TWI713082B - 透過限制達成的矽化物相控制 - Google Patents

透過限制達成的矽化物相控制 Download PDF

Info

Publication number
TWI713082B
TWI713082B TW105130751A TW105130751A TWI713082B TW I713082 B TWI713082 B TW I713082B TW 105130751 A TW105130751 A TW 105130751A TW 105130751 A TW105130751 A TW 105130751A TW I713082 B TWI713082 B TW I713082B
Authority
TW
Taiwan
Prior art keywords
silicon
metal
layer
nickel
substrate
Prior art date
Application number
TW105130751A
Other languages
English (en)
Other versions
TW201727699A (zh
Inventor
班雀奇 梅保奇
怡利 葉
美荷B 那克
史林尼法斯D 奈馬尼
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201727699A publication Critical patent/TW201727699A/zh
Application granted granted Critical
Publication of TWI713082B publication Critical patent/TWI713082B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53271Conductive materials containing semiconductor material, e.g. polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本文所述的實現方式大體涉及金屬矽化物的選擇性沉積的方法。更具體地,本文所述的實現方式大體涉及形成用於半導體應用的矽化鎳奈米線的方法。在一個實現方式中,提供一種處理基板的方法。該方法包括以下步驟:在基板表面上形成含矽層;在該含矽層上形成含金屬層,該含金屬層包含過渡金屬;在該含金屬層的暴露的表面上形成限制層;以及在低於攝氏400度的溫度下使該基板退火,以便從該含矽層和該含金屬層形成金屬矽化物層,其中該限制層抑制富含含金屬的金屬矽化物相的形成。

