TWI716258B - 資訊處理程式、資訊處理方法及資訊處理系統 - Google Patents

資訊處理程式、資訊處理方法及資訊處理系統 Download PDF

Info

Publication number
TWI716258B
TWI716258B TW109100952A TW109100952A TWI716258B TW I716258 B TWI716258 B TW I716258B TW 109100952 A TW109100952 A TW 109100952A TW 109100952 A TW109100952 A TW 109100952A TW I716258 B TWI716258 B TW I716258B
Authority
TW
Taiwan
Prior art keywords
angular velocity
time
aforementioned
axis
information processing
Prior art date
Application number
TW109100952A
Other languages
English (en)
Other versions
TW202032126A (zh
Inventor
大谷拓郎
堀田真路
前田一穗
安藝理彥
Original Assignee
日商富士通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士通股份有限公司 filed Critical 日商富士通股份有限公司
Publication of TW202032126A publication Critical patent/TW202032126A/zh
Application granted granted Critical
Publication of TWI716258B publication Critical patent/TWI716258B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)

Abstract

為了算出用於精度佳地進行跨圓弧步態之分析的指標,伺服器是取得藉由裝附在患者之腳踝的感測機器而檢測到之步行時之腳踝之角速度之時間變化的資料,基於繞X軸轉之角速度之時間變化而特定出擺盪相之時間。又,伺服器是特定出從擺盪相之開頭至在擺盪相之繞X軸轉之角速度成為最大為止之時間來作為著眼時間,基於在著眼時間內之繞Z軸轉之角速度之寬W而算出使用於判定患者是否進行著跨圓弧步態的指標。

