TWI716076B - An optical collimation system - Google Patents
An optical collimation system Download PDFInfo
- Publication number
- TWI716076B TWI716076B TW108129504A TW108129504A TWI716076B TW I716076 B TWI716076 B TW I716076B TW 108129504 A TW108129504 A TW 108129504A TW 108129504 A TW108129504 A TW 108129504A TW I716076 B TWI716076 B TW I716076B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- convex lens
- meniscus
- refractive power
- aforementioned
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/12—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/34—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本發明實施例揭示一種光學準直系統,用於對預設數值孔徑及預設波長的光束進行準直操作,前述光學準直系統包含依次位於物面一側的第一平凸透鏡、第一彎月形凸透鏡、第二彎月形凸透鏡、第三彎月形凸透鏡及第一雙凸透鏡;前述第一平凸透鏡的光焦度為D1,前述第一彎月形凸透鏡的光焦度為D2,前述第二彎月形凸透鏡的光焦度為D3,前述第三彎月形凸透鏡的光焦度為D4,前述第一雙凸透鏡的光焦度為D5;其中,D1>0,D2>0,D3>0,D4>0,D5>0,且min{D3,D4,D5}max{D3,D4,D5};min{D3,D4,D5}表示D3、D4及D5中的最小值,max{D3,D4,D5}表示D3、D4及D5中的最大值。合理設置物面與像面之間各凸透鏡的形狀及光焦度,保證光學準直系統對預設數值孔徑及預設波長的光束的準直效果良好。 The embodiment of the present invention discloses an optical collimation system for collimating light beams with a preset numerical aperture and a preset wavelength. The aforementioned optical collimation system includes a first plano-convex lens and a first curved lens which are sequentially located on one side of the object surface A meniscus convex lens, a second meniscus convex lens, a third meniscus convex lens, and a first biconvex lens; the refractive power of the first plano-convex lens is D1, and the refractive power of the first meniscus convex lens is D2. The refractive power of the second meniscus convex lens is D3, the refractive power of the third meniscus convex lens is D4, and the refractive power of the first biconvex lens is D5; where D1>0, D2>0, D3 >0, D4>0, D5>0, and min{D3, D4, D5} max{D3, D4, D5}; min{D3, D4, D5} represents the minimum value of D3, D4, and D5, and max{D3, D4, D5} represents the maximum value of D3, D4, and D5. Properly set the shape and optical power of each convex lens between the object surface and the image surface to ensure that the optical collimation system has a good collimation effect for the beams of preset numerical aperture and preset wavelength.
Description
本發明實施例關於光學設置技術領域,例如關於一種光學準直系統。 The embodiment of the present invention relates to the field of optical setting technology, for example, an optical collimation system.
光學光刻是光刻機用光學投影曝光的方法將光罩上的電路器件結構圖形刻蝕到矽片上的過程。光刻機主要由曝光光源、照明系統、光罩、光刻投影物鏡以及矽片工件台五部分組成。為獲取更高的光刻解析度,要求曝光光源出射光的波長向深紫外甚至是極紫外波段發展,同時亦要求光刻投影物鏡須具有高的數值孔徑。因此,須開發針對於深紫外入射光、高數值孔徑投影光刻物鏡的像差檢測技術。 Optical lithography is a process in which a lithography machine uses an optical projection exposure method to etch the circuit device structure pattern on the photomask onto the silicon wafer. The lithography machine is mainly composed of five parts: exposure light source, illumination system, photomask, lithography projection objective lens and silicon wafer work table. In order to obtain a higher resolution of photolithography, the wavelength of the light emitted by the exposure light source is required to develop in the deep ultraviolet or even extreme ultraviolet band. At the same time, it is also required that the lithography projection objective lens must have a high numerical aperture. Therefore, it is necessary to develop aberration detection technology for the deep ultraviolet incident light and high numerical aperture projection lithography objective lens.
在投影物鏡的偏振像差測試中,位於投影物鏡像面的感測器模組起檢驗偏振態的作用。從投影物鏡像面出射的光線具有高數值孔徑,而偏振像差感測器中的偏振組件只有在平行光或小角度偏離平行的類平行光的條件下才能正常工作,因此需一個光學組件能將發散光匯聚為平行光。 In the polarization aberration test of the projection objective, the sensor module located on the mirror surface of the projection object functions to verify the polarization state. The light emitted from the mirror surface of the projected object has a high numerical aperture, and the polarization component in the polarization aberration sensor can only work under the condition of parallel light or parallel-like light with a small angle deviating from parallel. Therefore, an optical component is required. Converge divergent light into parallel light.
先前技術中的準直鏡通常可對數值孔徑較小的可見光進行匯聚,但無法將高數值孔徑的深紫外入射光匯聚為平行光。 The collimating lens in the prior art can usually converge visible light with a small numerical aperture, but cannot converge the incident deep ultraviolet light with a high numerical aperture into parallel light.
有鑑於此,本發明實施例提供一種光學準直系統,以解決先前技術中無法將高數值孔徑的深紫外入射光匯聚為平行光的技術問題。 In view of this, an embodiment of the present invention provides an optical collimation system to solve the technical problem that the high numerical aperture deep ultraviolet incident light cannot be condensed into parallel light in the prior art.
第一方面,本發明實施例提供一種光學準直系統,其特徵係,用於對預設數值孔徑及預設波長的光束進行準直操作,前述光學準直系統包含依次位於物面一側的第一平凸透鏡、第一彎月形凸透鏡、第二彎月形凸透鏡、第三彎月形凸透鏡及第一雙凸透鏡;前述第一平凸透鏡的光焦度為D1,前述第一彎月形凸透鏡的光焦度為D2,前述第二彎月形凸透鏡的光焦度為D3,前述第三彎月形凸透鏡的光焦度為D4,前述第一雙凸透鏡的光焦度為D5;其中,D1>0,D2>0,D3>0,D4>0,D5>0,且min{D3,D4,D5}max{D3,D4,D5};min{D3,D4,D5}表示D3、D4及D5中的最小值,max{D3,D4,D5}表示D3、D4及D5中的最大值。 In a first aspect, an embodiment of the present invention provides an optical collimation system, which is characterized in that it is used for collimating light beams with a preset numerical aperture and a preset wavelength. The aforementioned optical collimation system includes one side of the object surface. The first plano-convex lens, the first meniscus-shaped convex lens, the second meniscus-shaped convex lens, the third meniscus-shaped convex lens, and the first double-convex lens; the refractive power of the aforementioned first plano-convex lens is D1, and the aforementioned first meniscus-shaped convex lens The refractive power of the first biconvex lens is D2, the refractive power of the second meniscus lens is D3, the refractive power of the third meniscus lens is D4, and the refractive power of the first biconvex lens is D5; where D1 >0, D2>0, D3>0, D4>0, D5>0, and min{D3, D4, D5} max{D3, D4, D5}; min{D3, D4, D5} represents the minimum value of D3, D4, and D5, and max{D3, D4, D5} represents the maximum value of D3, D4, and D5.
在一些實施例中,前述第一雙凸透鏡的光焦度D5與前述第三彎月形凸透鏡的光焦度D4之間的差值滿足第一預設條件,第一預設條件為第一雙凸透鏡的光焦度D5與第三彎月形凸透鏡的光焦度D4之間的差值為零;前述第三彎月形凸透鏡的光焦度D4與前述第二彎月形凸透鏡的光焦度D3之間的差值滿足第二預設條件,第二預設條件為第三彎月形凸透鏡的光焦度D4與第二彎月形凸透鏡的光焦度D3之間的差值為 零。 In some embodiments, the difference between the refractive power D5 of the aforementioned first lenticular lens and the refractive power D4 of the aforementioned third meniscus lens satisfies a first preset condition, and the first preset condition is The difference between the refractive power D5 of the convex lens and the refractive power D4 of the third meniscus lens is zero; the refractive power D4 of the aforementioned third meniscus convex lens and the refractive power of the aforementioned second meniscus convex lens The difference between D3 satisfies the second preset condition, and the second preset condition is that the difference between the refractive power D4 of the third meniscus lens and the refractive power D3 of the second meniscus lens is zero.
在一些實施例中,前述第一平凸透鏡包含靠近前述物面一側的第一表面及遠離前述物面一側的第二表面,前述第一彎月形凸透鏡包含靠近前述物面一側的第三表面及遠離前述物面一側的第四表面,前述第二彎月形凸透鏡包含靠近前述物面一側的第五表面及遠離前述物面一側的第六表面,前述第三彎月形凸透鏡包含靠近前述物面一側的第七表面及遠離前述物面一側的第八表面,前述第一雙凸透鏡包含靠近前述物面一側的第九表面及遠離前述物面一側的第十表面;其中,前述第一表面為平面;前述第二表面為超半球面,且前述第二表面為齊明面,超半球面包含半球面以及前述半球面的兩個端點在光軸方向上延伸預設距離形成的外表面;前述第三表面、前述第四表面、前述第五表面、前述第六表面、前述第七表面、前述第八表面、前述第九表面及前述第十表面為球面,且前述第五表面為齊明面,前述第十表面為前述光學準直系統的光闌面。 In some embodiments, the first plano-convex lens includes a first surface close to the object surface and a second surface away from the object surface, and the first meniscus convex lens includes a first surface close to the object surface. Three surfaces and a fourth surface far away from the object surface. The second meniscus lens includes a fifth surface close to the object surface and a sixth surface away from the object surface. The third meniscus The convex lens includes a seventh surface close to the object surface and an eighth surface away from the object surface. The first lenticular lens includes a ninth surface close to the object surface and a tenth surface away from the object surface. Surface; wherein, the first surface is a plane; the second surface is a hyperhemispherical surface, and the second surface is a homogeneous surface, the hyperhemispherical surface includes a hemispherical surface and the two end points of the hemispherical surface in the optical axis direction An outer surface formed by extending a predetermined distance; the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, the eighth surface, the ninth surface, and the tenth surface are spherical surfaces , And the fifth surface is a uniform surface, and the tenth surface is an aperture surface of the optical collimation system.
在一些實施例中,前述第一平凸透鏡、前述第一彎月形凸透鏡、前述第二彎月形凸透鏡、前述第三彎月形凸透鏡及前述第一雙凸透鏡的製備材料包含融石英。 In some embodiments, the preparation materials of the first plano-convex lens, the first meniscus convex lens, the second meniscus convex lens, the third meniscus convex lens, and the first biconvex lens include fused silica.
第二方面,本發明實施例提供一種光學準直系統,其特徵係,用於對預設數值孔徑及預設波長的光束進行準直操作,前述光學準直系統包含依次位於物面一側的第二平凸透鏡、第四彎月形凸透鏡、第五彎月形凸透鏡及第二雙凸透鏡;前述第二平凸透鏡的光焦度為D6,前述第四彎月形凸透鏡的光焦度 為D7,前述第五彎月形凸透鏡的光焦度為D8,前述第二雙凸透鏡的光焦度為D9;其中,D6>0,D7>0,D8>0,D9>0,且min{D7,D8,D9}max{D7,D8,D9};min{D7,D8,D9}表示D7、D8及D9中的最小值,max{D7,D8,D9}表示D7、D8及D9中的最大值。 In a second aspect, an embodiment of the present invention provides an optical collimation system, which is characterized in that it is used to collimate light beams with a preset numerical aperture and a preset wavelength. The aforementioned optical collimation system includes one side of the object surface. The second plano-convex lens, the fourth meniscus-shaped convex lens, the fifth meniscus-shaped convex lens and the second double-convex lens; the refractive power of the aforementioned second plano-convex lens is D6, and the refractive power of the aforementioned fourth meniscus convex lens is D7, The refractive power of the fifth meniscus lens is D8, and the refractive power of the second lenticular lens is D9; where D6>0, D7>0, D8>0, D9>0, and min{D7, D8 , D9} max{D7, D8, D9}; min{D7, D8, D9} represents the minimum value of D7, D8, and D9, and max{D7, D8, D9} represents the maximum value of D7, D8, and D9.