Description

透過限制達成的矽化物相控制
本文所述的實現方式大體涉及金屬矽化物的選擇性沉積的方法。更具體地,本文所述的實現方式大體涉及形成用於半導體應用的金屬矽化物奈米線的方法。
積體電路已演化成在單個晶圓上可包括數百萬個部件(例如,電晶體、電容器和電阻器)的複雜元件。晶圓設計的演進不斷地要求更快的電路以及更大的電路密度。對更大電路密度的需求必然需要積體電路部件尺度的減小。
幾十年來,已將銅(Cu)互連件用為鋁(Al)的替代。形成在基板上的電晶體的數量正在達到與摩爾定律一致的能夠包封在小面積中的數百萬的範圍。隨著電晶體數量增加以及電晶體尺寸減小,一旦金屬直線尺度接近或低於39奈米(「nm」)的Cu平均自由行程,Cu電阻率就會呈指數增加。
後銅時代必然需要具有低電阻率和更小的平均自由行程的新互連材料。平均自由行程是移動顆粒(諸如,電子、原子或光子)在改變此移動顆粒的方向或能量或其他顆粒性質的連續的衝擊(撞擊)之間行進的平均距離。一些已經在研究中的金屬包括鈷(Co)、鎢(W)以及一些金屬合金。鑒於Ni-Si的約5 nm的小平均自由行程,矽化物(諸如,矽化鎳(Ni-Si)互連件和矽化鈷(CoSi2 )互連件)是強有力的潛在候選。即使Ni-Si電阻率高於Cu電阻率,約5 nm的Ni-Si窄平均自由行程亦使Ni-Si有利的優勢以取代Cu而用於7 nm或更低的先進未來技術節點。
然而,對於強有力的潛在候選來說,當前的處理方法不適合於進行直接的元件集成。涉及矽化物奈米線的大多數研究針對獨立式奈米線進行,因為當前的處理方法可能導致介電質損壞、熱預算問題、晶格缺陷以及其他問題。關於熱預算問題,低電阻率Ni-Si相形成通常涉及高於約攝氏650度的高退火溫度。這些高退火溫度不適合於後端製程(BEOL)集成,部分原因在於大多數的低介電常數材料的溫度預算限制(例如,低於約攝氏400度)。然而,在低於約攝氏650度的溫度下來使Ni-Si退火導致Ni-Si體積膨脹以及高電阻率的Ni-Si相形成。
因此,需要適合於半導體製造應用的在低溫下形成低電阻率Ni-Si相的方法。
本文所述的實現方式大體涉及金屬矽化物的選擇性沉積的方法。更具體地,本文所述的實現方式大體涉及形成用於半導體應用的矽化鎳奈米線的方法。在一個實現方式中,提供一種處理基板的方法。該方法包括以下步驟:在基板之表面上形成含矽層;在該含矽層上形成含金屬層,該含金屬層包含過渡金屬;在該含金屬層的暴露的表面上形成限制層;以及在低於攝氏400度的溫度下使該基板退火,以便從該含矽層和該含金屬層形成金屬矽化物層。該限制層抑制富含金屬的金屬矽化物相的形成。
在另一實現方式中,提供一種處理基板的方法。該方法包括以下步驟:在基板的含氧化物表面上形成含矽奈米線;在該含矽奈米線上形成含鎳層;在該含鎳層的暴露的表面上形成限制層;以及在低於攝氏400度的溫度下使該基板退火,以便從該含矽層和該含鎳層形成單矽化鎳奈米線。該限制層抑制富含鎳的矽化鎳相的形成。
在又一實現方式中,提供一種處理基板的方法。該方法包括:透過以下步驟在基板的含氧化物表面上形成含矽奈米線:在含氧化物表面上沉積含矽層;以及使該含矽層圖案化,以便在該含氧化物表面上形成至少一個含矽奈米線。該方法進一步包括以下步驟:在該含矽奈米線上形成含鎳層;在該含鎳層的暴露的表面上形成限制層;以及在約攝氏15度與攝氏400度之間的溫度下使該基板退火,以便從該包含含矽奈米線的層和該含鎳層形成單矽化鎳奈米線。該限制層抑制富含鎳的矽化鎳相的形成。
下文公開內容描述用於半導體應用的在低溫下形成金屬矽化物奈米線的方法。在下文描述和圖1A-3E中闡明某些細節,以便提供對本案揭露內容的各種實現方式的透徹理解。在以下公開內容中不闡明描述通常與金屬矽化物形成和半導體應用關聯的公知的結構和系統的其他細節,以便避免不必要地使對各種實現方式的描述含糊。
在附圖中示出的許多細節、尺寸、角度和其他特徵僅說明特定的實現方式。因此,其他實現方式可以具有其他細節、部件、尺度、角度和特徵而不本利本案揭露內容的精神或範圍。另外,可以在無需下述細節中的若干細節的情況下來實踐本案揭露內容的進一步的實現方式。
本文所述的實現方式提供適合於半導體製造應用的在低溫(例如,低於攝氏400度)下形成低電阻率金屬矽化物(例如,Ni-Si)相的方法。低電阻率金屬矽化物相的形成通常涉及高於約攝氏650度的高退火溫度。然而,這些高退火溫度不適合於大多數半導體製造應用(包括後端製程(BEOL)集成),部分原因在於低介電常數材料的溫度預算限制(例如,低於約攝氏400度)。然而,在低於約攝氏400度的溫度下來使金屬矽化物退火導致金屬矽化物的體積膨脹和高電阻率的富含金屬的金屬矽化物相材料的形成。本文所述的實現方式提供限制層,該限制層在後續退火製程期間在以物理方式、以化學方式、或既以物理方式又以化學方式來減少下方含矽層和下方含金屬層的體積膨脹。因此,如本文所述的限制層提供在低於攝氏400度的生產溫度下生產低電阻率金屬矽化物。
在下文中將參照可使用可從加利福尼亞州聖克拉拉市的應用材料公司(Applied Materials,Inc.of Santa Clara,California)購得的適當地適配的CENTURA®、Producer®SE或Producer®GT處理系統來執行的矽化鎳製程來描述本文所述的實現方式。能夠執行矽化鎳製程的其他工具亦可適配用於從本文所述實現方式中受益。另外,可有利地使用實現本文所述的矽化鎳製程的任何系統。本文所述的裝置描述是說明性的,並且不應理解或解釋為限制本文所述的實現方式範圍。
本案揭露內容的實現方式描述用於形成金屬矽化物層的方法,該金屬矽化物層可以用作例如用於半導體元件製造的後端互連結構的導電奈米線。在一個實例中,透過在低於攝氏400度的溫度下進行的沉積製程來形成金屬矽化物層。可使用迴圈沉積技術來沉積金屬矽化物奈米線。可用於形成金屬矽化物層的合適沉積技術包括電漿增強型化學氣相沉積(PECVD)、物理氣相沉積(PVD)製程、金屬有機化學氣相沉積(MOCVD)、熱化學氣相沉積(熱-CVD)製程、低壓力化學氣相沉積(LPCVD)、亞大氣壓化學氣相沉積(SACVD)、原子層沉積(ALD)等、或任何合適的沉積技術。在下文中將參考附圖更清楚地描述本文公開的實現方式。
如本文中所使用,除非另外陳述,否則提到奈米線意欲包括其他類型奈米結構,包括奈米管、奈米顆粒、奈米球體、奈米桿、奈米鬚,等等。奈米線可具有以下深寬比:大於1,典型地至少約為2,更典型地至少約為4。在特定實現方式中,奈米線具有至少為10並甚至至少為約100的深寬比。奈米線可利用它們的一個較大的尺度來連接至其他半導體部件。
如本文中所使用,除非另外陳述,否則富含金屬的金屬矽化物相是指金屬原子數量大於矽原子數量的金屬矽化物相。例如,富含鎳的金屬矽化物相包括Ni3 Si、Ni31 Si12 、Ni2 Si和Ni3 Si2
圖1A是適合於形成金屬矽化物層的電漿處理系統132的橫截面圖,該金屬矽化物層可以用作用於半導體元件製造的導電奈米線。電漿處理系統132可以是可從加利福尼亞州聖克拉拉市的應用材料公司購得的適當地適配的CENTURA®、Producer®SE或Producer®GT處理系統。可預見的是,其他處理系統(包括由其他製造商生產的那些處理系統)可受益於本文所述的實現方式。
電漿處理系統132包括耦接到控制器110的處理腔室100。處理腔室100一般包括限定處理區域126的蓋124、側壁101和底壁122。
在處理腔室100的處理區域126中提供支撐基座150。支撐基座150可由鋁、陶瓷、以及其他合適的材料製成。在一個實現方式中,支撐基座150由陶瓷材料(諸如,氮化鋁)製成,該陶瓷材料是適合用於高溫環境(諸如,電漿製程環境)的而不對支撐基座150造成熱損壞的材料。可以使用升降機構(未圖示)在處理腔室100內在豎直方向上移動支撐基座150。
支撐基座150可以包括嵌入式加熱器元件170,該嵌入式加熱器元件適於控制支撐在支撐基座150上的基板190的溫度。在一個實現方式中,可以透過將電流從電源106施加至嵌入式加熱器元件170來以電阻方式加熱支撐基座150。在一個實現方式中,嵌入式加熱器元件170可由包封在鎳-鐵-鉻合金(例如,INCOLOY®)鞘管中的鎳-鉻線製成。由控制器110調節從電源106供應的電流,以便控制由嵌入式加熱器元件170生成的熱,由此,在任何合適的溫度範圍下的膜沉積期間將基板190和支撐基座150維持在基本上恆定的溫度。在另一實現方式中,可根據需要將基座維持在室溫。在又一實現方式中,支撐基座150還可根據需要包括冷卻器(未圖示),以便根據需要將支撐基座150冷卻為處於低於室溫的範圍。可調整所供應的電流,以便選擇性地將支撐基座150的溫度控制在例如約攝氏15度與約攝氏400度之間(在攝氏50度與約攝氏350度之間;在約攝氏200度與約攝氏300度之間)。