Description

資訊處理程式、資訊處理方法及資訊處理系統
發明領域
本發明是涉及資訊處理程式、資訊處理方法及資訊處理系統。
發明背景
步態障礙可能發生在例如因為中風等而倒下之患者。如此之患者有時會為了輔助目的運動之不完整,而進行用別的部位來代替以達成目的運動之動作(代償動作)。因為中風等之患者會出現臂屈曲、內翻這樣之症狀,故往往會在步行時進行把腳跨圓弧之動作(跨圓弧式步態)來作為代償動作。
習知,防止跨圓弧步態之裝置、測定跨圓弧步態之裝置已為人知(例如參考專利文獻1、2等)。 先行技術文獻
專利文獻 專利文獻1:日本特開2004-195109號公報 專利文獻2:日本特開2016-43092號公報
發明概要 發明欲解決之課題
然而,習知之技術雖然可測定腳之往左右方向之揮出,但無法測定是在步態週期之哪個階段進行揮出,故無法由測定結果進行正確之步態分析。所以,如此之測定結果在實際之臨床現場難以有助於患者之後續追蹤、治療等。
就1側面而言,本發明之目的是提供可算出用於精度佳地進行跨圓弧步態之分析之指標的資訊處理程式、資訊處理方法及資訊處理系統。 用以解決課題之手段
在一態樣,資訊處理程式是讓電腦執行以下處理的程式:取得藉由裝附在人之腳踝的感測器而檢測到之步行時之腳踝之角速度的資訊,基於取得之前述角速度之資訊中的繞朝前述人之左右方向延伸之第1軸轉之角速度的時間變化,而檢測出腳懸空於地面之時間亦即擺盪相,特定出從前述擺盪相之開頭起之預定時間來作為著眼時間,基於取得之前述角速度之資訊中的繞朝鉛直方向延伸之第2軸轉之角速度之在前述著眼時間內的時間變化,而算出使用於判定前述人是否進行著跨圓弧步態的指標。 發明效果
可算出用於精度佳地進行跨圓弧步態之分析的指標。
用以實施發明之形態
以下,基於圖1~圖12B來詳細說明資訊處理系統之一實施形態。圖1是概略地顯示與一實施形態相關之資訊處理系統100之構成。
如圖1所示,資訊處理系統100具有作為感測器之感測機器50、物理治療師用終端60、醫師用終端70、伺服器10。伺服器10、物理治療師用終端60、醫師用終端70是與網際網路等之網路80連接。
感測機器50具有角速度感測器、控制角速度感測器之檢測之控制部、記憶角速度感測器之檢測結果之記憶體等。當在物理治療師之指示下對患者進行身為運動功能測驗之一之步態測驗時,感測機器50是設在患者之兩腳踝,檢測出角速度之時間變化。採用之感測機器50是還設有用於將測量開始、結束予以輸入之輸入按鈕。
物理治療師用終端60是物理治療師使用之PC(Personal Computer,個人電腦)、平板型終端等之終端。物理治療師用終端60是藉由與感測機器50連接而取得感測機器50之檢測結果(顯示角速度之時間變化的資料)。又,物理治療師用終端60是透過網路80而將取得之顯示角速度之時間變化的資料朝伺服器10發送。
在此,圖2A是顯示物理治療師用終端60之硬體構成。如圖2A所示,物理治療師用終端60具有CPU(Central Processing Unit,中央處理單元)190、ROM(Read Only Memory,唯讀記憶體)192、RAM(Random Access Memory,隨機存取記憶體)194、記憶部(在此是HDD(Hard Disk Drive,硬碟))196、網路介面197、顯示部193、輸入部195、及可讀取攜帶型記憶媒體191所記憶之資料之攜帶型記憶媒體用驅動器199等。顯示部193是包含液晶顯示器等,輸入部195是包含鍵盤、滑鼠、觸控面板等。該等物理治療師用終端60之構成各部是與匯流排198連接。又,物理治療師用終端60具有與感測機器50進行無線通訊或有線通訊之通訊部。
回到圖1,醫師用終端70是醫師使用之PC等之終端。醫師用終端70是將伺服器10所發送過來之資訊予以顯示而提出給醫師之終端,如圖2A所示,具有與物理治療師用終端60同樣之硬體構成。醫師是參考醫師用終端70所顯示之資訊而確認患者之跨圓弧步態之狀態,以檢討治療方針、確認投藥之效果。在此,跨圓弧步態是中風之患者等在步行時進行之代償動作,是指如圖3所示地一面將腳朝左右方向揮出一面朝前方步行。
伺服器10是基於從物理治療師用終端60取得之顯示角速度之時間變化的資料,而將涉及患者之跨圓弧步態之特徵量(輸出用特徵量)算出。又,伺服器10是將算出之輸出用特徵量對醫師用終端70輸出。
在此,本實施形態之伺服器10在將涉及跨圓弧步態之輸出用特徵量算出時,是算出符合在現狀之臨床現場使用之步態週期的指標。在臨床現場最常使用之步態週期是如圖4所示之被稱作「瑞秋洛斯阿米哥斯方式」之步態週期,是由德國之物理治療師Kirsten Götz-Neumann在瑞秋洛斯阿米哥斯・國立復健中心所開發。在瑞秋洛斯阿米哥斯方式,步態週期是分成8相。步態週期是從腳到達地面起算、直到同一腳再次到達地面為止。又,步態週期之8相是IR(初期接地)、LR(負載反應期)、Mst(站立中期)、Tst(站立終期)、Psw(擺盪前期)、Isw(擺盪初期)、Msw(擺盪中期)、Tsw(擺盪終期)。其中,IR~Psw之時間被稱作站立相,Isw~Tsw之時間被稱作擺盪相。在站立相,對象之腳(於圖4是右腳)是觸及地板(地面)之狀態,在擺盪相,對象之腳是離開地板(地面)之狀態。本實施形態是著眼於步態週期之擺盪相,而算出與跨圓弧步態相關之輸出用特徵量。
