JP5106858B2 - Projection objective having a high numerical aperture and a planar end face - Google Patents

Projection objective having a high numerical aperture and a planar end face Download PDF

Info

Publication number
JP5106858B2
JP5106858B2 JP2006543484A JP2006543484A JP5106858B2 JP 5106858 B2 JP5106858 B2 JP 5106858B2 JP 2006543484 A JP2006543484 A JP 2006543484A JP 2006543484 A JP2006543484 A JP 2006543484A JP 5106858 B2 JP5106858 B2 JP 5106858B2
Authority
JP
Japan
Prior art keywords
projection objective
refractive index
lens
optical element
last
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006543484A
Other languages
Japanese (ja)
Other versions
JP2007514192A (en
Inventor
ベーデル スザンネ
ズィンガー ヴォルフガング
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/734,623 external-priority patent/US6995930B2/en
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2007514192A publication Critical patent/JP2007514192A/en
Application granted granted Critical
Publication of JP5106858B2 publication Critical patent/JP5106858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/082Catadioptric systems using three curved mirrors
    • G02B17/0828Catadioptric systems using three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、自身の物体平面内に配置されるパターンを自身の像平面上に結像させる投影対物レンズに関する。この投影対物レンズは、マイクロリソグラフィー投影露光装置に用いられうる。本発明は、特に、浸漬処理用に設計されており、すなわち像側開口数NAが1.0より大きい開口範囲内の半導体構造用露光装置に関する。   The present invention relates to a projection objective that images a pattern arranged in its own object plane on its own image plane. This projection objective can be used in a microlithographic projection exposure apparatus. The present invention particularly relates to an exposure apparatus for a semiconductor structure that is designed for immersion treatment, that is, an image-side numerical aperture NA within an aperture range greater than 1.0.

特に投影リソグラフィーの光学的縮小結像の場合は、像側開口数NAは、像空間内の周囲媒質の屈折率によって制限される。浸漬リソグラフィーでは、理論的に可能な開口数NAは、浸漬媒質の屈折率によって制限される。浸漬媒質は、液体または固体でありうる。固体媒質についても後者のことが言える。   Especially in the case of optical reduction imaging of projection lithography, the image-side numerical aperture NA is limited by the refractive index of the surrounding medium in the image space. In immersion lithography, the theoretically possible numerical aperture NA is limited by the refractive index of the immersion medium. The immersion medium can be a liquid or a solid. The latter is also true for solid media.

しかし、実際的理由から、開口数は、最後の媒質(すなわち像に最も近い媒質)の屈折率に任意に接近するべきではなく、その理由は、そうなると伝搬角が光軸に対して非常に大きくなるためである。開口数が実質的に像側の最後の媒質の屈折率の約95%を超えないことが実際的であることが立証された。これは、光軸に対して約72°の伝搬角に対応する。このことは、193nmにおいては、水(nH2O=1.43)を浸漬媒質とする場合に、NA=1.35の開口数に対応する。 However, for practical reasons, the numerical aperture should not be arbitrarily close to the refractive index of the last medium (ie, the medium closest to the image) because the propagation angle is very large relative to the optical axis. It is to become. It has proven practical that the numerical aperture does not substantially exceed about 95% of the refractive index of the last medium on the image side. This corresponds to a propagation angle of about 72 ° with respect to the optical axis. This corresponds to a numerical aperture of NA = 1.35 when water (n H2 O = 1.43) is used as the immersion medium at 193 nm.

最後のレンズの材料の屈折率より高い屈折率を有する液体を用いる場合または固体浸漬の場合は、最後のレンズ素子(すなわち投影対物レンズの像に隣接する最後の光学素子)の材料は、最後の端面(投影対物レンズの出射面)の設計が平面状とされるべきか、またはごく弱い曲面状とされるべきかの制限事項として作用する。平面状の設計は、たとえばウェーハと対物レンズとの間における距離の測定と、露光対象のウェーハと最後の対物レンズ面との間における浸漬媒質の流体力学的特性と、これらの洗浄とに有利である。特に固体浸漬の場合には、最後の端面を平面状の設計として、これもまた同様に平面状のウェーハを露光しなければならない。   When using a liquid having a refractive index higher than that of the last lens material or in the case of solid immersion, the material of the last lens element (ie the last optical element adjacent to the image of the projection objective) is the last It acts as a restriction on whether the design of the end surface (the exit surface of the projection objective lens) should be flat or very weakly curved. The planar design is advantageous, for example, for measuring the distance between the wafer and the objective lens, the hydrodynamic properties of the immersion medium between the wafer to be exposed and the last objective lens surface, and cleaning these. is there. Especially in the case of solid immersion, the last end face should be a planar design, which must likewise expose a planar wafer.

DUV(248nmまたは193nmの動作波長)においては、通常的に最後のレンズに用いられる材料は、nSiO2=1.56の屈折率を有する溶融石英(合成石英ガラス、SiO2)またはnCaF2=1.50の屈折率を有するCaF2である。合成石英ガラス材料は、以下では、単に「石英」とも呼ばれる。最後のレンズ素子における放射負荷が高いことから、合成石英ガラスは、この放射負荷により長期的に損傷されてしまうため、193nmにおいては、最後のレンズにはフッ化カルシウムが好ましい。その結果として、約1.425(n=1.5の95%)の開口数が達成されうる。放射損傷という欠点が受け入れられる場合は、石英ガラスはさらに、1.48の開口数(193nmにおける石英の屈折率の約95%に対応)を可能にする。この関係は、248nmでも同様である。 In DUV (operating wavelength of 248 nm or 193 nm), the material typically used for the last lens is fused silica (synthetic quartz glass, SiO 2 ) or n CaF2 = 1 with a refractive index of n SiO2 = 1.56. CaF 2 having a refractive index of .50. The synthetic quartz glass material is also simply referred to as “quartz” in the following. Since the radiation load on the last lens element is high, the synthetic quartz glass is damaged for a long time by this radiation load. Therefore, at 193 nm, calcium fluoride is preferable for the last lens. As a result, a numerical aperture of about 1.425 (95% of n = 1.5) can be achieved. If the disadvantage of radiation damage is acceptable, quartz glass further allows a 1.48 numerical aperture (corresponding to about 95% of the refractive index of quartz at 193 nm). This relationship is the same at 248 nm.

本発明の1つの目的は、水等の浸漬媒質または溶融石英およびCaF2等のレンズ材料を用いる従来設計の欠点を回避することができる高開口数の投影対物レンズを提供することにある。本発明のさらに他の目的は、適度な大きさと材料消費量とを有する、少なくともNA=1.35の像側開口数での浸漬リソグラフィーに適する投影対物レンズを提供することにある。 One object of the present invention is to provide a high numerical aperture of the projection objective lens capable to avoid the drawbacks of the prior design using immersion medium or fused silica and lens material such as CaF 2, such as water. It is yet another object of the present invention to provide a projection objective suitable for immersion lithography with an image side numerical aperture of at least NA = 1.35, having a reasonable size and material consumption.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

前記およびその他の目的を達成する方法として、本発明は、1つの態様によれば、自身の物体平面内に配置されるパターンを自身の像平面上に結像させる、マイクロリソグラフィー投影露光装置に適する投影対物レンズにおいて:投影対物レンズの動作波長の放射線に対して透明性を有する複数個の光学素子からなり;少なくとも1個の光学素子は、前記動作波長において屈折率n≧1.6を有する高屈折率材料により製作される高屈折率光学素子である投影対物レンズを提供する。   As a method for achieving the above and other objects, the present invention is suitable for a microlithographic projection exposure apparatus that, according to one aspect, images a pattern disposed in its object plane onto its image plane. In a projection objective: consisting of a plurality of optical elements that are transparent to radiation at the operating wavelength of the projection objective; at least one optical element having a refractive index n ≧ 1.6 at the operating wavelength A projection objective is provided which is a high refractive index optical element made of a refractive index material.

1つの実施形態は、好ましくはNA=1.35以上である像側開口数を有するとともに、少なくとも最後のレンズ素子が高屈折率材料(屈折率n>1.6、特にn>1.8)によって構成される耐光性リソグラフィー対物レンズによって構成される。   One embodiment preferably has an image-side numerical aperture greater than or equal to NA = 1.35 and at least the last lens element is a high refractive index material (refractive index n> 1.6, especially n> 1.8). It is comprised by the light-resistant lithography objective lens comprised by these.

以下に、193nm用の例証的な実施形態を用いて、本発明のさまざまな態様をより詳細に説明する。これらの例において、最後のレンズ素子または該レンズ素子の一部分に用いられる材料は、サファイア(Al23)である一方で、残りのレンズは、溶融石英により製作される。しかしながら、これらの例は、その他の高屈折率レンズ材料およびその他の波長にも転用されうる。たとえば、248nmにおいては、最後のレンズまたは該レンズの一部分の材料として酸化ゲルマニウム(GeO2)を用いることができる。サファイアとは対照的に、この材料は、複屈折性を持たないという利点を有する。ただし、前記材料は、193nmではもはや透明性を有さない。 In the following, various aspects of the present invention will be described in more detail using an exemplary embodiment for 193 nm. In these examples, the material used for the last lens element or part of the lens element is sapphire (Al 2 O 3 ), while the remaining lenses are made of fused silica. However, these examples can also be transferred to other high index lens materials and other wavelengths. For example, at 248 nm, germanium oxide (GeO 2 ) can be used as the material of the last lens or part of the lens. In contrast to sapphire, this material has the advantage of not having birefringence. However, the material is no longer transparent at 193 nm.