溫度感測器172(諸如,熱電偶)可嵌入在支撐基座150中,以便以常規的方式監測支撐基座150的溫度。由控制器110使用量測到的溫度以控制供應到嵌入式加熱器元件170的電力,以便將基板維持在期望的溫度。
支撐基座150一般包括穿過其中而設置的多個升降桿(未圖示),該升降桿配置成將從支撐基座150升起基板190,並且利用機器人(未圖示)以常規的方式促進基板190的交換。
支撐基座150包括用於將基板190保持在支撐基座150上的至少一個電極192。由卡緊電源108驅動電極192以形成將基板190固持到基座表面的靜電力。或者,基板190可透過夾緊、真空或重力而被保持到支撐基座150。
在一個實現方式中,支撐基座150被配置為陰極並耦接到至少一個RF偏壓電力源184、186,該陰極具有嵌入在其中的電極192。儘管圖1A中描繪的示例示出兩個RF偏壓電力源184、186,但應注意,亦可根據需要使用任何數量的RF偏壓電力源。RF偏壓電力源184、186耦接在設置在支撐基座150中的電極192與另一電極(諸如,處理腔室100的氣體分配板142(在圖1B中描繪)或頂板材(蓋124))之間。RF偏壓電力源184、186激發並維持從設置在處理腔室100的處理區域126中的氣體形成的電漿放電。
在圖1A中描繪的實現方式中,RF偏壓電力源184、186透過匹配電路104而耦接到支撐基座150中設置的電極192。由RF偏壓電力源184、186生成的信號透過單個饋送經由匹配電路104而輸送到支撐基座150,以使處理腔室100中提供的氣體混合物電離,由此提供執行沉積或其他電漿增強型製程必需的離子能量。RF偏壓電力源184、186一般能夠產生具有從約50 kHz至約200 MHz的頻率以及在約0瓦特與約5000瓦特之間的電力的RF信號。
真空泵102耦接到形成在處理腔室100的底壁122中的埠。真空泵102用於維持處理腔室100中的期望的氣體壓力。真空泵102還從處理腔室100抽空處理後的氣體以及製程的副產物。
光源140設置在處理腔室100上,從而部分地限定處理腔室100的蓋124。光源140配置成透過窗138而將熱能提供到設置在支撐基座150上的基板190。窗138通常由設置在處理腔室100的蓋124中的石英製成,並且至少部分地由光源140覆蓋。
光源140可以包括各種類型輻射型加熱器。在一個實例中,光源140包括外殼139,該外殼139具有設置在其中的一個或多個光源141。電力連接件(未圖示)可耦接到光源140,以便促成將電力提供至一個或多個光源141。在一個實例中,設置在光源140中的一個或多個光源141可向基板190提供具有在約400 nm與約4000 nm之間的波長的輻射能,諸如,IR輻射和/或較長波長的UV輻射。在一個實現方式中,人們相信從一個或多個光源141提供的輻射能用於增強從電漿生成以發射到基板190的光子,從而在處理期間促進化學反應。一個或多個光源141在電漿中提供IR和/或UV光(例如,光子),由此增強光子跨基板190的表面191的分佈。
處理腔室100包括耦接成穿過處理腔室100的蓋124或側壁101的一個或多個氣體輸送通道135。一個或多個氣體輸送通道135和真空泵102定位在處理腔室100的相對端部處,以便在處理區域126內誘發層流,從而使顆粒污染最小化。在一個實現方式中,另兩個氣體輸送通道135設置成穿過處理腔室100的蓋124。一個或多個氣體輸送通道135通常耦接到閥136,以便選擇性地允許來自氣體面板130的處理氣體流進並流出處理區域126。或者,附加的通道134可定位在相鄰側壁101處,以便跨基板190的表面191提供更均勻的氣體分佈。
一個或多個氣體輸送通道135透過閥136而耦接到氣體面板130,以便將氣體混合物提供到處理區域126中。在一個實現方式中,一個或多個氣體輸送通道135可配置為氣體分配環,其中氣體混合物可從相鄰側壁101穿過孔洞陣列來分配,以便優化流動均勻性。在另一實現方式中,氣體混合物可穿過設置在光源140下方的氣體分配板142(在圖1B中示出)而供應到處理腔室100。氣體分配板142可由可透射從光源140生成的熱的材料製成,以便諸如基本上不干擾對定位在支撐基座150上的基板的加熱。
可從氣體面板130供應的氣體的示例可以包括含金屬前驅物氣體、含矽前驅物氣體和載氣。可以使用任何合適的含金屬前驅物氣體、含矽前驅物氣體和載氣。合適的含鎳化合物包括羰基鎳錯合物、脒基鎳化合物、二茂鎳化合物(Ni(C5 H5 )2 )、二烯鎳錯合物、亞硝醯鎳錯合物或上述化合物的組合。合適的含鎳化合物的實例包括:雙(N,N'-二叔丁基乙脒)鎳(II);雙(環戊二烯)鎳(即,Ni(C5 H5 )2 、NiCp2 );雙(乙基戊二烯基)鎳;雙(乙基環戊二烯)鎳(II)(即,Ni(C5 H4 C2 H5 )2 );雙[二(叔丁基)醯氨基]鎳(II);Ni[N(t-Bu)2 ]2 ;Ni[(t-BuN)2 (CCH3 )]2 ;Ni[N(t-uut)2 ];Ni((t Bu2 N)2 CCH3 )2 ;以及Rx Ov Niy (OR')z , (OR)2 Ni,其中R可以是甲基、乙基、丙基、異丙基、丁基、異丁基、叔丁基、以及具有更高數量的碳原子的其他烷基基團等,並且其中x大於或等於1,v大於或等於1,y大於或等於1,並且z大於或等於1;或者任何合適含金屬前驅物,等等。其他含金屬前驅物可從含過渡金屬元素(諸如,Ni、Ti、Fe、Co、Cr、Mn以及它們組合)的氣體中選擇。合適的含矽前驅物的示例可以包括含矽烷氣體,諸如,甲矽烷(SiH4 )、乙矽烷(Si2 H6 )、二氯矽烷(SiH2 Cl2 )、Si4 H10 、Si5 H12 、四氟化矽(SiF4 )、四氯化矽(SiCl4 )等等。合適的載氣包括氮(N2 )、氬(Ar)、氫(H2 )、烷烴、烯烴、氦(He)、氧(O2 )、臭氧(O3 )、水蒸氣(H2 O),等等。
在一個實現方式中,遠端電漿源(RPS)148可替代地耦接到一個或多個氣體輸送通道135以輔助在處理區域126中形成電漿。遠端電漿源148將從由氣體面板130提供的氣體混合物中形成的電漿提供到處理腔室100。
此外,微波發生器181可耦接到處理腔室100的蓋124(或側壁101)。類似地,耦接到處理腔室100的微波發生器181可輔助將來自氣體混合物的氣體離解為變成反應物質以增強跨基板190的表面191的化學反應。
控制器110包括用於控制製程序列並調節來自氣體面板130的氣流的中央處理單元(CPU)112、記憶體116和支援電路114。CPU 112可以是可用於工業設定的任何形式的通用電腦處理器。軟體常式可存儲在記憶體116(諸如,隨機存取記憶體、唯讀記憶體、軟碟或硬碟、或其他形式的數位存儲裝置)中。支援電路114按常規方式耦接到CPU 112,並且可以包括快取記憶體、時鐘電路、輸入/輸出系統、電源,等等。在控制器110與電漿處理系統132的各種元件之間的雙向通信透過許多信號電纜(統稱為信號匯流排118,其中的一些在圖1A中示出)來處理。
圖1B描繪可用於形成金屬矽化物層的電漿處理腔室151的另一實現方式。圖1B中描繪的電漿處理腔室151的配置與圖1A中描繪的電漿處理腔室100的配置類似,但是具有耦接到電漿處理腔室151的蓋125的氣體分配板142。與設置在處理腔室100的蓋124上方的圖1A的光源140不同,圖1B中描繪的電漿處理腔室151的光源180形成在蓋125的邊緣上,同時具有設置在電漿處理腔室151的蓋125的中心區域144上的氣體面板193。光源180可呈環形陣列。類似地,光源180與可提供輻射以增強電漿中的光子生成的一個或多個光源141類似,這可輔助發生在基板190的表面191上的化學反應。
在一個實例中,具有多個孔143的氣體分配板142耦接至處理腔室100在支撐基座150上方的蓋125。氣體分配板142的孔143用於將製程氣體從氣體面板193引入電漿處理腔室151中。孔143可以具有不同的尺寸、數量、分佈、形狀、設計和直徑,以便促成用於不同製程要求的各種製程氣體的流動。電漿由離開氣體分配板142的製程氣體混合物形成,以便增強製程氣體的熱分解,從而造成材料在基板190的表面191上沉積。