圖2B是顯示伺服器10之硬體構成。伺服器10具有CPU90、ROM92、RAM94、記憶部(在此是HDD)96、網路介面97、及攜帶型記憶媒體用驅動器99等。該等伺服器10之構成各部是與匯流排98連接。伺服器10是藉由讓CPU90執行儲存在ROM92或HDD96之程式(包含資訊處理程式)、或者、攜帶型記憶媒體用驅動器99從攜帶型記憶媒體91讀取之程式(包含資訊處理程式),而實現圖5所示之各部之功能。另,圖5之各部之功能亦可以是例如藉由ASIC(Application Specific Integrated Circuit,特殊應用積體電路)、FPGA(Field Programmable Gate Array,現場可程式閘陣列)等之積體電路而實現。
圖5是顯示伺服器10的功能方塊圖。伺服器10是藉由讓CPU90執行程式而實現作為取得部之感測結果取得部20、作為檢測部之擺盪相特定部22、X最大角速度算出部26、著眼時間特定部28、Z角速度寬算出部30、特徵量算出部32、輸出部34的功能。
感測結果取得部20是從物理治療師用終端60取得感測機器50所檢測出之角速度之時間變化的資料。在此,感測機器50是檢測圖6中以箭頭顯示之繞朝患者之左右方向延伸之第1軸(X軸)轉之角速度、及、繞朝鉛直方向延伸之第2軸(Z軸)轉之角速度。另,在1次之步態測驗中取得之繞X軸轉之角速度之時間變化的資料是例如圖7A所示之資料,繞Z軸轉之角速度之時間變化的資料是例如圖7B所示之資料。
擺盪相特定部22是基於繞X軸轉之角速度之時間變化的資料而檢測出腳離開地板(地面)之時間點(腳趾離地)。此腳趾離地之時間點是圖4之Psw(擺盪前期)與Isw(擺盪初期)之切換時間點。圖8是將圖7A、圖7B所示之角速度之時間變化之資料的一部分取出而重疊表示在同一座標系上。擺盪相特定部22是檢測出在繞X軸轉之角速度之值大幅上昇之前一刻的顯示極小值之時間點,來作為腳趾離地之時間點。另,擺盪相特定部22是對繞X軸轉之角速度之時間變化的資料進行微分等而檢測出腳趾離地之時間點。
又,擺盪相特定部22是基於角速度之時間變化之資料而檢測出懸空於地板(地面)之狀態之腳之到達地板(地面)之時間點(初期接地)。在圖8之例,擺盪相特定部22是檢測出在繞X軸轉之角速度之值大幅上昇後顯示極小值之時間點,來作為初期接地之時間點。另,擺盪相特定部22是對繞X軸轉之角速度之時間變化的資料進行微分等而檢測出初期接地之時間點。
再者,擺盪相特定部22特定出腳趾離地之時間點與初期接地之時間點之間的時間來作為擺盪相。
X最大角速度算出部26是將在擺盪相特定部22特定出之擺盪相之時間內繞X軸轉之角速度變成最大值之時間點及最大值(參考圖8之M)算出。
著眼時間特定部28是特定出擺盪相特定部22所檢測出之腳趾離地之時間點與X最大角速度算出部26所算出之繞X軸轉之角速度顯示最大值之時間點之間的時間來作為著眼時間。另,本實施形態可以說是特定出圖4之Isw(擺盪初期)之時間來作為著眼時間。
Z角速度寬算出部30是參考在著眼時間特定部28特定出之著眼時間內之繞Z軸轉之角速度之變化,而算出繞Z軸轉之角速度之最小值與最大值的差分(寬)(參考圖8之W)。此寬W的意義是在擺盪初期(Isw)之跨圓弧步態之程度(腳往橫方向揮出之程度)。
特徵量算出部32是基於Z角速度寬算出部30所算出之寬W與X最大角速度算出部26所算出之繞X軸轉之角速度之最大值M,而算出用於判定患者是否進行著跨圓弧步態之特徵量。在此,作為一例,特徵量算出部32是基於下面之式子(1)而算出特徵量C。 C=W/M      ...(1)
本實施形態是將寬W除以最大值M之值作為特徵量,藉此進行標準化。不過,並非限定於此,特徵量亦可以是寬W本身。
另,由於從圖7A、圖7B所示之1次之步態測驗之資料特定出複數個著眼時間,故特徵量算出部32是從1次之步態測驗之資料算出與各著眼時間對應之複數個特徵量。
回到圖5,輸出部34是求出特徵量算出部32所算出之複數個特徵量之平均值,以求出之值作為輸出用特徵量。又,輸出部34將輸出用特徵量對醫師用終端70輸出。
接著,沿著圖9、圖10之流程圖來說明由感測機器50進行之事前處理、及、由伺服器10進行之資料分析處理之流程。
(關於由感測機器50進行之事前處理) 圖9是以流程圖顯示由感測機器50進行之事前處理。此事前處理是當患者在物理治療師之指示下進行步態測驗的期間,感測機器50取得角速度之時間變化之資料的處理。作為圖9之處理之前提,患者是在兩腳踝裝附著感測機器50,已完成步態測驗之準備。步態測驗是例如在10m之距離進行,在患者進行10m距離之直進步行之期間,以感測機器50檢測兩腳之角速度。