在一些實施例中,前述第二雙凸透鏡的光焦度D9與前述第五彎月形凸透鏡的光焦度D8之間的差值滿足第三預設條件,第三預設條件為第二雙凸透鏡的光焦度D9與第五彎月形凸透鏡的光焦度D8之間的差值為零;前述第五彎月形凸透鏡的光焦度D8與前述第四彎月形凸透鏡的光焦度D7之間的差值滿足第四預設條件,第四預設條件為第五彎月形凸透鏡的光焦度D8與第四彎月形凸透鏡的光焦度D7之間的差值為零。 In some embodiments, the difference between the refractive power D9 of the aforementioned second lenticular lens and the refractive power D8 of the aforementioned fifth meniscus lens satisfies the third preset condition, and the third preset condition is the second double The difference between the refractive power D9 of the convex lens and the refractive power D8 of the fifth meniscus lens is zero; the refractive power D8 of the fifth meniscus lens and the refractive power of the fourth meniscus lens are The difference between D7 satisfies the fourth preset condition, and the fourth preset condition is that the difference between the refractive power D8 of the fifth meniscus lens and the refractive power D7 of the fourth meniscus lens is zero.
在一些實施例中,前述第二平凸透鏡包含靠近前述物面一側的第十一表面及遠離前述物面一側的第十二表面;前述第四彎月形凸透鏡包含靠近前述物面一側的第十三表面及遠離前述物面一側的第十四表面,前述第五彎月形凸透鏡包含靠近前述物面一側的第十五表面及遠離前述物面一側的第十六表面,前述第二雙凸透鏡包含靠近前述物面一側的第十七表面及遠離前述物面一側的第十八表面;其中,前述第十一表面為平面;前述第十二表面為超半球面,且前述第十二表面為齊明面,超半球面包含半球面以及前述半球面的兩個端點在光軸方向上延伸預設距離形成的外表面;前述第十三表面、前述第十四表面、前述第十五表面、前述第十六表面、前述第十七表面及前述第十八表 面為球面,前述第十八表面為前述光學準直系統的光闌面。 In some embodiments, the second plano-convex lens includes an eleventh surface close to the object surface and a twelfth surface away from the object surface; the fourth meniscus convex lens includes a side close to the object surface And the fourteenth surface on the side away from the object surface, the fifth meniscus lens includes a fifteenth surface on the side close to the object surface and a sixteenth surface on the side far from the object surface, The second lenticular lens includes a seventeenth surface on the side close to the object surface and an eighteenth surface on the side away from the object surface; wherein the eleventh surface is a flat surface; the twelfth surface is a hyperhemispherical surface, And the aforementioned twelfth surface is a uniform surface, and the hyper-hemispherical surface includes a hemispherical surface and an outer surface formed by two end points of the aforementioned hemispherical surface extending a predetermined distance in the optical axis direction; the aforementioned thirteenth surface and the aforementioned fourteenth surface Surface, the fifteenth surface, the sixteenth surface, the seventeenth surface, and the eighteenth surface The surface is a spherical surface, and the aforementioned eighteenth surface is the diaphragm surface of the aforementioned optical collimation system.
在一些實施例中,前述第二平凸透鏡、前述第四彎月形凸透鏡、前述第五彎月形凸透鏡及前述第二雙凸透鏡的製備材料包含融石英。 In some embodiments, the preparation materials of the second plano-convex lens, the fourth meniscus convex lens, the fifth meniscus convex lens, and the second biconvex lens include fused silica.
第三方面,本發明實施例提供一種光學準直系統,其特徵係,用於對預設數值孔徑及預設波長的光束進行準直操作,前述光學準直系統包含依次位於物面一側的第三平凸透鏡、第六彎月形凸透鏡及第三雙凸透鏡;前述第三平凸透鏡的光焦度為D10,前述第六彎月形凸透鏡的光焦度為D11,前述第三雙凸透鏡的光焦度為D12;其中,D10>0,D11>0,D12>0,且min{D11,D12}max{D11,D12};min{D11,D12}表示D11及D12中的最小值,max{D11,D12}表示D11及D12中的最大值。 In a third aspect, an embodiment of the present invention provides an optical collimation system, which is characterized in that it is used for collimating light beams with a preset numerical aperture and a preset wavelength. The aforementioned optical collimation system includes one side of the object surface. The third plano-convex lens, the sixth meniscus-shaped convex lens, and the third double-convex lens; the aforementioned third plano-convex lens has a refractive power of D10, the aforementioned sixth meniscus-shaped convex lens has a refractive power of D11, and the aforementioned third double-convex lens has a refractive power The focal power is D12; where D10>0, D11>0, D12>0, and min{D11, D12} max{D11, D12}; min{D11, D12} represents the minimum value of D11 and D12, and max{D11, D12} represents the maximum value of D11 and D12.
在一些實施例中,前述第三平凸透鏡包含靠近前述物面一側的第十九表面及遠離前述物面一側的第二十表面;前述第六彎月形凸透鏡包含靠近前述物面一側的第二十一表面及遠離前述物面一側的第二十二表面,前述第三雙凸透鏡包含靠近前述物面一側的第二十三表面及遠離前述物面一側的第二十四表面;其中,前述第十九表面為平面;前述第二十表面為超半球面,且前述第二十表面為齊明面,超半球面包含半球面以及前述半球面的兩個端點在光軸方向上延伸預設距離形成的外表面;前述第二十一表面、前述第二十二表面及前述第二十三表面為球面,前述第二十四表面為非球面,前述第 二十四表面為前述光學準直系統的光闌面。 In some embodiments, the third plano-convex lens includes a nineteenth surface close to the object surface and a twentieth surface away from the object surface; the sixth meniscus convex lens includes a side close to the object surface The twenty-first surface and the twenty-second surface on the side away from the object surface. The third lenticular lens includes the twenty-third surface on the side close to the object surface and the twenty-fourth surface on the side away from the object surface. Surface; wherein the nineteenth surface is a plane; the twentieth surface is a hyperhemispherical surface, and the twentieth surface is a homogeneous surface, the hyperhemispherical surface includes a hemispherical surface and the two end points of the hemispherical surface in light An outer surface formed by extending a predetermined distance in the axial direction; the twenty-first surface, the twenty-second surface, and the twenty-third surface are spherical surfaces, the twenty-fourth surface is aspherical, and the first The twenty-four surface is the diaphragm surface of the aforementioned optical collimation system.
在一些實施例中,前述第三平凸透鏡、前述第六彎月形凸透鏡及前述第三雙凸透鏡的製備材料包含融石英。 In some embodiments, the preparation materials of the third plano-convex lens, the sixth meniscus lens, and the third lenticular lens include fused silica.
在一些實施例中,前述預設數值孔徑為NA,其中,NA>0;前述預設波長為λ,其中,λ=193.368nm。 In some embodiments, the aforementioned predetermined numerical aperture is NA, where NA>0; the aforementioned predetermined wavelength is λ, where λ=193.368nm.
本發明實施例提供的光學準直系統,其特徵係,用於對預設數值孔徑及預設波長的光束進行準直操作,包含依次位於物面一側的第一平凸透鏡、第一彎月形凸透鏡、第二彎月形凸透鏡、第三彎月形凸透鏡及第一雙凸透鏡;第一平凸透鏡、第一彎月形凸透鏡、第二彎月形凸透鏡、第三彎月形凸透鏡以及第一雙凸透鏡的光焦度均大於零,且第一平凸透鏡D1、第二彎月形凸透鏡的光焦度D3,第三彎月形凸透鏡的光焦度D4以及第一雙凸透鏡的光焦度D5滿足min{D3,D4,D5}max{D3,D4,D5}。藉由合理設置物面與像面之間各凸透鏡的形狀及光焦度,可保證本發明實施例提供的光學準直系統對預設數值孔徑及預設波長的光束的準直效果良好。 The optical collimation system provided by the embodiment of the present invention is characterized in that it is used for collimating light beams with a preset numerical aperture and a preset wavelength, and includes a first plano-convex lens and a first meniscus which are sequentially located on one side of the object surface Convex lens, second meniscus convex lens, third meniscus convex lens and first double convex lens; first plano-convex lens, first meniscus convex lens, second meniscus convex lens, third meniscus convex lens and first The refractive power of the biconvex lens is greater than zero, and the first plano-convex lens D1, the second meniscus-shaped convex lens, the refractive power D3, the third meniscus-shaped convex lens, the refractive power D4, and the first bi-convex lens, the refractive power D5 Meet min{D3, D4, D5} max{D3, D4, D5}. By reasonably setting the shape and optical power of each convex lens between the object surface and the image surface, it can be ensured that the optical collimation system provided by the embodiment of the present invention has a good collimation effect for the beams with the preset numerical aperture and the preset wavelength.
為了更加清楚地說明本說明書示例性實施例的技術手段,以下對描述實施例中所需用到的圖式做一簡單介紹。顯然地,所介紹的圖式只是本說明書所要描述的一部分實施例的圖式,而非全部的圖式,對於所屬技術領域中具有通常知識者,在不付出創造性勞動的前提下,進一步可根據此等圖式得到其他的圖式。 In order to more clearly describe the technical means of the exemplary embodiments of this specification, the following briefly introduces the drawings required to describe the embodiments. Obviously, the schemes introduced are only part of the schemes of the embodiments to be described in this specification, not all schemes. For those with ordinary knowledge in the technical field, they can be further based on These schemes result in other schemes.
CL1、CL2、CL3‧‧‧光學準直系統 CL1, CL2, CL3‧‧‧Optical collimation system
L0‧‧‧虛擬鏡片 L0‧‧‧Virtual lens
L1‧‧‧第一平凸透鏡 L1‧‧‧The first plano-convex lens
L2‧‧‧第一彎月形凸透鏡 L2‧‧‧First meniscus convex lens
L3‧‧‧第二彎月形凸透鏡 L3‧‧‧The second meniscus convex lens
L4‧‧‧第三彎月形凸透鏡 L4‧‧‧The third meniscus convex lens
L5‧‧‧第一雙凸透鏡 L5‧‧‧The first biconvex lens
L6‧‧‧第二平凸透鏡 L6‧‧‧Second Plano-Convex Lens
L7‧‧‧第四彎月形凸透鏡 L7‧‧‧Fourth meniscus convex lens
L8‧‧‧第五彎月形凸透鏡 L8‧‧‧Fifth meniscus convex lens
L9‧‧‧第二雙凸透鏡 L9‧‧‧The second biconvex lens
L10‧‧‧第三平凸透鏡 L10‧‧‧The third plano-convex lens
L11‧‧‧第六彎月形凸透鏡 L11‧‧‧Sixth meniscus convex lens
L12‧‧‧第三雙凸透鏡 L12‧‧‧The third biconvex lens
S0‧‧‧虛擬鏡片的表面 S0‧‧‧The surface of the virtual lens
S1‧‧‧第一表面 S1‧‧‧First surface
S2‧‧‧第二表面 S2‧‧‧Second surface
S3‧‧‧第三表面 S3‧‧‧The third surface
S4‧‧‧第四表面 S4‧‧‧Fourth surface
S5‧‧‧第五表面 S5‧‧‧Fifth surface
S6‧‧‧第六表面 S6‧‧‧Sixth surface
S7‧‧‧第七表面 S7‧‧‧Seventh surface
S8‧‧‧第八表面 S8‧‧‧Eighth surface
S9‧‧‧第九表面 S9‧‧‧Ninth surface
S10‧‧‧第十表面 S10‧‧‧Tenth surface
S11‧‧‧第十一表面 S11‧‧‧Eleventh surface
S12‧‧‧第十二表面 S12‧‧‧Twelfth surface
S13‧‧‧第十三表面 S13‧‧‧Thirteenth surface
S14‧‧‧第十四表面 S14‧‧‧Fourteenth surface
S15‧‧‧第十五表面 S15‧‧‧Fifteenth surface
S16‧‧‧第十六表面 S16‧‧‧Sixteenth surface
S17‧‧‧第十七表面 S17‧‧‧Seventeenth surface
S18‧‧‧第十八表面 S18‧‧‧The eighteenth surface
S19‧‧‧第十九表面 S19‧‧‧The nineteenth surface
S20‧‧‧第二十表面 S20‧‧‧20th surface
S21‧‧‧第二十一表面 S21‧‧‧The twenty-first surface
S22‧‧‧第二十二表面 S22‧‧‧The twenty-second surface
S23‧‧‧第二十三表面 S23‧‧‧Twenty-third surface
S24‧‧‧第二十四表面 S24‧‧‧Twenty-fourth surface
【圖1】是本發明實施例提供的一種光學準直系統的結構示意圖。 [Fig. 1] is a schematic structural diagram of an optical collimation system provided by an embodiment of the present invention.