氣體分配板142和支撐基座150可形成處理區域126中的一對間隔開的電極。一個或多個RF電力源147透過匹配網路145將偏壓電位提供到氣體分配板142,以便促進在氣體分配板142與支撐基座150之間生成電漿。或者,一個或多個RF電力源147和匹配網路145可耦接至氣體分配板142、支撐基座150,或耦接至氣體分配板142和支撐基座150兩者,或耦接至設置在電漿處理腔室151外部的天線(未圖示)。在一個實現方式中,一個或多個RF電力源147可以在約30 kHz至約13.6 MHz的頻率下供應在約10瓦特與約3000瓦特之間的電力。或者,一個或多個RF電力源147可以是將微波電力提供到氣體分配板142以輔助在處理區域126中生成電漿的微波發生器。
圖2描繪用於在低溫(諸如,低於攝氏400度)下在基板上形成金屬矽化物層的方法200的流程圖,該金屬矽化物層可用作半導體元件製造的導電奈米線。圖2中描述的序列對應於圖3A-3E中描繪的製造階段。圖3A-3E描繪根據圖2的製程而形成在基板上的金屬矽化物層的橫截面示意圖。
在操作210處,方法200以設置在處理腔室中的基板(諸如,圖3A中描繪的基板300)開始。處理腔室可以是如上所述處理腔室,諸如,圖1A和圖1B中描繪的處理腔室100和151或另一合適的處理腔室。圖3A中所示的基板300可以包括形成在基板300上的膜堆疊(未圖示)。膜堆疊可以包括設置在低介電常數絕緣介電質材料上的阻擋層。在一個實現方式中,膜堆疊包括設置在矽材料上的低介電常數絕緣介電質材料。在一個實例中,基板300可以具有基本上平坦的表面、不均勻的表面、或具有形成在其上結構的基本上平坦的表面。
基板300可以是如下材料,諸如結晶矽(例如,Si<100>或Si<111>)、氧化矽、應變矽、鍺矽、鍺、摻雜或未摻雜多晶矽、摻雜或未摻雜矽晶圓和圖案化或未圖案化晶圓絕緣體上的矽(SOI)、碳摻雜氧化矽、氮化矽、摻雜矽、鍺、砷化鎵、玻璃、藍寶石以及上述各項的組合。基板300可以具有各種尺度,諸如,200 mm或300 mm直徑的晶圓,以及為矩形或方形拼板(panel)。基板300可提供為卷、薄片、離散基板、或饋送到用於一個或多個後續操作中的處理腔室中的任何其他形式。除非另外指明,否則在具有200 mm直徑、300 mm直徑、450 mm直徑或更大直徑的離散基板上執行本文所述的實現方式和實例。基板300可具有形成在其中的特徵。示例性特徵包括溝槽、通孔、插塞、孔洞、開口、線等以及上述特徵的組合。在一個實現方式中,基板300可以是含氧化物基板,諸如,含氧化矽基板。
可由TaN、TiN、AlN、TaSiN、TiSiN或其他合適的材料製造在膜堆疊中包括的阻擋層。低介電常數絕緣介電質材料可以具有形成在其中的開口(未圖示),該開口配置成具有設置在其中的至少一個導電層,該至少一個導電層在側向上由低介電常數絕緣介電質材料所侷限(bounded)。低介電常數絕緣介電質材料可以是任何合適的含氧化矽材料、含氮化矽材料、含SiOC材料、含SiC材料和碳基材料或任何其他合適的材料。在一個實例中,低介電常數絕緣介電質材料是具有小於4.0的介電常數的介電質材料(例如,低介電常數材料)。合適材料的實例包括含碳氧化矽(SiOC),諸如,可從位於加利福尼亞州聖克拉拉市的應用材料公司購得的BLACK DIAMOND®介電質材料、以及其他低介電常數聚合物(諸如,聚醯胺)。基板300或阻擋層可具有形成在其中的特徵。
在某些實現方式中,方法200包括對基板300的表面304的任選的預處理。預處理可用於使基板300的表面304改性,以便增強矽化物形成或用於其他目的。此類預處理的實例包括:引入在金屬矽化物形成中使用的材料(例如,矽源、金屬源、催化物等)、對基板表面進行化學改性(例如,形成氧化物、氮化物、碳化物、初始矽化物結構以及利用各種氧化劑和還原劑的處理)、對表面進行物理改性(例如,透過鐳射燒蝕、滾壓、電拋光(諸如,電鍍和反向電鍍以增加表面粗糙度)、改變晶粒取向、退火、利用氧基電漿處理以形成氧化物、利用氬基電漿處理來改變粗糙度(例如,濺射圓錐形成)、超聲以及離子佈植來增加表面粗糙度)。應當注意,這些技術中的一些可用於控制存在於表面上的各種材料(例如,金屬源材料)的量以及這些材料的物理特性(例如,表面粗糙度)。例如,可以用還原劑或氧化劑對基板300的表面304進行化學改性,以便將粗糙度改性為對用於促進成核特別有用的尺度。其他技術包括氧電漿蝕刻。另外,可用摻雜物處理表面,使得若摻雜物擴散到矽反應的金屬中就會增加矽化物結構導電性。
在操作220處,在基板300的表面304上形成含矽層310。含矽層310具有上表面312和至少一個側壁314。含矽層310可以是非晶矽層。可使用任何合適的沉積技術來形成含矽層310。例如,可以使用以下沉積技術來形成含矽層310,諸如電漿增強型化學氣相沉積(PECVD)、物理氣相沉積(PVD)製程、金屬有機化學氣相沉積(MOCVD)、熱化學氣相沉積(熱-CVD)製程、低壓力化學氣相沉積(LPCVD)、亞大氣壓化學氣相沉積(SACVD)、原子層沉積(ALD)等以及其他沉積技術。在一個實現方式中,使用沉積氣體來沉積含矽層310。沉積氣體可以是含矽沉積氣體混合物的部分。含矽沉積氣體混合物可以至少包括含矽前驅物。含矽前驅物可以是任何合適的含矽化合物。含矽前驅物可以包括甲矽烷(SiH4 )、乙矽烷(Si2 H6 )、四氟化矽(SiF4 )、四氯化矽(SiCl4 )、二氯矽烷(SiH2 Cl2 )等以及上述物質的組合。含矽前驅物(諸如,SiH4 )可以維持在約5 sccm與約1000 sccm之間(例如,在約10 sccm與約500 sccm之間;在約50 sccm與約500 sccm之間)的體積流率。
在一些實現方式中,含矽沉積氣體混合物進一步包括載氣。可以使用任何合適的載氣。可在含矽沉積氣體混合物中供應的載氣的實例包括氮(N2 )和一氧化氮(NO)、O2 、N2 O、氫(H2 )、氨(NH3 )、氫(H2 )與氮(N2 )的混合物和/或惰性氣體(諸如,氬(Ar)和氦(He))。載氣可隨含矽沉積氣體混合物一起供應到處理腔室中。添加不同的載氣或惰性氣體可使膜結構和/或膜化學成分(諸如,電阻率)改變,由此將所沉積的膜調整為具有期望的膜性質,以便滿足不同的製程要求。
在載氣中的矽烷的體積濃度可以小於約10%、或更具體地小於約5%、或甚至是小於約1%。在某些實現方式中,矽烷濃度為約1%。
含矽沉積氣體混合物可進一步包括惰性氣體,供應該惰性氣體以便根據需要來輔助輪廓控制。在含矽沉積氣體混合物中供應的惰性氣體的實例包括Ar、He、Ne、Kr、Xe,等等。
在供應含矽沉積氣體混合物以執行沉積製程時,可控制若干製程參數。處理腔室的壓力可控制為在約0.5 milliTorr(毫托)與約5 Torr(托)之間(例如,在約20 milliTorr與約2 Torr之間;在約100 milliTorr與約1 Torr之間)。基板溫度維持為低於攝氏400度,諸如,在約攝氏15度至約攝氏400度之間(例如,在約攝氏100度與約攝氏350度之間;在約攝氏200度與約攝氏300度之間)。人們相信,低溫(低於攝氏400度的溫度)在製造用於半導體元件的奈米線的過程中是期望的以使製造出的元件上的結構損壞(例如,近乎低介電常數材料的不當緻密化或導電材料熔融)最小化。可執行沉積製程(例如,任一氣體輸送)達約30秒與約300秒之間的時間,以便沉積含矽層310。所得的含矽層310可以具有在約1 Å與約1000 Å之間(例如,在約5 Å與約200 Å之間;在約10 Å與約100 Å之間)的厚度。
在一個實現方式中,含矽層310是矽奈米線。在另一實現方式中,形成在基板300上的含矽層310可以是可用於形成矽奈米線的覆膜。例如,稍後可圖案化或蝕刻含矽層310以在含矽層310中形成限定矽奈米線的開口。例如,可使用蝕刻製程(諸如,反應離子蝕刻製程)來圖案化含矽層。
在另一實現方式中,可在具有其上沉積有經圖案化的掩模(未圖示)的基板300上執行操作220。經圖案化的掩模可具有與所得的矽奈米線的期望高度相關的高度。經圖案化的掩模可具有形成在其中的開口。可相對於矽奈米線的期望直徑來設定開口尺寸。當在基板300上執行操作220時,隨後,可將含矽層310填充到經圖案化的掩模的開口中,以便形成矽奈米線。
一般來說,矽奈米線的直徑可以在約5奈米與100奈米之間(例如,在約10奈米與50奈米之間;在約20奈米與約40奈米之間)。矽奈米線長度可以在約1微米與100微米之間(例如,在約5微米與50微米之間;在約12微米與30微米之間)。