關於圖9之處理,首先,在步驟S10,感測機器50之控制部是進行待機直到有開始測量之指示輸入。例如,當由物理治療師等按下設置在感測機器50之用於輸入開始測量之輸入按鈕的情況下,控制部是移到步驟S12。
移到步驟S12後,控制部是進行待機直到經過預定時間。在此之預定時間是測量間隔的意思,是幾ms~幾十ms程度。
經過預定時間,移到步驟S14後,控制部是使用角速度感測器而檢測繞X軸轉之角速度與繞Z軸轉之角速度,與時刻資訊一起記憶在記憶體。
接著,在步驟S16,控制部判斷是否結束測量。例如,當由物理治療師等按下用於輸入結束測量之輸入按鈕的情況下,步驟S16之判斷被肯定,但如果輸入按鈕沒有被按下,則回到步驟S12。之後,控制部是反覆執行步驟S12~S16之處理、判斷,直到步驟S16之判斷被肯定。然後,若步驟S16之判斷被肯定,則令圖9之全處理結束。
如以上,可藉由進行圖9之處理,而將患者進行步態測驗時之腳之繞X軸轉之角速度之時間變化的資料、及繞Z軸轉之角速度之時間變化的資料(例如圖7A、圖7B之資料)儲存在記憶體。另,由於步態測驗時,感測機器50是設置在兩腳踝,故步態測驗完成後,取得之圖7A、圖7B之資料是兩腳的份。
另,藉由圖9之處理而儲存在記憶體之資料是在感測機器50連接於物理治療師用終端60時,朝物理治療師用終端60發送。物理治療師是在物理治療師用終端60上將各資料與患者建構關聯後,對伺服器10發送資料。
(由伺服器10進行之資料分析處理) 接著,基於圖10而詳細說明由伺服器10進行之資料分析處理。作為一例,圖10之處理是從物理治療師用終端60將某患者(對象患者)之角速度之時間變化之資料發送的時間點開始之處理。
關於圖10之處理,首先,在步驟S30,感測結果取得部20取得對象患者之繞X軸轉之角速度、繞Z軸轉之角速度之時間變化的資料。在此,感測結果取得部20是取得圖7A、圖7B之資料來作為對象患者之單腳的資料。
接著,在步驟S32,擺盪相特定部22是由繞X軸轉之角速度之變化而檢測出腳趾離地。如圖11A所示,由圖7A之資料檢測出複數個腳趾離地。
接著,在步驟S34,擺盪相特定部22是由繞X軸轉之角速度之變化而檢測出初期接地。如圖11A所示,由圖7A之資料檢測出複數個初期接地。
接著,在步驟S36,擺盪相特定部22特定出擺盪相。此情況下,擺盪相特定部22是將圖11A中以實線雙箭頭顯示之腳趾離地與初期接地之間之時間分別特定出來作為擺盪相。
另,擺盪相特定部22亦可以是在步驟S32、S34各檢測出1個腳趾離地、初期接地,在步驟S36特定出1個擺盪相。此情況下,令擺盪相特定部22是藉由將步驟S32~S36反覆進行而特定出複數個擺盪相即可。
接著,在步驟S40,X最大角速度算出部26是選擇1個擺盪相,特定出在被選擇之擺盪相之時間內之繞X軸轉之角速度成為最大值M(圖11A中以虛線雙箭頭顯示之值)及最大值M的時間點。又,著眼時間特定部28是將特定出之時間點與腳趾離地之時間點之間當作著眼時間而設定。圖11A之例顯示的是選擇圖11A之左端之擺盪相而設定著眼時間之狀態。
接著,在步驟S42,Z角速度寬算出部30是算出在著眼時間內之繞Z軸轉之角速度之最大值與最小值的寬。此情況下,Z角速度寬算出部30是算出圖11B所示之寬W。
接著,在步驟S44,特徵量算出部32是以步驟S42所算出之寬W除以步驟S40所特定出之繞X軸轉之角速度之最大值M的值,來作為特徵量(參考上述式子(1))。
接著,在步驟S46,特徵量算出部32判斷對全部之擺盪相之處理是否已完成。當此步驟S46之判斷是否定的情況下,回到步驟S40,將步驟S40~S46之處理・判斷反覆進行直到步驟S46之判斷成為肯定。然後,若步驟S46之判斷是肯定,則輸出部34執行步驟S48之處理。
在步驟S48,輸出部34是算出全特徵量之平均值,作為對象患者之輸出用特徵量。亦即,在圖11A、圖11B之例,由於7個著眼時間分別獲得7個特徵量,故輸出部34是以該等7個特徵量之平均值作為對象患者之輸出用特徵量。
接著,在步驟S50,輸出部34是將步驟S48所算出之對象患者之輸出用特徵量朝醫師用終端70輸出。由以上,圖10之全處理結束。
圖12A、圖12B之圖表是顯示以2位健全者作為受檢查者A、B且讓受檢查者A、B執行步態測驗時所輸出之輸出用特徵量。此步態測驗是在地板上設有進行跨圓弧步態(小、中、大)時之腳之往左右方向之揮出量之指標,而讓在兩腳踝裝附有感測機器50之2位受檢查者A、B進行通常步態、跨圓弧步態(小)、跨圓弧步態(中)、跨圓弧步態(大)。然後,基於步態測驗中之感測機器50之檢測結果而算出輸出用特徵量。另,圖12A、圖12B之輸出用特徵量是基於從裝附在揮出側之腳之腳踝之感測機器50獲得的資料而算出之輸出用特徵量。
如圖12A、圖12B所示,可得知:雖然特徵量之值之大小會因人而異,但只要是同一受檢查者,則輸出用特徵量之值會依跨圓弧步態(大)、跨圓弧步態(中)、跨圓弧步態(小)、通常步態之順序而變小。