液体浸漬の場合は、水より高い屈折率を有する浸漬液を用いると、NA>1.35が達成されうる。いくつかの応用例においては、シクロヘキサン(屈折率n=1.556)が用いられた。   In the case of liquid immersion, NA> 1.35 can be achieved using an immersion liquid having a higher refractive index than water. In some applications, cyclohexane (refractive index n = 1.556) was used.

n>1.6の浸漬媒質が、目下のところ現実的であると見なされる。   An immersion medium with n> 1.6 is currently considered realistic.

高屈折率の浸漬媒質は、さらにまた、一般により高い吸収率を示すため、小さい厚さが有利でありうる。   High refractive index immersion media can also be advantageous for small thicknesses because they generally also exhibit higher absorptance.

前記およびその他の特徴は、特許請求の範囲だけではなく、詳細な説明および図面にも示されており、個別の特徴は、単独または副組合せのいずれの形態でも本発明の実施形態として、および他の分野でも用いられうるとともに、個別に有利かつ特許可能な実施形態を表しうる。   The foregoing and other features are shown not only in the claims but also in the detailed description and drawings, wherein individual features may be used as embodiments of the invention, either alone or in subcombination, and others. As well as individually advantageous and patentable embodiments.

以下の本発明の好適な実施形態の説明において、「光軸」という用語は、関連ある光学素子の曲率中心を通る直線または一連の直線分を指すものとする。光軸は、屈折鏡(偏向鏡)により折り曲げられうる。本明細書に示されるこれらの例の場合は、関連ある物体は、集積回路のパターンまたは何らかのその他のパターン、たとえば格子パターンのいずれかを有するマスク(レチクル)である。本明細書に示される例において、物体の像は、フォトレジスト層により被覆される基板としての役割を果たすウェーハ上に投影されるが、液晶表示装置の構成要素または光学格子用基板等のその他の種類の基板も可能である。   In the following description of the preferred embodiment of the present invention, the term “optical axis” shall refer to a straight line or a series of straight lines passing through the center of curvature of the associated optical element. The optical axis can be bent by a refracting mirror (deflecting mirror). In the case of these examples presented herein, the relevant object is a mask (reticle) having either an integrated circuit pattern or some other pattern, for example a lattice pattern. In the example shown herein, the image of the object is projected onto a wafer that serves as a substrate covered by a photoresist layer, but other components such as liquid crystal display components or optical grating substrates. Different types of substrates are possible.

表を用いて図に示される設計の明細を開示する場合は、その表は、それぞれの図と同じ番号によって示される。   Where tables are used to disclose the design details shown in the figures, the tables are indicated by the same numbers as the respective figures.

図1に、約193nmの紫外線動作波長用に設計される、本発明にしたがった反射屈折性投影対物レンズ100の第1の実施形態が示されている。このレンズは、物体平面OP内に配置されるレチクル(またはマスク)上のパターンの像を像平面IP内に縮小倍率、たとえば4:1で投影する一方で、正確に2個の中間実像IMI1およびIMI2を創出するように設計される。第1の屈折性対物レンズ部分ROP1は、物体平面内のパターンを第1の中間像IMI1に結像させるように設計され、第2の反射性(純反射性)対物レンズ部分COP2は、前記第1の中間像IMI1を第2の中間像IMI2に1:1に近い倍率で結像させ、第3の屈折性対物レンズ部分ROP3は、前記第2の中間像IMI2を像平面IP上に高縮小率で結像させる。前記第2の対物レンズ部分COP2は、物体側を向く凹状の鏡面を有する第1の凹面鏡CM1と、像側を向く凹状の鏡面を有する第2の凹面鏡CM2とからなる。前記鏡面は、いずれも連続的または非断続的であり、すなわち穴または孔部を有さない。互いに向き合う前記鏡面は、前記凹面鏡により形成される湾曲面によって外囲される鏡間空間を形成する。前記中間像IMI1、IMI2は、いずれも幾何学的に前記鏡間空間の内側に配置され、少なくとも近軸中間像は、前記空間の略中央において前記鏡面から十分に離れて位置する。   FIG. 1 shows a first embodiment of a catadioptric projection objective 100 according to the present invention designed for an ultraviolet operating wavelength of about 193 nm. While this lens projects an image of a pattern on a reticle (or mask) placed in the object plane OP into the image plane IP at a reduced magnification, eg 4: 1, exactly two intermediate real images IMI1 and Designed to create IMI2. The first refractive objective lens portion ROP1 is designed to form a pattern in the object plane on the first intermediate image IMI1, and the second reflective (pure reflective) objective lens portion COP2 is the first reflective objective lens portion COP2. The first intermediate image IMI1 is formed on the second intermediate image IMI2 at a magnification close to 1: 1, and the third refractive objective lens portion ROP3 reduces the second intermediate image IMI2 on the image plane IP. Image at a rate. The second objective lens portion COP2 includes a first concave mirror CM1 having a concave mirror surface facing the object side, and a second concave mirror CM2 having a concave mirror surface facing the image side. The mirror surfaces are either continuous or non-intermittent, i.e. have no holes or holes. The mirror surfaces facing each other form an inter-mirror space surrounded by a curved surface formed by the concave mirror. The intermediate images IMI1 and IMI2 are both geometrically arranged inside the intermirror space, and at least the paraxial intermediate image is located sufficiently away from the mirror surface at the approximate center of the space.

凹面鏡の各鏡面は、物理的な鏡面の縁部を超えて延在し、かつ前記鏡面を含む数学的な面である「曲率面」または「曲率の面」を形成する。第1および第2の凹面鏡は、共通の回転対称軸を有する回転対称の曲率面の一部分である。   Each mirror surface of the concave mirror extends beyond the edge of the physical mirror surface and forms a “curvature surface” or “curvature surface” that is a mathematical surface that includes the mirror surface. The first and second concave mirrors are part of a rotationally symmetric curvature surface having a common rotational symmetry axis.

システム100は、回転対称であるとともに、全ての屈折性および反射性光学素子に共通する1本の直線的な光軸AXを有する。いかなる屈折鏡も存在しない。前記凹面鏡は、これらの鏡を互いに接近させるとともに、該鏡間に位置する中間像にかなり接近させることができる小直径を有する。前記凹面鏡は、いずれも軸対称面の軸外部分として構成され、かつ照明される。光ビームは、口径食を起こすことなく、光軸の方を向く前記凹面鏡の縁部の脇を通過する。   The system 100 is rotationally symmetric and has a single linear optical axis AX that is common to all refractive and reflective optical elements. There is no refracting mirror. The concave mirror has a small diameter that allows these mirrors to be close together and can be quite close to an intermediate image located between the mirrors. Each of the concave mirrors is configured as an off-axis portion of an axisymmetric surface and is illuminated. The light beam passes through the edge of the concave mirror facing the optical axis without causing vignetting.

この一般構造を有する反射屈折性投影対物レンズは、たとえば2004年1月14日出願の出願番号第60/536,248号および2004年7月14日出願の第60/587,504号の米国仮出願と2004年10月13日出願の事後延長出願とに開示されている。これらの出願の内容は、本出願の明細書の一部に取り入れられる。この種の反射屈折性投影対物レンズの1つの独特の特徴は、瞳面(主光線が光軸と交差する軸方向位置にある)は、物体平面と第1の中間像との間と、第1および第2の中間像の間と、第2の中間像と像平面との間とにおいて形成され、全ての凹面鏡は、瞳面から光学的に遠く離れて、特に結像プロセスの主光線高さが結像プロセスの周辺光線高さを上回る位置に配置されることである。さらに、少なくとも第1の中間像は、幾何学的に、第1の凹面鏡と第2の凹面鏡との間の鏡間空間内に配置されることが好ましい。好ましくは、第1の中間像と第2の中間像とのいずれもが、幾何学的に、前記凹面鏡間の鏡間空間内に配置される。   Catadioptric projection objectives having this general structure are described, for example, in US Provisional Application Nos. 60 / 536,248 filed Jan. 14, 2004 and 60 / 587,504 filed Jul. 14, 2004. The application and the subsequent extension application filed on Oct. 13, 2004. The contents of these applications are incorporated in part of the specification of the present application. One unique feature of this type of catadioptric projection objective is that the pupil plane (in the axial position where the chief ray intersects the optical axis) is between the object plane and the first intermediate image, and Formed between the first and second intermediate images and between the second intermediate image and the image plane, all concave mirrors are optically far away from the pupil plane, in particular the principal ray height of the imaging process. Is disposed at a position exceeding the peripheral ray height of the imaging process. Furthermore, it is preferable that at least the first intermediate image is geometrically arranged in the intermirror space between the first concave mirror and the second concave mirror. Preferably, both the first intermediate image and the second intermediate image are geometrically arranged in the inter-mirror space between the concave mirrors.

以下に説明される例証的な実施形態は、相対的に少量の光学材料を用いて構成されうる光学システムにより開口数NA>1での浸漬リソグラフィーを可能にするこれらの基本的な特徴を共有している。   The illustrative embodiments described below share these basic features that allow immersion lithography with numerical aperture NA> 1 by an optical system that can be constructed with relatively small amounts of optical material. ing.