【圖2】是圖1提供的光學準直系統的每個表面的低階球差及低階慧差的條狀圖。 [Figure 2] is a bar graph of the low-order spherical aberration and low-order coma of each surface of the optical collimation system provided in Figure 1.
【圖3】是圖1提供的光學準直系統的像方準直度隨物方高度變化的關係示意圖。 [Figure 3] is a schematic diagram of the relationship between the image-side collimation of the optical collimation system provided in Figure 1 and the height of the object.
【圖4】是圖1提供的光學準直系統在沿著xy平面翻轉後得到的光線像差曲線示例圖。 [Fig. 4] is an example diagram of a ray aberration curve obtained by the optical collimation system provided in Fig. 1 after being flipped along the xy plane.
【圖5】是本發明實施例提供的另一種光學準直系統的結構示意圖。 [Fig. 5] is a schematic structural diagram of another optical collimation system provided by an embodiment of the present invention.
【圖6】是圖5提供的光學準直系統的像方準直度隨物方高度變化的關係示意圖。 [Figure 6] is a schematic diagram of the relationship between the image side collimation of the optical collimation system provided in Figure 5 and the height of the object side.
【圖7】是圖5提供的光學準直系統在沿著xy平面翻轉後得到的光線像差曲線示例圖。 [Fig. 7] is an example diagram of a ray aberration curve obtained by the optical collimation system provided in Fig. 5 after being flipped along the xy plane.
【圖8】是本發明實施例提供的又一種光學準直系統的結構示意圖。 [Figure 8] is a schematic structural diagram of another optical collimation system provided by an embodiment of the present invention.
【圖9】是圖8提供的光學準直系統的像方準直度隨物方高度變化的關係示意圖。 [Fig. 9] is a schematic diagram of the relationship between the image-side collimation of the optical collimation system provided in Fig. 8 and the height of the object side.
【圖10】是圖8提供的光學準直系統在沿著xy平面翻轉後得到的光線像差曲線示例圖。 [Fig. 10] is an example diagram of a ray aberration curve obtained by the optical collimation system provided in Fig. 8 after being flipped along the xy plane.
以下將結合本發明實施例中的圖式,藉由具體實施方式,完整地描述本說明書的技術手段。顯然地,所描述的實施例是本說明書的一部分實施例,而不是全部的實施例。 In the following, the technical means of this specification will be fully described through specific implementations in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of this specification, rather than all of the embodiments.
先前技術中的準直鏡通常僅可對數值孔徑較小(例如小於1)的可見光進行匯聚,但無法將高數值孔徑的深紫外入射光匯聚為平行光。基於上述技術問題,本發明實施例提供一種光學準直系統,其特徵係,用於對預設數值孔徑及預設波長的光束進行準直操作,包含依次位於物面一側的第一平凸透鏡、第一彎月形凸透鏡、第二彎月形凸透鏡、第三彎月形凸透鏡及第一雙凸透鏡;前述第一平凸透鏡的光焦度為D1,前述第一彎月形凸透鏡的光焦度為D2,前述第二彎月形凸透鏡的光焦度為D3,前述第三彎月形凸透鏡的光焦度為D4,前述第一雙凸透鏡的光焦度為D5;其中,D1>0,D2>0,D3>0,D4>0,D5>0,且min{D3,D4,D5}max{D3,D4,D5};min{D3,D4,D5}表示D3、D4及D5中的最小值,max{D3,D4,D5}表示D3、D4及D5中的最大值。採用上述技術手段,藉由合理設置物面與像面之間每個凸透鏡的形狀及光焦度,可保證本發明實施例提供的光學準直系統對預設數值孔徑及預設波長的光束的準直效果良好。 The collimator in the prior art can usually only converge visible light with a small numerical aperture (for example, less than 1), but cannot converge the incident deep ultraviolet light with a high numerical aperture into parallel light. Based on the above technical problems, an embodiment of the present invention provides an optical collimation system, which is characterized in that it is used to collimate light beams with a preset numerical aperture and a preset wavelength, and includes a first plano-convex lens sequentially located on one side of the object surface , The first meniscus convex lens, the second meniscus convex lens, the third meniscus convex lens and the first biconvex lens; the refractive power of the first plano-convex lens is D1, the refractive power of the first meniscus convex lens Is D2, the refractive power of the second meniscus convex lens is D3, the refractive power of the third meniscus convex lens is D4, and the refractive power of the first biconvex lens is D5; where D1>0, D2 >0, D3>0, D4>0, D5>0, and min{D3, D4, D5} max{D3, D4, D5}; min{D3, D4, D5} represents the minimum value of D3, D4, and D5, and max{D3, D4, D5} represents the maximum value of D3, D4, and D5. Using the above technical means, by reasonably setting the shape and refractive power of each convex lens between the object plane and the image plane, the optical collimation system provided by the embodiment of the present invention can ensure that the optical collimation system provided by the embodiment of the present invention has a preset numerical aperture and a preset wavelength. The collimation effect is good.
以上是本說明書的一實施例,下面將結合本發明實施例中的圖式,對本發明實施例中的技術手段進行清楚、完整地描述。 The above is an embodiment of the present specification. The technical means in the embodiment of the present invention will be described clearly and completely below in conjunction with the drawings in the embodiment of the present invention.
圖1是本發明實施例提供的一種光學準直系統的結構示意圖,如圖1所示,本發明實施例提供的光學準直系統CL1可用於對預設數值孔徑及預設波長的光束進行準直操作,光學準直系統CL1包含依次位於 物面一側的第一平凸透鏡L1、第一彎月形凸透鏡L2、第二彎月形凸透鏡L3、第三彎月形凸透鏡L4及第一雙凸透鏡L5;第一平凸透鏡L1的光焦度為D1,第一彎月形凸透鏡L2的光焦度為D2,第二彎月形凸透鏡L3的光焦度為D3,第三彎月形凸透鏡L4的光焦度為D4,第一雙凸透鏡L5的光焦度為D5;其中,D1>0,D2>0,D3>0,D4>0,D5>0,且min{D3,D4,D5}max{D3,D4,D5};min{D3,D4,D5}表示D3、D4及D5中的最小值,max{D3,D4,D5}表示D3、D4及D5中的最大值。 FIG. 1 is a schematic structural diagram of an optical collimation system provided by an embodiment of the present invention. As shown in FIG. 1, the optical collimation system CL1 provided by an embodiment of the present invention can be used to collimate light beams of preset numerical aperture and preset wavelength. For straight operation, the optical collimation system CL1 includes a first plano-convex lens L1, a first meniscus-shaped convex lens L2, a second meniscus-shaped convex lens L3, a third meniscus-shaped convex lens L4, and a first biconvex lens, which are sequentially located on the object surface side L5; the refractive power of the first plano-convex lens L1 is D1, the refractive power of the first meniscus lens L2 is D2, the refractive power of the second meniscus lens L3 is D3, and the third meniscus lens L4 is The optical power is D4, and the optical power of the first biconvex lens L5 is D5; where D1>0, D2>0, D3>0, D4>0, D5>0, and min{D3, D4, D5} max{D3, D4, D5}; min{D3, D4, D5} represents the minimum value of D3, D4, and D5, and max{D3, D4, D5} represents the maximum value of D3, D4, and D5.
如圖1所示,本發明實施例提供的光學準直系統CL1從物面到像面由五塊鏡片,分別為第一平凸透鏡L1、第一彎月形凸透鏡L2、第二彎月形凸透鏡L3、第三彎月形凸透鏡L4及第一雙凸透鏡L5,第一平凸透鏡L1、第一彎月形凸透鏡L2、第二彎月形凸透鏡L3、第三彎月形凸透鏡L4及第一雙凸透鏡L5皆具有正光焦度,即D1>0,D2>0,D3>0,D4>0,D5>0,其中,光焦度可表示鏡片的有效焦距的倒數。同時,第一平凸透鏡L1的光焦度D1、第二彎月形凸透鏡L3的光焦度D3、第三彎月形凸透鏡L4的光焦度D4及第一雙凸透鏡L5的光焦度D5滿足min{D3,D4,D5}max{D3,D4,D5},min{D3,D4,D5}表示D3、D4及D5中的最小值,max{D3,D4,D5}表示D3、D4及D5中的最大值,目的是為了消去第二彎月形凸透鏡L3、第三彎月形凸透鏡L4及第一雙凸透鏡L5帶來的球差,保證光學準直系統對入射光束的準直效果良好。 As shown in Figure 1, the optical collimation system CL1 provided by the embodiment of the present invention consists of five lenses from the object plane to the image plane, namely, a first plano-convex lens L1, a first meniscus convex lens L2, and a second meniscus convex lens. L3, the third meniscus convex lens L4 and the first biconvex lens L5, the first plano convex lens L1, the first meniscus convex lens L2, the second meniscus convex lens L3, the third meniscus convex lens L4 and the first biconvex lens L5 all have positive refractive power, namely D1>0, D2>0, D3>0, D4>0, D5>0, where the refractive power can represent the inverse of the effective focal length of the lens. At the same time, the refractive power D1 of the first plano-convex lens L1, the refractive power D3 of the second meniscus lens L3, the refractive power D4 of the third meniscus lens L4, and the refractive power D5 of the first biconvex lens L5 satisfy min{D3, D4, D5} max{D3, D4, D5}, min{D3, D4, D5} represents the minimum value of D3, D4, and D5, max{D3, D4, D5} represents the maximum value of D3, D4, and D5. Eliminate the spherical aberration caused by the second meniscus convex lens L3, the third meniscus convex lens L4, and the first double convex lens L5 to ensure that the optical collimation system has a good collimation effect on the incident light beam.
綜上所述,本發明實施例提供的光學準直系統,藉由在物面與像面之間依次設置第一平凸透鏡、第一彎月形凸透鏡、第二彎月形凸 透鏡、第三彎月形凸透鏡及第一雙凸透鏡,同時設置第一平凸透鏡、第一彎月形凸透鏡、第二彎月形凸透鏡、第三彎月形凸透鏡及第一雙凸透鏡皆具有正光焦度,且第一平凸透鏡的光焦度D1、第二彎月形凸透鏡的光焦度D3、第三彎月形凸透鏡的光焦度D4及第一雙凸透鏡的光焦度D5滿足min{D3,D4,D5}max{D3,D4,D5},保證本發明實施例提供的光學準直系統可對預設數值孔徑預計預設波長的入射光束進行良好的準直,保證出射至像面的光束的準直性良好,保證像方感測器中需平行光入射的光學組件可正常工作,保證像方感測器能精確測量光線通過投影物鏡的像質。 To sum up, the optical collimation system provided by the embodiment of the present invention has a first plano-convex lens, a first meniscus-shaped convex lens, a second meniscus-shaped convex lens, and a third convex lens arranged in sequence between the object plane and the image plane. The meniscus lens and the first biconvex lens are provided with the first plano-convex lens, the first meniscus convex lens, the second meniscus convex lens, the third meniscus convex lens, and the first biconvex lens all have positive refractive power, and the first The refractive power D1 of the plano-convex lens, the refractive power D3 of the second meniscus convex lens, the refractive power D4 of the third meniscus convex lens, and the refractive power D5 of the first biconvex lens satisfy min{D3, D4, D5} max{D3, D4, D5}, to ensure that the optical collimation system provided by the embodiment of the present invention can collimate the incident beam with a preset numerical aperture and a preset wavelength, and ensure the collimation of the beam emitted to the image surface Good, to ensure that the optical components in the image-side sensor that require parallel light incidence can work normally, and to ensure that the image-side sensor can accurately measure the image quality of the light passing through the projection objective.