所以,醫師可藉由觀察患者各自之輸出用特徵量之變化,而確認患者之跨圓弧步態是否改善。藉此,醫師可適切地進行當患者進行復健之情況下之後續追蹤、藥之效果之確認。又,因為可適切地進行後續追蹤、藥之效果之確認,故醫師可適切地進行復健計畫、投藥計畫之立案、臨床試驗等。又,當對象患者之輸出用特徵量之變化類似於其他患者的情況下,醫師可參考對該其他患者執行之處置資料,而進行復健計畫、投藥計畫之立案等。
由到此為止之說明可得知,本實施形態是藉由X最大角速度算出部26與著眼時間特定部28,實現特定出從擺盪相之開頭起之預定時間來作為著眼時間之特定部的功能。又,本實施形態是藉由Z角速度寬算出部30、特徵量算出部32、輸出部34,實現基於繞Z軸轉之角速度之在著眼時間內之時間變化而將使用於判定人是否進行著跨圓弧步態之指標(輸出用特徵量)算出之算出部的功能。
如以上之詳細說明,根據本實施形態,感測結果取得部20取得藉由裝附在患者之腳踝之感測機器50而檢測到之步行時之腳踝之角速度之時間變化的資料。又,擺盪相特定部22是基於角速度之時間變化之資料中的繞朝患者之左右方向延伸之X軸轉之角速度的時間變化,而特定出擺盪相之時間。又,著眼時間特定部28特定出從擺盪相之開頭之時間點至X最大角速度算出部26所算出之在擺盪相中之繞X軸轉之角速度成為最大之時間點為止的時間,來作為著眼時間。而且,特徵量算出部32是基於Z角速度寬算出部30所算出之在著眼時間內之繞朝鉛直方向延伸之Z軸轉之角速度的寬W,而算出使用於判定患者是否進行著跨圓弧步態的指標(特徵量)。藉此,由於本實施形態是符合在臨床現場使用之步態週期(瑞秋洛斯阿米哥斯方式)而算出用於檢測跨圓弧步態之特徵量,故醫師可精度佳地判定(分析)患者是否進行著跨圓弧步態。又,由於本實施形態於步態測驗時是將感測機器50裝附在患者之腳踝,故不會如將感測機器50安裝在大腿部的情況下般地令肌肉、粗血管被壓迫。藉此,可減輕患者之負擔。
又,由於本實施形態是以從擺盪相之開頭至在擺盪相之時間內繞X軸轉之角速度成為最大之時刻為止的時間來作為著眼時間,故可設定擺盪初期(Isw)之時間來作為著眼時間。
又,本實施形態是基於上述式子(1)而算出特徵量。如此,由於本實施形態是採用將在著眼時間內之繞Z軸轉之角速度之最大值與最小值的寬W除以在擺盪相內之繞X軸轉之角速度的最大值的值來作為特徵量,故能夠以考慮患者之步行之速度而標準化之值來作為特徵量。藉此,可將適合作為特徵量之值提供給醫師。
另,雖然上述實施形態說明的是著眼時間特定部28特定出擺盪初期(Isw)之時間來作為著眼時間的情況,但並非限定於此。例如,著眼時間亦可以是擺盪初期(Isw)及擺盪前期(Psw)之時間。另,一般而言,擺盪前期(Psw)是腳趾離地前之預定時間(例如250ms)。
另,上述實施形態說明的情況是著眼時間特定部28特定出擺盪初期(Isw)之時間來作為著眼時間,以腳趾離地之時間點與繞X軸轉之角速度顯示最大值之時間點之間的時間來作為擺盪初期。然而,並非限定於此,亦可以是以從腳趾離地(擺盪相之開頭)之時間點至經過事先決定之時間(例如250ms)為止來作為擺盪初期(Isw)。
另,雖然上述實施形態說明的是由上述式子(1)來求出特徵量的情況,但並非限定於此。例如,亦可以是使用在著眼時間內之繞Z軸轉之角速度的最大值,來代替在著眼時間內之繞Z軸轉之角速度之最小值與最大值的差分(寬W),亦可以是使用將在著眼時間內之繞Z軸轉之角速度之圖表予以時間積分的面積等,來代替在著眼時間內之繞Z軸轉之角速度之最小值與最大值的差分(寬W)。又,亦可以是使用在擺盪相內之繞X軸轉之角速度之最大值與最小值的寬、將在擺盪相內之繞X軸轉之角速度之圖表予以時間積分的面積、與患者之行進方向相關之移動速度等,來代替在擺盪相內之繞X軸轉之角速度的最大值M。
(變形例) 以下,針對變形例進行說明。本變形例是以患者進行跨圓弧步態的情況下之腳之往左右方向之揮出量(橫移動量)作為特徵量,以特徵量之最大值作為輸出用特徵量。
圖13是顯示本變形例之伺服器10的功能方塊圖。在伺服器10,藉由讓CPU90執行程式,而實現如圖13所示之功能。另,如將圖13與圖5比較可得知,本變形例之伺服器10是具有作為橫移動量算出部24的功能,來代替上述實施形態(圖5)之X最大角速度算出部26、著眼時間特定部28、Z角速度寬算出部30的功能。
橫移動量算出部24是取得擺盪相特定部22以與上述實施形態同樣之方式特定出之擺盪相。然後,橫移動量算出部24是以擺盪相之時間直接作為著眼時間,算出將著眼時間內之從最初之極小值至下個極大值為止之間之圖表時間積分的面積S(參考圖14之畫斜線部分)。此面積S是相當於圖15所示之腳之往左右方向的張開角θ。
所以,橫移動量算出部24是從儲存患者之腳之長度之資訊的患者資料庫25(參考圖13)取得患者之腳之長度r,基於下面之式子(2),由r與θ算出腳之橫移動量a。 a=r×sinθ      ...(2)
橫移動量算出部24是將算出之橫移動量a朝特徵量算出部32發送。特徵量算出部32是以從1次之步態測驗之資料獲得之複數個橫移動量a作為特徵量。