図1に、第1の例証的な実施形態として、サファイアレンズと、浸漬媒質としてのシクロヘキサンとをNA=1.45の像側開口数とともに有する193nm用リソグラフィー対物レンズが示されている。このサファイアレンズは、像平面に最も近い最後の光学素子LOEである。像側作動距離は、1mmである。この反射屈折性設計は、主に色補正とペッツヴァル補正とのための2個の凹面鏡と、前記対をなす鏡のそれぞれ上流および下流の中間像とを有する。しかしながら、これらの中間像は、完全には補正されず、主として前記設計を幾何学的に制限するとともに、鏡へと向かう方向と鏡上で反射された後に鏡から遠ざかる方向とに延在する2本のビーム路を分離する役割を果たす。像フィールド(ウェーハ上)は、矩形である。フィールドの外径(ウェーハ側)は15.5mm、内径は4.65mmである。その結果として、26×3.8mmの矩形フィールドが得られる。   FIG. 1 shows, as a first illustrative embodiment, a lithographic objective lens for 193 nm having a sapphire lens and cyclohexane as an immersion medium with an image side numerical aperture of NA = 1.45. This sapphire lens is the last optical element LOE closest to the image plane. The image side working distance is 1 mm. This catadioptric design has two concave mirrors, mainly for color correction and Petzval correction, and intermediate images upstream and downstream of the pair of mirrors, respectively. However, these intermediate images are not fully corrected, mainly geometrically limiting the design and extending in a direction towards the mirror and in a direction away from the mirror after being reflected on the mirror. It serves to separate the beam path of the book. The image field (on the wafer) is rectangular. The outer diameter (wafer side) of the field is 15.5 mm, and the inner diameter is 4.65 mm. As a result, a 26 × 3.8 mm rectangular field is obtained.

開口絞り(口径絞りAS、システム開口)は、第1の例証的な実施形態において、第1の屈折性対物レンズ部分ROP1内に配置される。これは、一方では、より小さい可変口径絞りを形成させるため、かつ他方では、大体において、前記開口絞りを絞るときに無用かつ干渉的な放射負荷に対して後続の対物レンズ部分(物体平面(マスク平面)から見た場合)を保護するために有利である。像側対物レンズ部分ROP3内の後側絞り平面、すなわち口径絞りが配置されうる位置は、最大直径のレンズLMDと像平面IPとの間の領域内において収束ビーム路内に配置される。   An aperture stop (aperture stop AS, system aperture) is arranged in the first refractive objective part ROP1 in the first exemplary embodiment. This is because, on the one hand, in order to form a smaller variable aperture stop, and on the other hand, the objective lens part (object plane (mask) that follows the object plane against the radiation load, which is largely unnecessary and interferes when the aperture stop is stopped. It is advantageous to protect (when viewed from the plane). The rear stop plane in the image side objective lens portion ROP3, that is, the position where the aperture stop can be arranged, is arranged in the convergent beam path in the region between the lens LMD with the maximum diameter and the image plane IP.

物体側の前側屈折性対物レンズ部分ROP1内において、主に像フィールド湾曲(ペッツヴァルの和)を補正する役割を果たすウエスト部(ビームおよびレンズ直径の収縮部)が形成される。口径絞りASは、このウエスト部に配置される。   In the front-side refractive objective lens portion ROP1 on the object side, a waist portion (a contraction portion of the beam and the lens diameter) that mainly serves to correct the image field curvature (Petzval sum) is formed. The aperture stop AS is disposed at the waist.

最後のレンズにCaF2を用いることは、可能な限り1.425以下(CaF2の屈折率の最大95%まで)の開口数が必要になるため、好ましくない。193nmにおいて、本例ではサファイア(Al23)が最後のレンズ素子LOEにおいて高屈折率材料として用いられる。図に示される全ての実施形態において、サファイアにより製作される光学素子には、わかりやすくするために灰色の影を付けてある。 The use of CaF 2 for the last lens is not preferred because it requires a numerical aperture of 1.425 or less (up to 95% of the refractive index of CaF 2) as much as possible. At 193 nm, in this example sapphire (Al 2 O 3 ) is used as the high refractive index material in the last lens element LOE. In all the embodiments shown in the figures, optical elements made of sapphire are shaded gray for clarity.

サファイアが用いられる場合に生じる複屈折は、最後のレンズ(最後の光学素子LOE)を2個のレンズ素子LOE1およびLOE2に分割するとともに、これらの2個のレンズ素子を互いに光軸のまわりにおいて回転させることによって大体において補償される。この場合は、分割界面SI(前記2個のレンズ素子LOE1およびLOE2の接触面)は、好ましくは、両レンズ素子が同様の屈折力を有するように湾曲せしめられる。これに代わる方法として、補償のために、たとえば中間像に近接する位置または物体平面に近接する位置において、光学的な観点から同様に作用する、対物レンズ内のある位置に配置されるサファイア製の第2の素子を用いることができる。本例の場合は、最後のサファイアレンズLOEは、実質的に同一の作用をする2個のレンズ素子LOE1およびLOE2に分割される。これらのサファイアレンズLOEの前側半径(すなわち光入射側半径)は、像フィールドの中心に向かう開口ビーム、すなわち収束する光線束の周辺において像方向に進むビームが、実質的に屈折せしめられることなく前記界面を通過するように、すなわち前記界面に実質的に垂直に衝突するように設計される(レンズ半径は、像平面と光軸との交点と実質的に同心である)。前記分割サファイアレンズの前記2個のレンズ素子の分割界面SIの半径は、より扁平(半径は、ウェーハが配置されうる像平面からの距離の1.3倍未満)である。   The birefringence that occurs when sapphire is used splits the last lens (last optical element LOE) into two lens elements LOE1 and LOE2 and rotates these two lens elements around each other about the optical axis. To compensate roughly. In this case, the dividing interface SI (the contact surface of the two lens elements LOE1 and LOE2) is preferably curved so that both lens elements have the same refractive power. As an alternative, for compensation, for example at a position close to the intermediate image or a position close to the object plane, it is made of sapphire arranged at a position in the objective lens that acts similarly from an optical point of view. A second element can be used. In the case of this example, the last sapphire lens LOE is divided into two lens elements LOE1 and LOE2 that perform substantially the same function. The front radius of these sapphire lenses LOE (i.e., the light incident side radius) is such that the aperture beam toward the center of the image field, i.e., the beam traveling in the image direction around the converging beam bundle is substantially refracted without being refracted. It is designed to pass through the interface, i.e. to impinge substantially perpendicular to the interface (the lens radius is substantially concentric with the intersection of the image plane and the optical axis). The radius of the split interface SI between the two lens elements of the split sapphire lens is flatter (the radius is less than 1.3 times the distance from the image plane on which the wafer can be placed).

複屈折材料により製作される素子の相対的回転による複屈折効果の補償は、たとえば本出願人の特許出願である独国特許第101 23 725 A1号(たとえば米国特許第2004/0190151 A1号に対応)または国際特許第03/077007 A2号において詳細に説明されている。複屈折材料(フッ化カルシウム)により製作される分割形最終レンズとして設計される、像平面に最も近い最終レンズ素子を有する反射屈折性投影対物レンズは、米国特許第6,717,722B号により周知である。   Compensation of the birefringence effect due to the relative rotation of elements made of birefringent materials corresponds to, for example, German patent 101 23 725 A1 (for example US 2004/0190151 A1), which is the applicant's patent application ) Or International Patent No. 03/077007 A2. A catadioptric projection objective with a final lens element closest to the image plane, designed as a split final lens made of birefringent material (calcium fluoride) is known from US Pat. No. 6,717,722B. It is.

図1の設計の明細は、表1に要約されている。最も左側の欄には、屈折性、反射性またはその他の指定の面の番号が列挙されており、第2欄に、その面の半径r[mm]が列挙され、第3欄には、その面と次の面との間における距離d[mm]、すなわちその光学素子の「厚さ」として示されるパラメータが列挙され、第4欄には、その光学素子の製造に用いられる材料が列挙され、第5欄には、その製造に用いられる材料の屈折率が列挙されている。第6欄には、その光学素子の光学的に利用可能な有効半径[mm]が列挙されている。これらの表において、半径値r=0は、無限半径を有する平面に対して与えられる。   The design details of FIG. 1 are summarized in Table 1. The leftmost column lists the number of refractive, reflective or other designated surfaces, the second column lists the radius r [mm] of the surface, and the third column lists The distance d [mm] between one surface and the next surface, ie the parameter indicated as the “thickness” of the optical element, is listed, and the fourth column lists the materials used to manufacture the optical element. The fifth column lists the refractive index of the material used for its manufacture. The sixth column lists the effective optically usable radius [mm] of the optical element. In these tables, a radius value r = 0 is given for a plane having an infinite radius.