在操作230處,在含矽層310上形成含金屬層320。含金屬層320具有頂表面322和至少一個側壁324。可透過將含金屬沉積氣體混合物供應到處理腔室來形成含金屬層320。含金屬層320包含過渡金屬。過渡金屬可以選自由以下各項組成的群組:鎳(Ni)、鈦(Ti)、鐵(Fe)、鈷(Co)、鉻(Cr)、錳(Mn)、鉑(Pt)、鈀(Pd)以及上述金屬的組合。在一個實現方式中,含金屬層320是鎳層。在一個實現方式中,含金屬層320是摻雜鈀或鉑的鎳層。含金屬層320可以具有在約5奈米與約200奈米之間(例如,在約10奈米與100奈米之間;在約20奈米與約80奈米之間)的厚度。如圖3B中所描繪,含金屬層320塗覆含矽層310的上表面312和至少一個側壁314。在一個實現方式中,含金屬層320是相對於含矽層310的共形層。
可使用任何合適的沉積技術來沉積含金屬層320。合適的沉積技術包括電漿增強型化學氣相沉積(PECVD)、物理氣相沉積(PVD)製程、金屬有機化學氣相沉積(MOCVD)、熱化學氣相沉積(熱-CVD)製程、低壓力化學氣相沉積(LPCVD)、亞大氣壓化學氣相沉積(SACVD)、原子層沉積(ALD)等以及其他沉積技術。在一個實現方式中,使用含金屬沉積氣體混合物來沉積含金屬層。含金屬沉積氣體混合物至少包括含金屬前驅物。含金屬前驅物可以是含鎳化合物。
在一個實現方式中,含鎳化合物可以具有化學式Rx Ov Niy (OR')z ,其中R和R'是H、CH3 、C2 H5 、C3 H7 、CO、NCO、烷基或芳基基團,並且x、v和z是具有在0與16之間(例如,在1與12之間;在5與10之間)的範圍的整數,並且y是具有在0與8之間(例如,在1與5之間;在2與4之間)的範圍的整數。在另一實現方式中,含鎳化合物可以具有化學式Ni(NRR')w ,其中R和R'是H、CH3 、C2 H5 、C3 H7 、CO、NCO、烷基或芳基基團,並且R'可以是H、CH3 、C2 H5 、C3 H7 、CO、NCO、烷基或芳基基團,並且w是具有在0與8之間(例如,在1與5之間;在2與4之間)的範圍的整數。合適的含鎳化合物包括羰基鎳錯合物、脒基鎳化合物、二茂鎳化合物(Ni(C5 H5 )2 )、二烯鎳錯合物、亞硝醯鎳錯合物或上述物質的組合。合適的含鎳化合物的示例是:雙(N,N'-二叔丁基乙脒)鎳(II);雙(環戊二烯)鎳(即,Ni(C5 H5 )2 、NiCp2 );雙(乙基戊二烯基)鎳;雙(乙基環戊二烯)鎳(II)(即,Ni(C5 H4 C2 H5 )2 );雙[二(叔丁基)醯氨基]鎳(II);Ni[N(t-Bu)2 ]2 ;Ni[(t-BuN)2 (CCH3 )]2 ;Ni[N(t-uut)2 ];Ni((t Bu2 N)2 CCH3 )2 ;以及Rx Ov Niy (OR')z , (OR)2 Ni,其中R可以是甲基、乙基、丙基、異丙基、丁基、異丁基、叔丁基以及具有更高數量的碳原子的其他烷基基團等,並且其中x大於或等於1,v大於或等於1,y大於或等於1,並且z大於或等於1;或者任何合適的含金屬前驅物,等等。
可透過控制存在於製程區域中的氣體的駐留時間、透過使用自限制式沉積氣體、或透過其他方法將含金屬層沉積為較薄的。在一個實現方式中,在沉積氣體混合物中供應的含金屬前驅物可以維持在約10 sccm與約500 sccm之間(例如,在約20 sccm與約200 sccm之間;在約50 sccm與約100 sccm之間)的體積流率。
在某些實現方式中,載氣(諸如,氮(N2 )和一氧化氮(NO)、O2 、N2 O、氫(H2 )、氨(NH3 )、氫(H2 )與氮(N2 )的混合物和/或惰性氣體(諸如,氬(Ar)和氦(He)))可隨含金屬沉積氣體混合物一起供應到處理腔室中。添加不同的載氣或惰性氣體可使膜結構和/或膜化學成分(諸如,電阻率)改變,由此將所沉積的膜調整為具有期望的膜性質,以便滿足不同的製程要求。
沉積氣體混合物可進一步包括惰性氣體。還可供應惰性氣體以根據需要來輔助輪廓控制。可以使用任何合適的惰性氣體。在氣體混合物中供應的惰性氣體的實例包括Ar、He、Ne、Kr、Xe,等等。
在供應沉積氣體以執行含金屬層沉積製程時,可控制若干製程參數。處理腔室的壓力可控制在約0.5 milliTorr與約5 Torr之間。基板溫度維持為低於攝氏400度,諸如,在約攝氏15度至約攝氏400度之間(例如,在約攝氏100度與約攝氏350度之間;在約攝氏200度與約攝氏300度之間)。人們相信,低溫(低於攝氏400度的溫度)在製造用於半導體元件的奈米線過程中是期望的以使對製造出的元件上的結構損壞(例如,近乎低介電常數材料的不當的緻密化或導電材料熔融)最小化。可執行沉積製程(例如,任一氣體輸送)達約30秒與約300秒之間的時間,以便沉積含金屬層320。所得的含金屬層320可以具有在約1 Å與約1000 Å之間(例如,在約5 Å與約200 Å之間;在約10 Å與約100 Å之間)的厚度。
在操作240處,在含金屬層320上形成限制層330。限制層330可由足以在操作250處的後續退火製程期間以物理方式、以化學方式、或既以物理方式又以化學方式減少下方含矽層310和下方含金屬層320的體積膨脹的任何材料組成。在一些實現方式中,限制層330抑制在操作250處的後續退火製程期間富含金屬的矽化物相的形成。在一個實現方式中,限制層330抑制在操作250處的後續退火製程期間富含金屬的金屬矽化物相的形成,該富含金屬的金屬矽化物相通常涉及體積膨脹。在一個實現方式中,通常涉及到體積膨脹的金屬矽化物相選自由以下各項組成的群組:Ni3 Si、Ni31 Si12 、Ni2 Si、Ni3 Si2 以及上述物質的組合。限制層330可以包含金屬基材料、有機物基材料、介電質材料以及上述材料的組合。示例性介電質材料包括氧化物層、氮化物層以及上述材料的組合等。
可以使用以下沉積技術來沉積限制層330,諸如電漿增強型化學氣相沉積(PECVD)、物理氣相沉積(PVD)製程、金屬有機化學氣相沉積(MOCVD)、熱化學氣相沉積(熱-CVD)製程、低壓力化學氣相沉積(LPCVD)、亞大氣壓化學氣相沉積(SACVD)、原子層沉積(ALD)等以及其他沉積技術。可使用本領域已知的製程條件和技術來沉積限制層330。
限制層330可以具有任何合適的厚度。限制層330可以具有在約1奈米與約1000奈米之間(例如,在約5奈米與約200奈米之間;在約10奈米與約100奈米之間;在約20奈米與約80奈米之間)的厚度。如圖3C中所描繪,限制層330塗覆含金屬層320的頂表面322和至少一個側壁324。在一個實現方式中,限制層330是相對於含金屬層320的共形層。在一個實現方式中,限制層330可以是犧牲層。
在某些實現方式中,限制層330包含任何合適的有機物基材料。限制層330可以包含合適的有機物基材料,諸如,碳化矽(SiC)、氮摻雜碳化矽(SiNC)、碳氮化矽(SiCN)、碳氧化矽(SiCO)、氧和氮摻雜的碳化矽(SiONC),等等。此類合適的有機物基材料的一個示例是可從加利福尼亞州聖克拉拉市的應用材料公司購得的BLOkTM(阻擋低介電常數)膜。其他合適的有機物基材料包括碳摻雜氧化物(CDO)(諸如,可從應用材料公司購得的Black Diamond或Black Diamond II)、有機矽酸鹽玻璃(OSG)、無摻雜矽玻璃(USG)(諸如,氧化矽或TEOS)、硼矽酸鹽玻璃(BSG)、磷矽酸鹽玻璃(PSG)、硼磷矽玻璃(BPSG)、聚合物基低介電常數介電質材料(諸如,可從陶氏化學公司(Dow Chemical Company)購得的SiLK® )、有機聚合物(諸如,可從霍尼韋爾先進微電子材料公司(Honeywell Advanced Microelectronic Materials)購得的FLARETM,其為一種橋接的聚亞芳基醚)等等,以及上述各項的組合。
在某些實現方式中,限制層330包含任何合適的金屬基材料。合適的金屬基材料包括難熔的金屬氮化物材料。示例性難熔的金屬氮化物層選自由以下各項組成的群組:氮化鈦、氮化鉭和氮化鎢。示例性金屬層包括鈦和鎢。
在供應氣體以沉積限制層330時,可控制若干製程參數。處理腔室的壓力可控制為在約0.5 milliTorr與約5 Torr之間。基板溫度維持為低於攝氏400度(例如,在約攝氏15度至約攝氏400度之間;在約攝氏100度與約攝氏350度之間;在約攝氏200度與約攝氏300度之間)。