輸出部34是以複數個特徵量(橫移動量a)中之最大值作為與患者之跨圓弧步態相關之輸出用特徵量。然後,輸出部34將輸出用特徵量朝醫師用終端70發送。
另,本變形例是藉由橫移動量算出部24、特徵量算出部32、輸出部34,而實現作為算出使用於判定患者是否進行著跨圓弧步態之指標(輸出用特徵量)之算出部的功能。
如以上,本變形例亦是符合在臨床現場使用之步態週期(瑞秋洛斯阿米哥斯方式)而算出與跨圓弧步態相關之輸出用特徵量,因此,醫師可適切地判定患者是否進行著跨圓弧步態。另,關於腳之橫移動量a,亦可以不是如上述般地由繞Z軸轉之角速度來求出。例如,亦可以是基於加速度感測器、速度感測器的檢測結果來算出橫移動量a。
另,雖然上述變形例說明的是特徵量算出部32使用患者之腳之長度r與張開角θ來算出腳之橫移動量a、以其作為特徵量的情況,但並非限定於此。例如,特徵量亦可以是張開角θ本身。即便是如此之情況,醫師亦可藉由觀察特徵量之變化而確認症狀之改善、治療之效果等。
另,雖然上述實施形態及變形例說明的是由伺服器10執行圖10之處理的情況,但並非限定於此。例如,亦可以令圖10之處理之一部分或全部是由物理治療師用終端60、醫師用終端70執行。亦即,只要圖10之處理是藉由資訊處理系統100內之1個或複數個裝置而實現即可。
另,雖然上述實施形態及變形例說明的是將感測機器50連接於物理治療師用終端60的情況,但並非限定於此,亦可以是將感測機器50連接於醫師用終端70。此情況下,醫師用終端70進行與上述實施形態之物理治療師用終端60同樣之處理即可。
另,雖然上述實施形態及變形例說明的是輸出部34對醫師用終端70輸出特徵量的情況,但並非限定於此,輸出部34亦可以是對其他之終端輸出特徵量。例如,輸出部34亦可以是對物理治療師用終端60、實施臨床試驗之製藥公司之終端輸出特徵量。
另,上述之處理功能可由電腦實現。此情況下,提供記載著處理裝置應具有之功能之處理內容的程式。藉由在電腦執行該程式,而在電腦上實現上述處理功能。記載著處理內容之程式可事先記錄在電腦可讀取之記憶媒體(不過,不包含載波)。
要讓程式流通時,例如,以記錄了此程式之DVD(Digital Versatile Disc,數位多功能光碟)、CD-ROM(Compact Disc Read Only Memory,唯讀光碟)等之攜帶型記憶媒體之形態來販賣。又,亦可將程式事先儲存在伺服器電腦之記憶裝置,透過網路而將此程式從伺服器電腦朝其他之電腦傳送。
執行程式之電腦是例如將記錄在攜帶型記憶媒體之程式、或從伺服器電腦傳送之程式,儲存在自己之記憶裝置。然後,電腦是從自己之記憶裝置讀取程式,執行依循程式之處理。另,電腦亦可直接從攜帶型記憶媒體讀取程式,執行依循此程式之處理。又,電腦亦可隨著每次從伺服器電腦傳送程式,而依序執行依循接收到之程式之處理。
上述之實施形態是本發明之較佳實施例。不過,並非限定於此,可在不超脫本發明之要旨之範圍內實施各式各樣之變形。
10:伺服器 20:感測結果取得部(取得部) 22:擺盪相特定部(檢測部) 24:橫移動量算出部 25:患者資料庫 26:X最大角速度算出部(特定部之一部分) 28:著眼時間特定部(特定部之一部分) 30:Z角速度寬算出部(算出部之一部分) 32:特徵量算出部(算出部之一部分) 34:輸出部(算出部之一部分) 50:感測機器(感測器) 60:物理治療師用終端 70:醫師用終端 80:網路 90,190:CPU 91,191:攜帶型記憶媒體 92,192:ROM 94,194:RAM 96,196:記憶部 97,197:網路介面 98,198:匯流排 99,199:攜帶型記憶媒體用驅動器 100:資訊處理系統 193:顯示部 195:輸入部 a:橫移動量 C:特徵量 M:最大值 r:腳之長度 S:面積 S10,S12,S14,S16,S30,S32,S34,S36,S40,S42,S44,S46,S48,S50:步驟 W:寬 θ:張開角
圖1是概略地顯示與一實施形態相關之資訊處理系統之構成的圖。 圖2A是顯示物理治療師用終端及醫師用終端之硬體構成的圖。 圖2B是顯示伺服器之硬體構成的圖。 圖3是用於說明跨圓弧步態的圖。 圖4是用於說明瑞秋洛斯阿米哥斯方式的圖。 圖5是伺服器的功能方塊圖。 圖6是顯示在感測機器設定之X軸與Z軸的圖。 圖7A是顯示繞X軸轉之角速度之時間變化之資料的圖。 圖7B是顯示繞Z軸轉之角速度之時間變化之資料的圖。 圖8是用於說明特徵量之算出方法的圖。 圖9是顯示由感測機器進行之事前處理的流程圖。 圖10是顯示由伺服器進行之資料分析處理的流程圖。 圖11A是用於說明圖10之處理的圖(其1)。 圖11B是用於說明圖10之處理的圖(其2)。 圖12A是顯示受檢查者A之輸出用特徵量之變化的圖表。 圖12B是顯示受檢查者B之輸出用特徵量之變化的圖表。 圖13是顯示與變形例相關之伺服器之功能方塊圖。 圖14是用於說明與變形例相關之伺服器之處理的圖。 圖15是用於說明與變形例相關之橫移動量之測量原理的圖。
M:最大值
W:寬