選擇性地,本發明實施例提供的光學準直系統CL1可應用於浸沒投影物鏡的情況,浸沒液體可為水,亦可為油,本發明實施例僅以浸沒液體為水進行示例性說明。如圖1所示,當浸沒液體為水時,水可作為虛擬鏡片L0,為雙平面透鏡,物面的入射點光源位於虛擬鏡片L0的表面S0,沿光軸的方向,即圖1所示的Z方向,虛擬鏡片L0及第一平凸透鏡L1之間的距離很小,小於第一平凸透鏡L1厚度的三千分之一,因此物面入射點光源亦可近似地認為在第一平凸透鏡L1表面。 Optionally, the optical collimation system CL1 provided by the embodiment of the present invention can be applied to the case of an immersion projection objective lens. The immersion liquid may be water or oil. The embodiment of the present invention only uses the immersion liquid as water for exemplification. As shown in Figure 1, when the immersion liquid is water, the water can be used as the virtual lens L0, which is a biplanar lens. The incident point light source of the object plane is located on the surface S0 of the virtual lens L0, along the optical axis, as shown in Figure 1. In the Z direction, the distance between the virtual lens L0 and the first plano-convex lens L1 is very small, less than one-thousandth of the thickness of the first plano-convex lens L1, so the incident point light source on the object plane can also be approximated as the first plano-convex lens L1 surface.
選擇性地,第一雙凸透鏡L5的光焦度D5與第三彎月形凸透鏡L4的光焦度D4之間的差值滿足第一預設條件,其中第一預設條件可為第一雙凸透鏡L5的光焦度D5與第三彎月形凸透鏡L4的光焦度D4之間的差值為零或者為接近零的較小數值;第三彎月形凸透鏡L4的光焦度D4與第二彎月形凸透鏡L3的光焦度D3之間的差值滿足第二預設條件,其中第二預設條件可為第三彎月形凸透鏡L4的光焦度D4與第二彎月形凸 透鏡L3的光焦度D3之間的差值為零或者為接近零的較小數值。如此可保證|D5-D4||D4-D3|0,保證第二彎月形凸透鏡L3的光焦度D3、第三彎月形凸透鏡L4的光焦度D4及第一雙凸透鏡L5的光焦度D5均勻變化,保證第二彎月形凸透鏡L3、第三彎月形凸透鏡L4及第一雙凸透鏡L5可達到消除像差及均勻匯聚光線的效果。 Optionally, the difference between the refractive power D5 of the first lenticular lens L5 and the refractive power D4 of the third meniscus lens L4 satisfies a first predetermined condition, wherein the first predetermined condition may be the first double The difference between the refractive power D5 of the convex lens L5 and the refractive power D4 of the third meniscus lens L4 is zero or a small value close to zero; the refractive power D4 of the third meniscus lens L4 is equal to that of the third meniscus lens L4. The difference between the refractive power D3 of the two meniscus convex lenses L3 satisfies a second preset condition, where the second preset condition may be the refractive power D4 of the third meniscus convex lens L4 and the second meniscus convex lens The difference between the optical powers D3 of L3 is zero or a small value close to zero. This guarantees |D5-D4| |D4-D3| 0. Ensure that the refractive power D3 of the second meniscus lens L3, the refractive power D4 of the third meniscus lens L4, and the refractive power D5 of the first biconvex lens L5 are uniformly changed, and the second meniscus lens L3 is guaranteed , The third meniscus convex lens L4 and the first double convex lens L5 can achieve the effect of eliminating aberrations and uniformly converging light.
選擇性地,第一平凸透鏡L1包含靠近物面一側的第一表面S1及遠離物面一側的第二表面S2,第一彎月形凸透鏡L2包含靠近物面一側的第三表面S3及遠離物面一側的第四表面S4,第二彎月形凸透鏡L3包含靠近物面一側的第五表面S5及遠離物面一側的第六表面S6,第三彎月形凸透鏡L4包含靠近物面一側的第七表面S7及遠離物面一側的第八表面S8,第一雙凸透鏡L5包含靠近物面一側的第九表面S9及遠離物面一側的第十表面S10;其中,第一表面S1為平面;第二表面S2為超半球面,且第二表面S2為齊明面,超半球面包含半球面以及半球面的兩個端點在光軸方向上延伸預設距離形成的外表面;第三表面S3、第四表面S4、第五表面S5、第六表面S6、第七表面S7、第八表面S8、第九表面S9及第十表面S10均為球面,且第五表面S5為齊明面,第十表面S10為光學準直系統的光闌面。 Optionally, the first plano-convex lens L1 includes a first surface S1 close to the object surface and a second surface S2 far away from the object surface, and the first meniscus convex lens L2 includes a third surface S3 close to the object surface. And a fourth surface S4 on the side away from the object surface. The second meniscus lens L3 includes a fifth surface S5 on the side close to the object surface and a sixth surface S6 on the side away from the object surface. The third meniscus convex lens L4 includes The seventh surface S7 on the side close to the object surface and the eighth surface S8 on the side away from the object surface. The first lenticular lens L5 includes a ninth surface S9 on the side close to the object surface and a tenth surface S10 on the side far from the object surface; Among them, the first surface S1 is a plane; the second surface S2 is a hyper-hemispherical surface, and the second surface S2 is a homogeneous surface. The hyper-hemispherical surface includes a hemispherical surface and the two end points of the hemispherical surface extend in the optical axis direction. The outer surface formed by the distance; the third surface S3, the fourth surface S4, the fifth surface S5, the sixth surface S6, the seventh surface S7, the eighth surface S8, the ninth surface S9 and the tenth surface S10 are all spherical surfaces, and The fifth surface S5 is a uniform surface, and the tenth surface S10 is an aperture surface of the optical collimation system.
示例性地,繼續參照圖1所示,設置第一表面S1為平面,可保證浸液水在第一表面S1自由流動,不產生像差。設置第二表面S2為超半球表面且為齊明面,保證第二表面S2產生的球差及慧差極小,幾乎可忽略不計,其中,超半球表面可以理解為半球表面以及半球表面的兩個端點在光軸方向上延伸預設距離後形成的外表面。設置第三表面S3、 第四表面S4、第五表面S5、第六表面S6、第七表面S7、第八表面S8、第九表面S9及第十表面S10均為球面,且第五表面S5為齊明面,第十表面S10為光學準直系統的光闌面,可保證每個表面對光線的匯聚效果良好,產生的球差及慧差可忽略不計,保證光學準直系統的準直效果良好。 Exemplarily, referring to FIG. 1 continuously, setting the first surface S1 as a plane can ensure that the immersion water flows freely on the first surface S1 without causing aberration. The second surface S2 is set as a hyper-hemispherical surface and a uniform surface to ensure that the spherical aberration and coma generated by the second surface S2 are extremely small and almost negligible. Among them, the hyper-hemispherical surface can be understood as two of the hemispherical surface and the hemispherical surface. The outer surface formed by the end point extending a preset distance in the optical axis direction. Set the third surface S3, The fourth surface S4, the fifth surface S5, the sixth surface S6, the seventh surface S7, the eighth surface S8, the ninth surface S9, and the tenth surface S10 are all spherical surfaces, and the fifth surface S5 is a uniform surface. The surface S10 is the diaphragm surface of the optical collimation system, which can ensure that each surface has a good light convergence effect, and the spherical aberration and coma generated are negligible, and the collimation effect of the optical collimation system is good.
具體而言,圖2是圖1提供的光學準直系統的每個表面的低階球差及低階慧差的條狀圖,橫坐標表示每個鏡面的表面序號,縱坐標表示像差係數。如圖2所示,第一表面S1為平面,其不產生球差及慧差;第二表面S2為超半球表面且為齊明面,其每階球差均較小且不產生慧差;第五表面S5為齊明面,其每階球差均較小且不產生慧差;同時每個表面產生的球差及慧差值可正負抵消,保證整個光學準直系統的球差及慧差較小,可忽略不計,保證光學準直系統的準直效果良好。 Specifically, Figure 2 is a bar graph of the low-order spherical aberration and low-order coma of each surface of the optical collimation system provided in Figure 1. The abscissa represents the surface number of each mirror, and the ordinate represents the aberration coefficient. . As shown in Fig. 2, the first surface S1 is a plane, which does not produce spherical aberration and coma; the second surface S2 is a hyper-hemispherical surface and is a homogeneous surface, and each order of spherical aberration is small and does not produce coma; The fifth surface S5 is a uniform surface, and each order of spherical aberration is small and does not produce coma; at the same time, the spherical aberration and coma value produced by each surface can be positively and negatively offset to ensure the spherical aberration and coma of the entire optical collimation system The difference is small and can be ignored, ensuring good collimation effect of the optical collimation system.
選擇性地,本發明實施例提供的光學準直系統CL1中,預設數值孔徑可為NA,其中,NA>0;預設波長可為λ,其中,λ=193.368nm,即本發明實施例提供的光學準直系統可採用波長為193.368奈米的深紫外光源,物方的數值孔徑滿足大數值孔徑值,例如數值孔徑NA可為1.35,保證可實現較高的光刻解析度。 Optionally, in the optical collimation system CL1 provided by the embodiment of the present invention, the preset numerical aperture may be NA, where NA>0; the preset wavelength may be λ, where λ=193.368nm, which is the embodiment of the present invention The provided optical collimation system can use a deep ultraviolet light source with a wavelength of 193.368 nanometers, and the numerical aperture of the object side meets a large numerical aperture value. For example, the numerical aperture NA can be 1.35, which ensures that a higher lithography resolution can be achieved.
選擇性地,第一平凸透鏡L1、第一彎月形凸透鏡L2、第二彎月形凸透鏡L3、第三彎月形凸透鏡L4及第一雙凸透鏡L5的製備材料可包含融石英,其折射率為1.5602,浸沒液體可為水,其折射率為1.436157。 Optionally, the first plano-convex lens L1, the first meniscus-shaped convex lens L2, the second meniscus-shaped convex lens L3, the third meniscus-shaped convex lens L4, and the first biconvex lens L5 can be made of fused silica, whose refractive index It is 1.5602, the immersion liquid can be water, and its refractive index is 1.436157.
表1示例性地示出本發明實施例提供的如圖1所示之光學準直系統CL1的每一個光學組件的參數值,其中,「序號」一欄表示從物面到像面之間每一個表面所對應的序號;「半徑」一欄示出每個表面的球 面半徑;「厚度/間距」一欄表示相鄰表面之間的頂點距離,在鏡片中該數值表示鏡片的厚度;「材料」一欄示出每個表面到下一表面之間的材料,在此以鏡片的材料為融石英,浸沒液體為水進行示例性說明。 Table 1 exemplarily shows the parameter value of each optical component of the optical collimation system CL1 as shown in FIG. 1 provided by the embodiment of the present invention. The column of "Serial Number" represents the value of each optical component from the object plane to the image plane. The serial number corresponding to a surface; the "radius" column shows the sphere of each surface Surface radius; the "thickness/spacing" column indicates the distance between the vertices of adjacent surfaces, and the value in the lens indicates the thickness of the lens; the "material" column indicates the material between each surface and the next surface. The material of the lens is fused silica, and the immersion liquid is water.
本發明實施例提供的光學準直系統採用波長為193.368奈米的光源,物方數值孔徑NA=1.35且採用表1所示的每個參數後,可保證像方接收到的光束為平行光,在小視場範圍內可使平行光的準直度小於0.5°,物方有效焦距為5.0834mm,F數為0.37,F數被定義為物方的有效焦距與入射光瞳直徑的比值。光學準直系統的總長為13.2mm,保證整個光學準直系統準直效果良好,同時整個光學準直系統結構緊湊,性能良好。 The optical collimation system provided by the embodiment of the present invention uses a light source with a wavelength of 193.368 nanometers, a numerical aperture NA=1.35 on the object side, and each parameter shown in Table 1, which can ensure that the beam received by the image side is parallel light. In a small field of view, the collimation of parallel light can be less than 0.5°, the effective focal length of the object side is 5.0834mm, and the F number is 0.37. The F number is defined as the ratio of the effective focal length of the object side to the diameter of the entrance pupil. The total length of the optical collimation system is 13.2mm, which ensures that the entire optical collimation system has a good collimation effect. At the same time, the entire optical collimation system has a compact structure and good performance.