在操作250處,基板300暴露於處於低於攝氏400度的溫度下的退火製程。可以使用任何合適的退火製程。合適的退火製程包括例如,高壓退火、微退火和熱退火。在一個實現方式中,退火進一步包括輻射能啟動或微波激發。在含矽層310和含金屬層320形成在基板300上之後,進行低溫(諸如,低於攝氏400度)熱/退火製程(例如,在約攝氏15度至約攝氏400度之間;在約攝氏100度與約攝氏350度之間;在約攝氏200度與約攝氏300度之間)。可以在熱處理腔室(諸如,RTP腔室或任何合適的加熱處理腔室)中執行熱/退火製程。熱處理腔室可能能夠執行微波輔助熱/退火製程。熱處理腔室可類似地配置為圖1A和圖1B中描述的處理腔室,並且具有加熱模組(諸如,形成在其中的燈或加熱元件),並且微波發生器耦接至該加熱模組。在熱/退火製程期間施加的微波電力可溫和地加熱/熱處理含矽層310和含金屬層320,以便形成金屬矽化物層340,而不會不利地損毀或損壞存在於基板300上的其他膜結構。
在一個實例中,能以在0.3 GHz與約300 GHz之間的頻率來操作微波電力。施加在約10瓦特與約5000瓦特之間的微波電力。在一些實現方式中,除了所生成的微波電力之外,還可在沉積製程期間生成一個或多個RF電力源147(圖1A中所描繪)和/或RF偏壓電力源184、186(圖1A和圖1B中所描繪),以便輔助離解沉積氣體混合物,從而形成電漿。在一個實例中,可以供應電力在約100瓦特與約600瓦特之間且頻率在約250 kHz與約13.6 MHz之間的RF源電力。還可根據需要來供應RF偏壓電力。可供應在約10瓦特與約100瓦特之間的RF偏壓電力。在一個實現方式中,可以在約500 Hz至約10 kHz的RF頻率下以在約10%至95%之間的工作週期(duty cycle)來脈動RF源電力。在執行熱/退火製程時,可以在熱/退火製程期間供應載氣。根據需要,載氣可以選自由以下各項組成的群組:N2 、O2 、H2 、惰性氣體或任何合適的氣體。
在250處,在執行熱/退火製程時,微波電力和/或光輻射可發射至金屬矽化物層340,以便增強金屬矽化物層340的膜結構的重構。人們相信,輻射能(例如,光子)可以增強膜結構至金屬矽化物層340的重排或重構。在一個實施例中,光輻射可具有在約1mm與約1000 mm之間的波長。光輻射可包括IR光、UV光以及上述之組合。在一個實現方式中,金屬矽化物層包含矽化鎳,並且大部分矽化鎳是單矽化鎳(NiSi)相。在一個實現方式中,金屬矽化物層形成為用於半導體後端互連結構的奈米線。
在操作260處,去除限制層330。可使用適於去除限制層330的材料而不損壞下方金屬矽化物層340和存在於基板300上的任何其他結構的任何製程來去除限制層330。可使用濕法蝕刻製程、電漿蝕刻製程或這兩者來去除限制層330。
在一個實現方式中,使用電漿蝕刻製程來去除限制層330。電漿蝕刻製程可以包括製程氣體或製程氣體混合物,該製程氣體或製程氣體混合物包含以下至少一者:氟碳氣體、含氮氣體、含氧氣體、惰性氣體以及上述氣體的組合。如本文中所使用,術語「製程氣體」和「製程氣體混合物」能夠互換,並且可以包括一種或多種氣體。任選地,還可提供氟氫碳氣體。在一些實現方式中,氟碳氣體可以是六氟-1,3-丁二烯(C4 F6 )、八氟環丁烷(C4 F8 )、八氟環戊烯(C5 F8 )、六氟苯(C6 F6 )、四氟化碳(CF4 )、六氟乙烷(C2 F6 ),等等。含氮氣體可以是氮(N2 )。惰性氣體可以包括氬(Ar)、氦(He)、氙(Xe)、或其他惰性氣體。氟氫碳氣體可以是二氟甲烷(CH2 F2 )、三氟甲烷(CHF3 )、氟甲基(CH3 F)等等。在一些實現方式中,製程氣體混合物可以包括C4 F6 、CH2 F2 、N2 和Ar。
在一個實現方式中,使用濕法蝕刻製程來去除限制層330。在一些實現方式中,濕法化學物質可以包括例如氫氟酸溶液。在一個示例性蝕刻清潔製程期間,透過重複將基板暴露至清潔溶劑來去除導電殘餘物,該清潔溶劑包含呈各種組合的氟化氫(HF)、氟化銨(NH4 F)、氫氧化銨(NH4 OH)、過氧化氫(H2 O2 ),等等。
如本文形成的矽化鎳(NiSi)層具有高熱穩定性、低電阻率和高純度,使得矽化鎳(NiSi)層成為用於後端半導體元件中的奈米線的良好候選。矽化鎳層可以具有在約10.5 Ω•cm與約18 Ω•cm之間的電阻率。表1描繪各種矽化鎳相的電阻率和每矽原子體積(Å3 )。
Figure 105130751-A0304-0001
儘管以上相對於鎳來描述,但是金屬矽化物可以包括其他金屬物質。根據一個實施例,金屬矽化物奈米線中的金屬物質還可依賴於期望的應用和材料性質(諸如,導電性、帶隙、功函數和相)而有所變化。用於奈米線的感興趣的示例金屬物質包括Ni、Ti、Fe、Co、Cr、Mn或其他過渡金屬元素。製造這些奈米線的方法可以包括:將矽輸送到金屬表面;將金屬輸送到矽奈米線;或同時輸送矽和金屬物質。
總而言之,本案揭露內容的益處中的一些益處提供適合於半導體製造應用的在低溫(例如,低於攝氏400度)下形成低電阻率金屬矽化物(例如,Ni-Si)相的方法。期望在低溫下處理,部分原因在於低介電常數材料的溫度預算限制。然而,在低於約攝氏400度的溫度下使金屬矽化物退火通常導致金屬矽化物的體積膨脹以及高電阻率的富含金屬的金屬矽化物相材料的形成。本文所述的實現方式提供限制層,該限制層在後續退火製程期間以物理方式、以化學方式、或既以物理方式又以化學方式來減少下方含矽層和下方含金屬層的體積膨脹。因此,如本文所述的限制層提供在低於攝氏400度的生產溫度下產生低電阻率的金屬矽化物。
當介紹本案揭露內容的要素或本案揭露內容的示例性的態樣或(多個)實現方式時,冠詞「一個」、「一種」、「該」和「該」意欲表示存在一個或多個該要素。
儘管上述內容針對本案揭露內容的實現方式,但是可設計本案揭露內容的其他和進一步的實現方式而不背離本案揭露內容的基本範圍,並且本案揭露內容的範圍由所附申請專利範圍來確定。
100‧‧‧處理腔室101‧‧‧側壁102‧‧‧真空泵104‧‧‧匹配電路106‧‧‧電源108‧‧‧卡緊電源110‧‧‧控制器112‧‧‧中央處理單元114‧‧‧支援電路116‧‧‧記憶體118‧‧‧信號匯流排122‧‧‧底壁124‧‧‧蓋125‧‧‧蓋126‧‧‧處理區域130‧‧‧氣體面板132‧‧‧電漿處理系統134‧‧‧通道135‧‧‧氣體輸送通道136‧‧‧閥138‧‧‧窗139‧‧‧外殼140‧‧‧光源141‧‧‧光源142‧‧‧氣體分配板143‧‧‧孔144‧‧‧中心區域145‧‧‧匹配網路147‧‧‧RF電力源148‧‧‧遠端電漿源150‧‧‧支撐基座151‧‧‧電漿處理腔室170‧‧‧嵌入式加熱器元件172‧‧‧溫度感測器180‧‧‧光源181‧‧‧微波發生器184‧‧‧RF偏壓電力源186‧‧‧RF偏壓電力源190‧‧‧基板191‧‧‧表面192‧‧‧電極193‧‧‧氣體面板200‧‧‧方法210‧‧‧操作220‧‧‧操作230‧‧‧操作240‧‧‧操作250‧‧‧操作260‧‧‧操作300‧‧‧基板304‧‧‧表面310‧‧‧含矽層312‧‧‧上表面314‧‧‧側壁320‧‧‧含金屬層322‧‧‧頂表面324‧‧‧側壁330‧‧‧限制層340‧‧‧金屬矽化物層
因此,為了能夠詳細理地解本案揭露內容的上述特徵所用方式,上文所簡要概述的各實現方式的更具體的描述可以參考實現方式進行,在附圖中說明實現方式中的一些。然而,應當注意,附圖僅僅說明本案揭露內容的典型實現方式,並且因此不應視為限制本案揭露內容的範圍,因為本案揭露內容可允許其他等效實現方式。
圖1A是根據本文所述的實現方式的適於執行蒸氣沉積製程的電漿處理腔室的一個實現方式的橫截面示意圖;
圖1B是根據本文所述的實現方式的適於執行蒸氣沉積製程的電漿處理腔室的另一實現方式的橫截面示意圖;
圖2描繪根據本文所述的實現方式的用於在基板上形成金屬矽化物層的流程圖;以及
圖3A-3E描繪根據圖2的製程而形成在基板上的金屬矽化物層的橫截面示意圖。
為了促進理解,已儘可能使用相同的元件符號指定各圖所共有的相同的元件。應預見到,一個實現方式的要素和特徵可有利地併入其他實現方式,而無需進一步陳述。然而,應當注意,附圖僅僅說明本案揭露內容的示例性的實現方式,並且因此不應視為限制本案揭露內容的範圍,因為本案揭露內容可允許其他等效實現方式。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) 無
300‧‧‧基板
304‧‧‧表面
310‧‧‧含矽層
312‧‧‧上表面
314‧‧‧側壁
320‧‧‧含金屬層
322‧‧‧頂表面
324‧‧‧側壁
330‧‧‧限制層