Claims (11)

  1. 一種資訊處理程式,是用於讓電腦執行如下處理的程式: 取得藉由裝附在人之腳踝的感測器而檢測到之步行時之腳踝之角速度的資訊; 基於取得之前述角速度之資訊中的繞朝前述人之左右方向延伸之第1軸轉之角速度的時間變化,而檢測出腳懸空於地面之時間亦即擺盪相; 特定出從前述擺盪相之開頭起之預定時間來作為著眼時間; 基於取得之前述角速度之資訊中的繞朝鉛直方向延伸之第2軸轉之角速度之在前述著眼時間內的時間變化,而算出使用於判定前述人是否進行著跨圓弧步態之指標。
  2. 如請求項1之資訊處理程式,其中前述著眼時間是從前述擺盪相之開頭至在前述擺盪相之時間內繞前述第1軸轉之角速度成為最大之時刻為止的時間。
  3. 如請求項1或2之資訊處理程式,其中前述指標是基於前述著眼時間內之繞前述第2軸轉之角速度之最大值與最小值之差分的值。
  4. 如請求項3之資訊處理程式,其中前述指標是將在前述著眼時間內之繞前述第2軸轉之角速度之最大值與最小值的差分除以在前述擺盪相之繞前述第1軸轉之角速度的最大值的值。
  5. 如請求項1之資訊處理程式,其中前述算出之處理是由繞前述第2軸轉之角速度之在前述著眼時間內之時間變化、及前述人之腳之長度,而算出前述人之腳朝左右方向移動之移動量,並以算出之前述移動量作為前述指標。
  6. 一種資訊處理方法,其特徵在於讓電腦執行如下處理: 取得藉由裝附在人之腳踝的感測器而檢測到之步行時之腳踝之角速度的資訊; 基於取得之前述角速度之資訊中的繞朝前述人之左右方向延伸之第1軸轉之角速度的時間變化,而檢測出腳懸空於地面之時間亦即擺盪相; 特定出從前述擺盪相之開頭起之預定時間來作為著眼時間; 基於取得之前述角速度之資訊中的繞朝鉛直方向延伸之第2軸轉之角速度之在前述著眼時間內的時間變化,而算出使用於判定前述人是否進行著跨圓弧步態之指標。
  7. 一種資訊處理系統,具備: 取得部,取得藉由裝附在人之腳踝的感測器而檢測到之步行時之腳踝之角速度的資訊; 檢測部,基於取得之前述角速度之資訊中的繞朝前述人之左右方向延伸之第1軸轉之角速度的時間變化,而檢測出腳懸空於地面之時間亦即擺盪相; 特定部,特定出從前述擺盪相之開頭起之預定時間來作為著眼時間;及 算出部,基於取得之前述角速度之資訊中的繞朝鉛直方向延伸之第2軸轉之角速度之在前述著眼時間內的時間變化,而算出使用於判定前述人是否進行著跨圓弧步態之指標。
  8. 如請求項7之資訊處理系統,其中前述著眼時間是從前述擺盪相之開頭至在前述擺盪相之時間內繞前述第1軸轉之角速度成為最大之時刻為止的時間。
  9. 如請求項7或8之資訊處理系統,其中前述指標是基於前述著眼時間內之繞前述第2軸轉之角速度之最大值與最小值之差分的值。
  10. 如請求項9之資訊處理系統,其中前述指標是將在前述著眼時間內之繞前述第2軸轉之角速度之最大值與最小值的差分除以在前述擺盪相之繞前述第1軸轉之角速度的最大值的值。
  11. 如請求項7之資訊處理系統,其中前述算出部是由繞前述第2軸轉之角速度之在前述著眼時間內之時間變化、及前述人之腳之長度,而算出前述人之腳朝左右方向移動之移動量,並以算出之前述移動量作為前述指標。
TW109100952A 2019-01-24 2020-01-10 資訊處理程式、資訊處理方法及資訊處理系統 TWI716258B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2019/002212 2019-01-24
PCT/JP2019/002212 WO2020152817A1 (ja) 2019-01-24 2019-01-24 情報処理プログラム、情報処理方法及び情報処理システム