惟須說明,表1僅示例性的提供光學準直系統CL1中每一 個光學組件的參數值,可以理解的是,當光學準直系統中每一個光學組件的參數值以表1所示的數值等比例縮放得到的參數值,亦在本發明實施例的保護範圍內。 It should be noted that Table 1 only provides an example of each of the optical collimation system CL1 The parameter values of each optical component, it can be understood that when the parameter value of each optical component in the optical collimation system is scaled with the value shown in Table 1, the parameter value is also within the protection scope of the embodiment of the present invention .
圖3為圖1提供的光學準直系統的像方準直度隨物方高度變化的關係示意圖,像方準直度被定義為像方的出射光及光軸(z軸)的夾角。如圖3所示,像方的光線在子午線最邊緣(+Y,-Y)及主光線的準直度的偏差隨著物方高度的增加而變大,但是在物方高度20μm內準直度的最大偏差被控制在0.25°內,具有較好的準直度。 3 is a schematic diagram of the relationship between the image-side collimation of the optical collimation system provided in FIG. 1 and the object height. The image-side collimation is defined as the angle between the emitted light of the image side and the optical axis (z-axis). As shown in Figure 3, the deviation of the image side's light at the most edge of the meridian (+Y, -Y) and the principal ray's collimation degree increases with the increase of the object height, but it is collimated within 20μm of the object height The maximum deviation of the degree is controlled within 0.25°, which has a better collimation degree.
圖4為圖1提供的光學準直系統在沿著xy平面翻轉後得到的光線像差曲線示例圖,其中縱軸單位為mm,橫坐標為沿著光瞳面的直徑方向。從上至下的三個座標依次對應於圖1中的物面物高13μm,6.5μm及0μm。從圖中可看出,本發明實施例提供的光學準直系統在-59.6nm-+59.6nm(0.3個波長)內有較好的像質。 Fig. 4 is an example diagram of a ray aberration curve obtained by the optical collimation system provided in Fig. 1 after being flipped along the xy plane, wherein the unit of the vertical axis is mm, and the abscissa is the diameter direction along the pupil plane. The three coordinates from top to bottom correspond to the object height of 13μm, 6.5μm and 0μm in FIG. 1. It can be seen from the figure that the optical collimation system provided by the embodiment of the present invention has better image quality within -59.6nm-+59.6nm (0.3 wavelengths).
可以理解的是,前述子午面是指,軸外物點的主光線與前述光學準直系統的主軸所構成的平面;前述弧矢面是指,過軸外物點的主光線,並與子午面垂直的平面。 It is understandable that the aforementioned meridian plane refers to the plane formed by the chief ray of the off-axis object point and the principal axis of the aforementioned optical collimation system; the aforementioned sagittal plane refers to the chief ray of the off-axis object point and is connected to the meridian plane. Vertical plane.
惟須說明,圖4中,前述相對視場高度(Relative Field Height)是指,像高位置與總像高長度的比值(即像高位置/總像高長度)。根據圖4,在第一像高位置,相對視場高度為1,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0.15°;在第二像高位置,相對視場高度為0.5,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0.075°;在第三像高位置,相對視場高度為0,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0°。 It should be noted that, in FIG. 4, the aforementioned relative field height (Relative Field Height) refers to the ratio of the image height position to the total image height length (ie, the image height position/total image height length). According to Figure 4, at the first image height position, the relative field of view height is 1, and the angle between the parallel light and the optical axis of the corresponding collimator lens is 0.15°; at the second image height position, the relative field of view The height is 0.5, and the angle between the parallel light and the optical axis at one end of the corresponding collimator lens is 0.075°; at the third image height position, the relative field of view height is 0, and the object side at one end of the corresponding collimator lens The angle between the parallel light and the optical axis is 0°.
圖5是本發明實施例提供的另一種光學準直系統的結構示意圖,如圖5所示,本發明實施例提供的光學準直系統CL2可用於對預設數值孔徑及預設波長的光束進行準直操作,光學準直系統CL2包含依次位於物面一側的第二平凸透鏡L6、第四彎月形凸透鏡L7、第五彎月形凸透鏡L8及第二雙凸透鏡L9;第二平凸透鏡L6的光焦度為D6,第四彎月形凸透鏡L7的光焦度為D7,第五彎月形凸透鏡L8的光焦度為D8,第二雙凸透鏡L9的光焦度為D9;其中,D6>0,D7>0,D8>0,D9>0,且min{D7,D8,D9}max{D7,D8,D9};min{D7,D8,D9}表示D7、D8及D9中的最小值,max{D7,D8,D9}表示D7、D8及D9中的最大值。 FIG. 5 is a schematic structural diagram of another optical collimation system provided by an embodiment of the present invention. As shown in FIG. 5, the optical collimation system CL2 provided by an embodiment of the present invention can be used to perform processing on beams of preset numerical aperture and preset wavelength. For collimation operation, the optical collimation system CL2 includes a second plano-convex lens L6, a fourth meniscus-shaped convex lens L7, a fifth meniscus-shaped convex lens L8, and a second double-convex lens L9, which are sequentially located on one side of the object plane; a second plano-convex lens L6 The refractive power of the fourth meniscus lens L7 is D7, the fifth meniscus lens L8 has a refractive power of D8, and the second double convex lens L9 has a refractive power of D9; among them, D6 >0, D7>0, D8>0, D9>0, and min{D7, D8, D9} max{D7, D8, D9}; min{D7, D8, D9} represents the minimum value of D7, D8, and D9, and max{D7, D8, D9} represents the maximum value of D7, D8, and D9.
如圖5所示,本發明實施例提供的光學準直系統CL2從物面到像面由四塊鏡片,分別為第二平凸透鏡L6、第四彎月形凸透鏡L7、第五彎月形凸透鏡L8、及第二雙凸透鏡L9,第二平凸透鏡L6、第四彎月形凸透鏡L7、第五彎月形凸透鏡L8及第二雙凸透鏡L9皆具有正光焦度,即D6>0,D7>0,D8>0,D9>0。同時,第二平凸透鏡L6的光焦度D6、第四彎月形凸透鏡L7的光焦度D7、第五彎月形凸透鏡L8的光焦度D8及第二雙凸透鏡L9的光焦度D9滿足min{D7,D8,D9}max{D7,D8,D9};min{D7,D8,D9}表示D7、D8及D9中的最小值,max{D7,D8,D9}表示D7、D8及D9中的最大值,目的是為了消去第四彎月形凸透鏡L7、第五彎月形凸透鏡L8及第二雙凸透鏡L9帶來的球差,保證光學準直系統對入射光束的準直效果良好。 As shown in Figure 5, the optical collimation system CL2 provided by the embodiment of the present invention consists of four lenses from the object plane to the image plane, namely the second plano-convex lens L6, the fourth meniscus convex lens L7, and the fifth meniscus convex lens. L8, and the second biconvex lens L9, the second plano-convex lens L6, the fourth meniscus lens L7, the fifth meniscus lens L8 and the second biconvex lens L9 all have positive refractive power, that is, D6>0, D7>0 , D8>0, D9>0. At the same time, the refractive power D6 of the second plano-convex lens L6, the refractive power D7 of the fourth meniscus lens L7, the refractive power D8 of the fifth meniscus lens L8, and the refractive power D9 of the second biconvex lens L9 satisfy min{D7, D8, D9} max{D7, D8, D9}; min{D7, D8, D9} represents the minimum of D7, D8, and D9, max{D7, D8, D9} represents the maximum of D7, D8, and D9, the purpose is Eliminate the spherical aberration caused by the fourth meniscus convex lens L7, the fifth meniscus convex lens L8, and the second double convex lens L9 to ensure that the optical collimation system has a good collimating effect on the incident light beam.
綜上所述,本發明實施例提供的光學準直系統,藉由在物面與像面之間依次第二平凸透鏡、第四彎月形凸透鏡、第五彎月形凸透鏡及第二雙凸透鏡,同時設置第二平凸透鏡、第四彎月形凸透鏡、第五彎月形凸透鏡及第二雙凸透鏡皆具有正光焦度,且第二平凸透鏡L6的光焦度D6、第四彎月形凸透鏡L7的光焦度D7、第五彎月形凸透鏡L8的光焦度D8及第二雙凸透鏡L9的光焦度D9滿足min{D7,D8,D9}max{D7,D8,D9},保證本發明實施例提供的光學準直系統可對預設數值孔徑以及預設波長的入射光束進行良好的準直,保證出射至像面的光束的具備良好的準直性,保證像方感測器中需平行光入射的光學組件可正常工作,保證像方感測器能精確測量光線通過投影物鏡的像質。 In summary, the optical collimation system provided by the embodiment of the present invention has a second plano-convex lens, a fourth meniscus convex lens, a fifth meniscus convex lens, and a second biconvex lens in sequence between the object plane and the image plane. At the same time, the second plano-convex lens, the fourth meniscus-shaped convex lens, the fifth meniscus-shaped convex lens and the second double-convex lens all have positive refractive power, and the second plano-convex lens L6 has a refractive power D6 and the fourth meniscus-shaped convex lens The refractive power D7 of L7, the refractive power D8 of the fifth meniscus lens L8 and the refractive power D9 of the second lenticular lens L9 satisfy min{D7, D8, D9} max{D7, D8, D9}, to ensure that the optical collimation system provided by the embodiment of the present invention can collimate the incident light beam with the preset numerical aperture and the preset wavelength well, and ensure that the beam emitted to the image surface has a good quality The collimation ensures that the optical components in the image-side sensor that need parallel light to enter can work normally, and the image-side sensor can accurately measure the image quality of the light passing through the projection lens.
選擇性地,本發明實施例提供的光學準直系統CL2可應用於浸沒投影物鏡的情況,浸沒液體可為水,亦可為油,本發明實施例僅以浸沒液體為水進行示例性說明。如圖5所示,當浸沒液體為水時,水可作為虛擬鏡片L0,為雙平面透鏡,物面的入射點光源位於虛擬鏡片L0的表面S0,沿光軸的方向,即圖5所示的Z方向,虛擬鏡片L0及第二平凸透鏡L6之間的距離很小,遠小於第二平凸透鏡L6的厚度,因此物面入射點光源亦可近似地認為在第二平凸透鏡L6表面。 Optionally, the optical collimation system CL2 provided by the embodiment of the present invention can be applied to the immersion projection objective lens. The immersion liquid may be water or oil. The embodiment of the present invention only uses the immersion liquid as water for illustrative description. As shown in Figure 5, when the immersion liquid is water, the water can be used as the virtual lens L0, which is a biplanar lens. The incident point light source of the object plane is located on the surface S0 of the virtual lens L0, along the optical axis, as shown in Figure 5. In the Z direction, the distance between the virtual lens L0 and the second plano-convex lens L6 is very small and much smaller than the thickness of the second plano-convex lens L6. Therefore, the incident point light source on the object plane can also be approximated as being on the surface of the second plano-convex lens L6.