この特定の実施形態の場合は、15個の面は、非球面である。表1Aに、これらの非球面の関連データが列挙されており、このデータから、高さhの関数としての面形状のサジッタが、下式を用いて計算されうる。

Figure 0005106858
For this particular embodiment, the fifteen surfaces are aspheric. Table 1A lists the relevant data for these aspheric surfaces, from which the surface shape sagittal as a function of height h can be calculated using the following equation:
Figure 0005106858

ここで、半径の逆数(1/r)は、問題の面の面頂点における曲率であり、hは、光軸から面上の点までの距離である。したがって、サジッタp(h)は、前記問題の面の面頂点から前記面点までのz方向、すなわち光軸に沿って測定された距離を表す。定数K、C1、C2等は、表1Aに列挙されている。   Here, the reciprocal of the radius (1 / r) is the curvature at the surface vertex of the surface in question, and h is the distance from the optical axis to a point on the surface. Therefore, the sagittal p (h) represents the distance measured along the optical axis along the z direction from the surface vertex of the surface in question to the surface point. Constants K, C1, C2, etc. are listed in Table 1A.

同様に、以下の実施形態の明細は、図2に関しては表2、2Aに、図3に関しては表3、3Aに、図4に関しては表4、4Aに、図5に関しては表5、5Aに示されている。   Similarly, the specifications of the following embodiments are in Tables 2 and 2A for FIG. 2, Tables 3 and 3A for FIG. 3, Tables 4 and 4A for FIG. 4, and Tables 5 and 5A for FIG. It is shown.

図2にしたがった参考投影対物レンズ200において、像側の最後の光学素子LOEは、平凸レンズの全体形状を有する。このレンズは、平面状の分割界面SIに沿って接触する2個の光学素子LOE1およびLOE2にさらに分割される。具体的には、正の曲率半径の入射面と平面状の後側面とを有する石英ガラスレンズLOE1が、サファイアにより製作される1個(または2個)の平行平面板LOE2上に密着せしめられる。これによって得られるNA値は、せいぜい石英ガラスにおいて可能な高さであるが、光ビームの伝搬角が、高屈折率の媒質により開口が最大となる最後の対物レンズ部分内において減じられるという利点がある。このことは、さもなければ非常に大きい伝搬角の問題を構成する、界面と最後の端面上に設けられうる保護層とにおける反射損失および散乱光効果を考慮すると、有利である。これにより、最大の角度は、石英レンズLOE1と第1の高屈折率平行平面板LOE2との間における密着面においてのみ生じる。この密着面(隣接する光学素子が密着により互いに接着せしめられる接触界面)は、汚染および損傷に対して保護されるとともに、環境の影響にも敏感な被覆を有して設計されうる。2個の平行平面板を用いて平行平面状の高屈折率素子LOE2を形成させる場合は、サファイアにより製作される2個の平行平面板を光軸のまわりにおいて互いに回転させて、理想的には、主として半導体構造を結像させるのに必要とされるxおよびy方向のSおよびP偏光に関して実質的に複屈折効果を補償することができる。 In the reference projection objective 200 according to FIG. 2, the last optical element LOE on the image side has the overall shape of a plano-convex lens. This lens is further divided into two optical elements LOE1 and LOE2 that are in contact with each other along the planar dividing interface SI. Specifically, a quartz glass lens LOE1 having an entrance surface with a positive radius of curvature and a planar rear side surface is brought into close contact with one (or two) parallel plane plates LOE2 made of sapphire. The NA value obtained in this way is at most the height possible in quartz glass, but the advantage is that the propagation angle of the light beam is reduced in the last objective lens part where the aperture is maximized by a high refractive index medium. is there. This is advantageous in view of reflection losses and scattered light effects at the interface and the protective layer that can be provided on the last end face, which constitutes a very large propagation angle problem. As a result, the maximum angle occurs only on the contact surface between the quartz lens LOE1 and the first high-refractive-index parallel flat plate LOE2. This close contact surface (contact interface where adjacent optical elements are bonded together by close contact) can be designed with a coating that is protected against contamination and damage and is also sensitive to environmental effects. When the parallel plane high refractive index element LOE2 is formed by using two parallel plane plates, ideally, two parallel plane plates made of sapphire are rotated with respect to each other around the optical axis. The birefringence effect can be substantially compensated for S and P polarizations in the x and y directions, which are mainly required to image the semiconductor structure.

しかしながら、屈折率がより低いことから、石英レンズLOE1は、ここでは、制限された全長の投影対物レンズの像側開口数が実際にはそれほど大きくなくても、集光効果がより低いために非常に大きいレンズ直径が必要になるという効果を有する。第2の例証的な実施形態(図2)において、開口数は、NA=1.35であるが、レンズ直径は、第1の例証的な実施形態の場合より大きい。この場合は、レンズ直径は、すでに143mmを超えており、したがって実質的に開口数の212倍である一方で、図1の例証的な実施形態では、開口数のわずか200倍が達成される。特に、図2の例証的な実施形態においては、143mmという最大2分の1レンズ直径は、約136mmの鏡半径さえも上回る。   However, due to the lower refractive index, the quartz lens LOE1 is very much here because the condensing effect is lower, even though the image-side numerical aperture of the limited full length projection objective is not really large. The effect is that a large lens diameter is required. In the second exemplary embodiment (FIG. 2), the numerical aperture is NA = 1.35, but the lens diameter is larger than in the first exemplary embodiment. In this case, the lens diameter has already exceeded 143 mm and is therefore substantially 212 times the numerical aperture, while in the exemplary embodiment of FIG. 1, only 200 times the numerical aperture is achieved. In particular, in the illustrative embodiment of FIG. 2, a maximum half lens diameter of 143 mm exceeds even a mirror radius of about 136 mm.

投影対物レンズの最大レンズ素子の直径を最小限に抑えるとともに、同時に複屈折の効果を最小限に抑えるために、NA=1.45を有する設計例のさらに他の実施形態(投影対物レンズ300)において、最後のレンズ素子LOEは、肉薄の石英ガラス板LOE2上に密着せしめられる、正の屈折力と球面状に湾曲する入射面と平面状の出射面とを有する肉薄のサファイアレンズLOE1からなる(図3の例証的な参考実施形態3)。これにより、この対物レンズの出射面となる平行平面状石英ガラス板は、放射負荷による損傷発生時に交換されうる。したがって、密着せしめられる石英板は、さらにまた、サファイアレンズLOE1の汚染および/またはかき傷または破壊に対する交換可能な保護体として作用する。実施形態3は、浸漬液と接触する前記板に用いられる溶融石英(n=1.560)の屈折率と同様の屈折率(n=1.556)を有する浸漬液としてのシクロヘキサンに適合せしめられている。 Still another embodiment of the design example with NA = 1.45 (projection objective 300) to minimize the diameter of the largest lens element of the projection objective and at the same time minimize the effect of birefringence The last lens element LOE is formed of a thin sapphire lens LOE1 having a positive refractive power, a spherically curved entrance surface and a flat exit surface, which is brought into close contact with the thin quartz glass plate LOE2. Illustrative reference embodiment 3 of FIG. Thereby, the parallel flat quartz glass plate used as the exit surface of this objective lens can be replaced when damage occurs due to radiation load. Therefore, the quartz plate that is brought into close contact also acts as a replaceable protector against contamination and / or scratching or destruction of the sapphire lens LOE1. Embodiment 3 is adapted to cyclohexane as an immersion liquid having a refractive index (n = 1.556) similar to that of fused quartz (n = 1.560) used for the plate in contact with the immersion liquid. ing.

これらの場合には、NAは、石英ガラスの屈折率により制限される。しかしながら、その結果として、純粋な石英ガラスにより製作される最後のレンズを有する設計と比較すると、前記最後のレンズの上流において、ビーム角がより小さくなり、したがって全体としての対物レンズの直径もより小さくなるとともに、最後のレンズ素子の感受性(製造公差に対する妨害感受性)もより低くなる。このため、実施形態3においては、135mmの最大レンズ直径は、開口数の約186倍である。   In these cases, NA is limited by the refractive index of quartz glass. However, as a result, compared to a design with a last lens made of pure quartz glass, the beam angle is smaller upstream of the last lens, and hence the overall objective lens diameter is also smaller. At the same time, the sensitivity of the last lens element (disturbance sensitivity to manufacturing tolerances) is also lower. For this reason, in Embodiment 3, the maximum lens diameter of 135 mm is about 186 times the numerical aperture.

当然ながら、本発明を低開口数の対物レンズに用いて、実質的に以前の投影対物レンズの直径を減少させることもできる。このことは、材料の量を実質的に減らすことができるため、投影対物レンズの価格に有利な影響を及ぼす。   Of course, the present invention can also be used with low numerical aperture objectives to substantially reduce the diameter of previous projection objectives. This has a beneficial effect on the price of the projection objective, since the amount of material can be substantially reduced.

例証的な第4の参考実施形態(図4)に、サファイアにより製作される単体の最後のレンズと浸漬媒質としての水(nH2O=1.43)とを用いて1mmの作動距離でNA=1.35を達成する193nm用リソグラフィー対物レンズ400が示されている。この単体(単一部品、非分割)のサファイアレンズLOEの頂面(入射面)は、非球面であり、口径絞りASは、像側の屈折性対物レンズ部分ROP3の後側部分において、第3の対物レンズ部分ROP3内で最大直径を有する両凸レンズLMDでの最大ビーム直径の領域と像平面IPとの間の収束放射領域内に配置される。最大レンズ直径は、開口数の190倍未満に制限される。 In an illustrative fourth reference embodiment (FIG. 4), NA = at a working distance of 1 mm using a single last lens made of sapphire and water (n H2O = 1.43) as immersion medium. A 193 nm lithography objective 400 that achieves 1.35 is shown. The top surface (incident surface) of this single-piece (single component, non-divided) sapphire lens LOE is an aspheric surface, and the aperture stop AS is the third side of the image-side refractive objective lens portion ROP3. Of the biconvex lens LMD having the maximum diameter in the objective lens portion ROP3 of the objective lens portion ROP3. The maximum lens diameter is limited to less than 190 times the numerical aperture.