Publications (2)

Publication Number Publication Date
TW202032126A TW202032126A (zh) 2020-09-01
TWI716258B true TWI716258B (zh) 2021-01-11

Family

ID=71736880

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100952A TWI716258B (zh) 2019-01-24 2020-01-10 資訊處理程式、資訊處理方法及資訊處理系統

Country Status (4)

Country Link
EP (1) EP3915474A4 (zh)
JP (1) JP7092216B2 (zh)
TW (1) TWI716258B (zh)
WO (1) WO2020152817A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279153A (ja) * 2004-03-31 2005-10-13 Undo Kagaku Kenkyusho Kk 歩行矯正器
JP2009050533A (ja) * 2007-08-28 2009-03-12 Chiba Univ 自立歩行支援装置及びそれに用いられるプログラム
TWI422824B (zh) * 2010-12-06 2014-01-11 Inst Information Industry 人體運動特徵辨識與定位方法
WO2014065448A1 (ko) * 2012-10-24 2014-05-01 Park Seong Gi 교정 보행기
CN103784294A (zh) * 2014-01-16 2014-05-14 江西师范大学 中风偏瘫病人康复助行装置
TWI464370B (zh) * 2012-01-18 2014-12-11 Univ Nat Chiao Tung 步行資訊運算系統及步行資訊運算方法
JP2016112108A (ja) * 2014-12-12 2016-06-23 カシオ計算機株式会社 運動情報表示システム及び運動情報表示方法、運動情報表示プログラム
US20160321947A1 (en) * 2014-06-09 2016-11-03 Twd Sports Tech, Llc System and method for treating patients having conditions that affect walking

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195109A (ja) 2002-12-20 2004-07-15 Yaskawa Electric Corp 分回し歩行防止装置
JP4686681B2 (ja) 2004-10-05 2011-05-25 国立大学法人東京工業大学 歩行介助システム
JP4282019B2 (ja) 2004-10-14 2009-06-17 株式会社中村工業 コンクリート製品の敷設装置
JP2015136582A (ja) 2014-01-24 2015-07-30 パナソニックIpマネジメント株式会社 体動判別装置
JP2016043092A (ja) 2014-08-25 2016-04-04 国立大学法人東北大学 運動測定装置
WO2017199305A1 (ja) 2016-05-16 2017-11-23 富士通株式会社 情報処理装置、情報処理方法、及び情報処理プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279153A (ja) * 2004-03-31 2005-10-13 Undo Kagaku Kenkyusho Kk 歩行矯正器
JP2009050533A (ja) * 2007-08-28 2009-03-12 Chiba Univ 自立歩行支援装置及びそれに用いられるプログラム
TWI422824B (zh) * 2010-12-06 2014-01-11 Inst Information Industry 人體運動特徵辨識與定位方法
TWI464370B (zh) * 2012-01-18 2014-12-11 Univ Nat Chiao Tung 步行資訊運算系統及步行資訊運算方法
WO2014065448A1 (ko) * 2012-10-24 2014-05-01 Park Seong Gi 교정 보행기
CN103784294A (zh) * 2014-01-16 2014-05-14 江西师范大学 中风偏瘫病人康复助行装置
US20160321947A1 (en) * 2014-06-09 2016-11-03 Twd Sports Tech, Llc System and method for treating patients having conditions that affect walking
JP2016112108A (ja) * 2014-12-12 2016-06-23 カシオ計算機株式会社 運動情報表示システム及び運動情報表示方法、運動情報表示プログラム

Also Published As

Publication number Publication date
JPWO2020152817A1 (ja) 2021-09-30
EP3915474A4 (en) 2022-01-26
EP3915474A1 (en) 2021-12-01
JP7092216B2 (ja) 2022-06-28
WO2020152817A1 (ja) 2020-07-30
TW202032126A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
US20170035330A1 (en) Mobility Assessment Tool (MAT)
US11837365B1 (en) Assessing fitness by entropy and bispectral analysis
JP6433805B2 (ja) 運動機能診断装置及び方法、並びにプログラム
US20200129109A1 (en) Mobility Assessment Tracking Tool (MATT)
Zhou et al. Instrumented trail-making task: application of wearable sensor to determine physical frailty phenotypes
Breedon et al. Enhancing the measurement of clinical outcomes using microsoft kinect
Bonnechère et al. Cost-effective (gaming) motion and balance devices for functional assessment: need or hype?
JP2002345785A (ja) 足跡分析装置
JP2022537326A (ja) デジタルバイオマーカー
EP3808268B1 (en) System and method for shoulder proprioceptive analysis
TWI716258B (zh) 資訊處理程式、資訊處理方法及資訊處理系統
JP5912807B2 (ja) 荷重計測システム
JP2020151470A (ja) 歩行評価装置、歩行評価方法およびプログラム
Henderson et al. Step monitor accuracy during PostStroke physical therapy and simulated activities
RU2551193C1 (ru) Способ ранней диагностики плосковальгусной деформации стоп у детей
Kraus et al. Concurrent validity of 2D and inertial goniometer motion assessment
TWI738176B (zh) 資訊處理程式、資訊處理方法及資訊處理系統
Batey et al. Assessing reliability of measurement of gait velocity
Ershadi et al. Comprehensive Musculoskeletal Care Platform Enabling At-home Patient Care.
JP2018038753A (ja) 歩行分析方法及び歩行分析装置
JP6738249B2 (ja) 歩行分析方法及び歩行分析装置
Lin et al. Quantitative measurement of Parkinsonian gait from walking in monocular image sequences using a centroid tracking algorithm
Rodrigues et al. On the fly reporting of human body movement based on kinect v2
JP2022107432A (ja) 歩行状態判定システム、歩行状態判定方法及び歩行状態判定プログラム
Yu Comparison of reliabilities and validity between AR based motion capture system and physical therapist: preliminary study