Claims (16)

  1. 一種處理一基板的方法,該方法包括以下步驟:在一基板之一表面上形成一含矽層,其中該含矽層具有一暴露頂表面及至少一個側壁,該至少一個側壁從該暴露頂表面延伸至該基板的該表面;在該含矽層的該暴露頂表面及該至少一個側壁上形成一含金屬層,該含金屬層包含一過渡金屬,其中該含金屬層具有一暴露頂表面及至少一個側壁,該至少一個側壁從該含金屬層的該暴露頂表面延伸至該基板的該表面;在該含金屬層的該暴露頂表面及該至少一個側壁上形成一限制層;以及在低於攝氏400度的一溫度下使該基板退火,以便從該含矽層和該含金屬層形成一金屬矽化物層,其中該限制層抑制富含金屬的金屬矽化物相的形成,且其中該限制層包括一材料,該材料選自一金屬基(metal-based)材料或一有機物基(organic-based)材料。
  2. 如請求項1所述的方法,其中該過渡金屬選自由以下各項組成的群組:Ni、Ti、Fe、Co、Cr和Mn。
  3. 如請求項1所述的方法,其中該含矽層由包含矽烷的一含矽前驅物形成。
  4. 如請求項1所述的方法,其中該金屬矽化物層包含矽化鎳,並且大部分矽化鎳是單矽化鎳(NiSi)相。
  5. 如請求項4所述的方法,其中該矽化鎳具有從約10.5Ω‧cm至約18Ω‧cm的一電阻率。
  6. 如請求項1所述的方法,其中該金屬矽化物層具有在約10Å與約100Å之間的一厚度。
  7. 如請求項1所述的方法,其中該金屬矽化物層形成為用於半導體後端互連結構的奈米線。
  8. 如請求項1所述的方法,其中該限制層是選自以由下各項組成的群組的一難熔金屬氮化物材料:氮化鈦、氮化鉭和氮化鎢。
  9. 如請求項1所述的方法,其中該富含金屬的金屬矽化物相選自由以下各項組成的群組:Ni3Si、Ni31Si12、Ni2Si、Ni3Si2以及上述物質的組合。
  10. 一種處理一基板的方法,該方法包括以下步驟:在一基板的一含氧化物表面上形成一含矽奈米線,其中該含矽奈米線具有一暴露頂表面及至少一個側壁,該至少一個側壁從該暴露頂表面延伸至該基板的該含 氧化物表面;在該含矽奈米線之該暴露頂表面及該至少一個側壁上形成一含鎳層,其中該含鎳層具有一暴露頂表面及至少一個側壁,該至少一個側壁從該含鎳層的該暴露頂表面延伸至該基板的該含氧化物表面;在該含鎳層的該暴露頂表面及該至少一個側壁上形成一限制層;以及在低於攝氏400度的一溫度下使該基板退火,以便從該含矽奈米線和該含鎳層形成一單矽化鎳奈米線,其中該限制層抑制富含鎳的矽化鎳相的形成,且其中該限制層包括一金屬基材料或一有機物基材料。
  11. 如請求項10所述的方法,其中該含矽奈米線由一含矽前驅物形成,該含矽前驅物選自由以下各項組成的群組:甲矽烷(SiH4)、乙矽烷(Si2H6)、四氟化矽(SiF4)、四氯化矽(SiCl4)、二氯矽烷(SiH2Cl2)、以及上述物質的組合。
  12. 如請求項10所述的方法,其中使用一含金屬前驅物來沉積該含鎳層,該含金屬前驅物選自由以下各項組成的群組:雙(N,N'-二叔丁基乙脒)鎳(II)、雙(環戊二烯)鎳、雙(乙基環戊二烯)鎳(II)、雙[二(叔丁基)醯氨基]鎳(II)以及上述物質的組合。
  13. 如請求項10所述的方法,其中該退火之步 驟進一步包括以下步驟:輻射能啟動或微波激發。
  14. 如請求項10所述的方法,其中該限制層是選自由以下各項組成的群組的一難熔的金屬氮化物材料:氮化鈦、氮化鉭和氮化鎢。
  15. 如請求項10所述的方法,其中該富含鎳的矽化鎳相選自由以下各項組成的群組:Ni3Si、Ni31Si12、Ni2Si、Ni3Si2以及上述物質的組合。
  16. 一種處理一基板的方法,該方法包括以下步驟:在一基板的一含氧化物表面上形成一含矽奈米線,該形成步驟包括以下步驟:在該含氧化物表面上沉積一含矽層;以及使該含矽層圖案化,以便在該含氧化物表面上形成至少一個含矽奈米線,其中該含矽奈米線具有一暴露頂表面及至少一個側壁,該至少一個側壁從該暴露頂表面延伸至該基板的該含氧化物表面;在該含矽奈米線之該暴露頂表面及該至少一個側壁上形成一含鎳層,其中該含鎳層具有一暴露頂表面及至少一個側壁,該至少一個側壁從該含鎳層的該暴露頂表面延伸至該含氧化物表面;在該含鎳層的該暴露頂表面及該至少一個側壁上形成一限制層;以及 在約攝氏15度與攝氏400度之間的一溫度下使該基板退火,以便從該含矽奈米線和該含鎳層形成一單矽化鎳奈米線,其中該限制層抑制富含鎳的矽化鎳相的形成。
TW105130751A 2015-09-25 2016-09-23 透過限制達成的矽化物相控制 TWI713082B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562232848P 2015-09-25 2015-09-25
US62/232,848 2015-09-25
US15/240,410 US9865466B2 (en) 2015-09-25 2016-08-18 Silicide phase control by confinement
US15/240,410 2016-08-18