選擇性地,第二雙凸透鏡L9的光焦度D9與第五彎月形凸透鏡L8的光焦度D8之間的差值滿足第三預設條件,其中第三預設條件可為第二雙凸透鏡L9的光焦度D9與第五彎月形凸透鏡L8的光焦度D8之間的差值為零或者為接近零的較小數值;第五彎月形凸透鏡L8的光焦度D8與第四彎月形凸透鏡L7的光焦度D7之間的差值滿足第四預設條件,
其中第四預設條件可為第五彎月形凸透鏡L8的光焦度D8與第四彎月形凸透鏡L7的光焦度D7之間的差值為零或者為接近零的較小數值,如此可保證|D9-D8||D8-D7|0,保證第四彎月形凸透鏡L7的光焦度D7、第五彎月形凸透鏡L8的光焦度D8及第二雙凸透鏡L9的光焦度D9均勻變化,保證第四彎月形凸透鏡L7、第五彎月形凸透鏡L8及第二雙凸透鏡L9可達到消除像差及均勻匯聚光線的效果。
Optionally, the difference between the refractive power D9 of the second lenticular lens L9 and the refractive power D8 of the fifth meniscus lens L8 satisfies the third preset condition, wherein the third preset condition may be the second double The difference between the refractive power D9 of the convex lens L9 and the refractive power D8 of the fifth meniscus lens L8 is zero or a small value close to zero; the refractive power D8 of the fifth meniscus lens L8 is equal to that of the fifth meniscus lens L8. The difference between the refractive power D7 of the four meniscus lens L7 satisfies the fourth preset condition, where the fourth preset condition may be the refractive power D8 of the fifth meniscus lens L8 and the fourth meniscus lens L8 The difference between the optical powers of L7 and D7 is zero or a small value close to zero, which can guarantee |D9-D8| |D8-D7| 0. Ensure that the optical power D7 of the fourth meniscus lens L7, the optical power D8 of the fifth meniscus lens L8, and the optical power D9 of the second biconvex lens L9 are uniformly changed to ensure that the fourth
選擇性地,第二平凸透鏡L6包含靠近物面一側的第十一表面S11及遠離物面一側的第十二表面S12,第四彎月形凸透鏡L7包含靠近物面一側的第十三表面S13及遠離物面一側的第十四表面S14,第五彎月形凸透鏡L8包含靠近物面一側的第十五表面S15及遠離物面一側的第十六表面S16,第二雙凸透鏡L9包含靠近物面一側的第十七表面S17及遠離物面一側的第十八表面S18;其中,第十一表面S11為平面;第十二表面S12為超半球面,且第十二表面S12為齊明面,超半球面包含半球面以及半球面的兩個端點在光軸方向上延伸預設距離形成的外表面;第十三表面S13、第十四表面S14、第十五表面S15、第十六表面S16、第十七表面S17及第十八表面S18為球面,第十八表面S18為光學準直系統CL2的光闌面。 Optionally, the second plano-convex lens L6 includes an eleventh surface S11 on the side close to the object surface and a twelfth surface S12 on the side away from the object surface. The fourth meniscus convex lens L7 includes a tenth surface S11 on the side close to the object surface. Three surfaces S13 and a fourteenth surface S14 on the side away from the object surface. The fifth meniscus lens L8 includes a fifteenth surface S15 on the side close to the object surface and a sixteenth surface S16 on the side away from the object surface. The lenticular lens L9 includes a seventeenth surface S17 on the side close to the object surface and an eighteenth surface S18 on the side far from the object surface; wherein, the eleventh surface S11 is a flat surface; the twelfth surface S12 is a hyperhemispherical surface, and the The twelfth surface S12 is a uniform surface, and the hyper-hemispherical surface includes a hemispherical surface and an outer surface formed by two end points of the hemispherical surface extending a predetermined distance in the optical axis direction; the thirteenth surface S13, the fourteenth surface S14, and the second The fifteenth surface S15, the sixteenth surface S16, the seventeenth surface S17, and the eighteenth surface S18 are spherical surfaces, and the eighteenth surface S18 is the diaphragm surface of the optical collimation system CL2.
示例性的,繼續參照圖5所示,設置第十一表面S11為平面,可保證浸液水在第十一表面S11自由流動,不產生像差。設置第十二表面S12為超半球表面且為齊明面,保證第十二表面S12產生的球差及慧差極小,幾乎可以忽略不計,其中,超半球表面可以理解為半球表面以及半球表面的兩個端點在光軸方向上延伸預設距離後形成的外表面。設置第 十三表面S13、第十四表面S14、第十五表面S15、第十六表面S16、第十七表面S17及第十八表面S18均為球面,第十八表面S18為光學準直系統CL2的光闌面,可保證每個表面對光線的匯聚效果良好,產生的球差及慧差可忽略不計,保證光學準直系統的準直效果良好。 Exemplarily, referring to FIG. 5 continuously, setting the eleventh surface S11 as a plane can ensure that the immersion water flows freely on the eleventh surface S11 without causing aberration. The twelfth surface S12 is set as a hyper-hemispherical surface and a uniform surface to ensure that the spherical aberration and coma generated by the twelfth surface S12 are extremely small and can be almost ignored. Among them, the hyper-hemispherical surface can be understood as the hemispherical surface and the hemispherical surface The outer surface formed by the two end points extending a preset distance in the optical axis direction. Set The thirteenth surface S13, the fourteenth surface S14, the fifteenth surface S15, the sixteenth surface S16, the seventeenth surface S17 and the eighteenth surface S18 are all spherical surfaces, and the eighteenth surface S18 is the optical collimation system CL2 The diaphragm surface can ensure that each surface has a good converging effect on the light, the spherical aberration and coma produced can be ignored, and the collimation effect of the optical collimation system is guaranteed.
選擇性地,本發明實施例提供的光學準直系統CL2中,預設數值孔徑可為NA,其中,NA>0;預設波長可為λ,其中,λ=193.368nm,即本發明實施例提供的光學準直系統可採用波長為193.368奈米的深紫外光源,物方的數值孔徑滿足大數值孔徑值,例如數值孔徑NA可為1.35,保證可實現較高的光刻解析度。 Optionally, in the optical collimation system CL2 provided by the embodiment of the present invention, the preset numerical aperture may be NA, where NA>0; the preset wavelength may be λ, where λ=193.368nm, which is the embodiment of the present invention The provided optical collimation system can use a deep ultraviolet light source with a wavelength of 193.368 nanometers, and the numerical aperture of the object side meets a large numerical aperture value. For example, the numerical aperture NA can be 1.35, which ensures that a higher lithography resolution can be achieved.
選擇性地,第二平凸透鏡L6、第四彎月形凸透鏡L7、第五彎月形凸透鏡L8及第二雙凸透鏡L9的製備材料可包含融石英,其折射率為1.5602,浸沒液體可為水,其折射率為1.436157。 Optionally, the preparation materials of the second plano-convex lens L6, the fourth meniscus lens L7, the fifth meniscus lens L8, and the second biconvex lens L9 may include fused silica, the refractive index of which is 1.5602, and the immersion liquid may be water , Its refractive index is 1.436157.
表2示例性地示出本發明實施例提供的如圖5所示之光學準直系統CL2的每一個光學組件的參數值,其中,「序號」一欄表示從物面到像面之間每一個表面所對應的序號;「半徑」一欄示出每個表面的球面半徑;「厚度/間距」一欄表示相鄰表面之間的頂點距離,在鏡片中該數值表示鏡片的厚度;「材料」一欄示出每個表面到下一表面之間的材料,在此以鏡片的材料為融石英,浸沒液體為水進行示例性說明。 Table 2 exemplarily shows the parameter value of each optical component of the optical collimation system CL2 as shown in FIG. 5 provided by the embodiment of the present invention. The column of "Serial Number" represents every time between the object surface and the image surface. The serial number corresponding to a surface; the "radius" column shows the spherical radius of each surface; the "thickness/spacing" column shows the distance between the vertices of adjacent surfaces, and the value in the lens represents the thickness of the lens; The column shows the material between each surface and the next surface. Here, the lens material is fused silica and the immersion liquid is water for example.
本發明實施例提供的光學準直系統採用波長為193.368奈米的光源,物方數值孔徑NA=1.35且採用表2所示的每個參數後,可保證像方接收到的光束為平行光,物方有效焦距為4.8mm,F數為0.35,F數被定義為物方的有效焦距與入射光瞳直徑的比值。光學準直系統的總長為11mm,保證整個光學準直系統準直效果良好,同時整個光學準直系統結構緊湊,性能良好。 The optical collimation system provided by the embodiment of the present invention uses a light source with a wavelength of 193.368 nanometers, a numerical aperture NA=1.35 on the object side, and each parameter shown in Table 2, which can ensure that the beam received by the image side is parallel light. The effective focal length of the object side is 4.8mm, the F number is 0.35, and the F number is defined as the ratio of the effective focal length of the object side to the diameter of the entrance pupil. The total length of the optical collimation system is 11mm, which ensures that the entire optical collimation system has a good collimation effect. At the same time, the entire optical collimation system has a compact structure and good performance.
惟須說明,表2僅示例性的提供光學準直系統CL2中每一個光學組件的參數值,可以理解的是,當光學準直系統中每一個光學組件的參數值以表2所示的數值等比例縮放得到的參數值,亦在本發明實施例的保護範圍內。 It should be noted that Table 2 only provides an exemplary parameter value of each optical component in the optical collimation system CL2. It is understandable that when the parameter value of each optical component in the optical collimation system is as shown in Table 2 The parameter values obtained by equal scaling are also within the protection scope of the embodiments of the present invention.
圖6為圖5提供的光學準直系統的像方準直度隨物方高度變化的關係示意圖,像方準直度被定義為像方的出射光及光軸(z軸)的夾角。如圖6所示,像方的光線在子午線正向邊緣+Y及主光線的準直度的偏差隨著物方高度的增加而變大,而在子午線負向邊緣-Y的準直度的偏差隨著物方高度的增加而減小,在物方高度20μm內準直度的最大偏差被控制在0.36°內,具有較好的準直度。 6 is a schematic diagram of the relationship between the image-side collimation of the optical collimation system provided in FIG. 5 and the height of the object side. The image-side collimation is defined as the angle between the emitted light of the image side and the optical axis (z-axis). As shown in Figure 6, the deviation of the collimation of the image side light at the positive edge of the meridian +Y and the chief ray increases with the increase of the object height, while the collimation of the negative edge of the meridian -Y The deviation decreases with the increase of the object height. The maximum deviation of the collimation within 20μm of the object height is controlled within 0.36°, which has a better collimation.
圖7為圖5提供的光學準直系統在沿著xy平面翻轉後得到的光線像差曲線示例圖,其中縱軸單位為mm,橫坐標為沿著光瞳面的直徑方向。從上至下的三個座標依次對應於圖5中的物面物高16μm,8μm及0μm。從圖中可看出,本發明實施例提供的光學準直系統的非邊緣光線在如圖7所示的三個視場中均有小於1個波長的像差,成像像質較好。 FIG. 7 is an example diagram of a ray aberration curve obtained by the optical collimation system provided in FIG. 5 after being flipped along the xy plane, wherein the unit of the vertical axis is mm, and the abscissa is the diameter direction along the pupil plane. The three coordinates from top to bottom correspond to the object heights of 16 μm, 8 μm and 0 μm in FIG. 5. It can be seen from the figure that the non-marginal rays of the optical collimating system provided by the embodiment of the present invention have aberrations of less than one wavelength in the three fields of view as shown in FIG. 7, and the imaging quality is good.
可以理解的是,前述子午面是指,軸外物點的主光線與前述光學準直系統的主軸所構成的平面;前述弧矢面是指,過軸外物點的主光線,並與子午面垂直的平面。 It is understandable that the aforementioned meridian plane refers to the plane formed by the chief ray of the off-axis object point and the principal axis of the aforementioned optical collimation system; the aforementioned sagittal plane refers to the chief ray of the off-axis object point and is connected to the meridian plane. Vertical plane.
惟須說明,圖7中,前述相對視場高度(Relative Field Height)是指,像高位置與總像高長度的比值(即像高位置/總像高長度)。根據圖7,在第一像高位置,相對視場高度為1,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0.2°;在第二像高位置,相對視場高度為0.5,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0.1°;在第三像高位置,相對視場高度為0,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0°。 It should be noted that in FIG. 7, the aforementioned Relative Field Height (Relative Field Height) refers to the ratio of the image height position to the total image height length (ie, the image height position/total image height length). According to Figure 7, at the first image height position, the relative field of view height is 1, and the angle between the parallel light and the optical axis at one end of the corresponding collimator lens is 0.2°; at the second image height position, the relative field of view The height is 0.5, and the angle between the parallel light and the optical axis at one end of the corresponding collimator lens is 0.1°; at the third image height position, the relative field of view height is 0, and the object side at one end of the corresponding collimator lens The angle between the parallel light and the optical axis is 0°.
