胞純度和細胞生存率等。第一透明導電基板210 具有第一輸出口212及第二輸出口214,光導層具有多個非晶態與奈米晶態結構,且第二透明導電基板240具有輸入口242,其中第一輸入口242是用以注入細胞混合液,而第一輸出口212與第二輸出口214是分別用以使分選後的細胞混合液流出。在一些實施例中,第一輸出口212與第二輸出口214的直徑均為2毫米至5毫米。
此外,第一透明導電基板210與第二透明導電基板240還提供電極的接觸與電流的進出。在一些實施例中,第一透明導電基板210與第二透明導電基板240的片電阻值均約為4Ω/□至7Ω/□。
光導層220可利用超高頻電漿化學氣相沉積設備形成。在形成光導層的期間,超高頻電漿化學氣相沉積設備之射頻頻率約為40.68MHz或60MHz,其腔體壓力約為600毫托、800毫托或1000毫托,且其射頻功率約為68瓦至80瓦。沉積氣體包含氫氣與矽甲烷,其中氫氣與矽甲烷在超高頻電漿化學氣相沉積設備之製程腔體中的數量比值約為0.2至0.3,使得光導層220中非晶態與奈米晶態結構的晶態量及比例達到所欲之電阻率、表面粗糙度和光吸收係數的數值,進而使細胞分選晶片200具有更佳的分選效果。超高頻電漿化學氣相沉積設備的沉積間距約為15毫米,以降低或避免電漿轟擊對細胞分選晶片200造成的損傷。
在一些實施例中,光導層220的厚度約為500奈米至1000奈米。此外,光導層220受到波長為200奈米至1300奈米之光的照射約0.5秒之後,即可改變其電阻率。本 發明可使用奈米晶矽作為光導層220的材料,但不限於此,也可使用其他材料,例如硫化鎘等。此外,在一些實施例中,光導層220上還可披覆一層厚度大約為1奈米至100奈米的生物相容性優化層,例如氧化鈦、氧化鋁、氧化鋯、氧化鉿、上述組合或其他相似的材料。
相較於習之以非晶矽形成的光導層,本發明之光導層220具有較高的光降解能力及較穩定的導電特性,故可改善生物分選晶片200的穩定性,進而提升分選效率。
形成光導層220後,可對光導層220進行光量測、電量測與拉曼光譜量測,以判別光導層220的光吸收係數是否約為103cm-1至105cm-1,光導層220的電阻率是否約為10Ω-cm至103Ω-cm,且在光波數為450cm-1至540cm-1的範圍內,光導層220在485cm-1與495cm-1之間是否具有散射峰值。若是判別結果為,光導層220的光吸收係數約為103cm-1至105cm-1,光導層的電阻率約為10Ω-cm至103Ω-cm,且在光波數為450cm-1至540cm-1的範圍內,光導層220在485cm-1與495cm-1之間是否具有散射峰值,則可判斷光導層220具有較佳品質,使得製作完成後的細胞分選晶片200可具有較佳的細胞分選效果。
光量測可使用橢圓偏光儀進行。橢圓偏光儀使用之光源的波長為200奈米至1300奈米,以在量測開始時得到光導層220在此光源下的折射率和消光係數(extinction coefficient),接著再經由公式α=4πk/λ得到光吸收係數α,其中kλ分別為消光係數和光波長。光量測所使用之 光源的波長為200奈米至1300奈米,且光量測所輸出的數值為光吸收係數。舉例而言,如圖3所示,對於在超高頻電漿化學氣相沉積設備之腔體壓力約為600毫托下所形成的光導層220而言,若是光吸收係數為103cm-1至105cm-1,則可判斷細胞分選晶片200具有較佳的分選效率;當光吸收係數為6×104cm-1以上時,細胞分選晶片200具有更佳的分選效率,而當光吸收係數為4×104cm-1至5×104cm-1時,細胞分選晶片200具有更佳的分選純度(因電阻率降低)。
在對光導層220進行電量測前,可先在光導層220上沉積多個金屬墊222。如圖4所示,金屬墊222在光導層220上為矩陣排列,其間距W約為2毫米,且每一金屬墊222為圓形金屬薄片,其直徑L約為0.5毫米。完成金屬墊222的沉積後,接著使用電阻計對光導層220進行電量測。如圖5所示,電阻計的正極端PE與負極端NE分別電性接觸兩相鄰金屬墊222,以量測光導層220的電阻值。光導層220的片電阻值Rs可由公式Rs=R×(W/L)計算出,其中R為電阻值,L為金屬墊222之直徑,而W為相鄰金屬墊222之間距。電量測需使用1000流明至1500流明的光源聚焦照射於量測點之間,並在持續照射約30秒之後即可得到量測值。在未受到光源的照射下,光導層220之電阻率大於8×104Ω-cm,而在經過光源照射約30秒後,對於在超高頻電漿化學氣相沉積設備之腔體壓力約為600毫托下所形成的光導層220而言,其電阻率降低至3.3×10Ω-cm(如圖3 所示)時,具有更佳的分選純度。在完成對光導層220的電量測後,可去除光導層220上的金屬墊222。