少なくとも最後のレンズ素子用に高屈折率材料を利用することにより、NA=1.45をさらに上回る開口数が可能である。   By utilizing a high refractive index material for at least the last lens element, a numerical aperture of even greater than NA = 1.45 is possible.

第5の例証的な参考実施形態500(図5)は、NA=1.6用に平凸状サファイアレンズLOE(nsapphire=1.92)を用いて固体浸漬(接触投影リソグラフィー)用に設計されている。このため、原則的にNA>1.8までの開口数さえ可能である。本例においては、ウェーハ側のフィールド外径は15.53mm、内径は5.5mmであり、すなわちこの場合の矩形フィールドの大きさは26×3mmである。 A fifth illustrative reference embodiment 500 (FIG. 5) is designed for solid immersion (contact projection lithography) using planoconvex sapphire lenses LOE (n sapphire = 1.92) for NA = 1.6. Has been. Therefore, in principle, even numerical apertures up to NA> 1.8 are possible. In this example, the field outer diameter on the wafer side is 15.53 mm and the inner diameter is 5.5 mm. In other words, the size of the rectangular field in this case is 26 × 3 mm.

NA>0.52の開口数を有する高開口数ビームは、平面状出射面でのサファイアから空気への遷移時に全反射にあうため、固体浸漬では、動作波長未満の作動距離を実現して、効率的にエバネッセント波を利用してウェーハを露光しなければならない。これは、真空中で、露光対象のウェーハを最後のレンズ面に近接する位置において常にたとえば100nm(≒λ/2)に配置することによって行なわれうる。   A high numerical aperture beam with a numerical aperture of NA> 0.52 undergoes total reflection during the transition from sapphire to air at the planar exit surface, so that solid immersion provides a working distance below the operating wavelength, Wafers must be exposed efficiently using evanescent waves. This can be done in vacuum by always placing the wafer to be exposed, for example at 100 nm (≈λ / 2) at a position close to the last lens surface.

しかしながら、エバネッセント場を介して伝達されるパワーは、距離とともに指数関数的に減衰することに基づいて、距離の小さな変化が均一性の大きな変動を引き起こすため、ウェーハを投影対物レンズの最後の端面(出射面)に直接物理的に接触させることが有利である。露光のために、ウェーハを最後の平面状レンズ面(接触面CS)上に密着させて露光して、投影対物レンズの出射面と基板に関連する入力結合面との間における物理的接触を得ることができる。この場合は、走査ステップ・モードまたはステッチング法の露光、すなわち、像フィールドより大きい領域が個別のステップで露光されて、以前に通例的であったウェーハの代わりにレチクル・マスクが相応に調節されて位置合せされることが好ましい。これは、さらにまた、縮小結像のために、レチクルをウェーハの調節より低い精度で調節することができるため、有利である。これにより、その後の露光段階により、半導体構造の互いに隣接する露光領域(ターゲット区画)または一連のレベルが、レチクル・マスクの横方向および軸方向の移動と回転とによって重ね合わされて、以って半導体構造は、数ナノメートルを上回る重ね合せ精度で、不完全に密着せしめられることもありうるウェーハ上に露光される。そのために、たとえばレチクルの位置合せマークは、ウェーハ上においてすでに露光された位置合せマークに合致せしめられる。   However, the power transmitted through the evanescent field is based on the exponential decay with distance, so that small changes in distance cause large variations in uniformity so that the wafer is projected to the last end face of the projection objective ( It is advantageous to make direct physical contact with the exit surface. For exposure, the wafer is brought into close contact with the last planar lens surface (contact surface CS) and exposed to obtain physical contact between the exit surface of the projection objective and the input coupling surface associated with the substrate. be able to. In this case, scanning step mode or stitching exposure, i.e. areas larger than the image field are exposed in separate steps, and the reticle mask is adjusted accordingly instead of the conventionally customary wafer. Are preferably aligned. This is also advantageous because the reticle can be adjusted with less accuracy than wafer adjustment for reduced imaging. Thereby, in a subsequent exposure step, adjacent exposure areas (target sections) or a series of levels of the semiconductor structure are superimposed by lateral and axial movement and rotation of the reticle mask, thereby causing the semiconductor The structure is exposed on a wafer that can be incompletely attached with a registration accuracy of over a few nanometers. To that end, for example, the alignment mark of the reticle is matched to the alignment mark already exposed on the wafer.

最後の面からのウェーハの解離は、好ましくは真空中において行なわれる。それが必要とされる場合は、ウェーハと最後の平面状レンズ面との間において、たとえば各露光段階後に交換されうる薄層(皮膜/薄膜)が配置される。この薄膜は、たとえばウェーハ上に固着されたままに保たれるとともに、解離を補助し得、かつ特に最後の平面状レンズ面の保護体としての役割を果たす。前記レンズ面は、任意で追加的に肉薄の保護層により保護されうる。   Dissociation of the wafer from the last side is preferably done in a vacuum. If it is required, a thin layer (film / thin film) is placed between the wafer and the last planar lens surface, which can be exchanged after each exposure step, for example. This thin film is, for example, kept fixed on the wafer, can aid in dissociation, and in particular serves as a protector for the last planar lens surface. The lens surface can optionally be additionally protected by a thin protective layer.

固体浸漬の場合は、結像妨害の実例により、高強度の定在波が、露光時に最後のレンズ面の縁部領域において生じしめられうる。したがって、ウェーハ上に構造を反復露光するためには、ウェーハが、密着により、期せずして数マイクロミリメートルの一定範囲内で不正確に配置された場合に、レチクルを用いて調節することにより何かを補償して、系統的な構造が最後のレンズに焼き付けられることを防ぐことがさらに一層有利である。   In the case of solid immersion, high intensity standing waves can be generated in the edge region of the last lens surface during exposure due to the illustration of imaging disturbances. Therefore, in order to repeatedly expose a structure on a wafer, if the wafer is unexpectedly placed within a certain range of a few micrometers due to close contact, it can be adjusted using a reticle. It is even more advantageous to compensate for something to prevent the systematic structure from being burned into the last lens.

前記に説明された全ての例証的な実施形態は、正確に2個の凹面鏡と正確に2個の中間像とを有する反射屈折性投影対物レンズにおいて、全ての光学素子が1本の屈折しない直線的な光軸に沿って整合せしめられる投影対物レンズである。本発明の好適な変形態様の説明のために選択された一定の基本的な種類の投影対物レンズは、いくつかの基本的な変形態様および技術効果と本発明の異なる変形態様に関連ある利点とを例証する上で一助となることを意図されている。しかしながら、特に遠紫外領域(DUV)の動作波長用の投影対物レンズにおいて高屈折率材料(たとえばn≧1.6、さらにはn≧1.8)製のレンズまたはレンズ素子を前記のように用いることは、この種の投影対物レンズに制限されるものではない。本発明は、純粋に屈折性の投影対物レンズにも取り入れられうる。これらの種類においては、像面に最も近い最後の光学素子は、しばしば、たとえば前記第1〜第5の各々の実施形態の最後の光学素子LOEに関して前記に説明された通則にしたがって設計されうる平凸レンズである。例は、たとえば本出願人の米国特許出願第10/931,051号(国際特許第03/075049 A号も参照)、第10/931,062号(米国特許第2004/0004757 A1号も参照)、第10/379,809号(米国特許第2003/01744408号も参照)または国際特許第03/077036 A号に示されている。これらの文献の開示は、参照により本明細書に取り入れられる。   All the exemplary embodiments described above are such that in a catadioptric projection objective having exactly two concave mirrors and exactly two intermediate images, all optical elements are one non-refracting straight line. A projection objective that is aligned along a typical optical axis. Certain basic types of projection objectives selected for the description of the preferred variants of the invention have several fundamental variants and technical effects and advantages associated with the different variants of the invention. It is intended to help in illustrating. However, a lens or lens element made of a high refractive index material (for example, n ≧ 1.6, or even n ≧ 1.8) is used as described above, particularly in a projection objective lens for operating wavelengths in the far ultraviolet region (DUV). This is not limited to this type of projection objective. The invention can also be incorporated in purely refractive projection objectives. In these types, the last optical element closest to the image plane is often a plane that can be designed, for example, according to the general rules described above with respect to the last optical element LOE in each of the first to fifth embodiments. It is a convex lens. Examples include, for example, Applicant's US patent application Ser. Nos. 10 / 931,051 (see also WO 03/075049 A), 10 / 931,062 (see also US 2004/0004757 A1). No. 10 / 379,809 (see also US 2003/01744408) or International Patent No. 03/077036 A. The disclosures of these documents are incorporated herein by reference.