Publications (2)

Publication Number Publication Date
TW201727699A TW201727699A (zh) 2017-08-01
TWI713082B true TWI713082B (zh) 2020-12-11

Family

ID=58409877

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105130751A TWI713082B (zh) 2015-09-25 2016-09-23 透過限制達成的矽化物相控制

Country Status (4)

Country Link
US (1) US9865466B2 (zh)
KR (1) KR102547322B1 (zh)
CN (1) CN106558474B (zh)
TW (1) TWI713082B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222818B2 (en) * 2018-07-13 2022-01-11 Taiwan Semiconductor Manufacturing Co., Ltd. Formation method of semiconductor device structure with metal-semiconductor compound region
US10925146B1 (en) * 2019-12-17 2021-02-16 Applied Materials, Inc. Ion source chamber with embedded heater
JP7450475B2 (ja) * 2020-06-30 2024-03-15 東京エレクトロン株式会社 プラズマ処理装置
KR20230092566A (ko) * 2021-12-17 2023-06-26 세메스 주식회사 공정 가스 공급 유닛 및 이를 포함하는 기판 처리 장치
US20240113024A1 (en) * 2022-09-29 2024-04-04 International Business Machines Corporation Multi-layer topological interconnect with proximal doping layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227280A1 (en) * 2007-03-14 2008-09-18 Nec Electronics Corporation Method of manufacturing semiconductor device
US20120115310A1 (en) * 2010-11-05 2012-05-10 Yan Miu Method of sige epitaxy with high germanium concentration
US8614434B2 (en) * 2009-09-17 2013-12-24 International Business Machines Corporation MOSFET with a nanowire channel and fully silicided (FUSI) wrapped around gate
US8815738B2 (en) * 2012-07-10 2014-08-26 United Microelectronics Corp. Salicide process

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8700820A (nl) * 1987-04-08 1988-11-01 Philips Nv Werkwijze voor het vervaardigen van een halfgeleiderinrichting.
US6130145A (en) * 1998-01-21 2000-10-10 Siemens Aktiengesellschaft Insitu doped metal policide
US6413859B1 (en) * 2000-03-06 2002-07-02 International Business Machines Corporation Method and structure for retarding high temperature agglomeration of silicides using alloys
US20030235973A1 (en) * 2002-06-21 2003-12-25 Jiong-Ping Lu Nickel SALICIDE process technology for CMOS devices
US6787864B2 (en) * 2002-09-30 2004-09-07 Advanced Micro Devices, Inc. Mosfets incorporating nickel germanosilicided gate and methods for their formation
KR100870176B1 (ko) * 2003-06-27 2008-11-25 삼성전자주식회사 니켈 합금 샐리사이드 공정, 이를 사용하여 반도체소자를제조하는 방법, 그에 의해 형성된 니켈 합금 실리사이드막및 이를 사용하여 제조된 반도체소자
US7119012B2 (en) * 2004-05-04 2006-10-10 International Business Machines Corporation Stabilization of Ni monosilicide thin films in CMOS devices using implantation of ions before silicidation
US7132365B2 (en) * 2004-08-10 2006-11-07 Texas Instruments Incorporated Treatment of silicon prior to nickel silicide formation
US7208414B2 (en) * 2004-09-14 2007-04-24 International Business Machines Corporation Method for enhanced uni-directional diffusion of metal and subsequent silicide formation
US7825025B2 (en) * 2004-10-04 2010-11-02 Texas Instruments Incorporated Method and system for improved nickel silicide
US7504336B2 (en) * 2006-05-19 2009-03-17 International Business Machines Corporation Methods for forming CMOS devices with intrinsically stressed metal silicide layers
US7803707B2 (en) 2006-08-17 2010-09-28 Wisconsin Alumni Research Foundation Metal silicide nanowires and methods for their production
US7704858B2 (en) * 2007-03-29 2010-04-27 Intel Corporation Methods of forming nickel silicide layers with low carbon content
US20080315430A1 (en) * 2007-06-22 2008-12-25 Qimonda Ag Nanowire vias
JP5070969B2 (ja) * 2007-07-20 2012-11-14 ソニー株式会社 半導体装置の製造方法
CN101140875A (zh) * 2007-10-18 2008-03-12 复旦大学 一种调制NiSi全硅化物金属栅功函数的方法
US20100075499A1 (en) * 2008-09-19 2010-03-25 Olsen Christopher S Method and apparatus for metal silicide formation
JP2010205782A (ja) * 2009-02-27 2010-09-16 Renesas Electronics Corp 半導体装置の製造方法
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
EP2543098B1 (en) 2010-03-03 2019-07-31 Amprius, Inc. Template electrode structures for depositing active materials
US8435862B2 (en) * 2010-03-29 2013-05-07 Renesas Electronics Corporation Method of manufacturing semiconductor device
WO2013006583A2 (en) 2011-07-01 2013-01-10 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
US20140106529A1 (en) * 2012-10-16 2014-04-17 Stmicroelectronics (Crolles 2) Sas Finfet device with silicided source-drain regions and method of making same using a two step anneal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227280A1 (en) * 2007-03-14 2008-09-18 Nec Electronics Corporation Method of manufacturing semiconductor device
US8614434B2 (en) * 2009-09-17 2013-12-24 International Business Machines Corporation MOSFET with a nanowire channel and fully silicided (FUSI) wrapped around gate
US20120115310A1 (en) * 2010-11-05 2012-05-10 Yan Miu Method of sige epitaxy with high germanium concentration
US8815738B2 (en) * 2012-07-10 2014-08-26 United Microelectronics Corp. Salicide process

Also Published As

Publication number Publication date
KR102547322B1 (ko) 2023-06-22
US20170092502A1 (en) 2017-03-30
US9865466B2 (en) 2018-01-09
CN106558474A (zh) 2017-04-05
TW201727699A (zh) 2017-08-01
KR20170039573A (ko) 2017-04-11
CN106558474B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
TWI691612B (zh) 矽化鎳奈米線的直接沉積
US10930472B2 (en) Methods for forming a metal silicide interconnection nanowire structure
TWI713082B (zh) 透過限制達成的矽化物相控制
US7994002B2 (en) Method and apparatus for trench and via profile modification
JP6158199B2 (ja) 水蒸気処理を使用して基板から材料層を除去する方法
US8951913B2 (en) Method for removing native oxide and associated residue from a substrate
TW201515103A (zh) 用於穩定界面後蝕刻以盡量減少下一處理步驟前佇列時間問題的方法
US20180158686A1 (en) Deposition Of Metal Films
CN115485819A (zh) 用于选择性金属化合物移除的系统及方法
US11094588B2 (en) Interconnection structure of selective deposition process
TW201724500A (zh) 用於製造對於半導體應用的水平環繞式閘極裝置的奈米線的方法
TWI686500B (zh) 矽化物奈米線之層疊與核殼形成
TWI719269B (zh) 金屬膜之沉積