表面量測係透過散射光源照射於光導層220上的其中一點,以對光導層220進行拉曼量測分析。在光波數為450cm-1至540cm-1之範圍,表面量測輸出數值在曲線圖上為連續光波數且具有峰值曲線。圖6為光導層220在光波數為450cm-1至540cm-1的範圍內的曲線圖,其中曲線CV1~CV3分別對應。在超高頻電漿化學氣相沉積設備之腔體壓力約為600毫托、800毫托和1000毫托下所形成的光導層220的散射強度。散射峰值的位置在480cm-1時代表光導層220由非晶態結構構成,散射峰值的位置在490cm-1至510cm-1時代表光導層220由非晶態與奈米晶態結構構成,散射峰值的位置在510cm-1至520cm-1時代表光導層220由多晶態結構構成,而散射峰值的位置在520cm-1時代表光導層220由單晶態結構構成。如圖6所示,曲線CV1~CV3在485cm-1與495cm-1之間具有散射峰值,其中曲線CV3的散射峰值的位置約為488cm-1,而曲線CV1、CV2的散射峰值的位置約為491cm-1
請再回到圖2。流道層230位於光導層220上,其作為細胞混合液移動與封裝密合用。流道層230的材料為聚二甲基矽氧烷、聚甲基丙烯酸甲酯或其他合適材料,且其厚度約為40μm至120μm,流道層230具有主流道MC和副流道MC,其中主流道的兩端分別連接於輸入口242和第一輸出口212,而副流道AC的兩端分別連接於主流道MC和第二 輸出口214。主流道MC與副流道AC構成之平面圖案可以是例如圖7A所示之Y形,或是例如圖7B所示之y形,但不限於此。若細胞分選晶片是用來分離循環腫瘤細胞(Circulating Tumor Cell,CTC)和白血球細胞,則主流道MC的寬度可以是1.7mm至2.5mm,且副流道AC的寬度可以是0.5mm至1mm。
圖8為使用細胞分選晶片200進行細胞分選的示意圖。如圖8所示,在電源PWR對第一透明導電基板210和第二透明導電基板240進行供電下,細胞分選晶片200的光照區會產生光激發效應,使得第一透明導電基板210與第二透明導電基板240之間的電場分佈改變,以在流道層230中形成分選區域SR,使得細胞混合液中的細胞CA、CB經過分選區域SR時,受到不同的光致介電泳力(LIDEP force)作用而朝向不同方向移動,接著細胞CA、CB再分別經由第一輸出口212和第二輸出口214排出,以完成分選後細胞的收集。
圖9示出光導層220在第一透明導電基板210上的附著情況,其中(a)、(b)、(c)分別為在超高頻電漿化學氣相沉積設備之腔體壓力約為600毫托、800毫托和1000毫托下所形成的光導層220的FE-SEM圖。圖9之(a)、(b)示出光導層220具有鬆散的島狀晶體結構,其係因腔體壓力較降低使得沉積速率降低而造成,因而增加奈米晶態的生成。相較之下,圖9之(c)示出光導層220具有較為緻密均勻的表面形態。
圖10示出在超高頻電漿化學氣相沉積設備之腔體壓力約為600毫托、800毫托和1000毫托下所形成之光導層220的表面粗糙度。由圖10可知,由於在形成光導層220時伴隨之非晶態與奈米晶態結構的生長機制,使得在600毫托和800毫托的環境下形成的光導層220的表面粗糙度較在1000毫托的環境下形成的光導層220的表面粗糙度大,例如在600毫托的環境下形成的光導層220的表面粗糙度較在1000毫托的環境下形成的光導層220的表面粗糙度多出17%。
圖11示出具有在超高頻電漿化學氣相沉積設備之腔體壓力約為600毫托、800毫托和1000毫托下所形成之光導層220的細胞分選晶片200的細胞分選效能量測結果。由圖11可知,使用對應腔體壓力為600毫托之細胞分選晶片200進行分選後所得到的細胞純度高於使用對應腔體壓力為600毫托之細胞分選晶片200進行分選後所得到的細胞純度。而當製作光導層220的腔體壓力從600毫托增加到1000毫托時,細胞分選晶片200的分選效率和細胞生存率均提高,但細胞純度明顯降低。因此,藉由控制超高頻電漿化學氣相沉積設備在形成光導層220時的腔體壓力,可降低光照電阻率,使得光導層220的光電效應增加,進而提升分選細胞純度。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100‧‧‧細胞分選晶片之製作方法
110、120、130、140、150、160‧‧‧步驟