圖8是本發明實施例提供的另一種光學準直系統的結構示意圖,如圖8所示,本發明實施例提供的光學準直系統CL3可用於對預設數值孔徑及預設波長的光束進行準直操作,光學準直系統CL3包含依次位於物面一側的第三平凸透鏡L10、第六彎月形凸透鏡L11及第三雙凸透鏡L12;第三平凸透鏡L10的光焦度為D10,第六彎月形凸透鏡L11的光焦度為D11,第三雙凸透鏡L12的光焦度為D12; 其中,D10>0,D11>0,D12>0,且min{D11,D12}max{D11,D12};min{D11,D12}表示D11及D12中的最小值,max{D11,D12}表示D11及D12中的最大值。 FIG. 8 is a schematic structural diagram of another optical collimation system provided by an embodiment of the present invention. As shown in FIG. 8, the optical collimation system CL3 provided by an embodiment of the present invention can be used to perform processing on beams of preset numerical aperture and preset wavelength. For collimation operation, the optical collimation system CL3 includes a third plano-convex lens L10, a sixth meniscus-shaped convex lens L11, and a third double-convex lens L12, which are sequentially located on the side of the object surface; the optical power of the third plano-convex lens L10 is D10, The refractive power of the six meniscus convex lens L11 is D11, and the refractive power of the third biconvex lens L12 is D12; where D10>0, D11>0, D12>0, and min{D11, D12} max{D11, D12}; min{D11, D12} represents the minimum value of D11 and D12, and max{D11, D12} represents the maximum value of D11 and D12.
如圖8所示,本發明實施例提供的光學準直系統CL3從物面到像面由三塊鏡片,分別為第三平凸透鏡L10、第六彎月形凸透鏡L11及第三雙凸透鏡L12,第三平凸透鏡L10、第六彎月形凸透鏡L11及第三雙凸透鏡L12皆具有正光焦度,即D10>0,D11>0,D12>0。同時,第三平凸透鏡L10的光焦度D10、第六彎月形凸透鏡L11的光焦度D11及第三雙凸透鏡L12的光焦度D12滿足min{D11,D12}max{D11,D12};min{D11,D12}表示D11及D12中的最小值,max{D11,D12}表示D11及D12中的最大值,目的是為了消去第六彎月形凸透鏡L11及第三雙凸透鏡L12帶來的球差,保證光學準直系統對入射光束的準直效果良好。 As shown in Figure 8, the optical collimation system CL3 provided by the embodiment of the present invention consists of three lenses from the object plane to the image plane, namely a third plano-convex lens L10, a sixth meniscus-shaped convex lens L11, and a third double-convex lens L12. The third plano-convex lens L10, the sixth meniscus-shaped convex lens L11, and the third double-convex lens L12 all have positive refractive power, that is, D10>0, D11>0, D12>0. At the same time, the refractive power D10 of the third plano-convex lens L10, the refractive power D11 of the sixth meniscus lens L11 and the refractive power D12 of the third double convex lens L12 satisfy min{D11, D12} max{D11, D12}; min{D11, D12} represents the minimum value of D11 and D12, max{D11, D12} represents the maximum value of D11 and D12, the purpose is to eliminate the sixth meniscus lens L11 and the first The spherical aberration brought by the three double convex lens L12 ensures that the optical collimation system has a good collimation effect on the incident beam.
綜上所述,本發明實施例提供的光學準直系統,藉由在物面與像面之間依次第三平凸透鏡、第六彎月形凸透鏡及第三雙凸透鏡,同時設置第三平凸透鏡、第六彎月形凸透鏡及第三雙凸透鏡皆具有正光焦度,且第三平凸透鏡L10的光焦度D10、第六彎月形凸透鏡L11的光焦度D11及第三雙凸透鏡L12的光焦度D12滿足min{D11,D12}max{D11,D12},保證本發明實施例提供的光學準直系統可對預設數值孔徑以及預設波長的入射光束進行良好的準直,保證出射至像面的光束的具備良好的準直性,保證像方感測器中需平行光入射的光學組件可正常工作,保證像方感測器能精確測量光線通過投影物鏡的像質。 In summary, the optical collimation system provided by the embodiment of the present invention has a third plano-convex lens, a sixth meniscus-shaped convex lens, and a third double-convex lens in sequence between the object plane and the image plane, and a third plano-convex lens is provided at the same time. , Both the sixth meniscus lens and the third double convex lens have positive refractive power, and the third plano-convex lens L10 has a refractive power D10, the sixth meniscus lens L11 has a refractive power D11, and the third double convex lens L12 has a refractive power. The focal power D12 satisfies min{D11, D12} max{D11, D12}, to ensure that the optical collimation system provided by the embodiment of the present invention can collimate the incident beam with the preset numerical aperture and the preset wavelength, and ensure that the beam emitted to the image surface has a good collimation To ensure that the optical components in the image-side sensor that require parallel light incidence can work normally, and to ensure that the image-side sensor can accurately measure the image quality of the light passing through the projection objective.
選擇性地,本發明實施例提供的光學準直系統CL3可應用 於浸沒投影物鏡的情況,浸沒液體可為水,亦可為油,本發明實施例僅以浸沒液體為水進行示例性說明。如圖8所示,當浸沒液體為水時,水可作為虛擬鏡片L0,為雙平面透鏡,物面的入射點光源位於虛擬鏡片L0的表面S0,沿光軸的方向,即圖8所示的Z方向,虛擬鏡片L0及第三平凸透鏡L10之間的距離很小,遠小於第三平凸透鏡L10的厚度,因此物面入射點光源亦可近似地認為在第三平凸透鏡L10表面。 Optionally, the optical collimation system CL3 provided by the embodiment of the present invention can be applied In the case of the immersion projection objective lens, the immersion liquid may be water or oil, and the embodiment of the present invention only uses the immersion liquid as water for exemplary description. As shown in Figure 8, when the immersion liquid is water, the water can be used as the virtual lens L0, which is a biplanar lens. The incident point light source of the object plane is located on the surface S0 of the virtual lens L0, along the optical axis, as shown in Figure 8. In the Z direction, the distance between the virtual lens L0 and the third plano-convex lens L10 is very small, much smaller than the thickness of the third plano-convex lens L10, so the incident point light source on the object plane can also be approximated as being on the surface of the third plano-convex lens L10.
選擇性地,第三平凸透鏡L10包含靠近物面一側的第十九表面S19及遠離物面一側的第二十表面S20,第六彎月形凸透鏡L11包含靠近物面一側的第二十一表面S21及遠離物面一側的第二十二表面S22,第三雙凸透鏡L12包含靠近物面一側的第二十三表面S23及遠離物面一側的第二十四表面S24;其中,第十九表面S19為平面;第二十表面S20為超半球面,且第二十表面S20為齊明面,超半球面包含半球面以及半球面的兩個端點在光軸方向上延伸預設距離形成的外表面;第二十一表面S21、第二十二表面S22及第二十三表面S23為球面,第二十四表面S24為非球面,第二十四表面S24為光學準直系統CL3的光闌面。 Optionally, the third plano-convex lens L10 includes a nineteenth surface S19 on the side close to the object surface and a twentieth surface S20 on the side away from the object surface. The sixth meniscus convex lens L11 includes a second surface S19 on the side close to the object surface. Eleven surface S21 and a twenty-second surface S22 on the side away from the object surface. The third lenticular lens L12 includes a twenty-third surface S23 on the side close to the object surface and a twenty-fourth surface S24 on the side away from the object surface; Among them, the nineteenth surface S19 is a flat surface; the twentieth surface S20 is a hyper-hemispherical surface, and the twentieth surface S20 is a homogeneous surface. The hyper-hemispherical surface includes a hemispherical surface and the two end points of the hemispherical surface are in the optical axis direction. An outer surface formed by extending a predetermined distance; the twenty-first surface S21, the twenty-second surface S22, and the twenty-third surface S23 are spherical surfaces, the twenty-fourth surface S24 is aspherical, and the twenty-fourth surface S24 is an optical The diaphragm surface of the collimation system CL3.
示例性的,繼續參照圖8所示,設置第十九表面S19為平面,可保證浸液水在第十九表面S19自由流動,不產生像差。設置第二十表面S20為超半球表面且為齊明面,保證第二十表面S20產生的球差及慧差很小,幾乎可忽略不計,其中,超半球表面可以理解為半球表面以及半球表面的兩個端點在光軸方向上延伸預設距離後形成的外表面。設置第二十一表面S21、第二十二表面S22及第二十三表面S23均為球面,第二十四表面S24為非球面,第二十四表面S24為光學準直系統CL3的光闌面, 可保證每個表面對光線的匯聚效果良好,產生的球差及慧差可忽略不計,保證光學準直系統的準直效果良好。 Exemplarily, referring to FIG. 8 continuously, setting the nineteenth surface S19 as a plane can ensure that the immersion water flows freely on the nineteenth surface S19 without causing aberration. The twentieth surface S20 is set as a hyper-hemispherical surface and a uniform surface to ensure that the spherical aberration and coma generated by the twentieth surface S20 are very small and almost negligible. Among them, the hyper-hemispheric surface can be understood as a hemispherical surface and a hemispherical surface The two end points of the outer surface are formed after extending a preset distance in the optical axis direction. The twenty-first surface S21, the twenty-second surface S22, and the twenty-third surface S23 are all spherical surfaces, the twenty-fourth surface S24 is an aspheric surface, and the twenty-fourth surface S24 is the diaphragm of the optical collimation system CL3 surface, It can ensure that each surface has a good converging effect on the light, the spherical aberration and coma produced can be ignored, and the collimation effect of the optical collimation system is guaranteed to be good.
選擇性地,本發明實施例提供的光學準直系統CL3中的光闌面(S24)為非球面,第二十四表面S24可用下述公式來描述: ,其中,P是拱高函數,h是鏡片上的點到光軸的高度,K及C1至Cn是非球面項係數,R是最高點半徑。 Optionally, the diaphragm surface (S24) in the optical collimation system CL3 provided by the embodiment of the present invention is an aspheric surface, and the twenty-fourth surface S24 can be described by the following formula: , Where P is the crown height function, h is the height from the point on the lens to the optical axis, K and C1 to Cn are the coefficients of the aspheric terms, and R is the radius of the highest point.
選擇性地,本發明實施例提供的光學準直系統CL3中,預設數值孔徑可為NA,其中,NA>0;預設波長可為λ,其中,λ=193.368nm,即本發明實施例提供的光學準直系統可採用波長為193.368奈米的深紫外光源,物方的數值孔徑滿足大數值孔徑值,例如數值孔徑NA可為1.35,保證可實現較高的光刻解析度。 Optionally, in the optical collimation system CL3 provided by the embodiment of the present invention, the preset numerical aperture may be NA, where NA>0; the preset wavelength may be λ, where λ=193.368nm, which is the embodiment of the present invention The provided optical collimation system can use a deep ultraviolet light source with a wavelength of 193.368 nanometers, and the numerical aperture of the object side meets a large numerical aperture value. For example, the numerical aperture NA can be 1.35, which ensures that a higher lithography resolution can be achieved.
選擇性地,第三平凸透鏡L10、第六彎月形凸透鏡L11及第三雙凸透鏡L12的製備材料可包含融石英,其折射率為1.5602,浸沒液體可為水,其折射率為1.436157。 Optionally, the preparation materials of the third plano-convex lens L10, the sixth meniscus lens L11, and the third lenticular lens L12 may include fused silica, which has a refractive index of 1.5602, and the immersion liquid may be water, which has a refractive index of 1.436157.