同様に、本発明は、1個の凹面鏡しか有さない反射屈折性投影対物レンズまたは図に示された配置とは異なる配置の2個の凹面鏡を有する反射屈折性投影対物レンズ、または2個を超える個数の凹面鏡を有する実施形態にも実施されうる。さらにまた、本発明は、光学設計において屈折鏡が存在するか否かとは無関係に用いられうる。反射屈折系の例は、たとえば本出願人の米国特許出願第60/511,673号、第10/743,623号、第60/530,622号、第60/560,267号または米国特許第2002/0012100 A1号に示されている。これらの文献の開示は、本明細書の一部に取り入れられる。その他の例は、米国特許第2003/0011755 A1号およびその関連出願に示されている。   Similarly, the present invention provides a catadioptric projection objective having only one concave mirror or a catadioptric projection objective having two concave mirrors in an arrangement different from that shown in the figure, or two. It can also be implemented in embodiments having a greater number of concave mirrors. Furthermore, the present invention can be used regardless of whether a refractive mirror is present in the optical design. Examples of catadioptric systems include, for example, Applicants' U.S. Patent Application Nos. 60 / 511,673, 10 / 743,623, 60 / 530,622, 60 / 560,267 or U.S. Pat. It is shown in 2002/0012100 A1. The disclosures of these documents are incorporated herein by reference. Other examples are shown in US 2003/0011755 A1 and related applications.

同様に、本発明は、中間像を有さないか、または要求によって適切な個数の中間像を有する投影対物レンズにも実施されうる。

Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Similarly, the invention can be implemented in projection objectives that do not have intermediate images or have an appropriate number of intermediate images as required.
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858
Figure 0005106858

本発明にしたがった反射屈折性投影対物レンズの第1の実施形態の縦断面図である。1 is a longitudinal sectional view of a first embodiment of a catadioptric projection objective according to the present invention. FIG. 本発明にしたがった反射屈折性投影対物レンズの第2の実施形態の縦断面図である。FIG. 6 is a longitudinal sectional view of a second embodiment of a catadioptric projection objective according to the present invention. 本発明にしたがった反射屈折性投影対物レンズの第3の実施形態の縦断面図である。FIG. 6 is a longitudinal sectional view of a third embodiment of a catadioptric projection objective according to the present invention. 本発明にしたがった反射屈折性投影対物レンズの第4の実施形態の縦断面図である。FIG. 6 is a longitudinal sectional view of a fourth embodiment of a catadioptric projection objective according to the present invention. 本発明にしたがった反射屈折性投影対物レンズの第5の実施形態の縦断面図である。6 is a longitudinal sectional view of a fifth embodiment of a catadioptric projection objective according to the present invention. FIG.

Claims (13)

投影対物レンズの物体平面内に配置されるパターンを投影対物レンズの像平面上に結像させる、マイクロリソグラフィー投影露光装置に適する投影対物レンズにおいて:
投影対物レンズの動作波長での放射に対して透明性を有する複数個の光学素子からなり、少なくとも1個の光学素子は、前記動作波長において屈折率n≧1.6を有する高屈折率材料により製作される高屈折率光学素子であり、
前記像面に最も近い最後の光学素子を有し、 収差に関して、最後の光学素子と像平面との間における像側作動距離が、1を超える屈折率を有する浸漬媒質によって満たされるように適合せしめられる浸漬対物レンズとして設計され、
前記最後の光学素子は、分割界面に沿って互いに光学的に接触する少なくとも2個の光学素子によって構成され、分割面は、湾曲せしめられ
前記最後の光学素子を形成する前記光学素子の少なくとも1個は、屈折率n>1.6を有する高屈折率材料によって構成される投影対物レンズ。
In a projection objective suitable for a microlithographic projection exposure apparatus, in which a pattern arranged in the object plane of the projection objective is imaged on the image plane of the projection objective:
It comprises a plurality of optical elements that are transparent to radiation at the operating wavelength of the projection objective, and at least one optical element is made of a high refractive index material having a refractive index n ≧ 1.6 at the operating wavelength. High refractive index optical element to be manufactured,
A last optical element closest to the image plane, and with respect to aberrations, the image side working distance between the last optical element and the image plane is adapted to be filled by an immersion medium having a refractive index greater than 1. Designed as an immersion objective,
The last optical element is constituted by at least two optical elements that are in optical contact with each other along the dividing interface, and the dividing surface is curved ,
The last of the at least one of the optical elements forming the optical element, the projection objective lens that consists by a high refractive index material having a refractive index n> 1.6.
前記高屈折率材料は、前記動作波長において屈折率n≧1.8を有する請求項1に記載の投影対物レンズ。  The projection objective according to claim 1, wherein the high refractive index material has a refractive index n ≧ 1.8 at the operating wavelength. 前記高屈折率材料は、サファイアである請求項1または2に記載の投影対物レンズ。  The projection objective according to claim 1, wherein the high refractive index material is sapphire. 前記高屈折率材料は、二酸化ゲルマニウムである請求項1または2に記載の投影対物レンズ。  The projection objective according to claim 1, wherein the high refractive index material is germanium dioxide. 第1の高屈折率光学素子と、第1の高屈折率光学素子と同一の材料の少なくとも1個の第2の高屈折率光学素子とを有し、前記第1の高屈折率光学素子と前記第2の高屈折率光学素子との各々は、各光学素子の複屈折の配向を定義する複屈折を示す高屈折率材料により製作され、前記第1および第2の高屈折率光学素子は、前記複屈折の前記配向に関して相違して配設されて、前記高屈折率光学素子によりもたらされる複屈折の効果が少なくとも部分的に補償される前記請求項1〜4の1項に記載の投影対物レンズ。  A first high-refractive-index optical element; and at least one second high-refractive-index optical element made of the same material as the first high-refractive-index optical element, Each of the second high refractive index optical elements is made of a high refractive index material exhibiting birefringence that defines the birefringence orientation of each optical element, and the first and second high refractive index optical elements are 5. Projection according to one of the preceding claims, arranged differently with respect to the orientation of the birefringence, so that the birefringence effect provided by the high refractive index optical element is at least partially compensated. Objective lens. 前記最後の光学素子は、平凸レンズとして整形され、分割面は、該分割面において接触する両光学素子が同様の屈折力を有するレンズ部分となるように湾曲せしめられる請求項に記載の投影対物レンズ。The projection objective according to claim 1 , wherein the last optical element is shaped as a plano-convex lens, and the dividing surface is curved so that both optical elements in contact with the dividing surface become a lens portion having the same refractive power. lens. 前記動作波長において1.4を超える屈折率を有する浸漬液に適合せしめられる請求項1に記載の投影対物レンズ。  Projection objective according to claim 1, adapted for an immersion liquid having a refractive index greater than 1.4 at the operating wavelength. 193nmの動作波長用に設計され、前記浸漬液は、シクロヘキサンである請求項に記載の投影対物レンズ。8. Projection objective according to claim 7 , designed for an operating wavelength of 193 nm, wherein the immersion liquid is cyclohexane. 像側開口数NAが1.3を超える先行する請求項1〜の1項に記載の投影対物レンズ。Projection objective according to one of claims 1-8 where the image side numerical aperture NA precedes exceeds 1.3. 前記像平面に最も近い位置に配置される瞳面は、前記像平面に最も近い極大ビーム直径の領域と前記像平面との間において収束ビームの領域内に配置される先行する請求項1〜の1項に記載の投影対物レンズ。Pupil plane that is located closest to the image plane, claim the preceding are arranged in the region of the converging beam between the region and the image plane of the nearest local maximum beam diameter in the image plane 1-9 The projection objective lens according to 1 above. 投影対物レンズの物体平面内に配置されるマスク上に設けられたパターンを前記投影対物レンズの像平面内に配置される基板上に結像させるマイクロリソグラフィー投影露光方法であって、先行する請求項1〜10いずれかの1項に記載のマイクロリソグラフィー投影対物レンズが用いられ、浸漬液が、前記マイクロリソグラフィー投影対物レンズの最後のレンズと露光対象の前記基板との間において導入される方法。A microlithographic projection exposure method for imaging a pattern provided on a mask arranged in an object plane of a projection objective on a substrate arranged in an image plane of the projection objective, the preceding claim 11. A method in which the microlithographic projection objective according to any one of 1 to 10 is used, and an immersion liquid is introduced between the last lens of the microlithography projection objective and the substrate to be exposed. 前記投影対物レンズの動作波長において1.4を超える屈折率を有する浸漬液が用いられる請求項11に記載の方法。12. The method according to claim 11 , wherein an immersion liquid having a refractive index greater than 1.4 at the operating wavelength of the projection objective is used. 前記浸漬液は、前記動作波長において1.5を超える屈折率を有する請求項12に記載の方法。The method of claim 12 , wherein the immersion liquid has a refractive index greater than 1.5 at the operating wavelength.
JP2006543484A 2003-12-15 2004-12-10 Projection objective having a high numerical aperture and a planar end face Expired - Fee Related JP5106858B2 (en)

Applications Claiming Priority (25)