Claims (9)

  1. 一種細胞分選晶片,包括:一第一透明導電基板,該第一透明導電基板具有一第一輸出口及一第二輸出口;一光導層,位於該第一透明導電基板上,該光導層具有複數個非晶態與奈米晶態結構,該光導層之光吸收係數約為103cm-1至105cm-1,該光導層之電阻率約為10Ω-cm至103Ω-cm,且在光波數為450cm-1至540cm-1的範圍內,該光導層在485cm-1與495cm-1之間具有一散射峰值;一流道層,位於該光導層上;以及一第二透明導電基板,位於該流道層上,該第二透明導電基板具有一輸入口。
  2. 如申請專利範圍第1項所述之細胞分選晶片,其中該第一透明導電基板與該第二透明導電基板中之每一者之片電阻值約為4Ω/□至7Ω/□。
  3. 如申請專利範圍第1項所述之細胞分選晶片,其中該流道層之材料為聚二甲基矽氧烷或聚甲基丙烯酸甲酯。
  4. 如申請專利範圍第1項所述之細胞分選晶片,其中該流道層之厚度約為40微米至120微米。
  5. 如申請專利範圍第1項所述之細胞分選晶片,其中該光導層之厚度約為500奈米至1000奈米。
  6. 一種細胞分選晶片之製作方法,包含:提供一第一透明導電基板,該第一透明導電基板具有一第一輸出口及一第二輸出口;在該第一透明導電基板上形成一光導層,該光導層具有複數個非晶態與奈米晶態結構;對該光導層進行光吸收係數、電阻率及拉曼位移的量測,以判別該光導層之光吸收係數是否約為103cm-1至105cm-1,該光導層之電阻率是否約為10Ω-cm至103Ω-cm,以及在光波數為450cm-1至540cm-1的範圍內,該光導層在485cm-1與495cm-1之間是否具有散射峰值;在判別出該光導層之光吸收係數約為103cm-1至105cm-1,該光導層之電阻率約為10Ω-cm至103Ω-cm,以及,以及在光波數為450cm-1至540cm-1的範圍內,該光導層在485cm-1與495cm-1之間具有散射峰值的條件下,在該光導層上形成一流道層;以及在該流道層上形成一第二透明導電基板,該第二透明導電基板具有一輸入口。
  7. 如申請專利範圍第6項所述之方法,其中該光導層係利用一超高頻電漿化學氣相沉積設備形成,且在形成該光導層的期間,該超高頻電漿化學氣相沉積設備 之射頻頻率約為40.68MHz或60MHz,該超高頻電漿化學氣相沉積設備之腔體壓力約為600毫托(mTorr)、800毫托或1000毫托,且該超高頻電漿化學氣相沉積設備之射頻功率約為68瓦至80瓦。
  8. 如申請專利範圍第7項所述之方法,其中該超高頻電漿化學氣相沉積設備使用之沉積氣體包含氫氣和矽甲烷,該氫氣與該矽甲烷在該超高頻電漿化學氣相沉積設備之製程腔體中的數量比值約為0.2至0.3。
  9. 如申請專利範圍第7項所述之方法,其中該超高頻電漿化學氣相沉積設備之沉積間距約為15毫米。
TW108133654A 2019-09-18 2019-09-18 細胞分選晶片及其製作方法 TWI717020B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108133654A TWI717020B (zh) 2019-09-18 2019-09-18 細胞分選晶片及其製作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108133654A TWI717020B (zh) 2019-09-18 2019-09-18 細胞分選晶片及其製作方法