表3示例性地示出本發明實施例提供的如圖8所示之光學準直系統CL3的每一個光學組件的參數值,其中,「序號」一欄表示從物面到像面之間每一個表面所對應的序號;「半徑」一欄示出每個表面的球面半徑;「厚度/間距」一欄表示相鄰表面之間的頂點距離,在鏡片中該數值表示鏡片的厚度;「材料」一欄示出每個表面到下一表面之間的材料,在此以鏡片的材料為融石英,浸沒液體為水進行示例性說明。 Table 3 exemplarily shows the parameter value of each optical component of the optical collimation system CL3 as shown in FIG. 8 provided by the embodiment of the present invention, wherein the column of "Serial Number" represents the value of each optical component from the object plane to the image plane. The serial number corresponding to a surface; the "radius" column shows the spherical radius of each surface; the "thickness/spacing" column shows the distance between the vertices of adjacent surfaces, and the value in the lens represents the thickness of the lens; The column shows the material between each surface and the next surface. Here, the lens material is fused silica and the immersion liquid is water for example.
本發明實施例提供的光學準直系統採用波長為193.368奈米的光源,物方數值孔徑NA=1.35且採用表3所示的每個參數後,可保證像方接收到的光束為平行光,物方有效焦距為4.8mm,F數為0.37,F數被定義為物方的有效焦距與入射光瞳直徑的比值。光學準直系統的總長為12mm,保證整個光學準直系統準直效果良好,同時整個光學準直系統結構緊湊,性能良好。 The optical collimation system provided by the embodiment of the present invention uses a light source with a wavelength of 193.368 nanometers, a numerical aperture NA=1.35 on the object side and each parameter shown in Table 3, which can ensure that the beam received by the image side is parallel light. The effective focal length of the object side is 4.8mm, and the F number is 0.37. The F number is defined as the ratio of the effective focal length of the object side to the diameter of the entrance pupil. The total length of the optical collimation system is 12mm, which ensures that the entire optical collimation system has a good collimation effect. At the same time, the entire optical collimation system has a compact structure and good performance.
惟須說明,表3僅示例性的提供光學準直系統CL3中每一個光學組件的參數值,可以理解的是,當光學準直系統中每一個光學組件的參數值以表3所示的數值等比例縮放得到的參數值,亦在本發明實施例的保護範圍內。 It should be noted that Table 3 only provides exemplary parameter values of each optical component in the optical collimation system CL3. It can be understood that when the parameter values of each optical component in the optical collimation system are as shown in Table 3 The parameter values obtained by equal scaling are also within the protection scope of the embodiments of the present invention.
圖9為圖8提供的光學準直系統的像方準直度隨物方高度變化的關係示意圖,像方準直度被定義為像方的出射光及光軸(z軸)的夾角。如圖9所示,像方的光線在子午線最邊緣(+Y,-Y)及主光線的準 直度的偏差隨著物方高度的增加而變大,但是在物方高度20μm內準直度的最大偏差被控制在0.25°內,具有較好的準直度。 9 is a schematic diagram of the relationship between the image-side collimation of the optical collimation system provided in FIG. 8 and the height of the object side. The image-side collimation is defined as the angle between the emitted light of the image side and the optical axis (z axis). As shown in Figure 9, the ray on the image side is at the edge of the meridian (+Y, -Y) and the principal ray The deviation of the straightness becomes larger with the increase of the height of the object, but the maximum deviation of the collimation within 20μm of the object height is controlled within 0.25°, which has a better collimation.
圖10為圖8提供的光學準直系統在沿著xy平面翻轉後得到的光線像差曲線示例圖,其中縱軸單位為mm,橫坐標為沿著光瞳面的直徑方向。從上至下的三個座標依次對應於圖8中的物面物高16μm,8μm及0μm。從圖中可看出,本發明實施例提供的光學準直系統在在-22.7nm-十22.7nm(0.12個波長)內有較好的像質。 FIG. 10 is an example diagram of a ray aberration curve obtained by the optical collimation system provided in FIG. 8 after being flipped along the xy plane, where the unit of the vertical axis is mm, and the abscissa is the diameter direction along the pupil plane. The three coordinates from top to bottom correspond to the object height of 16μm, 8μm and 0μm in FIG. 8. It can be seen from the figure that the optical collimation system provided by the embodiment of the present invention has better image quality in the range of -22.7 nm to ten 22.7 nm (0.12 wavelengths).
可以理解的是,前述子午面是指,軸外物點的主光線與前述光學準直系統的主軸所構成的平面;前述弧矢面是指,過軸外物點的主光線,並與子午面垂直的平面。 It is understandable that the aforementioned meridian plane refers to the plane formed by the chief ray of the off-axis object point and the principal axis of the aforementioned optical collimation system; the aforementioned sagittal plane refers to the chief ray of the off-axis object point and is connected to the meridian plane. Vertical plane.
惟須說明,圖10中,前述相對視場高度(Relative Field Height)是指,像高位置與總像高長度的比值(即像高位置/總像高長度)。根據圖10,在第一像高位置,相對視場高度為1,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0.2°;在第二像高位置,相對視場高度為0.5,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0.1°;在第三像高位置,相對視場高度為0,相對應的準直鏡一端的物方的平行光線及光軸的夾角為0°。 It should be noted that, in FIG. 10, the aforementioned Relative Field Height (Relative Field Height) refers to the ratio of the image height position to the total image height length (ie, image height position/total image height length). According to Figure 10, at the first image height position, the relative field of view height is 1, and the angle between the parallel light and the optical axis at one end of the corresponding collimator lens is 0.2°; at the second image height position, the relative field of view The height is 0.5, and the angle between the parallel light and the optical axis at one end of the corresponding collimator lens is 0.1°; at the third image height position, the relative field of view height is 0, and the object side at one end of the corresponding collimator lens The angle between the parallel light and the optical axis is 0°.
L0‧‧‧虛擬鏡片 L0‧‧‧Virtual lens
L1‧‧‧第一平凸透鏡 L1‧‧‧The first plano-convex lens
L2‧‧‧第一彎月形凸透鏡 L2‧‧‧First meniscus convex lens
L3‧‧‧第二彎月形凸透鏡 L3‧‧‧The second meniscus convex lens
L4‧‧‧第三彎月形凸透鏡 L4‧‧‧The third meniscus convex lens
L5‧‧‧第一雙凸透鏡 L5‧‧‧The first biconvex lens
S0‧‧‧虛擬鏡片的表面 S0‧‧‧The surface of the virtual lens
S1‧‧‧第一表面 S1‧‧‧First surface
S2‧‧‧第二表面 S2‧‧‧Second surface
S3‧‧‧第三表面 S3‧‧‧The third surface
S4‧‧‧第四表面 S4‧‧‧Fourth surface
S5‧‧‧第五表面 S5‧‧‧Fifth surface
S6‧‧‧第六表面 S6‧‧‧Sixth surface
S7‧‧‧第七表面 S7‧‧‧Seventh surface
S8‧‧‧第八表面 S8‧‧‧Eighth surface
S9‧‧‧第九表面 S9‧‧‧Ninth surface
S10‧‧‧第十表面 S10‧‧‧Tenth surface
CL1‧‧‧光學準直系統 CL1‧‧‧Optical Collimation System
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811288187.4 | 2018-10-31 | ||
CN201811288187.4A CN111123535B (en) | 2018-10-31 | 2018-10-31 | Optical alignment system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202018332A TW202018332A (en) | 2020-05-16 |
TWI716076B true TWI716076B (en) | 2021-01-11 |
Family
ID=70464569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108129504A TWI716076B (en) | 2018-10-31 | 2019-08-19 | An optical collimation system |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111123535B (en) |
TW (1) | TWI716076B (en) |
WO (1) | WO2020088033A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113866994B (en) * | 2020-06-30 | 2023-04-18 | 上海微电子装备(集团)股份有限公司 | Collimating lens and image sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130335708A1 (en) * | 2010-12-29 | 2013-12-19 | 3M Innovative Properties Company | Refractive polarization converter and polarized color combiner |
CN107861254A (en) * | 2017-12-29 | 2018-03-30 | 河南百合特种光学研究院有限公司 | Single UV L ED exposure light source system |
TW201833642A (en) * | 2016-11-18 | 2018-09-16 | 美商麥吉克利普公司 | Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2052201A5 (en) * | 1969-07-28 | 1971-04-09 | Comp Generale Electricite | |
JPH0237563B2 (en) * | 1981-02-17 | 1990-08-24 | Ricoh Kk | BISHOHATSUKOTAIKARANOHIKARIOKORIMEETOSURUKOKAKURENZU |
JPS61173215A (en) * | 1985-01-28 | 1986-08-04 | Minolta Camera Co Ltd | Collimator lens |
JP2596799B2 (en) * | 1988-07-11 | 1997-04-02 | オリンパス光学工業株式会社 | Microscope objective lens |
JP2711127B2 (en) * | 1989-02-07 | 1998-02-10 | リコー光学株式会社 | Collimator lens |
US5151823A (en) * | 1991-09-23 | 1992-09-29 | Hughes Aircraft Company | Biocular eyepiece optical system employing refractive and diffractive optical elements |
JPH08122634A (en) * | 1994-10-25 | 1996-05-17 | Asahi Optical Co Ltd | Objective for endoscope |
JP4573941B2 (en) * | 2000-03-30 | 2010-11-04 | 富士フイルム株式会社 | Collimator lens and optical scanning device using the same |
CN2534596Y (en) * | 2002-03-18 | 2003-02-05 | 西安众为科技发展有限公司 | Near-distance optical collimator |
JP2005134867A (en) * | 2003-10-08 | 2005-05-26 | Nikon Corp | Image display device |
JP2004163986A (en) * | 2004-03-10 | 2004-06-10 | Olympus Corp | Lens system |
-
2018
- 2018-10-31 CN CN201811288187.4A patent/CN111123535B/en active Active
-
2019
- 2019-08-14 WO PCT/CN2019/100540 patent/WO2020088033A1/en active Application Filing
- 2019-08-19 TW TW108129504A patent/TWI716076B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130335708A1 (en) * | 2010-12-29 | 2013-12-19 | 3M Innovative Properties Company | Refractive polarization converter and polarized color combiner |
TW201833642A (en) * | 2016-11-18 | 2018-09-16 | 美商麥吉克利普公司 | Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same |
CN107861254A (en) * | 2017-12-29 | 2018-03-30 | 河南百合特种光学研究院有限公司 | Single UV L ED exposure light source system |
Also Published As
Publication number | Publication date |
---|---|
CN111123535B (en) | 2021-06-11 |
CN111123535A (en) | 2020-05-08 |
WO2020088033A1 (en) | 2020-05-07 |
TW202018332A (en) | 2020-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5106858B2 (en) | Projection objective having a high numerical aperture and a planar end face | |
JP2008547039A (en) | Projection objective with high aperture and planar end face | |
US7301707B2 (en) | Projection optical system and method | |
JP2005519347A (en) | Maximum aperture projection objective | |
US20100323299A1 (en) | Projection objective for immersion lithography | |
JP7273162B2 (en) | Lithography projection objective lens | |
WO2019062941A1 (en) | Projection objective | |
KR20040104691A (en) | Projection lens comprising an extremely high aperture | |
JP2004045885A (en) | Optical integrator, illumination optical device, and device and method for exposure | |
TWI716076B (en) | An optical collimation system | |
TWI669551B (en) | Optical imaging lens | |
CN102645730B (en) | Experimental immersed projective lithography objective lens | |
TWI715392B (en) | Photoetching projection objective lens and photoetching machine | |
JP2004198748A (en) | Optical integrator, illumination optical system, exposure device, and exposure method | |
EP2040123A1 (en) | Projection optical system | |
CN110764224B (en) | Photoetching projection objective lens | |
TWI744905B (en) | Polarization aberration detection device, objective lens test bench and lithography equipment | |
US8493670B2 (en) | Large-field unit-magnification catadioptric projection system | |
JP2015138124A (en) | Projection optical system, projection exposure device, and manufacturing method for the same | |
JPH02220015A (en) | Accurate projection optical system | |
JPH01315709A (en) | Precisely projecting optical system | |
CN103105664A (en) | Photoetching projective objective glass | |
TW202301037A (en) | Projection optical system, exposure apparatus and article manufacturing method capable of reducing aberration in a projection optical system provided with a correction optical system having a correction magnification | |
JP5567098B2 (en) | Catadioptric projection objective with pupil correction | |
JPH0474855B2 (en) |