Application Number Priority Date Filing Date Title
US10/734,623 2003-12-15
US10/734,623 US6995930B2 (en) 1999-12-29 2003-12-15 Catadioptric projection objective with geometric beam splitting
US53062303P 2003-12-19 2003-12-19
US60/530,623 2003-12-19
US53097803P 2003-12-22 2003-12-22
US60/530,978 2003-12-22
US53624804P 2004-01-14 2004-01-14
US60/536,248 2004-01-14
US54496704P 2004-02-13 2004-02-13
US60/544,967 2004-02-13
US56800604P 2004-05-04 2004-05-04
US60/568,006 2004-05-04
US58750404P 2004-07-14 2004-07-14
US60/587,504 2004-07-14
US59177504P 2004-07-27 2004-07-27
US60/591,775 2004-07-27
US59220804P 2004-07-29 2004-07-29
US60/592,208 2004-07-29
US61282304P 2004-09-24 2004-09-24
US60/612,823 2004-09-24
US61767404P 2004-10-13 2004-10-13
US60/617,674 2004-10-13
DE102004051730 2004-10-22
DE102004051730.4 2004-10-22
PCT/EP2004/014062 WO2005059617A2 (en) 2003-12-15 2004-12-10 Projection objective having a high aperture and a planar end surface

Publications (2)

Publication Number Publication Date
JP2007514192A JP2007514192A (en) 2007-05-31
JP5106858B2 true JP5106858B2 (en) 2012-12-26

Family

ID=34705483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006543484A Expired - Fee Related JP5106858B2 (en) 2003-12-15 2004-12-10 Projection objective having a high numerical aperture and a planar end face

Country Status (4)

Country Link
EP (1) EP1697798A2 (en)
JP (1) JP5106858B2 (en)
KR (1) KR101200654B1 (en)
WO (1) WO2005059617A2 (en)

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI232357B (en) 2002-11-12 2005-05-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG121819A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE10261775A1 (en) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Device for the optical measurement of an imaging system
EP3301511A1 (en) 2003-02-26 2018-04-04 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP4353179B2 (en) 2003-03-25 2009-10-28 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
ATE426914T1 (en) 2003-04-07 2009-04-15 Nikon Corp EXPOSURE APPARATUS AND METHOD FOR PRODUCING AN APPARATUS
KR101177331B1 (en) 2003-04-09 2012-08-30 가부시키가이샤 니콘 Immersion lithography fluid control system
KR101409565B1 (en) 2003-04-10 2014-06-19 가부시키가이샤 니콘 Environmental system including a transport region for an immersion lithography apparatus
EP2921905B1 (en) 2003-04-10 2017-12-27 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
SG10201604762UA (en) 2003-04-10 2016-08-30 Nikon Corp Environmental system including vacuum scavange for an immersion lithography apparatus
SG10201803122UA (en) 2003-04-11 2018-06-28 Nikon Corp Immersion lithography apparatus and device manufacturing method
WO2004090577A2 (en) 2003-04-11 2004-10-21 Nikon Corporation Maintaining immersion fluid under a lithographic projection lens
WO2004092830A2 (en) 2003-04-11 2004-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
ATE542167T1 (en) 2003-04-17 2012-02-15 Nikon Corp LITHOGRAPHIC IMMERSION DEVICE
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI614794B (en) 2003-05-23 2018-02-11 Nikon Corp Exposure method and exposure apparatus and component manufacturing method
TWI518742B (en) 2003-05-23 2016-01-21 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
KR20060009956A (en) 2003-05-28 2006-02-01 가부시키가이샤 니콘 Exposure method, exposure device, and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101520591B1 (en) 2003-06-13 2015-05-14 가부시키가이샤 니콘 Exposure method, substrate stage, exposure apparatus and method for manufacturing device
CN101436003B (en) 2003-06-19 2011-08-17 株式会社尼康 Exposure apparatus and device manufacturing method
EP2853943B1 (en) 2003-07-08 2016-11-16 Nikon Corporation Wafer table for immersion lithography
WO2005006418A1 (en) 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2005006416A1 (en) 2003-07-09 2005-01-20 Nikon Corporation Linking unit, exposure apparatus and method for manufacturing device
EP1646075B1 (en) 2003-07-09 2011-06-15 Nikon Corporation Exposure apparatus and device manufacturing method
JP4524669B2 (en) 2003-07-25 2010-08-18 株式会社ニコン Projection optical system inspection method and inspection apparatus
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
KR101599649B1 (en) 2003-07-28 2016-03-14 가부시키가이샤 니콘 Exposure apparatus, device producing method, and exposure apparatus controlling method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
KR101380989B1 (en) 2003-08-29 2014-04-04 가부시키가이샤 니콘 Exposure apparatus and device producing method
JP4288426B2 (en) 2003-09-03 2009-07-01 株式会社ニコン Fluid supply apparatus and method for immersion lithography
JP4444920B2 (en) 2003-09-19 2010-03-31 株式会社ニコン Exposure apparatus and device manufacturing method
KR101441840B1 (en) 2003-09-29 2014-11-04 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
KR20060126949A (en) 2003-10-08 2006-12-11 가부시키가이샤 니콘 Substrate transporting apparatus and method, exposure apparatus and method, and device producing method
KR101203028B1 (en) 2003-10-08 2012-11-21 가부시키가이샤 자오 니콘 Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
TW200514138A (en) 2003-10-09 2005-04-16 Nippon Kogaku Kk Exposure equipment and exposure method, manufacture method of component
US7411653B2 (en) 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101394764B1 (en) 2003-12-03 2014-05-27 가부시키가이샤 니콘 Exposure apparatus, exposure method, device producing method, and optical component
KR101547037B1 (en) 2003-12-15 2015-08-24 가부시키가이샤 니콘 Stage system, exposure apparatus and exposure method
US7385764B2 (en) 2003-12-15 2008-06-10 Carl Zeiss Smt Ag Objectives as a microlithography projection objective with at least one liquid lens
WO2005071491A2 (en) 2004-01-20 2005-08-04 Carl Zeiss Smt Ag Exposure apparatus and measuring device for a projection lens
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
KR101227211B1 (en) 2004-02-03 2013-01-28 가부시키가이샤 니콘 Exposure apparatus and method of producing device
CN100592210C (en) 2004-02-13 2010-02-24 卡尔蔡司Smt股份公司 Projection objective for a microlithographic projection exposure apparatus
DE102004013886A1 (en) 2004-03-16 2005-10-06 Carl Zeiss Smt Ag Multiple Exposure Method, Microlithography Projection Exposure System and Projection System
KR101851511B1 (en) 2004-03-25 2018-04-23 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US8054448B2 (en) 2004-05-04 2011-11-08 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200617611A (en) 2004-06-01 2006-06-01 Du Pont Ultraviolet-transparent alkanes and processes using same in vacuum and deep ultraviolet applications
CN100594430C (en) 2004-06-04 2010-03-17 卡尔蔡司Smt股份公司 System for measuring the image quality of an optical imaging system
EP2966670B1 (en) 2004-06-09 2017-02-22 Nikon Corporation Exposure apparatus and device manufacturing method
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101433491B1 (en) 2004-07-12 2014-08-22 가부시키가이샤 니콘 Exposure equipment and device manufacturing method
JP4599936B2 (en) 2004-08-17 2010-12-15 株式会社ニコン Illumination optical apparatus, adjustment method of illumination optical apparatus, exposure apparatus, and exposure method
EP1801853A4 (en) 2004-08-18 2008-06-04 Nikon Corp Exposure apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006114839A (en) 2004-10-18 2006-04-27 Nikon Corp Projection optical system, aligner and exposure method
WO2006053751A2 (en) 2004-11-18 2006-05-26 Carl Zeiss Smt Ag Projection lens system of a microlithographic projection exposure installation
US7397533B2 (en) 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20160135859A (en) 2005-01-31 2016-11-28 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US7282701B2 (en) 2005-02-28 2007-10-16 Asml Netherlands B.V. Sensor for use in a lithographic apparatus
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
DE102006013560A1 (en) 2005-04-19 2006-10-26 Carl Zeiss Smt Ag Projection lens for micro lithographic projection illumination system, has lens , to characterizes symmetry axis of another lens by rotation of orientation of crystal axes, where lenses are separated by gap filled with liquid
JP2006309220A (en) 2005-04-29 2006-11-09 Carl Zeiss Smt Ag Projection objective
EP1746463A2 (en) * 2005-07-01 2007-01-24 Carl Zeiss SMT AG Method for correcting a lithographic projection objective and projection objective of such a kind
JP5069232B2 (en) 2005-07-25 2012-11-07 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective lens of microlithography projection exposure apparatus
EP1913445B1 (en) 2005-08-10 2011-05-25 Carl Zeiss SMT GmbH Imaging system, in particular projection lens of a microlithographic projection exposure unit
DE102006025044A1 (en) 2005-08-10 2007-02-15 Carl Zeiss Smt Ag Projection lens for microlithographic projection exposure system, has two optical units that are so designed that they are not rotationally symmetric to optical axis, where each unit generates one respective distribution of time delay
JPWO2007034838A1 (en) 2005-09-21 2009-03-26 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US7433050B2 (en) 2005-10-05 2008-10-07 Nikon Corporation Exposure apparatus and exposure method
EP1950793A1 (en) 2005-10-05 2008-07-30 Nikon Corporation Exposure apparatus and exposure method
WO2007052659A1 (en) 2005-11-01 2007-05-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007055237A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007055199A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus and method, and method for manufacturing device
KR20080068013A (en) 2005-11-14 2008-07-22 가부시키가이샤 니콘 Liquid recovery member, exposure apparatus, exposure method, and device production method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
JP2007165869A (en) 2005-11-21 2007-06-28 Nikon Corp Exposure method and method for manufacturing device using same, exposure device, and method and device of processing substrate
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
KR101539517B1 (en) 2005-12-08 2015-07-24 가부시키가이샤 니콘 Substrate holding device, exposure device, exposure method, and device fabrication method
JP2009521727A (en) * 2005-12-22 2009-06-04 コーニング インコーポレイテッド Immersion type doublet lens for high numerical aperture optical system
DE102006038454A1 (en) * 2005-12-23 2007-07-05 Carl Zeiss Smt Ag Projection objective for microlithographic projection exposure apparatus, has optical subsystem that projects intermediate image into image-plane with image-plane side projection ratio of specific value
KR20080088579A (en) 2005-12-28 2008-10-02 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device production method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
EP1986222A4 (en) 2006-02-16 2010-09-01 Nikon Corp Exposure apparatus, exposing method, and device manufacturing method
EP1986224A4 (en) 2006-02-16 2012-01-25 Nikon Corp Exposure apparatus, exposing method, and device manufacturing method
EP2003680B1 (en) 2006-02-21 2013-05-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US7764427B2 (en) 2006-02-21 2010-07-27 Carl Zeiss Smt Ag Microlithography optical system
SG170010A1 (en) 2006-02-21 2011-04-29 Nikon Corp Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure appararus and method, and device manufacturing method
CN101385122B (en) 2006-02-21 2010-12-08 株式会社尼康 Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
EP1995768A4 (en) 2006-03-13 2013-02-06 Nikon Corp Exposure apparatus, maintenance method, exposure method and device manufacturing method
US20070242254A1 (en) 2006-03-17 2007-10-18 Nikon Corporation Exposure apparatus and device manufacturing method
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US20080013062A1 (en) 2006-03-23 2008-01-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP1852745A1 (en) * 2006-05-05 2007-11-07 Carl Zeiss SMT AG High-NA projection objective
DE102006021797A1 (en) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optical imaging device with thermal damping
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
CN102298274A (en) 2006-05-18 2011-12-28 株式会社尼康 Exposure method and apparatus, maintenance method and device manufacturing method
CN101385125B (en) 2006-05-22 2011-04-13 株式会社尼康 Exposure method and apparatus, maintenance method, and device manufacturing method
CN102156389A (en) 2006-05-23 2011-08-17 株式会社尼康 Maintenance method, exposure method and apparatus, and device manufacturing method
EP2023379A4 (en) 2006-05-31 2009-07-08 Nikon Corp Exposure apparatus and exposure method
KR101236043B1 (en) 2006-07-14 2013-02-21 가부시키가이샤 니콘 Stage apparatus, exposure apparatus, and device manufacturing method
TWI457723B (en) 2006-09-08 2014-10-21 尼康股份有限公司 A mask, an exposure device, and an element manufacturing method
JP5029611B2 (en) 2006-09-08 2012-09-19 株式会社ニコン Cleaning member, cleaning method, exposure apparatus, and device manufacturing method
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US7557997B2 (en) 2006-09-28 2009-07-07 Nikon Corporation Immersion objective optical system, exposure apparatus, device fabrication method, and boundary optical element
KR101419196B1 (en) 2006-09-29 2014-07-15 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
US8004651B2 (en) 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
JP2009033111A (en) 2007-05-28 2009-02-12 Nikon Corp Exposure device, device manufacturing method, cleaning device, and cleaning method and exposure method
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8264669B2 (en) 2007-07-24 2012-09-11 Nikon Corporation Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US8279399B2 (en) 2007-10-22 2012-10-02 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
KR101592136B1 (en) 2007-10-26 2016-02-04 칼 짜이스 에스엠티 게엠베하 Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type
DE102007051671A1 (en) 2007-10-26 2009-05-07 Carl Zeiss Smt Ag Imaging optics and projection exposure system for microlithography with such an imaging optics
JP5902884B2 (en) 2007-10-26 2016-04-13 カール・ツァイス・エスエムティー・ゲーエムベーハー Imaging optical system and projection exposure apparatus for microlithography including this kind of imaging optical system
US9013681B2 (en) 2007-11-06 2015-04-21 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US9256140B2 (en) 2007-11-07 2016-02-09 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method with measurement device to measure movable body in Z direction
KR101470671B1 (en) 2007-11-07 2014-12-08 가부시키가이샤 니콘 Exposure apparatus, exposure method and device manufacturing method
US8665455B2 (en) 2007-11-08 2014-03-04 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US8422015B2 (en) 2007-11-09 2013-04-16 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US8711327B2 (en) 2007-12-14 2014-04-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
TWI547769B (en) 2007-12-28 2016-09-01 尼康股份有限公司 An exposure apparatus, a moving body driving system, a pattern forming apparatus, and an exposure method, and an element manufacturing method
EP2128703A1 (en) 2008-05-28 2009-12-02 ASML Netherlands BV Lithographic Apparatus and a Method of Operating the Apparatus
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
JP5567098B2 (en) * 2012-10-31 2014-08-06 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective with pupil correction
CN105549327B (en) * 2014-10-29 2018-03-02 上海微电子装备(集团)股份有限公司 The adjusting apparatus and method of adjustment of exposure device
ES2895082T3 (en) * 2017-07-05 2022-02-17 Zanini Auto Grup Sa Radome for vehicles