Publications (2)

Publication Number Publication Date
TWI717020B true TWI717020B (zh) 2021-01-21
TW202113354A TW202113354A (zh) 2021-04-01

Family

ID=75237210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133654A TWI717020B (zh) 2019-09-18 2019-09-18 細胞分選晶片及其製作方法

Country Status (1)

Country Link
TW (1) TWI717020B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803153B (zh) * 2022-01-18 2023-05-21 醫華生技股份有限公司 非接觸式分選裝置及生物微粒分選設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201816379A (zh) * 2016-10-27 2018-05-01 統創科技股份有限公司 生物分選系統及其方法
TW201816380A (zh) * 2016-10-27 2018-05-01 統創科技股份有限公司 光誘發介電泳裝置
TW201833544A (zh) * 2017-03-14 2018-09-16 統創科技股份有限公司 光誘發介電泳晶片、微粒子分選裝置及微粒子分選系統
TW202014690A (zh) * 2018-10-02 2020-04-16 吳宏偉 細胞分選方法及系統

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201816379A (zh) * 2016-10-27 2018-05-01 統創科技股份有限公司 生物分選系統及其方法
TW201816380A (zh) * 2016-10-27 2018-05-01 統創科技股份有限公司 光誘發介電泳裝置
TW201833544A (zh) * 2017-03-14 2018-09-16 統創科技股份有限公司 光誘發介電泳晶片、微粒子分選裝置及微粒子分選系統
TW202014690A (zh) * 2018-10-02 2020-04-16 吳宏偉 細胞分選方法及系統

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wu HW, Huang YS, Lee HY, Tsai WH, Chen KY, Jian LY. High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques. Biomed Microdevices. 2016;18(5):79 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803153B (zh) * 2022-01-18 2023-05-21 醫華生技股份有限公司 非接觸式分選裝置及生物微粒分選設備

Also Published As

Publication number Publication date
TW202113354A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
Walavalkar et al. Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars
US20150049332A1 (en) Gold nanoisland arrays
Kim et al. Highly reproducible Au-decorated ZnO nanorod array on a graphite sensor for classification of human aqueous humors
Fleischer et al. Gold nanocone near-field scanning optical microscopy probes
TWI717020B (zh) 細胞分選晶片及其製作方法
CN107255630A (zh) 表面增强拉曼散射元件、以及制造表面增强拉曼散射元件的方法
US11559204B2 (en) Contact-type endoscope SERS probe, and related methods
CN109894163A (zh) 一种高通量、高内涵药物筛选微流控芯片及其制备方法
Wang et al. Surface-enhanced Raman scattering on a hierarchical structural Ag nano-crown array in different detection ways
Gupta et al. Enhancement of the Au/ZnO-NA plasmonic SERS signal using principal component analysis as a machine learning approach
Sharma et al. Multifractal texture analysis of salivary fern pattern for oral pre-cancers and cancer assessment
Lee et al. Surface-Enhanced Raman Spectroscopy (SERS) based on ZnO nanorods for biological applications
CN109239007B (zh) 用于无标记检测细胞外泌体的功能化太赫兹狭缝纳米天线
CN104777135B (zh) 一种全波长局域等离子体谐振传感器及其制备方法
CN110146485A (zh) 金三角凹坑阵列材料及其制备方法和用途
CN102879360B (zh) 一种超衍射定向传输材料结构制备后的测试分析方法
CN114014258B (zh) 一种三维非对称金属-介质功能纳米阵列结构的制备方法
CN111122543A (zh) 一种粗糙化硅柱阵列结构及其制备方法
Kim et al. Pyramidal Metal–dielectric hybrid-structure geometry with an asymmetric TiO2 layer for broadband light absorption and photocatalytic applications
CN113447470B (zh) 一种表面增强拉曼散射基底、检测芯片及制备方法
Liu et al. Fabrication of CdS nanorods on Si pyramid surface for photosensitive application
CN114965430A (zh) 用于循环肿瘤细胞捕获和分析的基底制备方法及应用
CN108982464A (zh) 一种高分布密度纳米间隙有序阵列及其制备方法与应用
US20220091041A1 (en) Nanowire array for use with raman spectroscopy
TWI580957B (zh) 一種光誘發式介電泳晶片