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
DE19633128A1 (en) * 1996-08-16 1998-02-19 Zeiss Carl Fa Achromatic lens system for ultraviolet rays with germanium dioxide glass
JP2000133588A (en) * 1998-08-18 2000-05-12 Nikon Corp Aligner, manufacture thereof and exposing method
KR20000034967A (en) * 1998-11-30 2000-06-26 헨켈 카르스텐 Objective with crystal-lenses and projection-illuminating-device
DE19855108A1 (en) 1998-11-30 2000-05-31 Zeiss Carl Fa Microlithographic reduction lens, projection exposure system and method
US6630117B2 (en) * 1999-06-04 2003-10-07 Corning Incorporated Making a dispersion managing crystal
DE10029938A1 (en) * 1999-07-09 2001-07-05 Zeiss Carl Optical system for projection exposure device, includes optical element which consists of magnesium fluoride, as main constituent
US6594430B1 (en) * 2000-05-11 2003-07-15 Carnegie Mellon University Solid immersion lenses for focusing collimated light in the near-field region
JP2002053839A (en) * 2000-08-08 2002-02-19 Nikon Corp Liquid with high refractive index
JP2002098903A (en) * 2000-09-25 2002-04-05 Nikon Corp Immersion system microscopic objective lens
JP2002323652A (en) * 2001-02-23 2002-11-08 Nikon Corp Projection optical system, projection exposure apparatus provided with the same, and projection exposure method
JP2002323653A (en) * 2001-02-23 2002-11-08 Nikon Corp Projection optical system, projection exposure apparatus, and projection exposure method
WO2002091078A1 (en) * 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
DE10133841A1 (en) * 2001-07-18 2003-02-06 Zeiss Carl Lens with crystal lenses
DE10210899A1 (en) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection lens for immersion lithography
US20050164522A1 (en) * 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
EP1480065A3 (en) * 2003-05-23 2006-05-10 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
JP4880869B2 (en) * 2003-08-28 2012-02-22 株式会社ニコン Lens system and projection exposure apparatus

Also Published As

Publication number Publication date
KR101200654B1 (en) 2012-11-12
EP1697798A2 (en) 2006-09-06
KR20060109935A (en) 2006-10-23
WO2005059617A2 (en) 2005-06-30
JP2007514192A (en) 2007-05-31
WO2005059617A3 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP5106858B2 (en) Projection objective having a high numerical aperture and a planar end face
JP2008547039A (en) Projection objective with high aperture and planar end face
JP4717974B2 (en) Catadioptric optical system and projection exposure apparatus provided with the optical system
JP5106099B2 (en) Projection objective lens, projection exposure apparatus for microlithography, and reflection reticle
KR101150037B1 (en) Catadioptric projection objective
US8830590B2 (en) Unit magnification large-format catadioptric lens for microlithography
US20120274919A1 (en) Catadioptric projection objective
EP2372404B1 (en) High transmission, high aperture projection objective and projection exposure apparatus
JP2007516613A (en) Objective lens as a microlithographic projection objective comprising at least one liquid lens
JP2006309220A (en) Projection objective
US7848016B2 (en) High-NA projection objective
US20100134891A1 (en) Optical system of a microlithographic projection exposure apparatus
JP5105743B2 (en) Refractive projection objective for immersion lithography
TWI572904B (en) Wynne-dyson projection lens with reduced susceptibility to uv damage
JP2009521000A (en) Projection objective lens of microlithography projection exposure apparatus
US7218453B2 (en) Projection system, in particular for a microlithographic projection exposure apparatus
JP2002323658A (en) Split type objective lens for illumination system
JP5165700B2 (en) Catadioptric projection objective with pupil correction
US20090086338A1 (en) High Aperture Folded Catadioptric Projection Objective
EP1936421A1 (en) Catadioptric optical system and catadioptric optical element
WO2008101676A2 (en) Catadioptric projection objective
US20090091728A1 (en) Compact High Aperture Folded Catadioptric Projection Objective
CN1894632A (en) Projection objective having a high aperture and a planar end surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110318

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

R150 Certificate of patent or registration of utility model

Ref document number: 5106858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees