TWI709174B - Radical oxidation process for fabricating a nonvolatile charge trap memory device - Google Patents

Radical oxidation process for fabricating a nonvolatile charge trap memory device Download PDF

Info

Publication number
TWI709174B
TWI709174B TW106121057A TW106121057A TWI709174B TW I709174 B TWI709174 B TW I709174B TW 106121057 A TW106121057 A TW 106121057A TW 106121057 A TW106121057 A TW 106121057A TW I709174 B TWI709174 B TW I709174B
Authority
TW
Taiwan
Prior art keywords
layer
oxide
dielectric layer
substrate
oxygen
Prior art date
Application number
TW106121057A
Other languages
Chinese (zh)
Other versions
TW201737344A (en
Inventor
克里希納斯瓦米 庫馬爾
賽格 利維
卞貞秀
Original Assignee
愛爾蘭商經度閃存解決方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/539,458 external-priority patent/US8940645B2/en
Application filed by 愛爾蘭商經度閃存解決方案有限公司 filed Critical 愛爾蘭商經度閃存解決方案有限公司
Publication of TW201737344A publication Critical patent/TW201737344A/en
Application granted granted Critical
Publication of TWI709174B publication Critical patent/TWI709174B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A method for fabricating a nonvolatile charge trap memory device is described. The method includes subjecting a substrate to a first oxidation process to form a tunnel oxide layer overlying a polysilicon channel, and forming over the tunnel oxide layer a multi-layer charge storing layer comprising an oxygen-rich, first layer comprising a nitride, and an oxygen-lean, second layer comprising a nitride on the first layer. The substrate is then subjected to a second oxidation process to consume a portion of the second layer and form a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The stoichiometric composition of the first layer results in it being substantially trap free, and the stoichiometric composition of the second layer results in it being trap dense. The second oxidation process can comprise a plasma oxidation process or a radical oxidation process using In-Situ Stream Generation.

Description

用於製造非揮發性電荷捕獲記憶體元件之基氧化方法 Base oxidation method for manufacturing non-volatile charge trapping memory element

本發明實施例係屬半導體製造領域,尤指,半導體元件製造。 The embodiments of the present invention belong to the field of semiconductor manufacturing, in particular, semiconductor component manufacturing.

相關申請案交互參考Cross-reference to related applications

本申請案係2008年8月25日所提申之共同申請之美國申請案序號12/197,466之部分接續案,美國申請案序號12/197,466係2008年5月21日所提申之美國申請案序號12/124,855之接續案,美國申請案序號12/124,855基於35 U.S.C.119(e)條款主張2007年5月25日所提申之美國臨時專利申請案序號60/940,139和2007年11月9日所提申之美國臨時專利申請案序號60/986,637之優先權利益,在此將其全體一併整合參考之。 This application is a partial continuation of the U.S. application serial number 12/197,466 of the joint application filed on August 25, 2008. The U.S. application serial number 12/197,466 is the U.S. application filed on May 21, 2008 The continuation of the serial number 12/124,855, the U.S. application serial number 12/124,855 is based on 35 USC119(e) to claim the U.S. provisional patent application serial number 60/940,139 filed on May 25, 2007 and November 9, 2007 The priority benefit of the proposed U.S. Provisional Patent Application Serial No. 60/986,637 is incorporated herein by reference.

過去數個十年中,積體電路之特徵尺寸縮放已成為支持半導體工業持續成長之驅動力。特徵尺寸越縮越小可增加半導體晶片之有限晶片面積上之功能單位密度。例如,縮小電晶體大小可在一晶片上整合更多記憶體元件,導致生產力增加之產品製造。然而,驅動持續不斷更多之生產力並不是毫無問題。對最佳化每一個元件之執行效率需求變得越來越明 顯。 In the past few decades, the feature size scaling of integrated circuits has become a driving force supporting the continuous growth of the semiconductor industry. The shrinking and smaller feature size can increase the density of functional units on the limited chip area of the semiconductor chip. For example, reducing the size of transistors can integrate more memory components on a chip, leading to increased productivity in product manufacturing. However, driving more and more productivity is not without problems. The need to optimize the execution efficiency of each component becomes more and more obvious Show.

非揮發性半導體記憶體典型地使用堆疊式浮閘型場效電晶體。在這類電晶體中,電子係藉由施偏壓於一控制閘極並接地將該記憶體單元形成於其上之基板本體區域來射入至欲程式化之記憶體單元之浮接閘極。一氧化物-氮化物-氧化物(ONO)堆疊不是充當例如一半導體-氧化物-氮化物-氧化物-半導體(SONOS)電晶體內之電荷儲存層就是充當例如一分離式閘極快閃電晶體內之浮接閘極與控制閘極間的絕緣層。圖1說明一傳統非揮發性電荷捕獲記憶體元件之剖面圖。 Non-volatile semiconductor memory typically uses stacked floating gate type field effect transistors. In this type of transistor, electrons are injected into the floating gate of the memory cell to be programmed by applying a bias to a control gate and grounding the memory cell on the substrate body area. . The oxide-nitride-oxide (ONO) stack acts as, for example, a charge storage layer in a semiconductor-oxide-nitride-oxide-semiconductor (SONOS) transistor or as a split gate flash crystal. The insulating layer between the floating gate and the control gate in the body. FIG. 1 illustrates a cross-sectional view of a conventional non-volatile charge trap memory device.

參考至圖1,半導體元件100包含一半導體-氧化物-氮化物-氧化物-半導體閘極堆疊104,包含形成於一矽基板102上方之傳統氧化物-氮化物-氧化物部分106。半導體元件100進一步包含分別位於半導體-氧化物-氮化物-氧化物-半導體閘極堆疊104一側上之源極及汲極區域110。半導體-氧化物-氮化物-氧化物-半導體閘極堆疊104包含形成於上方並接觸到氧化物-氮化物-氧化物部分106之多晶矽閘極層108。多晶矽閘極層108係經由氧化物-氮化物-氧化物部分106而與矽基板102電性隔離。氧化物-氮化物-氧化物部分106典型地包含一穿隧氧化物層106A、一氮化物或氮氧化物電荷捕獲層106B及在氮化物或氮氧化物電荷捕獲層106B上方之一頂部氧化物層106C。 Referring to FIG. 1, the semiconductor device 100 includes a semiconductor-oxide-nitride-oxide-semiconductor gate stack 104 including a conventional oxide-nitride-oxide portion 106 formed on a silicon substrate 102. The semiconductor device 100 further includes source and drain regions 110 respectively located on one side of the semiconductor-oxide-nitride-oxide-semiconductor gate stack 104. The semiconductor-oxide-nitride-oxide-semiconductor gate stack 104 includes a polysilicon gate layer 108 formed above and in contact with the oxide-nitride-oxide portion 106. The polysilicon gate layer 108 is electrically isolated from the silicon substrate 102 via the oxide-nitride-oxide portion 106. The oxide-nitride-oxide portion 106 typically includes a tunnel oxide layer 106A, a nitride or oxynitride charge trap layer 106B, and a top oxide on the nitride or oxynitride charge trap layer 106B层106C.

一傳統半導體-氧化物-氮化物-氧化物-半導體電晶體之問題係在該氮化物或氮氧化物電荷捕獲層106B內之不良資料保持限制半導體元件100之壽命並因該層之漏電而限制它在一些應用上之使用。 A problem with traditional semiconductor-oxide-nitride-oxide-semiconductor transistors is that poor data retention in the nitride or oxynitride charge trap layer 106B limits the life of the semiconductor device 100 and is limited by the leakage of the layer It is used in some applications.

根據本發明一觀點,一種製造記憶體元件之方法包括:使一基板承受一第一氧化製程以在連接形成於該基板內之記憶體元件之源極和汲極的通道上方形成一穿隧氧化物層,其中,該通道包括多晶矽;在該穿隧氧化物層上方形成一多層電荷儲存層,該多層電荷儲存層包括含在該穿隧氧化物層上之氮化物之一富氧之第一層,其中,該第一層之化學計量組成成分致使它實質上無捕獲,並包括含該第一層上之氮化物之一缺氧之第二層,其中,該第二層之化學計量組成成分致使它為密集捕獲;以及使該基板承受一第二氧化製程以耗用一部分第二層並在該多層電荷儲存層上方形成一高溫氧化物(HTO)層。 According to an aspect of the present invention, a method of manufacturing a memory device includes: subjecting a substrate to a first oxidation process to form a tunnel oxidation over the channel connecting the source and drain of the memory device formed in the substrate An object layer, wherein the channel includes polysilicon; a multilayer charge storage layer is formed above the tunnel oxide layer, and the multilayer charge storage layer includes an oxygen-rich first nitride contained on the tunnel oxide layer A layer, wherein the stoichiometric composition of the first layer makes it substantially free of trapping, and includes a second layer containing one of the nitrides on the first layer that is oxygen-deficient, wherein the stoichiometric composition of the second layer The composition makes it densely trapped; and subjecting the substrate to a second oxidation process to consume a portion of the second layer and form a high temperature oxide (HTO) layer on the multilayer charge storage layer.

根據本發明另一觀點,一種製造記憶體元件之方法包括:在一基板表面上形成包含至少一第一介電層、一閘極層和一第二介電層之多層堆疊,其中,該閘極層係經由該第一介電層而與該基板表面分開,且該第二介電層係經由該閘極層而與該第一介電層分開;形成延伸經過該多層堆疊至形成於該基板表面上之第一摻雜擴散區域之開口;在該開口側壁上形成一高溫氧化物(HTO)層;在該高溫氧化物層之內部側壁上形成一多層電荷儲存層,該多層電荷儲存層包括在該高溫氧化物層上之缺氧第一氮氧化物層,其中,該第一氮氧化物層之化學計量組成成分致使它為密集捕獲,並包括在該第一氮氧化物層上之富氧第二氮氧化物層,其中,該第二氮氧化物層之化學計量組成成分致使它實質上無捕獲;在該多層電荷儲存層一內部側壁上形成一穿隧氧化物層;以及在該穿隧氧化物層一內部側壁上形成一包括多晶矽之垂直通道,其中,該垂直通道電性耦接第一摻雜擴散區 域至接著形成於該多層堆疊和該開口上方之半導體材料層內之一第二摻雜擴散區域。 According to another aspect of the present invention, a method for manufacturing a memory device includes: forming a multilayer stack including at least a first dielectric layer, a gate layer, and a second dielectric layer on a substrate surface, wherein the gate The electrode layer is separated from the substrate surface by the first dielectric layer, and the second dielectric layer is separated from the first dielectric layer by the gate layer; the formation extends through the multilayer stack to be formed on the The opening of the first doped diffusion region on the surface of the substrate; a high temperature oxide (HTO) layer is formed on the sidewall of the opening; a multilayer charge storage layer is formed on the inner sidewall of the high temperature oxide layer, the multilayer charge storage The layer includes an oxygen-deficient first oxynitride layer on the high temperature oxide layer, wherein the stoichiometric composition of the first oxynitride layer causes it to be densely trapped and is included on the first oxynitride layer The oxygen-rich second oxynitride layer, wherein the stoichiometric composition of the second oxynitride layer renders it substantially trap-free; forming a tunnel oxide layer on an inner sidewall of the multilayer charge storage layer; and A vertical channel including polysilicon is formed on an inner sidewall of the tunnel oxide layer, wherein the vertical channel is electrically coupled to the first doped diffusion region Domain to a second doped diffusion region formed in the semiconductor material layer above the multilayer stack and the opening.

100‧‧‧半導體元件 100‧‧‧Semiconductor components

102‧‧‧矽基板 102‧‧‧Silicon substrate

104、1402‧‧‧閘極堆疊 104、1402‧‧‧Gate stack

106‧‧‧氧化物-氮化物-氧化物部分 106‧‧‧Oxide-nitride-oxide part

108‧‧‧多晶矽閘極層 108‧‧‧Polysilicon gate layer

110、612、1012、1212‧‧‧源極和汲極區域 110, 612, 1012, 1212‧‧‧source and drain regions

112、614、1014、1214、1412‧‧‧通道區域 112, 614, 1014, 1214, 1412‧‧‧ passage area

106A、1616、1714、1808‧‧‧穿隧氧化物層 106A、1616、1714、1808‧‧‧Tunneling oxide layer

106B‧‧‧氮化物或氮氧化物層 106B‧‧‧Nitride or oxynitride layer

106C‧‧‧頂部氧化物層 106C‧‧‧Top oxide layer

200‧‧‧批次處理腔室 200‧‧‧Batch processing chamber

202‧‧‧半導體晶圓 202‧‧‧Semiconductor Wafer

204‧‧‧載子設備 204‧‧‧Carrier equipment

300、500、900、1100‧‧‧流程圖 300, 500, 900, 1100‧‧‧Flow chart

302-306、502-512、902-910、1102-1114、1500-1508‧‧‧操作 302-306, 502-512, 902-910, 1102-1114, 1500-1508‧‧‧Operation

400、600、700、1000、1200、1300、1408、1500、1606、1706、1906、2006‧‧‧基板 400, 600, 700, 1000, 1200, 1300, 1408, 1500, 1606, 1706, 1906, 2006‧‧‧Substrate

402、602、606、708、1002、1006、1202、1206、1308、1902、1910、2002‧‧‧介電層 402, 602, 606, 708, 1002, 1006, 1202, 1206, 1308, 1902, 1910, 2002‧‧‧Dielectric layer

404、604、1004、1204、1624、1626、1720、1722、1810、1816、1818、1916、2016、2016a、2016b‧‧‧電荷捕獲層 404, 604, 1004, 1204, 1624, 1626, 1720, 1722, 1810, 1816, 1818, 1916, 2016, 2016a, 2016b‧‧‧Charge trap layer

404A、604A、708A、1004A、1204B‧‧‧第一區域 404A, 604A, 708A, 1004A, 1204B‧‧‧First area

404B、604B、708B、1004B、1204C‧‧‧第二區域 404B, 604B, 708B, 1004B, 1204C‧‧‧Second area

406、1618、1716、1812、1918、2018‧‧‧阻擋介電層 406, 1618, 1716, 1812, 1918, 2018‧‧‧ barrier dielectric layer

608、1008、1208、1414、1620、1718、1814、1908、2022‧‧‧閘極層 608, 1008, 1208, 1414, 1620, 1718, 1814, 1908, 2022‧‧‧Gate layer

610、1010、1210‧‧‧介電間隔側壁 610, 1010, 1210‧‧‧Dielectric spacer

702、1302‧‧‧隔離區域 702, 1302‧‧‧Isolation area

704、706、1304、1306‧‧‧露出結晶平面 704, 706, 1304, 1306‧‧‧exposed crystal plane

800‧‧‧叢集工具 800‧‧‧Cluster Tool

802‧‧‧轉移腔室 802‧‧‧transfer chamber

804、806、808‧‧‧製程腔室 804, 806, 808‧‧‧ process chamber

1204A‧‧‧富氧氮氧化矽部分 1204A‧‧‧Oxygen-rich silicon oxynitride part

1308A‧‧‧第一部分 1308A‧‧‧Part One

1308B‧‧‧第二部分 1308B‧‧‧Part Two

1400、1600、1800、2026‧‧‧記憶體元件 1400, 1600, 1800, 2026‧‧‧Memory components

1404‧‧‧氧化物-氮化物-氧化物-氮化物-氧化物結構 1404‧‧‧Oxide-nitride-oxide-nitride-oxide structure

1406、1604‧‧‧表面 1406、1604‧‧‧surface

1410、1904、1930‧‧‧擴散區域 1410, 1904, 1930‧‧‧Proliferation area

1416、1502、1914、2014‧‧‧穿隧氧化物層 1416, 1502, 1914, 2014‧‧‧Tunneling oxide layer

1418、1419、1504‧‧‧氮化物層 1418、1419、1504‧‧‧Nitride layer

1420‧‧‧阻擋氧化物層 1420‧‧‧Blocking oxide layer

1421、1506、1628、1724、1820、2020‧‧‧抗穿隧層 1421, 1506, 1628, 1724, 1820, 2020‧‧‧Anti-tunneling layer

1508、1614‧‧‧多層電荷儲存層 1508、1614‧‧‧Multilayer charge storage layer

1602‧‧‧通道 1602‧‧‧Channel

1608、1708、1804‧‧‧源極 1608, 1708, 1804‧‧‧Source

1610、1710、1806‧‧‧汲極 1610、1710、1806‧‧‧Dip pole

1612、1712‧‧‧閘極 1612、1712‧‧‧Gate

1622‧‧‧絕緣層 1622‧‧‧Insulation layer

1700‧‧‧非平面式多閘極記憶體元件 1700‧‧‧Non-planar multi-gate memory device

1702、1802‧‧‧奈米線通道 1702, 1802‧‧‧Nanowire channel

1726‧‧‧位元成本可調架構 1726‧‧‧Bit Cost Adjustable Architecture

1924、2008‧‧‧垂直通道 1924, 2008‧‧‧Vertical Channel

1912、1920、2012、2024‧‧‧開口 1912, 1920, 2012, 2024‧‧‧ opening

1922、1928、2010‧‧‧半導體材料 1922, 1928, 2010‧‧‧Semiconductor materials

1926‧‧‧介電填充材料 1926‧‧‧Dielectric filling material

2004‧‧‧犧牲層 2004‧‧‧Sacrifice layer

T1、T2‧‧‧厚度 T1, T2‧‧‧Thickness

本發明實施例係舉例說明附圖之圖形,並非限制,其中: The embodiments of the present invention illustrate the figures in the drawings by way of example, and are not limiting, in which:

圖1說明一傳統非揮發性電荷捕獲記憶體元件之剖面圖。 FIG. 1 illustrates a cross-sectional view of a conventional non-volatile charge trap memory device.

圖2根據本發明一實施例說明一批次處理工具之氧化腔室之剖面圖。 2 illustrates a cross-sectional view of an oxidation chamber of a batch processing tool according to an embodiment of the present invention.

圖3根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作流程圖。 FIG. 3 illustrates a flow chart representing a series of operations in the manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention.

圖4A根據本發明一實施例說明對應至圖3流程圖中之操作302之具有一電荷捕獲層形成於其上之基板剖面圖。 4A illustrates a cross-sectional view of a substrate having a charge trap layer formed thereon corresponding to operation 302 in the flowchart of FIG. 3 according to an embodiment of the present invention.

圖4B根據本發明一實施例說明對應至圖3流程圖之操作304之具有包含一阻擋介電層形成於其上之電荷捕獲層之基板剖面圖。 4B illustrates a cross-sectional view of a substrate having a charge trapping layer including a blocking dielectric layer formed thereon corresponding to operation 304 of the flowchart of FIG. 3 according to an embodiment of the present invention.

圖5根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作流程圖。 FIG. 5 illustrates a flow chart representing a series of operations in a manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention.

圖6A根據本發明一實施例說明對應至圖5流程圖中之操作502之基板剖面圖。 FIG. 6A illustrates a cross-sectional view of the substrate corresponding to operation 502 in the flowchart of FIG. 5 according to an embodiment of the present invention.

圖6B根據本發明一實施例說明對應至圖5流程圖中之操作504之具有一第一介電層形成於其上之基板剖面圖。 6B illustrates a cross-sectional view of a substrate having a first dielectric layer formed thereon corresponding to operation 504 in the flowchart of FIG. 5 according to an embodiment of the present invention.

圖6C根據本發明一實施例說明對應至圖5流程圖中之操作508之具有一電荷捕獲層形成於其上之基板剖面圖。 6C illustrates a cross-sectional view of a substrate having a charge trapping layer formed thereon corresponding to operation 508 in the flowchart of FIG. 5 according to an embodiment of the present invention.

圖6D根據本發明一實施例說明對應至圖5流程圖之操作510之具有包 含一阻擋介電層形成於其上之電荷捕獲層之基板剖面圖。 FIG. 6D illustrates a package corresponding to operation 510 in the flowchart of FIG. 5 according to an embodiment of the present invention; A cross-sectional view of a substrate containing a charge trapping layer on which a blocking dielectric layer is formed.

圖6E根據本發明一實施例說明一非揮發性電荷捕獲記憶體元件之剖面圖。 6E illustrates a cross-sectional view of a non-volatile charge trap memory device according to an embodiment of the invention.

圖7A根據本發明一實施例說明包含第一和第二露出結晶平面之基板剖面圖。 FIG. 7A illustrates a cross-sectional view of a substrate including first and second exposed crystal planes according to an embodiment of the present invention.

圖7B根據本發明一實施例說明包含第一和第二露出結晶平面並具有一介電層形成於其上之基板剖面圖。 7B illustrates a cross-sectional view of a substrate including first and second exposed crystal planes and having a dielectric layer formed thereon according to an embodiment of the present invention.

圖8根據本發明一實施例說明一叢集工具內之製程腔室配置。 FIG. 8 illustrates the configuration of a process chamber in a cluster tool according to an embodiment of the present invention.

圖9根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作流程圖。 FIG. 9 illustrates a series of operation flowcharts representing a manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention.

圖10A根據本發明一實施例說明一基板之剖面圖。 FIG. 10A illustrates a cross-sectional view of a substrate according to an embodiment of the invention.

圖10B根據本發明一實施例說明對應至圖4流程圖中之操作402之具有一穿隧介電層形成於其上之基板剖面圖。 10B illustrates a cross-sectional view of a substrate having a tunneling dielectric layer formed thereon corresponding to operation 402 in the flowchart of FIG. 4 according to an embodiment of the present invention.

圖10C根據本發明一實施例說明對應至圖4流程圖中之操作406之具有一電荷捕獲層形成於其上之基板剖面圖。 10C illustrates a cross-sectional view of a substrate having a charge trapping layer formed thereon corresponding to operation 406 in the flowchart of FIG. 4 according to an embodiment of the present invention.

圖10D根據本發明一實施例說明對應至圖4流程圖之操作408之具有一頂部介電層形成於其上之基板剖面圖。 10D illustrates a cross-sectional view of a substrate having a top dielectric layer formed thereon corresponding to operation 408 in the flowchart of FIG. 4 according to an embodiment of the present invention.

圖10E根據本發明一實施例說明一非揮發性電荷捕獲記憶體元件之剖面圖。 10E illustrates a cross-sectional view of a non-volatile charge trap memory device according to an embodiment of the invention.

圖11根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作流程圖。 FIG. 11 illustrates a flow chart representing a series of operations in a manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention.

圖12A根據本發明一實施例說明對應至圖6流程圖中之操作602之具 有一穿隧介電層形成於其上之基板剖面圖。 FIG. 12A illustrates a tool corresponding to operation 602 in the flowchart of FIG. 6 according to an embodiment of the present invention There is a cross-sectional view of a substrate on which a tunneling dielectric layer is formed.

圖12B根據本發明一實施例說明對應至圖6流程圖中之操作606之具有一電荷捕獲層中富氧之氮氧化矽部分形成於其上之基板剖面圖。 12B illustrates a cross-sectional view of a substrate on which an oxygen-rich silicon oxynitride portion of a charge trap layer is formed corresponding to operation 606 in the flowchart of FIG. 6 according to an embodiment of the present invention.

圖12C根據本發明一實施例說明對應至圖6流程圖中之操作610之具有一電荷捕獲層中富矽之氮氧化矽部分形成於其上之基板剖面圖。 12C illustrates a cross-sectional view of a substrate on which a silicon-rich silicon oxynitride portion of a charge trap layer is formed corresponding to operation 610 in the flowchart of FIG. 6 according to an embodiment of the present invention.

圖12D根據本發明一實施例說明對應至圖6流程圖之操作612之具有一頂部介電層形成於其上之基板剖面圖。 12D illustrates a cross-sectional view of a substrate having a top dielectric layer formed thereon corresponding to operation 612 in the flowchart of FIG. 6 according to an embodiment of the present invention.

圖12E根據本發明一實施例說明一非揮發性電荷捕獲記憶體元件之剖面圖。 12E illustrates a cross-sectional view of a non-volatile charge trapping memory device according to an embodiment of the invention.

圖13A根據本發明一實施例說明包含第一和第二露出結晶平面之基板剖面圖。 FIG. 13A illustrates a cross-sectional view of a substrate including first and second exposed crystal planes according to an embodiment of the present invention.

圖13B根據本發明一實施例說明包含第一和第二露出結晶平面並具有一介電層形成於其上之基板剖面圖。 13B illustrates a cross-sectional view of a substrate including first and second exposed crystal planes and having a dielectric layer formed thereon according to an embodiment of the present invention.

圖14說明包含一氧化物-氮化物-氧化物-氮化物-氧化物堆疊之非揮發性電荷捕獲記憶體元件之剖面圖。 FIG. 14 illustrates a cross-sectional view of a non-volatile charge trap memory device including an oxide-nitride-oxide-nitride-oxide stack.

圖15根據本發明一實施例說明代表包含一氧化物-氮化物-氧化物-氮化物-氧化物堆疊之非揮發性電荷捕獲記憶體元件製造方法中之一系列操作剖面圖。 FIG. 15 illustrates a series of operational cross-sectional views representing a method for manufacturing a non-volatile charge trap memory device including an oxide-nitride-oxide-nitride-oxide stack according to an embodiment of the present invention.

圖16A說明包含一分離式電荷捕獲區域之非平面式多閘極元件。 Figure 16A illustrates a non-planar multi-gate device including a separate charge trapping region.

圖16B說明圖16A之非平面式多閘極元件之剖面圖。 FIG. 16B illustrates a cross-sectional view of the non-planar multi-gate device of FIG. 16A.

圖17A及17B說明包含一分離式電荷捕獲區域及一水平奈米線通道之非平面式多閘極元件。 17A and 17B illustrate a non-planar multi-gate device including a separate charge trapping region and a horizontal nanowire channel.

圖17C說明圖17A之非平面式多閘極元件垂直串之剖面圖。 FIG. 17C illustrates a cross-sectional view of the vertical string of non-planar multi-gate elements of FIG. 17A.

圖18A及18B說明包含一分離式電荷捕獲區域及一垂直奈米線通道之非平面式多閘極元件。 18A and 18B illustrate a non-planar multi-gate device including a separate charge trapping region and a vertical nanowire channel.

圖19A至圖19F說明用於製造圖18A之非平面式多閘極元件之閘極優先方案。 19A to 19F illustrate the gate priority scheme used to manufacture the non-planar multi-gate device of FIG. 18A.

圖20A至圖20F說明用於製造圖18A之非平面式多閘極元件之閘極後製方案。 20A to 20F illustrate a post-gate fabrication scheme for manufacturing the non-planar multi-gate device of FIG. 18A.

一種與邏輯元件整合之非揮發性電荷捕獲記憶體元件之實施例在此參考圖形進行描述。然而,特定實施例可在沒有這些特定細節之一或更多下或結合已知方法、材料及設備來實施。在下列說明中,例如特定材料、尺寸及製程參數等等眾多特定細節被提出,以提供本發明之徹底了解。在其它範例中,熟知半導體設計及製造技術未特別詳加說明以避免不必要地模糊本發明。整份說明書對“一實施例”之參考表示結合該實施例所述之特定特性、結構、材料或特徵係包含於本發明至少一實施例內。因此,在整份說明書之不同地方中之用語“一實施例中”之出現並不一定參考至本發明之相同實施例。更進一步,該些特定特性、結構、材料或特徵可以任何合適方式結合至一或更多實施例中。 An embodiment of a non-volatile charge trap memory device integrated with a logic device is described with reference to the drawings. However, specific embodiments may be implemented without one or more of these specific details or in combination with known methods, materials, and equipment. In the following description, many specific details such as specific materials, dimensions and process parameters are presented to provide a thorough understanding of the present invention. In other examples, well-known semiconductor design and manufacturing techniques are not specifically described in detail to avoid unnecessarily obscuring the present invention. The reference to "an embodiment" throughout the specification means that a specific characteristic, structure, material, or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present invention. Therefore, the appearance of the term "in one embodiment" in different places throughout the specification does not necessarily refer to the same embodiment of the present invention. Furthermore, these specific characteristics, structures, materials, or characteristics can be combined into one or more embodiments in any suitable manner.

用以製造一非揮發性電荷捕獲記憶體元件之方法在此被描述。在下列說明中,例如特定尺寸之眾多特定細節被提出,用以提供本發明之徹底了解。本發明可被實施而沒有這些特定細節對於一熟知此項技術 之人士會是顯而易見的。在其它範例中,例如圖案步驟或濕式化學清潔之熟知處理步驟未被詳細描述,用以不混淆本發明。更進一步,要了解到圖式中所示之各種實施例係說明代表,未必按比例繪製。 The method for manufacturing a non-volatile charge trap memory device is described here. In the following description, numerous specific details such as specific dimensions are presented to provide a thorough understanding of the present invention. The present invention can be implemented without these specific details for a person familiar with the technology The person will be obvious. In other examples, well-known processing steps such as patterning steps or wet chemical cleaning are not described in detail so as not to obscure the present invention. Furthermore, it should be understood that the various embodiments shown in the drawings are illustrative and not necessarily drawn to scale.

在此所揭示者係一非揮發性電荷捕獲記憶體元件之製造方法。先提供具有一電荷捕獲層置於其上之基板。在一實施例中,該電荷捕獲層之一部分接著被氧化,以藉由將該電荷捕獲層曝露至一基氧化製程而於該電荷捕獲層上方形成一阻擋介電層。 What is disclosed here is a manufacturing method of a non-volatile charge trap memory device. First, a substrate with a charge trapping layer placed on it is provided. In one embodiment, a portion of the charge trap layer is then oxidized to form a blocking dielectric layer over the charge trap layer by exposing the charge trap layer to a base oxidation process.

藉由一基氧化製程形成一介電層可較所涉及之蒸汽增長製程,也就是濕式增長製程提供更高品質之薄膜。更進一步,一批次處理腔室內所實施之基氧化製程可提供高品質薄膜而不影響一製造設備所要之產量(晶圓/小時)需求。藉由在例如大約600-900攝氏度範圍內之溫度之這類腔室容限溫度下實施該基氧化製程,該基板所容忍之熱預算及該基板上之任何其它特性直到超過1000攝氏度之典型範圍前並未受到影響。根據本發明一實施例,涉及將氫氣(H2)及氧氣(O2)流入一批次處理腔室中之基氧化製程被實施以經由一露出基板或薄膜之氧化耗用而造成一介電層之增長。在一實施例中,多個基氧化製程被實施以供給一非揮發性電荷捕獲記憶體元件一穿隧介電層及一阻擋介電層。這些介電層可以是非常高品質,甚至在厚度減少下亦然。在一實施例中,該穿隧介電層及該阻擋介電層兩者係較密且相較於濕式氧化技術所形成之穿隧介電層及阻擋介電層,實質上每立方公分由更少之氫原子所構成。根據本發明另一實施例,藉由實施一基氧化製程所形成之介電層係較不會受到它成長所在基板內之結晶平面方位差所影響。在一實施例中,不同結晶平面氧化速率所引起之銳角效應係藉由透 過一基氧化製程所形成之介電層而顯著地減少。 The formation of a dielectric layer by a basic oxidation process can provide a higher quality film than the steam growth process involved, that is, the wet growth process. Furthermore, the basic oxidation process implemented in a batch processing chamber can provide high-quality thin films without affecting the throughput (wafers/hour) required by a manufacturing equipment. By performing the base oxidation process at such a chamber tolerance temperature, such as a temperature in the range of approximately 600-900 degrees Celsius, the thermal budget tolerated by the substrate and any other characteristics on the substrate up to the typical range of over 1000 degrees Celsius The former has not been affected. According to an embodiment of the present invention, a basic oxidation process involving the flow of hydrogen (H2) and oxygen (O2) into a batch processing chamber is implemented to form a dielectric layer through an exposed substrate or thin film oxidation consumption increase. In one embodiment, multiple base oxidation processes are implemented to provide a non-volatile charge trap memory device, a tunneling dielectric layer and a blocking dielectric layer. These dielectric layers can be of very high quality, even with reduced thickness. In one embodiment, both the tunneling dielectric layer and the blocking dielectric layer are denser and compared to the tunneling dielectric layer and the blocking dielectric layer formed by wet oxidation technology, substantially per cubic centimeter Made up of fewer hydrogen atoms. According to another embodiment of the present invention, the dielectric layer formed by performing a basic oxidation process is less affected by the azimuth difference of the crystal plane in the substrate where it is grown. In one embodiment, the acute angle effect caused by the oxidation rate of different crystal planes The dielectric layer formed by a basic oxidation process is significantly reduced.

一非揮發性電荷捕獲記憶體元件之一部分可藉由在一製程腔室內實施一基氧化製程而被製造。在根據本發明一實施例中,該製程腔室係一批次處理腔室。圖2根據那個實施例說明一批次處理工具之氧化腔室剖面圖。參考至圖2,一批次處理腔室200包含持有複數個半導體晶圓202之載子設備204。在一實施例中,該批次處理腔室係一氧化腔室。在一特定實施例中,該製程腔室係一低壓化學氣相沉積腔室。該複數個半導體晶圓202可以在能夠納入的合理晶圓數量(例如25個晶圓)的同時,極大化每一個晶圓對一基氧化製程之曝露以進行一次操作處理之這類方式來安排之。然而,應了解到本發明並未限定至一批次處理腔室。 A portion of a non-volatile charge trapping memory device can be manufactured by performing a basic oxidation process in a process chamber. In an embodiment according to the present invention, the process chamber is a batch processing chamber. Figure 2 illustrates a cross-sectional view of the oxidation chamber of a batch processing tool according to that embodiment. Referring to FIG. 2, a batch processing chamber 200 includes a carrier device 204 holding a plurality of semiconductor wafers 202. In one embodiment, the batch processing chamber is an oxidation chamber. In a specific embodiment, the process chamber is a low pressure chemical vapor deposition chamber. The plurality of semiconductor wafers 202 can be arranged in such a way that a reasonable number of wafers (for example, 25 wafers) can be included while maximizing the exposure of each wafer to a basic oxidation process for one operation. It. However, it should be understood that the present invention is not limited to one batch of processing chambers.

在本發明一觀點中,一非揮發性電荷捕獲記憶體元件之一部分係藉由一基氧化製程來製造。圖3根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作流程圖。圖4A-4B根據本發明一實施例說明代表製造一非揮發性電荷捕獲記憶體元件之操作。 In one aspect of the present invention, a part of a non-volatile charge trapping memory device is manufactured by a basic oxidation process. FIG. 3 illustrates a flow chart representing a series of operations in the manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention. 4A-4B illustrate the operation of manufacturing a non-volatile charge trapping memory device according to an embodiment of the present invention.

圖4A根據本發明一實施例說明對應至圖3流程圖中之操作302之具有一電荷捕獲層形成於其上之基板剖面圖。參考至流程圖300之操作302及相對應圖4A,提供具有一電荷捕獲層置於其上之基板400。在一實施例中,該電荷捕獲層具有一第一區域404A及一第二區域404B置於基板400上方。在一實施例中,一介電層402係如圖4A所述地置於基板400及該電荷捕獲層之間。該電荷捕獲層可由一材料所構成且具有適合儲存電荷之厚度,並因此改變接著形成閘極堆疊之臨界電壓。在一實施例中,該電荷捕獲層之區域404A會保留成為接著後續製程操作之完整無缺電荷捕獲 層。然而,在那個實施例中,該增加形成之電荷捕獲層之區域404B會被耗用以在區域404A上方形成一第二介電層。 4A illustrates a cross-sectional view of a substrate having a charge trap layer formed thereon corresponding to operation 302 in the flowchart of FIG. 3 according to an embodiment of the present invention. Referring to operation 302 of the flowchart 300 and corresponding to FIG. 4A, a substrate 400 having a charge trapping layer disposed thereon is provided. In one embodiment, the charge trap layer has a first area 404A and a second area 404B on the substrate 400. In one embodiment, a dielectric layer 402 is interposed between the substrate 400 and the charge trapping layer as described in FIG. 4A. The charge trapping layer can be made of a material and has a thickness suitable for storing charges, and therefore changes the threshold voltage for subsequent formation of the gate stack. In one embodiment, the area 404A of the charge trapping layer will remain intact for subsequent process operations. Floor. However, in that embodiment, the area 404B of the added charge trapping layer is consumed to form a second dielectric layer over the area 404A.

圖4B根據本發明一實施例說明對應至圖3流程圖之操作304之具有包含一阻擋介電層形成於其上之電荷捕獲層之基板剖面圖。參考至流程圖300之操作304及相對應圖4B,一阻擋介電層406係形成於電荷捕獲層404上。根據本發明一實施例,阻擋介電層406係藉由曝露該電荷捕獲層至一基氧化製程而由該電荷捕獲層之氧化區域404B所形成。在那個實施例中,該原始電荷捕獲層之區域404A現在被標示為電荷捕獲層404。 4B illustrates a cross-sectional view of a substrate having a charge trapping layer including a blocking dielectric layer formed thereon corresponding to operation 304 of the flowchart of FIG. 3 according to an embodiment of the present invention. Referring to operation 304 of flowchart 300 and corresponding to FIG. 4B, a blocking dielectric layer 406 is formed on the charge trapping layer 404. According to an embodiment of the present invention, the blocking dielectric layer 406 is formed by the oxide region 404B of the charge trap layer by exposing the charge trap layer to a basic oxidation process. In that embodiment, the area 404A of the original charge trap layer is now labeled as the charge trap layer 404.

阻擋介電層406可由一材料所構成且具有適合對漏電維持一障礙卻不顯著地降低在接著形成於一非揮發性電荷捕獲記憶體元件內之閘極堆疊電容之厚度。在一特定實施例中,區域404B係具有大約在2-3奈米範圍厚度之富矽之氮氧化矽區域並被氧化以形成具有大約在3.5-4.5奈米範圍之厚度之阻擋介電層。在那個實施例中,阻擋介電層406係由二氧化矽所構成。 The blocking dielectric layer 406 can be made of a material and has a thickness suitable for maintaining a barrier to leakage without significantly reducing the thickness of the gate stack capacitor that is then formed in a non-volatile charge trapping memory device. In a specific embodiment, the region 404B has a silicon-rich silicon oxynitride region with a thickness in the range of approximately 2-3 nanometers and is oxidized to form a blocking dielectric layer with a thickness in the range of approximately 3.5-4.5 nanometers. In that embodiment, the blocking dielectric layer 406 is composed of silicon dioxide.

阻擋介電層406可藉由一基氧化製程來形成。在根據本發明一實施例中,該基氧化製程涉及將氫氣及氧氣流入例如連結圖2所述批次處理腔室200之熔爐中。在一實施例中,氫氣及氧氣分壓彼此間具有大約1:1的比值。然而,在一實施例中,一燃燒事件並未實現,其在其它方面典型地會被使用以熱分解氫氣及氧氣來形成蒸汽。替代性地,允許氫氣及氧氣作用以在區域404B表面處形成自由基。在一實施例中,該些自由基被使用以耗用區域404B以提供阻擋介電層406。在一特定實施例中,該基氧化製程包含在大約600-900攝氏度範圍溫度下利用例如一氫氧基、一氫過氧基 或一氧二基之自由基來進行氧化,但不限於此。在一具體實施例中,該基氧化製程係實施於大約700-800攝氏度範圍之溫度及大約0.5-5托耳範圍之壓力下。在一實施例中,該第二基氧化製程係實施大約100-150分鐘範圍之持續時間。 The blocking dielectric layer 406 can be formed by a basic oxidation process. In an embodiment according to the present invention, the basic oxidation process involves flowing hydrogen and oxygen into a furnace connected to the batch processing chamber 200 described in FIG. 2, for example. In one embodiment, the partial pressures of hydrogen and oxygen have a ratio of approximately 1:1 to each other. However, in one embodiment, a combustion event is not realized, and it is typically used in other aspects to thermally decompose hydrogen and oxygen to form steam. Alternatively, hydrogen and oxygen are allowed to act to form free radicals at the surface of region 404B. In one embodiment, these radicals are used to consume the area 404B to provide a blocking dielectric layer 406. In a specific embodiment, the base oxidation process includes the use of, for example, a hydroxyl group and a hydroperoxy group at a temperature in the range of about 600-900 degrees Celsius. Or an oxydiyl radical for oxidation, but not limited to this. In a specific embodiment, the basic oxidation process is performed at a temperature in the range of about 700-800 degrees Celsius and a pressure in the range of about 0.5-5 Torr. In one embodiment, the second-based oxidation process is performed for a duration in the range of about 100-150 minutes.

參考至流程圖300之操作306,阻擋介電層406可進一步在該第一製程腔室內承受一氮化製程。根據本發明一實施例,該氮化製程包含在大約700-800攝氏度範圍溫度下及大約5分鐘-60分鐘範圍持續時間內,於一含氮大氣中回火阻擋介電層406。在一實施例中,該含氮大氣係由例如氮氣(N2)、氧化亞氮(N2O)、二氧化氮(NO2)、氧化氮(NO)或氨(NH3)之氣體所構成,但不限於此。替代性地,本氮化步驟,也就是來自流程圖300之操作306,可被略過。 Referring to operation 306 of the flowchart 300, the blocking dielectric layer 406 may be further subjected to a nitridation process in the first process chamber. According to an embodiment of the present invention, the nitriding process includes tempering the barrier dielectric layer 406 in a nitrogen-containing atmosphere at a temperature in the range of about 700-800 degrees Celsius and a duration in the range of about 5 minutes to 60 minutes. In one embodiment, the nitrogen-containing atmosphere is composed of gases such as nitrogen (N2), nitrous oxide (N2O), nitrogen dioxide (NO2), nitrogen oxide (NO) or ammonia (NH3), but is not limited to this. Alternatively, this nitridation step, that is, operation 306 from flowchart 300, can be skipped.

在本發明一觀點中,一穿隧介電層及一阻擋介電層兩者可藉由一基氧化製程來形成。圖5根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作流程圖500。圖6A-6E根據本發明一實施例說明代表製造一非揮發性電荷捕獲記憶體元件之操作。 In one aspect of the present invention, both a tunneling dielectric layer and a blocking dielectric layer can be formed by a basic oxidation process. FIG. 5 illustrates a flowchart 500 representing a series of operations in a manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention. FIGS. 6A-6E illustrate the operation of manufacturing a non-volatile charge trapping memory device according to an embodiment of the present invention.

圖6A根據本發明一實施例說明對應至圖5流程圖中之操作502之基板剖面圖。參考至流程圖500之操作502及相對應圖6A,一基板600被提供於一製程腔室內。 FIG. 6A illustrates a cross-sectional view of the substrate corresponding to operation 502 in the flowchart of FIG. 5 according to an embodiment of the present invention. Referring to operation 502 of the flowchart 500 and corresponding to FIG. 6A, a substrate 600 is provided in a process chamber.

基板600可由適合用於半導體元件製造之材料所構成。在一實施例中,基板600係一本體基板,由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料之單一結晶材料所構成,但不限於此。在另一實施例中,基板600包含具有一頂部磊晶層之本體層。在一特定實施例中,該本體層 係由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料或石英之單一結晶材料所構成,但不限於此,而該頂部磊晶層係由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料之單一結晶層所構成,但不限於此。在另一實施例中,基板600包含位於一下方本體層之上之中間絕緣體層上的頂部磊晶層。該頂部磊晶層係由可包富矽(也就是,用以形成絕緣體上矽(SOI)半導體基板)、鍺、矽-鍺或一III-V族化合物半導體材料之單一結晶層所構成,但不限於此。該絕緣體層係由可包含二氧化矽、氮化矽或氮氧化矽之材料所構成,但不限於此。該下方本體層係由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料或石英之單一結晶材料所構成,但不限於此。基板600可進一步包含摻雜物之雜質原子。 The substrate 600 may be composed of materials suitable for semiconductor device manufacturing. In one embodiment, the substrate 600 is a body substrate, which is composed of a single crystalline material that may be coated with silicon-rich, germanium, silicon-germanium, or a III-V compound semiconductor material, but is not limited thereto. In another embodiment, the substrate 600 includes a bulk layer with a top epitaxial layer. In a specific embodiment, the body layer It is composed of a single crystal material that can be rich in silicon, germanium, silicon-germanium, or a III-V compound semiconductor material or quartz, but is not limited to this, and the top epitaxial layer is made of a single crystalline material that can be rich in silicon, germanium, It is composed of a single crystalline layer of silicon-germanium or a III-V compound semiconductor material, but it is not limited to this. In another embodiment, the substrate 600 includes a top epitaxial layer on an intermediate insulator layer above a lower body layer. The top epitaxial layer is composed of a single crystal layer that can be coated with silicon-rich (that is, used to form a silicon-on-insulator (SOI) semiconductor substrate), germanium, silicon-germanium, or a III-V compound semiconductor material, but Not limited to this. The insulator layer is made of materials that can include silicon dioxide, silicon nitride, or silicon oxynitride, but is not limited thereto. The lower body layer is composed of a single crystalline material that may be rich in silicon, germanium, silicon-germanium, or a III-V compound semiconductor material or quartz, but is not limited thereto. The substrate 600 may further include impurity atoms of dopants.

圖6B根據本發明一實施例說明對應至圖5流程圖中之操作504之具有一第一介電層形成於其上之基板剖面圖。參考至流程圖500之操作504及相對應圖6B,基板600係承受一第一基氧化製程以形成一第一介電層602。 6B illustrates a cross-sectional view of a substrate having a first dielectric layer formed thereon corresponding to operation 504 in the flowchart of FIG. 5 according to an embodiment of the present invention. Referring to operation 504 of the flowchart 500 and corresponding to FIG. 6B, the substrate 600 is subjected to a first base oxidation process to form a first dielectric layer 602.

第一介電層602可由一材料所構成且具有一適合厚度以在一施加閘極偏壓下,讓電荷載子穿隧至接著形成之電荷捕獲層,而在未施加偏壓於接著形成之非揮發性電荷捕獲記憶體元件時,對漏電維持一合適障礙。第一介電層602在習知技術中可稱之為穿隧介電層。根據本發明一實施例,第一介電層602係由一氧化製程所形成,其中,該基板600之頂部表面被耗用。因此,在一實施例中,介電層602係由基板600之材料之氧化物所構成。例如,在一實施例中,基板600係由矽所構成且第一介電層602係由二氧化矽所構成。在一特定實施例中,所形成第一介電層602之厚度 係大約在1-10奈米範圍內。在一具體實施例中,所形成第一介電層602之厚度係大約在1.5-2.5奈米範圍內。 The first dielectric layer 602 can be made of a material and has a suitable thickness to allow charge carriers to tunnel to the subsequently formed charge trapping layer under an applied gate bias voltage, without applying a bias voltage to the subsequently formed In the case of non-volatile charge trapping memory devices, a suitable barrier to leakage is maintained. The first dielectric layer 602 can be referred to as a tunneling dielectric layer in the prior art. According to an embodiment of the present invention, the first dielectric layer 602 is formed by an oxidation process, wherein the top surface of the substrate 600 is consumed. Therefore, in one embodiment, the dielectric layer 602 is composed of the oxide of the material of the substrate 600. For example, in one embodiment, the substrate 600 is made of silicon and the first dielectric layer 602 is made of silicon dioxide. In a specific embodiment, the thickness of the formed first dielectric layer 602 is It is approximately in the range of 1-10 nanometers. In a specific embodiment, the thickness of the formed first dielectric layer 602 is approximately in the range of 1.5-2.5 nm.

第一介電層602可藉由一基氧化製程來形成。在根據本發明一實施例中,該基氧化製程涉及將氫氣(H2)及氧氣(O2)流入例如連結圖2所述批次處理腔室200之熔爐中。在一實施例中,氫氣及氧氣分壓彼此間具有大約1:1的比值。然而,在一實施例中,一燃燒事件並未實現,其在其它方面典型地會被使用以熱分解氫氣及氧氣來形成蒸汽。替代性地,氫氣及氧氣係可起反應以在基板600表面處形成自由基。在一實施例中,該些自由基被使用以耗用基板600之頂部以提供第一介電層602。在一特定實施例中,該基氧化製程包含在大約600-900攝氏度範圍溫度下利用例如一氫氧基、一氫過氧基或一氧二基之自由基來進行氧化,但不限於此。在一具體實施例中,該基氧化製程係實施於大約700-800攝氏度範圍溫度及大約0.5-5托耳範圍壓力下。在一實施例中,該基氧化製程係實施大約100-150分鐘範圍之持續時間。根據本發明一實施例,第一介電層602係形成為一高密度、低氫含量之薄膜。 The first dielectric layer 602 can be formed by a basic oxidation process. In an embodiment according to the present invention, the basic oxidation process involves flowing hydrogen (H2) and oxygen (O2) into a furnace connected to the batch processing chamber 200 described in FIG. 2, for example. In one embodiment, the partial pressures of hydrogen and oxygen have a ratio of approximately 1:1 to each other. However, in one embodiment, a combustion event is not realized, and it is typically used in other aspects to thermally decompose hydrogen and oxygen to form steam. Alternatively, hydrogen and oxygen can react to form free radicals on the surface of the substrate 600. In one embodiment, the radicals are used to consume the top of the substrate 600 to provide the first dielectric layer 602. In a specific embodiment, the radical oxidation process includes oxidation using radicals such as monohydroxyl, monohydroperoxy or monooxydiyl radicals at a temperature in the range of about 600-900 degrees Celsius, but is not limited thereto. In a specific embodiment, the basic oxidation process is performed at a temperature in the range of about 700-800 degrees Celsius and a pressure in the range of about 0.5-5 Torr. In one embodiment, the basic oxidation process is performed for a duration in the range of about 100-150 minutes. According to an embodiment of the present invention, the first dielectric layer 602 is formed as a high density, low hydrogen content thin film.

參考至流程圖500之操作506,形成第一介電層602之後,且在任何進一步處理之前,第一介電層602可承受一氮化製程。在一實施例中,該氮化製程係實施於與形成第一介電層502所使用之相同製程腔室內,在製程步驟間並未將基板600自該製程腔室中移除。在一實施例中,該回火包含在大約700-800攝氏度範圍溫度下及大約5分鐘-60分鐘範圍持續時間內,於一含氮大氣中加熱基板600。在一實施例中,該含氮大氣係由例如氮氣(N2)、氧化亞氮(N2O)、二氧化氮(NO2)、氧化氮(NO)或氨(NH3)之氣 體所構成,但不限於此。在一實施例中,該氮化作用發生於該第一基氧化製程後之製程腔室之氮或氬清除後。替代性地,上述氮化步驟可被略過。 Referring to operation 506 of the flowchart 500, after the first dielectric layer 602 is formed and before any further processing, the first dielectric layer 602 can be subjected to a nitridation process. In one embodiment, the nitridation process is performed in the same process chamber used to form the first dielectric layer 502, and the substrate 600 is not removed from the process chamber during the process steps. In one embodiment, the tempering includes heating the substrate 600 in a nitrogen-containing atmosphere at a temperature in the range of about 700-800 degrees Celsius and a duration in the range of about 5 minutes to 60 minutes. In one embodiment, the nitrogen-containing atmosphere is composed of gases such as nitrogen (N 2 ), nitrous oxide (N 2 O), nitrogen dioxide (NO 2 ), nitrogen oxide (NO) or ammonia (NH 3 ). Composition, but not limited to this. In one embodiment, the nitridation occurs after nitrogen or argon is removed from the process chamber after the first base oxidation process. Alternatively, the aforementioned nitridation step may be skipped.

圖6C根據本發明一實施例說明對應至圖5流程圖中之操作508之具有一電荷捕獲層形成於其上之基板剖面圖。參考至流程圖500之操作508及相對應圖6C,具有一第一區域604A及一第二區域604B之電荷捕獲層係形成於第一介電層602上。在一實施例中,該電荷捕獲層之形成係實施於與形成第一介電層602所使用之相同製程腔室內,在製程步驟間並未將基板600自該製程腔室中移除。 6C illustrates a cross-sectional view of a substrate having a charge trapping layer formed thereon corresponding to operation 508 in the flowchart of FIG. 5 according to an embodiment of the present invention. Referring to operation 508 of the flowchart 500 and corresponding to FIG. 6C, a charge trapping layer having a first region 604A and a second region 604B is formed on the first dielectric layer 602. In one embodiment, the formation of the charge trapping layer is performed in the same process chamber used to form the first dielectric layer 602, and the substrate 600 is not removed from the process chamber during the process steps.

該電荷捕獲層可由一材料所構成且具有適合儲存電荷並因此改變接著形成之閘極堆疊臨界電壓之厚度。根據本發明一實施例,該電荷捕獲層係由如圖6C所述之二區域604A及604B所構成。在一實施例中,該電荷捕獲層之區域604A會保留做為後續製程操作之完整無缺電荷捕獲層。然而,在那個實施例中,該增加形成之電荷捕獲層之區域604B會被耗用以在區域604A上方形成一第二介電層。 The charge trapping layer can be made of a material and has a thickness suitable for storing charges and thus changing the threshold voltage of the gate stack to be formed next. According to an embodiment of the present invention, the charge trapping layer is composed of the two regions 604A and 604B as shown in FIG. 6C. In one embodiment, the area 604A of the charge trapping layer will remain as an intact charge trapping layer for subsequent processing operations. However, in that embodiment, the area 604B of the added charge trapping layer is consumed to form a second dielectric layer over the area 604A.

具有區域604A及604B之電荷捕獲層可藉由一化學氣相沉積製程來形成。根據本發明一實施例,該電荷捕獲層係由例如氮化矽、氮氧化矽、富氧之氮氧化矽或含氮之氮氧化矽所構成,但不限於此。在一實施例中,該電荷捕獲層之604A及604B係形成於大約600-800攝氏度範圍溫度下。在一特定實施例中,該電荷捕獲層係使用例如二氯矽烷、雙三級丁氨基矽烷(BTBAS)、氨(NH3)或氧化亞氮(N2O)之氣體來形成,但不限於此。在一實施例中,該電荷捕獲層係形成大約5-15奈米範圍之總厚度,區域604B佔有大約該電荷捕獲層總厚度之2-3奈米範圍厚度。在那個實施例中,區域 604A佔有該電荷捕獲層之其餘總厚度,也就是,區域604A佔有該電荷捕獲層中,未被接著耗用以形成一頂部或阻擋介電層的部分。 The charge trapping layer with regions 604A and 604B can be formed by a chemical vapor deposition process. According to an embodiment of the present invention, the charge trapping layer is made of, for example, silicon nitride, silicon oxynitride, oxygen-rich silicon oxynitride, or nitrogen-containing silicon oxynitride, but it is not limited thereto. In one embodiment, 604A and 604B of the charge trapping layer are formed at a temperature in the range of about 600-800 degrees Celsius. In a specific embodiment, the charge trapping layer is formed using gases such as dichlorosilane, bi-tertiary butylaminosilane (BTBAS), ammonia (NH 3 ) or nitrous oxide (N 2 O), but is not limited to this. In one embodiment, the charge trap layer is formed with a total thickness in the range of about 5-15 nanometers, and the region 604B occupies a thickness in the range of about 2-3 nanometers of the total thickness of the charge trap layer. In that embodiment, the region 604A occupies the remaining total thickness of the charge trap layer, that is, the region 604A occupies the portion of the charge trap layer that is not subsequently consumed to form a top or blocking dielectric layer.

在本發明另一觀點中,該電荷捕獲層可包含多個組成成分區域。例如,根據本發明一實施例,該電荷捕獲層包含一富氧部分及一富矽部分並藉由一第一氣體組成成分來沉積一富氧之氮氧化物薄膜和接著藉由一第二氣體組成成分來沉積一富矽之氮氧化物薄膜而形成。在一實施例中,該電荷捕獲層係藉由改變氨(NH3)氣體流速並引進氧化亞氮(N2O)和二氯矽烷來提供該些要求氣體比值,以先產生一富氧之氮氧化物薄膜,再接著產生一富矽之氮氧化物薄膜而形成。在一特定實施例中,該富氧之氮氧化物薄膜係藉由引進包富氧化亞氮、氨及二氯矽烷之製程氣體混合物,同時將該製程腔室維持在大約5-500毫托耳範圍壓力下,並將基板600維持在大約700-850攝氏度範圍溫度下,持續一段大約2.5-20分鐘範圍之時間而形成。在一進一步實施例中,該製程氣體混合物包含具有約從8:1至1:8比值之氧化亞氮和氨,及具有約從1:7至7:1比值之二氯矽烷和氨,且可以大約每分鐘5-200標準立方公分(sccm)範圍之流速來引進。在另一特定實施例中,該富矽氮氧化物薄膜係藉由引進包富氧化亞氮、氨及二氯矽烷之製程氣體混合物,同時將該腔室維持在大約5-500毫托耳範圍壓力下,並將基板600維持在大約700-850攝氏度範圍溫度下,持續一段大約2.5-20分鐘範圍之時間而形成。在一進一步實施例中,該製程氣體混合物包含具有約從8:1至1:8比值之氧化亞氮和氨,及以約從1:7至7:1比值混合之二氯矽烷和氨,以大約每分鐘5至20標準立方公分之流速來引進。根據本發明一實施例,該電荷捕獲層包括具有大約2.5-3.5奈米範圍厚度之底部富氧 氮氧化矽部分及具有大約9-10奈米範圍厚度之頂部富矽氮氧化矽部分。在一實施例中,電荷捕獲層之區域504B佔有該電荷捕獲層之頂部富矽氮氧化矽部分之總厚度大約2-3奈米範圍厚度。因此,針對接著耗用以形成一第二介電層所預定之區域604B可完全由富矽氮氧化矽來構成之。 In another aspect of the present invention, the charge trap layer may include multiple component regions. For example, according to an embodiment of the present invention, the charge trap layer includes an oxygen-rich portion and a silicon-rich portion, and an oxygen-rich oxynitride film is deposited by a first gas composition and then by a second gas The composition is formed by depositing a silicon-rich oxynitride film. In one embodiment, the charge trapping layer provides the required gas ratio by changing the flow rate of ammonia (NH3) gas and introducing nitrous oxide (N2O) and dichlorosilane to generate an oxygen-rich nitrogen oxide first The film is then formed by producing a silicon-rich oxynitride film. In a specific embodiment, the oxygen-rich oxynitride film is prepared by introducing a process gas mixture rich in nitrous oxide, ammonia, and dichlorosilane, while maintaining the process chamber at about 5-500 millitorr It is formed by maintaining the substrate 600 at a temperature in the range of about 700-850 degrees Celsius under a range of pressure for a period of about 2.5-20 minutes. In a further embodiment, the process gas mixture comprises nitrous oxide and ammonia having a ratio of approximately from 8:1 to 1:8, and dichlorosilane and ammonia having a ratio of approximately from 1:7 to 7:1, and It can be introduced at a flow rate in the range of 5-200 standard cubic centimeters (sccm) per minute. In another specific embodiment, the silicon-rich oxynitride film is prepared by introducing a process gas mixture containing nitrous oxide, ammonia, and dichlorosilane, while maintaining the chamber in the range of about 5-500 millitorr The substrate 600 is formed under pressure and maintained at a temperature in the range of about 700-850 degrees Celsius for a period of about 2.5-20 minutes. In a further embodiment, the process gas mixture includes nitrous oxide and ammonia having a ratio of approximately from 8:1 to 1:8, and dichlorosilane and ammonia mixed in a ratio of approximately from 1:7 to 7:1, It is introduced at a flow rate of approximately 5 to 20 standard cubic centimeters per minute. According to an embodiment of the present invention, the charge trapping layer includes a bottom oxygen-rich layer having a thickness in the range of about 2.5-3.5 nanometers. The silicon oxynitride portion and the top silicon-rich silicon oxynitride portion having a thickness in the range of about 9-10 nanometers. In one embodiment, the area 504B of the charge trap layer occupies the total thickness of the top silicon-rich silicon oxynitride portion of the charge trap layer in the range of about 2-3 nanometers. Therefore, the region 604B predetermined for subsequent consumption to form a second dielectric layer can be entirely composed of silicon-rich silicon oxynitride.

圖6D根據本發明一實施例說明對應至圖5流程圖之操作510之具有一第二介電層形成於其上之基板剖面圖。參考至流程圖500之操作510及相對應圖6D,一第二介電層606係形成於電荷捕獲層604上。在一實施例中,該第二介電層606之形成係實施於與形成第一介電層602和該電荷捕獲層604所使用之相同製程腔室內,在製程步驟間並未將基板600自該製程腔室中移除。在一實施例中,該第二基氧化製程係實施於該電荷捕獲層沉積後之製程腔室之氮或氬清除後。 6D illustrates a cross-sectional view of a substrate having a second dielectric layer formed thereon corresponding to operation 510 of the flowchart of FIG. 5 according to an embodiment of the present invention. Referring to operation 510 of flowchart 500 and corresponding to FIG. 6D, a second dielectric layer 606 is formed on the charge trap layer 604. In one embodiment, the formation of the second dielectric layer 606 is carried out in the same process chamber used to form the first dielectric layer 602 and the charge trap layer 604, and the substrate 600 is not self-contained during the process steps. Remove from the process chamber. In one embodiment, the second base oxidation process is performed after nitrogen or argon is removed from the process chamber after the charge trapping layer is deposited.

第二介電層606可一材料所構成且具有對漏電維持一合適障礙卻不顯著地降低接著形成於一非揮發性電荷捕獲記憶體元件內之閘極堆疊電容之厚度。第二介電層606於習知技術中可稱之為一阻擋介電層或一頂部介電層。根據本發明一實施例,第二介電層606係藉由耗用連結圖6C所述操作508所形成之電荷捕獲層之區域604B而形成。因此,在一實施例中,區域604B被耗用以提供第二介電層606,而區域604A保留一電荷捕獲層。在一特定實施例中,區域604B係具有大約2-3奈米範圍厚度之富矽氮氧化矽,並被氧化以形成具有大約3.5-4.5奈米範圍厚度之第二介電層606。在一那個實施例中,第二介電層606係由二氧化矽所構成。根據本發明一實施例,第二介電層606係由一第二基氧化製程所形成,類似於連結圖4B所述之實施該基氧化製程以形成阻擋介電層406。在一實施例中,參 考至流程圖500之操作512,形成第二介電層606後,接著第二介電層606係進一步承受一氮化製程,類似於連結流程圖500之操作506所述之氮化製程。在一特定實施例中,該氮化作用發生於該第二基氧化製程後之製程腔室之氮或氬清除後。替代性地,本氮化步驟可被略過。根據本發明一實施例,沒有額外沉積製程被使用於第二介電層606之形成。 The second dielectric layer 606 can be made of a material and has a suitable barrier to leakage without significantly reducing the thickness of the gate stack capacitor then formed in a non-volatile charge trap memory device. The second dielectric layer 606 can be referred to as a blocking dielectric layer or a top dielectric layer in the prior art. According to an embodiment of the present invention, the second dielectric layer 606 is formed by consuming the region 604B connecting the charge trapping layer formed in operation 508 of FIG. 6C. Therefore, in one embodiment, the area 604B is consumed to provide the second dielectric layer 606, while the area 604A retains a charge trapping layer. In a specific embodiment, the region 604B is a silicon-rich silicon oxynitride with a thickness in the range of about 2-3 nanometers and is oxidized to form the second dielectric layer 606 with a thickness in the range of about 3.5-4.5 nanometers. In one embodiment, the second dielectric layer 606 is composed of silicon dioxide. According to an embodiment of the present invention, the second dielectric layer 606 is formed by a second base oxidation process, similar to the base oxidation process described in connection with FIG. 4B to form the blocking dielectric layer 406. In one embodiment, reference Considering the operation 512 of the flowchart 500, after the second dielectric layer 606 is formed, the second dielectric layer 606 is then further subjected to a nitridation process, similar to the nitridation process described in operation 506 of the connection flowchart 500. In a specific embodiment, the nitridation occurs after the nitrogen or argon purging of the process chamber after the second base oxidation process. Alternatively, this nitridation step can be skipped. According to an embodiment of the present invention, no additional deposition process is used for the formation of the second dielectric layer 606.

因此,根據本發明一實施例,包含第一介電層602、電荷捕獲層604及第二介電層606之氧化物-氮化物-氧化物堆疊係以一次操作形成於一製程腔室內。藉由一次操作該製程腔室內之多個晶圓來製造這些層,高產量要求可被滿足而仍能確保非常高品質薄膜之形成。依據包含第一介電層602、電荷捕獲層604及第二介電層606之氧化物-氮化物-氧化物堆疊製造,一非揮發性電荷捕獲記憶體元件可被製造以包含該氧化物-氮化物-氧化物堆疊之圖案化部分。圖6E根據本發明一實施例說明一非揮發性電荷捕獲記憶體元件之剖面圖。 Therefore, according to an embodiment of the present invention, the oxide-nitride-oxide stack including the first dielectric layer 602, the charge trap layer 604, and the second dielectric layer 606 is formed in a process chamber in one operation. By manipulating multiple wafers in the process chamber at one time to manufacture these layers, high-throughput requirements can be met while still ensuring the formation of very high-quality films. According to the oxide-nitride-oxide stack manufacturing including the first dielectric layer 602, the charge trap layer 604 and the second dielectric layer 606, a non-volatile charge trap memory device can be manufactured to contain the oxide- The patterned part of the nitride-oxide stack. 6E illustrates a cross-sectional view of a non-volatile charge trap memory device according to an embodiment of the invention.

參考至圖6E,一非揮發性電荷捕獲記憶體元件包含形成於基板600上方之氧化物-氮化物-氧化物堆疊之圖案化部分。該氧化物-氮化物-氧化物堆疊包含第一介電層602、電荷捕獲層604及第二介電層606。一閘極層608係置於第二介電層606上。該非揮發性電荷捕獲記憶體元件進一步包含基板600內分別位於該氧化物-氮化物-氧化物堆疊一側上之源極和汲極區域612,以定義該氧化物-氮化物-氧化物堆疊下之基板600內之通道區域614。一對介電間隔側壁610隔離第一介電層602、電荷捕獲層604、第二介電層606及閘極層608之側壁。在一特定實施例中,通道區域614係為P型摻雜,而在一替代性實施例中,通道區域614係N型摻雜。 Referring to FIG. 6E, a non-volatile charge trapping memory device includes a patterned portion of an oxide-nitride-oxide stack formed on a substrate 600. The oxide-nitride-oxide stack includes a first dielectric layer 602, a charge trap layer 604, and a second dielectric layer 606. A gate layer 608 is placed on the second dielectric layer 606. The non-volatile charge trapping memory device further includes source and drain regions 612 located on one side of the oxide-nitride-oxide stack in the substrate 600 to define the bottom of the oxide-nitride-oxide stack The channel area 614 in the substrate 600. A pair of dielectric spacer sidewalls 610 isolate the sidewalls of the first dielectric layer 602, the charge trap layer 604, the second dielectric layer 606, and the gate layer 608. In a specific embodiment, the channel region 614 is P-type doped, and in an alternative embodiment, the channel region 614 is N-type doped.

根據本發明一實施例,連結圖6E所述之非揮發性電荷捕獲記憶體元件係一半導體-氧化物-氮化物-氧化物-半導體型元件。按照慣例,SONOS代表“半導體-氧化物-氮化物-氧化物-半導體”,其中,該第一個“半導體”參考至該通道區域材料,該第一個“氧化物”參考至該穿隧介電層,“氮化物”參考至該電荷捕獲介電層,該第二個“氧化物”參考至該頂部介電層(也是已知之阻擋介電層),以及該第二個“半導體”參考至該閘極層。因此,根據本發明一實施例,第一介電層602係一穿隧介電層,且第二介電層606係一阻擋介電層。 According to an embodiment of the present invention, the non-volatile charge trap memory device described in FIG. 6E is a semiconductor-oxide-nitride-oxide-semiconductor device. By convention, SONOS stands for "semiconductor-oxide-nitride-oxide-semiconductor", where the first "semiconductor" refers to the channel region material, and the first "oxide" refers to the tunneling medium Electrical layer, "nitride" reference to the charge trapping dielectric layer, the second "oxide" reference to the top dielectric layer (also known as blocking dielectric layer), and the second "semiconductor" reference To the gate layer. Therefore, according to an embodiment of the present invention, the first dielectric layer 602 is a tunneling dielectric layer, and the second dielectric layer 606 is a blocking dielectric layer.

閘極層608可由適合在一半導體-氧化物-氮化物-氧化物-半導體型電晶體操作期間提供一偏壓之任何導體或半導體材料所構成。根據本發明一實施例,閘極層608係經由一化學氣相沉積製程所形成且由摻雜多晶矽所構成。在另一實施例中,閘極層608係經由物理氣相沉積製程所形成且由可包含金屬氮化物、金屬碳化物、金屬矽化物、鉿、鋯、鈦、鉭、鋁、釕、鈀、鉑、鈷或鎳之含金屬材料所構成,但不限於此。 The gate layer 608 can be made of any conductor or semiconductor material suitable for providing a bias voltage during the operation of a semiconductor-oxide-nitride-oxide-semiconductor transistor. According to an embodiment of the present invention, the gate layer 608 is formed by a chemical vapor deposition process and is composed of doped polysilicon. In another embodiment, the gate layer 608 is formed by a physical vapor deposition process and may include metal nitride, metal carbide, metal silicide, hafnium, zirconium, titanium, tantalum, aluminum, ruthenium, palladium, It is composed of platinum, cobalt, or nickel-containing metal materials, but not limited to this.

基板600內之源極和汲極區域612可為具有與通道區域614相反導電性之任何區域。例如,根據本發明一實施例,源極及汲極區域612係N型摻雜區域,而通道區域614係一P型摻雜區域。在一實施例中,基板600及因此所形成之通道區域614係由具有1x1015-1x1019原子/立方公分範圍硼濃度之硼摻雜單結晶矽所構成。在那個實施例中,源極及汲極區域612係由具有5x1016-5x1019原子/立方公分範圍之N型摻雜物濃度之磷或砷摻雜區域所構成。在一特定實施例中,源極及汲極區域612在基板600內具有80-200奈米範圍之深度。根據本發明一替代性實施例,源極及汲極區域612 係P型摻雜區域,而通道區域614係一N型摻雜區域。 The source and drain regions 612 in the substrate 600 can be any regions with opposite conductivity to the channel region 614. For example, according to an embodiment of the present invention, the source and drain regions 612 are N-type doped regions, and the channel region 614 is a P-type doped regions. In one embodiment, the substrate 600 and the channel region 614 formed thereby are composed of boron-doped monocrystalline silicon having a boron concentration in the range of 1×10 15 -1× 10 19 atoms/cm ^3. In that embodiment, the source and drain regions 612 are composed of phosphorus or arsenic doped regions with an N-type dopant concentration in the range of 5× 10 16 -5× 10 19 atoms/cm ^3. In a specific embodiment, the source and drain regions 612 have a depth in the range of 80-200 nanometers in the substrate 600. According to an alternative embodiment of the present invention, the source and drain regions 612 are P-type doped regions, and the channel region 614 is an N-type doped region.

在本發明另一觀點中,經由一氧化腔室內之基板頂部表面之基氧化作用所形成之介電層在它生長於該基板上時,較不容易受到該基板內之結晶平面方位差的影響。例如,在一實施例中,不同結晶平面氧化速率所引起之銳角效應係藉由一基氧化製程所形成之介電層而顯著地降低。圖7A根據本發明一實施例說明包含第一和第二露出結晶平面之基板剖面圖。 In another aspect of the present invention, the dielectric layer formed by base oxidation on the top surface of the substrate in an oxidation chamber is less susceptible to the influence of the crystal plane orientation difference in the substrate when it is grown on the substrate . For example, in one embodiment, the acute angle effect caused by the oxidation rate of different crystal planes is significantly reduced by the dielectric layer formed by a basic oxidation process. FIG. 7A illustrates a cross-sectional view of a substrate including first and second exposed crystal planes according to an embodiment of the present invention.

參考至圖7A,一基板700具有形成於其上之隔離區域702。基板700可由連結自圖6A基板600所述之材料所構成。隔離區域702可由適合黏接至基板700之絕緣材料所構成。基板700之一露出部分延伸超過隔離區域702之頂部表面。根據本發明一實施例,該基板700之露出部分具有一第一露出結晶平面704及一第二露出結晶平面706。在一實施例中,該第一露出結晶平面704之結晶方位係不同於該第二露出結晶平面706之結晶方位。在一特定實施例中,基板700係由矽所構成,第一露出結晶平面704具有<100>方位,且第二露出結晶平面706具有<110>方位。 Referring to FIG. 7A, a substrate 700 has isolation regions 702 formed thereon. The substrate 700 may be composed of materials connected from the substrate 600 of FIG. 6A. The isolation region 702 can be made of an insulating material suitable for bonding to the substrate 700. An exposed portion of the substrate 700 extends beyond the top surface of the isolation region 702. According to an embodiment of the present invention, the exposed portion of the substrate 700 has a first exposed crystal plane 704 and a second exposed crystal plane 706. In one embodiment, the crystal orientation of the first exposed crystal plane 704 is different from the crystal orientation of the second exposed crystal plane 706. In a specific embodiment, the substrate 700 is made of silicon, the first exposed crystal plane 704 has a <100> orientation, and the second exposed crystal plane 706 has a <110> orientation.

基板700可承受一基氧化製程以藉由耗用(氧化)該基板700之頂部表面來形成一介電層。在一實施例中,經由一基氧化製程來氧化基板700包含利用由一氫氧基、一氫過氧基或一氧二基所構成的族群中所選之自由基來進行氧化。圖7B根據本發明一實施例說明分別包含第一和第二結晶平面704和706並具有一介電層708形成於其上之基板700之剖面圖。在一實施例中,如圖7B所示地,介電層708之第一部分708A係形成於第一露出結晶平面704上,且介電層708之第二部分708B係形成於第二露出 結晶平面706上。在一實施例中,介電層708之第一部分708A之厚度T1係大約等於介電層708之第二部分708B之厚度T2,即使第一露出結晶平面704和第二露出結晶平面706之結晶平面方位不同亦然。在一特定實施例中,該基板700之基氧化作用係實施於大約600-900攝氏度範圍溫度下。在一特定實施例中,該基板700之基氧化作用係實施於大約700-800攝氏度範圍溫度及大約0.5-5托耳範圍壓力下。 The substrate 700 can be subjected to a base oxidation process to form a dielectric layer by consuming (oxidizing) the top surface of the substrate 700. In one embodiment, oxidizing the substrate 700 through a one-radical oxidation process includes using a radical selected from the group consisting of a hydroxyl group, a hydroperoxy group, or an oxydiyl group for oxidation. FIG. 7B illustrates a cross-sectional view of a substrate 700 including first and second crystal planes 704 and 706 and having a dielectric layer 708 formed thereon, according to an embodiment of the present invention. In one embodiment, as shown in FIG. 7B, the first portion 708A of the dielectric layer 708 is formed on the first exposed crystal plane 704, and the second portion 708B of the dielectric layer 708 is formed on the second exposed crystal plane. Crystalline plane 706. In one embodiment, the thickness T1 of the first portion 708A of the dielectric layer 708 is approximately equal to the thickness T2 of the second portion 708B of the dielectric layer 708, even though the first exposed crystal plane 704 and the second exposed crystal plane 706 are crystal planes The same is true for different directions. In a specific embodiment, the base oxidation of the substrate 700 is performed at a temperature in the range of about 600-900 degrees Celsius. In a specific embodiment, the base oxidation of the substrate 700 is performed at a temperature in the range of about 700-800 degrees Celsius and a pressure in the range of about 0.5-5 Torr.

因此,一種非揮發性電荷捕獲記憶體元件之製造方法已被揭示。根據本發明一實施例,提供具有一電荷捕獲層沉積於其上之基板。該電荷捕獲層之一部分接著被氧化以藉由將該電荷捕獲層曝露至一基氧化製程中而於該電荷捕獲層上方形成一阻擋介電層。 Therefore, a manufacturing method of a non-volatile charge trap memory device has been disclosed. According to an embodiment of the present invention, a substrate having a charge trap layer deposited thereon is provided. A portion of the charge trap layer is then oxidized to form a blocking dielectric layer over the charge trap layer by exposing the charge trap layer to a base oxidation process.

在本發明另一觀點中,可期待使用一叢集工具以實施一基氧化製程。因此,在此所揭示者係一種非揮發性電荷捕獲記憶體元件之製造方法。一基板可先承受一第一基氧化製程以於一叢集工具之第一製程腔室內形成一第一介電層。在一實施例中,一電荷捕獲層接著係在該叢集工具之第二製程腔室內沉積於該第一介電層上方。該電荷捕獲層接著可承受一第二基氧化製程以在該電荷捕獲層上方形成一第二介電層。在一實施例中,該第二介電層係藉由氧化該叢集工具之第一製程腔室內之一部分電荷捕獲層而形成。在一特定實施例中,該叢集工具係一單晶圓叢集工具。 In another aspect of the present invention, it can be expected to use a cluster tool to perform a basic oxidation process. Therefore, what is disclosed here is a manufacturing method of a non-volatile charge trap memory device. A substrate can first undergo a first base oxidation process to form a first dielectric layer in the first process chamber of a cluster tool. In one embodiment, a charge trapping layer is then deposited on the first dielectric layer in the second process chamber of the cluster tool. The charge trapping layer can then undergo a second base oxidation process to form a second dielectric layer on the charge trapping layer. In one embodiment, the second dielectric layer is formed by oxidizing a portion of the charge trapping layer in the first process chamber of the cluster tool. In a specific embodiment, the cluster tool is a single wafer cluster tool.

一叢集工具腔室內之介電層形成允許該介電層生長於較批次處理腔室內一般可得之更高溫度。更進一步,一基氧化製程可被實施於該叢集工具腔室內,以做為該介電層生長之主要路徑。根據本發明一實施例,涉及將氫氣(H2)及氧氣(O2)流入一叢集工具之氧化腔室中之基氧化製程 被實施以經由一露出基板或薄膜之氧化耗用來造成一介電層之增長。在一實施例中,多個基氧化製程被實施於一叢集工具之氧化腔室以供給一非揮發性電荷捕獲記憶體元件一穿隧介電層及一阻擋介電層。這些介電層可以是非常高品質,甚至在厚度減少下亦然。在一實施例中,該穿隧介電層及該阻擋介電層兩者係較密且由實質上每立方公分較一批次製程腔室內所形成之穿隧介電層及阻擋介電層更少之氫原子所構成。更進一步,相較於一批次製程腔室,在一叢集工具之氧化腔室內,一穿隧介電層及一阻擋介電層係形成於其上之基板可被曝露於一較短促溫度上升速率和穩定時間。因此,根據本發明另一實施例,對該基板熱預算之影響係藉由在一叢集工具之氧化腔室運用一基氧化製程而減少。根據本發明另一實施例,在一叢集工具之氧化腔室內實施一基氧化製程所形成之介電層係較不會受到它成長所在基板內之結晶平面方位差所影響。在一實施例中,不同結晶平面氧化速率所引起之銳角效應係藉由透過在一叢集工具之氧化腔室內所實施之基氧化製造所形成之介電層而顯著地減少。 The formation of the dielectric layer in a cluster tool chamber allows the dielectric layer to grow at higher temperatures than generally available in batch processing chambers. Furthermore, a basic oxidation process can be implemented in the cluster tool chamber as the main path for the growth of the dielectric layer. According to an embodiment of the present invention, a basic oxidation process involves flowing hydrogen (H2) and oxygen (O2) into an oxidation chamber of a cluster tool It is implemented to cause the growth of a dielectric layer through oxidation loss of an exposed substrate or film. In one embodiment, multiple base oxidation processes are implemented in an oxidation chamber of a cluster tool to supply a non-volatile charge trap memory device, a tunneling dielectric layer and a blocking dielectric layer. These dielectric layers can be of very high quality, even with reduced thickness. In one embodiment, both the tunneling dielectric layer and the blocking dielectric layer are denser and consist of the tunneling dielectric layer and the blocking dielectric layer formed in a batch process chamber substantially per cubic centimeter Made up of fewer hydrogen atoms. Furthermore, compared to a batch process chamber, the substrate on which a tunneling dielectric layer and a blocking dielectric layer are formed in an oxidation chamber of a cluster tool can be exposed to a shorter temperature rise Rate and stabilization time. Therefore, according to another embodiment of the present invention, the influence on the thermal budget of the substrate is reduced by applying a basic oxidation process to the oxidation chamber of a cluster tool. According to another embodiment of the present invention, the dielectric layer formed by performing a basic oxidation process in the oxidation chamber of a cluster tool is less affected by the azimuth difference of the crystal plane in the substrate where it grows. In one embodiment, the acute angle effect caused by the different crystalline plane oxidation rates is significantly reduced by the dielectric layer formed by the base oxidation manufacturing performed in the oxidation chamber of a cluster tool.

一非揮發性電荷捕獲記憶體元件之一部分可被製造於一叢集工具中。圖8根據本發明一實施例說明在一叢集工具內之製程腔室配置。參考至圖8,一叢集工具800之製程腔室配置包含一轉移腔室802、一第一製程腔室804、一第二製程腔室806及一第三製程腔室808。在一實施例中,轉移腔室802係用於接收來自一外部環境之晶圓以引入叢集工具800中。在一實施例中,該些製程腔室802、804及806中之每一個係以使得一晶圓可如圖8之雙箭頭所示地前後穿梭於這些腔室和轉移腔室802之間之方式來安排之。根據本發明一實施例,雖未顯示,叢集工具800可被架構以使得一 晶圓可被直接轉移於製程腔室802、804及806中之任一對之間。 A part of a non-volatile charge trapping memory device can be manufactured in a cluster tool. FIG. 8 illustrates the configuration of a process chamber in a cluster tool according to an embodiment of the present invention. Referring to FIG. 8, the process chamber configuration of a cluster tool 800 includes a transfer chamber 802, a first process chamber 804, a second process chamber 806 and a third process chamber 808. In one embodiment, the transfer chamber 802 is used to receive wafers from an external environment for introduction into the cluster tool 800. In one embodiment, each of the process chambers 802, 804, and 806 is such that a wafer can shuttle back and forth between these chambers and the transfer chamber 802 as shown by the double arrow in FIG. Way to arrange it. According to an embodiment of the present invention, although not shown, the cluster tool 800 can be constructed so that a The wafer can be directly transferred between any pair of process chambers 802, 804, and 806.

叢集工具800可為將一外部環境隔絕於製程腔室804、804及806和轉移腔室802之外或之間之任何叢集工具。因此,根據本發明一實施例,一旦一晶圓已進入製程腔室802,則在它被移動至製程腔室804、804及806和轉移腔室802之內或之間時,它係隔離於一外部環境。這類叢集工具範例係由位於美國加州聖克拉拉市之應用材料公司於市場銷售之Centura®平台。在一實施例中,一旦轉移腔室802已接收一晶圓,在叢集工具800內維持大約小於100毫托耳之真空。根據本發明一實施例,叢集工具800整合一墊塊(或多個墊塊,也就是,每一個腔室一個墊塊),其中,相對於該邊緣表面之晶圓平坦表面依靠在該墊塊上用以處理並轉移事件。在一實施例中,藉由將一晶圓平坦表面依靠在該墊塊上,用於加熱該晶圓之更快速上升速率可藉由透過該墊塊來加熱該晶圓而得。在一特定實施例中,叢集工具800係一單晶圓叢集工具。 The cluster tool 800 can be any cluster tool that isolates an external environment from outside or between the process chambers 804, 804, and 806 and the transfer chamber 802. Therefore, according to an embodiment of the present invention, once a wafer has entered the process chamber 802, it is isolated from the process chambers 804, 804, and 806 and the transfer chamber 802 when it is moved into or between An external environment. An example of this type of cluster tool is the Centura® platform marketed by Applied Materials Corporation in Santa Clara, California. In one embodiment, once the transfer chamber 802 has received a wafer, a vacuum of approximately less than 100 millitorr is maintained in the cluster tool 800. According to an embodiment of the present invention, the cluster tool 800 integrates a spacer (or a plurality of spacers, that is, one spacer for each chamber), wherein the flat surface of the wafer relative to the edge surface rests on the spacer Used to process and transfer events. In one embodiment, by leaning a flat surface of a wafer on the spacer, a faster ascent rate for heating the wafer can be obtained by heating the wafer through the spacer. In a specific embodiment, the cluster tool 800 is a single wafer cluster tool.

製程腔室802、804及806可包富氧化腔室、低壓化學氣相沉積腔室或其結合,但不限於此。例如,根據本發明一實施例,第一製程腔室804係一第一氧化腔室,第二製程腔室806係一低壓化學氣相沉積腔室,且第三製程腔室808係一第二氧化腔室。一氧化腔室範例係來自應用材料公司之現場蒸汽產生(ISSG)腔室。低壓化學氣相沉積腔室範例包含來自應用材料公司之SiNgenTM腔室及OXYgenTM腔室。取代典型批次處理腔室例之加熱整個製程腔室以加熱一晶圓者為用於攜帶單一晶圓所使用之墊塊可被加熱以加熱該晶圓。根據本發明一實施例,一墊塊被使用以加熱一晶圓至該要求製程溫度。因此,可得到相當短促之溫度上升時間及穩定時間。 The process chambers 802, 804, and 806 may include a rich oxidation chamber, a low pressure chemical vapor deposition chamber, or a combination thereof, but are not limited thereto. For example, according to an embodiment of the present invention, the first process chamber 804 is a first oxidation chamber, the second process chamber 806 is a low pressure chemical vapor deposition chamber, and the third process chamber 808 is a second Oxidation chamber. An example of an oxidation chamber is an on-site steam generation (ISSG) chamber from Applied Materials. Examples of low pressure chemical vapor deposition chambers include SiNgen chambers and OXYgen chambers from Applied Materials. Instead of heating the entire process chamber to heat a wafer in the example of a typical batch processing chamber, the spacer used to carry a single wafer can be heated to heat the wafer. According to an embodiment of the invention, a spacer is used to heat a wafer to the required process temperature. Therefore, a relatively short temperature rise time and stabilization time can be obtained.

一非揮發性電荷捕獲記憶體元件之一部分可被製造於一叢集工具中。圖9根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作流程圖。圖10A-10E根據本發明一實施例說明代表製造一非揮發性電荷捕獲記憶體元件之操作剖面圖。 A part of a non-volatile charge trapping memory device can be manufactured in a cluster tool. FIG. 9 illustrates a series of operation flowcharts representing a manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention. 10A-10E illustrate cross-sectional views representing the operation of manufacturing a non-volatile charge trapping memory device according to an embodiment of the present invention.

參考至圖10A,一基板1000被提供於一叢集工具中。在一實施例中,基板1000被提供於一轉移腔室中,例如,連結圖8所述之轉移腔室802。 Referring to FIG. 10A, a substrate 1000 is provided in a cluster tool. In one embodiment, the substrate 1000 is provided in a transfer chamber, for example, in conjunction with the transfer chamber 802 described in FIG. 8.

基板1000可由適合用於半導體元件製造之材料所構成。在一實施例中,基板1000係一本體基板,由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料之單一結晶材料所構成,但不限於此。在另一實施例中,基板1000包含具有一頂部磊晶層之本體層。在一特定實施例中,該本體層係由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料或石英之單一結晶材料所構成,但不限於此,而該頂部磊晶層係由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料之單一結晶層所構成,但不限於此。在另一實施例中,基板1000包含位於一下方本體層之上之中間絕緣體層上的頂部磊晶層。該頂部磊晶層係由可包富矽(也就是,用以形成絕緣體上矽(SOI)半導體基板)、鍺、矽-鍺或一III-V族化合物半導體材料之單一結晶層所構成,但不限於此。該絕緣體層係由可包含二氧化矽、氮化矽或氮氧化矽之材料所構成,但不限於此。該下方本體層係由可包富矽、鍺、矽-鍺或一III-V族化合物半導體材料或石英之單一結晶材料所構成,但不限於此。基板1000可進一步包含摻雜物之雜質原子。 The substrate 1000 may be composed of materials suitable for semiconductor device manufacturing. In one embodiment, the substrate 1000 is a body substrate, which is composed of a single crystalline material that may be coated with silicon-rich, germanium, silicon-germanium, or a III-V compound semiconductor material, but is not limited thereto. In another embodiment, the substrate 1000 includes a bulk layer with a top epitaxial layer. In a specific embodiment, the body layer is composed of a single crystalline material that can be coated with silicon-rich, germanium, silicon-germanium, or a III-V compound semiconductor material or quartz, but it is not limited to this, and the top epitaxy The layer is composed of a single crystalline layer that can include silicon-rich, germanium, silicon-germanium or a III-V compound semiconductor material, but is not limited to this. In another embodiment, the substrate 1000 includes a top epitaxial layer on an intermediate insulator layer above a lower body layer. The top epitaxial layer is composed of a single crystal layer that can be coated with silicon-rich (that is, used to form a silicon-on-insulator (SOI) semiconductor substrate), germanium, silicon-germanium, or a III-V compound semiconductor material, but Not limited to this. The insulator layer is made of materials that can include silicon dioxide, silicon nitride, or silicon oxynitride, but is not limited thereto. The lower body layer is composed of a single crystalline material that may be rich in silicon, germanium, silicon-germanium, or a III-V compound semiconductor material or quartz, but is not limited thereto. The substrate 1000 may further include impurity atoms of dopants.

圖10B根據本發明一實施例說明對應至圖9流程圖中之操 作902之具有一穿隧介電層形成於其上之基板剖面圖。參考至流程圖900之操作902及相對應圖10B,基板1000係於該叢集工具之第一製程腔室內承受一第一基氧化製程以形成一第一介電層1002。 FIG. 10B illustrates the operation corresponding to the flowchart in FIG. 9 according to an embodiment of the present invention 902 is a cross-sectional view of a substrate with a tunneling dielectric layer formed thereon. Referring to operation 902 of the flowchart 900 and corresponding to FIG. 10B, the substrate 1000 is subjected to a first base oxidation process in the first process chamber of the cluster tool to form a first dielectric layer 1002.

第一介電層1002可由一材料所構成且具有一合適厚度以在一施加閘極偏壓下,讓電荷載子穿隧至一接著形成之電荷捕獲層中,而在未施加偏壓於接著形成之非揮發性電荷捕獲記憶體元件時,對漏電維持一合適障礙。第一介電層1002在習知技術中可稱之為穿隧介電層。根據本發明一實施例,第一介電層602係由一氧化製程所形成,其中,基板1000之頂部表面被耗用。因此,在一實施例中,第一介電層1002係由基板1000之材料之氧化物所構成。例如,在一實施例中,基板1000係由矽所構成且第一介電層1002係由二氧化矽所構成。在一特定實施例中,所形成第一介電層1002之厚度係大約在1-10奈米範圍內。在一具體實施例中,所形成第一介電層1002之厚度係大約在1.5-2.5奈米範圍內。 The first dielectric layer 1002 can be made of a material and has a suitable thickness to allow charge carriers to tunnel into a subsequently formed charge trapping layer under an applied gate bias voltage, without applying a bias voltage to the next When the non-volatile charge trapping memory device is formed, a suitable barrier to leakage is maintained. The first dielectric layer 1002 can be referred to as a tunneling dielectric layer in the prior art. According to an embodiment of the present invention, the first dielectric layer 602 is formed by an oxidation process, in which the top surface of the substrate 1000 is consumed. Therefore, in one embodiment, the first dielectric layer 1002 is composed of an oxide of the material of the substrate 1000. For example, in one embodiment, the substrate 1000 is made of silicon and the first dielectric layer 1002 is made of silicon dioxide. In a specific embodiment, the thickness of the formed first dielectric layer 1002 is approximately in the range of 1-10 nm. In a specific embodiment, the thickness of the formed first dielectric layer 1002 is approximately in the range of 1.5-2.5 nm.

第一介電層1002可由一基氧化製程來形成之。在根據本發明一實施例中,該基氧化製程涉及將氫氣及氧氣流入例如連結圖8所述氧化腔室804或808之氧化腔室中。在一實施例中,氫氣及氧氣分壓彼此間具有大約1:50-1:5範圍比值。然而,在一實施例中,一燃燒事件並未實現,其在其它方面典型地會被使用以熱分解氫氣及氧氣來形成蒸汽。替代性地,氫氣及氧氣係可起反應以在基板1000表面處形成自由基。在一實施例中,該些自由基被使用以耗用基板1000之頂部以提供第一介電層1002。在一特定實施例中,該基氧化製程包含利用例如一氫氧基、一氫過氧基或一氧二基之自由基來進行氧化,但不限於此。在一具體實施例中,該基氧化製程 係實施於大約950-1100攝氏度範圍溫度及大約5-15托耳範圍壓力下。在一實施例中,該基氧化製程係實施大約1-3分鐘範圍之持續時間。根據本發明一實施例,第一介電層1002係形成為一高密度、低氫含量之薄膜。 The first dielectric layer 1002 can be formed by a basic oxidation process. In an embodiment according to the present invention, the basic oxidation process involves flowing hydrogen and oxygen into an oxidation chamber connected to the oxidation chamber 804 or 808 described in FIG. 8, for example. In one embodiment, the partial pressures of hydrogen and oxygen have a ratio in the range of approximately 1:50-1:5. However, in one embodiment, a combustion event is not realized, and it is typically used in other aspects to thermally decompose hydrogen and oxygen to form steam. Alternatively, hydrogen and oxygen can react to form free radicals on the surface of the substrate 1000. In one embodiment, the radicals are used to consume the top of the substrate 1000 to provide the first dielectric layer 1002. In a specific embodiment, the radical oxidation process includes the use of radicals such as monohydroxyl, hydroperoxy or monooxydiyl radicals for oxidation, but is not limited thereto. In a specific embodiment, the base oxidation process It is implemented at a temperature in the range of about 950-1100 degrees Celsius and a pressure in the range of about 5-15 Torr. In one embodiment, the basic oxidation process is performed for a duration in the range of about 1-3 minutes. According to an embodiment of the present invention, the first dielectric layer 1002 is formed as a high density, low hydrogen content thin film.

參考至流程圖900之操作904,形成第一介電層1002之後,且在任何進一步處理之前,第一介電層1002可承受一氮化製程。在一實施例中,該氮化製程係實施於與形成第一介電層1002所使用之相同製程腔室內,在一實施例中,第一介電層1002係回火於該第一製程腔室內,其中,該回火包含在大約900-1100攝氏度範圍溫度下,大約30秒-60秒範圍持續時間內,於一含氮大氣中加熱基板1000。在一實施例中,該含氮大氣係由例如氮氣(N2)、氧化亞氮(N2O)、二氧化氮(NO2)、氧化氮(NO)或氨(NH3)之氣體所構成,但不限於此。在一實施例中,該氮化作用發生於一獨立製程腔室。替代性地,本氮化步驟可被略過。 Referring to operation 904 of flowchart 900, after forming the first dielectric layer 1002, and before any further processing, the first dielectric layer 1002 can be subjected to a nitridation process. In one embodiment, the nitridation process is performed in the same process chamber used to form the first dielectric layer 1002. In one embodiment, the first dielectric layer 1002 is tempered in the first process chamber Indoors, where the tempering includes heating the substrate 1000 in a nitrogen-containing atmosphere at a temperature in the range of about 900-1100 degrees Celsius for a duration of about 30 seconds to 60 seconds. In one embodiment, the nitrogen-containing atmosphere is composed of gases such as nitrogen (N2), nitrous oxide (N2O), nitrogen dioxide (NO2), nitrogen oxide (NO) or ammonia (NH3), but is not limited to this. In one embodiment, the nitridation occurs in a separate process chamber. Alternatively, this nitridation step can be skipped.

圖10C根據本發明一實施例說明對應至圖9流程圖中之操作906之具有一電荷捕獲層形成於其上之基板剖面圖。參考至流程圖900之操作906及相對應圖10C,具有一第一區域1004A及一第二區域1004B之電荷捕獲層係在一叢集工具之第二製程腔室內形成於第一介電層1002上。 10C illustrates a cross-sectional view of a substrate having a charge trapping layer formed thereon corresponding to operation 906 in the flowchart of FIG. 9 according to an embodiment of the present invention. Referring to operation 906 of the flowchart 900 and corresponding to FIG. 10C, the charge trapping layer with a first region 1004A and a second region 1004B is formed on the first dielectric layer 1002 in the second process chamber of a cluster tool .

該電荷捕獲層可由一材料所構成且具有適合儲存電荷並因此改變接著形成之閘極堆疊臨界電壓之厚度。根據本發明一實施例,該電荷捕獲層係由如圖10C所述之二區域1004A及1004B所構成。在一實施例中,該電荷捕獲層之區域1004A會保留做為後續製程操作之完整無缺電荷捕獲層。然而,在那個實施例中,該增加形成之電荷捕獲層之區域1004B會被耗用以在區域1004A上方形成一第二介電層。在一實施例中,該電荷 捕獲層之區域1004A及1004B係以相同製程步驟來形成且由相同材料所構成。 The charge trapping layer can be made of a material and has a thickness suitable for storing charges and thus changing the threshold voltage of the gate stack to be formed next. According to an embodiment of the present invention, the charge trap layer is composed of two regions 1004A and 1004B as shown in FIG. 10C. In one embodiment, the region 1004A of the charge trap layer will remain as an intact charge trap layer for subsequent process operations. However, in that embodiment, the area 1004B of the added charge trapping layer is consumed to form a second dielectric layer over the area 1004A. In one embodiment, the charge The regions 1004A and 1004B of the capture layer are formed by the same process steps and are made of the same material.

具有區域1004A及1004B之電荷捕獲層可經由一化學氣相沉積製程來形成之。根據本發明一實施例,該電荷捕獲層係由例如氮化矽、氮氧化矽、富氧之氮氧化矽或含氮之氮氧化矽所構成,但不限於此。在一實施例中,該電荷捕獲層係在例如連結自圖8之製程腔室806所述之SiNgenTM低壓化學氣相沉積腔室般之低壓化學氣相沉積腔室內形成於第一介電層1002上。在一實施例中,該第二製程腔室係一低壓化學氣相沉積腔室,且該電荷捕獲層之區域1004A及1004B係在相較於形成第一介電層1002所使用之溫度更低之溫度下形成之。在一特定實施例中,該電荷捕獲層之區域1004A及1004B係在大約700-850攝氏度範圍溫度下形成之。在一實施例中,該第二製程腔室係一低壓化學氣相沉積腔室,且該電荷捕獲層係使用例如二氯矽烷、雙三級丁氨基矽烷(BTBAS)、氨(NH3)或氧化亞氮(N2O)之氣體來形成,但不限於此。根據本發明一實施例,該電荷捕獲層係形成為大約5-15奈米範圍之總厚度,區域1004B佔有大約該電荷捕獲層總厚度中之2-3奈米範圍厚度。在那個實施例中,區域1004A佔有該電荷捕獲層之其餘總厚度,也就是,區域1004A佔有該電荷捕獲層中,未被接著耗用以形成一頂部或阻擋介電層的部分。 The charge trap layer with regions 1004A and 1004B can be formed by a chemical vapor deposition process. According to an embodiment of the present invention, the charge trapping layer is made of, for example, silicon nitride, silicon oxynitride, oxygen-rich silicon oxynitride, or nitrogen-containing silicon oxynitride, but it is not limited thereto. In one embodiment, the charge trapping layer is formed on the first dielectric layer 1002 in a low pressure chemical vapor deposition chamber such as the SiNgenTM low pressure chemical vapor deposition chamber described in the process chamber 806 of FIG. 8 on. In one embodiment, the second process chamber is a low pressure chemical vapor deposition chamber, and the regions 1004A and 1004B of the charge trap layer are at a lower temperature than the temperature used to form the first dielectric layer 1002 It is formed at the temperature. In a specific embodiment, the regions 1004A and 1004B of the charge trap layer are formed at a temperature in the range of about 700-850 degrees Celsius. In one embodiment, the second process chamber is a low pressure chemical vapor deposition chamber, and the charge trapping layer uses, for example, dichlorosilane, bi-tertiary butylaminosilane (BTBAS), ammonia (NH 3 ) or Nitrous oxide (N 2 O) gas is formed, but it is not limited to this. According to an embodiment of the present invention, the charge trapping layer is formed to have a total thickness in the range of about 5-15 nanometers, and the region 1004B occupies about 2-3 nanometers of the total thickness of the charge trapping layer. In that embodiment, the region 1004A occupies the remaining total thickness of the charge trap layer, that is, the region 1004A occupies the portion of the charge trap layer that is not subsequently consumed to form a top or blocking dielectric layer.

在本發明另一觀點中,該電荷捕獲層可包含多個組成成分區域。例如,根據本發明一實施例,該電荷捕獲層包含一富氧部分及一富矽部分並於該第二製程腔室內經由一第一氣體組成成分來沉積一富氧之氮氧化物薄膜並經由一第二氣體組成成分來沉積一富矽之氮氧化物薄膜而形 成。在一實施例中,該電荷捕獲層係藉由改變氨(NH3)氣之流速並引進氧化亞氮(N2O)和二氯矽烷來提供該些要求氣體比值,以先產生一富氧之氮氧化物薄膜,再接著產生一富矽之氮氧化物薄膜而形成。在一特定實施例中,該富氧之氮氧化物薄膜係藉由引進包富氧化亞氮、氨及二氯矽烷之製程氣體混合物,同時將該腔室維持在大約0.5-500托耳範圍壓力下,並將基板1000維持在大約700-850攝氏度範圍溫度下,持續一段大約2.5-20分鐘範圍之時間而形成。在一進一步實施例中,該製程氣體混合物包含具有約從8:1至1:8比值之氧化亞氮和氨,及具有約從1:7至7:1比值之二氯矽烷和氨,且可以大約每分鐘5-200標準立方公分範圍之流速來引進。在另一特定實施例中,該富矽之氮氧化物薄膜係藉由引進包富氧化亞氮、氨及二氯矽烷之製程氣體混合物,同時將該腔室維持在大約0.5-500托耳範圍壓力下,並將基板1000維持在大約700-850攝氏度範圍溫度下,持續一段大約2.5-20分鐘範圍之時間而形成。在一進一步實施例中,該製程氣體混合物包含具有約從8:1至1:8比值之氧化亞氮和氨,及以約從1:7至7:1比值混合之二氯矽烷和氨,以大約每分鐘5至20標準立方公分之流速來引進。根據本發明一實施例,該電荷捕獲層包括具有大約2.5-3.5奈米範圍厚度之底部富氧氮氧化矽部分及具有大約9-10奈米範圍厚度之頂部富矽氮氧化矽部分。在一實施例中,電荷捕獲層之區域1004B佔有該電荷捕獲層之頂部富矽氮氧化矽部分之總厚度中大約2-3奈米範圍厚度。因此,針對接著耗用以形成一第二介電層所預定之區域1004B可完全地由富矽氮氧化矽來構成之。 In another aspect of the present invention, the charge trap layer may include multiple component regions. For example, according to an embodiment of the present invention, the charge trap layer includes an oxygen-rich portion and a silicon-rich portion, and an oxygen-rich oxynitride film is deposited via a first gas composition in the second process chamber and passed through A second gas composition to deposit a silicon-rich oxynitride film to form to make. In one embodiment, the charge trapping layer provides the required gas ratio by changing the flow rate of ammonia (NH3) gas and introducing nitrous oxide (N2O) and dichlorosilane to generate an oxygen-rich nitrogen oxide first. Then, a silicon-rich oxynitride film is formed. In a specific embodiment, the oxygen-rich oxynitride film is introduced by introducing a process gas mixture rich in nitrous oxide, ammonia, and dichlorosilane, while maintaining the chamber at a pressure in the range of about 0.5-500 Torr The substrate 1000 is formed by maintaining the temperature in the range of about 700-850 degrees Celsius for a period of about 2.5-20 minutes. In a further embodiment, the process gas mixture comprises nitrous oxide and ammonia having a ratio of approximately from 8:1 to 1:8, and dichlorosilane and ammonia having a ratio of approximately from 1:7 to 7:1, and It can be introduced at a flow rate in the range of 5-200 standard cubic centimeters per minute. In another specific embodiment, the silicon-rich oxynitride film is introduced by introducing a process gas mixture containing nitrous oxide, ammonia, and dichlorosilane, while maintaining the chamber in the range of about 0.5-500 Torr Under pressure, the substrate 1000 is formed at a temperature in the range of about 700-850 degrees Celsius for a period of about 2.5-20 minutes. In a further embodiment, the process gas mixture includes nitrous oxide and ammonia having a ratio of approximately from 8:1 to 1:8, and dichlorosilane and ammonia mixed in a ratio of approximately from 1:7 to 7:1, It is introduced at a flow rate of approximately 5 to 20 standard cubic centimeters per minute. According to an embodiment of the present invention, the charge trap layer includes a bottom oxygen-rich silicon oxynitride portion having a thickness in the range of about 2.5-3.5 nanometers and a top silicon-rich silicon oxynitride portion having a thickness in the range of about 9-10 nanometers. In one embodiment, the region 1004B of the charge trap layer occupies about 2-3 nanometers of the total thickness of the top silicon-rich silicon oxynitride portion of the charge trap layer. Therefore, the region 1004B predetermined for subsequent consumption to form a second dielectric layer can be completely composed of silicon-rich silicon oxynitride.

圖10D根據本發明一實施例說明對應至圖9流程圖之操作908之具有一第二介電層形成於其上之基板剖面圖。參考至流程圖900之操 作908及相對應圖10D,一第二介電層1006係在該叢集工具之第一製程腔室內形成於電荷捕獲層1004上。 10D illustrates a cross-sectional view of a substrate having a second dielectric layer formed thereon corresponding to operation 908 of the flowchart of FIG. 9 according to an embodiment of the present invention. Refer to the operation of flowchart 900 As 908 and corresponding to FIG. 10D, a second dielectric layer 1006 is formed on the charge trap layer 1004 in the first process chamber of the cluster tool.

第二介電層1006可一材料所構成且具有對漏電維持一障礙卻不顯著地降低接著形成於一非揮發性電荷捕獲記憶體元件內之閘極堆疊電容之厚度。根據本發明一實施例,第二介電層1006係藉由耗用連結圖10C所述操作906所形成之電荷捕獲層之區域1004B而形成。因此,在一實施例中,區域1004B被耗用以提供第二介電層1006,而區域1004A保留一電荷捕獲層1004。在一特定實施例中,區域1004B係具有大約2-3奈米範圍厚度之富矽氮氧化矽,並被氧化以形成具有大約3.5-4.5奈米範圍厚度之第二介電層1006。在一那個實施例中,第二介電層1006係由二氧化矽所構成。 The second dielectric layer 1006 can be made of a material and has an obstacle to leakage without significantly reducing the thickness of the gate stack capacitor then formed in a non-volatile charge trapping memory device. According to an embodiment of the present invention, the second dielectric layer 1006 is formed by consuming the region 1004B connecting the charge trapping layer formed in operation 906 of FIG. 10C. Therefore, in one embodiment, the area 1004B is consumed to provide the second dielectric layer 1006, while the area 1004A retains a charge trap layer 1004. In a specific embodiment, the region 1004B is a silicon-rich silicon oxynitride having a thickness in the range of about 2-3 nanometers, and is oxidized to form a second dielectric layer 1006 having a thickness in the range of about 3.5-4.5 nanometers. In one embodiment, the second dielectric layer 1006 is composed of silicon dioxide.

第二介電層1006可經由一第二基氧化製程來形成之。根據本發明一實施例,該第二基氧化製程涉及將氫氣及氧氣流入例如連結圖8所述氧化腔室804或808之氧化腔室中。在一實施例中,氫氣及氧氣分壓彼此間具有大約1:50-1:5範圍比值。然而,在一實施例中,一燃燒事件並未實現,其在其它方面典型地會被使用以熱分解氫氣及氧氣來形成蒸汽。替代性地,氫氣及氧氣係可起反應以在區域1004B表面處形成自由基。在一實施例中,該些自由基被使用以耗用區域1004B以提供第二介電層1006。在一特定實施例中,該第二基氧化製程包含利用例如一氫氧基、一氫過氧基或一氧二基之自由基來進行氧化,但不限於此。在一具體實施例中,該第二基氧化製程係實施於大約950-1100攝氏度範圍溫度及大約5-15托耳範圍壓力下。在一實施例中,該第二基氧化製程係實施大約1-3分鐘範圍之持續時間。根據本發明一實施例,第一介電層1002係形成為一高密度、低氫含 量之薄膜。在一實施例中,沒有額外沉積步驟被需要以如圖10D所述及流程圖900所示地形成一完整第二介電層1006。依據該叢集工具內之晶圓傳送邏輯,該第二基氧化製程可實施於與用以形成第一介電層1002所使用之第一基氧化製程相同腔室,也就是第一腔室,或實施於該叢集工具之一不同製程腔室,也就是第三製程腔室。因此,根據本發明一實施例,對一第一製程腔室之參考可被使用以代表重新引入至該第一製程腔室中或代表引入至不同於該第一製程腔室之製程腔室中。 The second dielectric layer 1006 can be formed through a second base oxidation process. According to an embodiment of the present invention, the second-based oxidation process involves flowing hydrogen and oxygen into the oxidation chamber connected to the oxidation chamber 804 or 808 described in FIG. 8. In one embodiment, the partial pressures of hydrogen and oxygen have a ratio in the range of approximately 1:50-1:5. However, in one embodiment, a combustion event is not realized, and it is typically used in other aspects to thermally decompose hydrogen and oxygen to form steam. Alternatively, hydrogen and oxygen can react to form free radicals at the surface of region 1004B. In one embodiment, the radicals are used to consume the area 1004B to provide the second dielectric layer 1006. In a specific embodiment, the second radical oxidation process includes the use of radicals such as monohydroxyl, hydroperoxy or monooxydiyl radicals for oxidation, but is not limited thereto. In a specific embodiment, the second base oxidation process is performed at a temperature in the range of about 950-1100 degrees Celsius and a pressure in the range of about 5-15 Torr. In one embodiment, the second base oxidation process is performed for a duration in the range of about 1-3 minutes. According to an embodiment of the present invention, the first dielectric layer 1002 is formed as a high density, low hydrogen content The amount of film. In one embodiment, no additional deposition steps are required to form a complete second dielectric layer 1006 as described in FIG. 10D and shown in flowchart 900. According to the wafer transfer logic in the cluster tool, the second base oxidation process can be performed in the same chamber as the first base oxidation process used to form the first dielectric layer 1002, that is, the first chamber, or It is implemented in a different process chamber of the cluster tool, that is, the third process chamber. Therefore, according to an embodiment of the present invention, a reference to a first process chamber can be used to represent re-introduction into the first process chamber or to represent introduction into a process chamber different from the first process chamber .

參考至流程圖900之操作910,形成第二介電層1006後,且自該叢集工具中移除基板1000之前,第二介電層1006可進一步在該第一製程腔室內承受一氮化製程。根據本發明一實施例,該氮化製程包含在大約900-1100攝氏度範圍溫度下,大約30秒-60秒範圍持續時間內,於一含氮大氣中回火第二介電層1006。在一實施例中,該含氮大氣係由例如氮氣(N2)、氧化亞氮(N2O)、二氧化氮(NO2)、氧化氮(NO)或氨(NH3)之氣體所構成,但不限於此。替代性地,本氮化步驟,也就是來自流程圖900之操作910,可被略過,並自該叢集工具中卸除該晶圓。 Referring to operation 910 of flowchart 900, after forming the second dielectric layer 1006 and before removing the substrate 1000 from the cluster tool, the second dielectric layer 1006 may be further subjected to a nitridation process in the first process chamber . According to an embodiment of the present invention, the nitriding process includes tempering the second dielectric layer 1006 in a nitrogen-containing atmosphere at a temperature in the range of about 900-1100 degrees Celsius for a duration of about 30 seconds to 60 seconds. In one embodiment, the nitrogen-containing atmosphere is composed of gases such as nitrogen (N2), nitrous oxide (N2O), nitrogen dioxide (NO2), nitrogen oxide (NO) or ammonia (NH3), but is not limited to this. Alternatively, this nitriding step, that is, operation 910 from flowchart 900, can be skipped and the wafer is unloaded from the cluster tool.

因此,根據本發明一實施例,包含第一介電層1002、電荷捕獲層1004及第二介電層1006之氧化物-氮化物-氧化物堆疊係以一次操作來形成於一叢集工具內。藉由在該製程腔室內以一次操作來製造這些層,在第一介電層1002和電荷捕獲層1004之間及在電荷捕獲層1004和第二介電層1006之間之原始介面可被保存。在一實施例中,第一介電層1002、電荷捕獲層1004及第二介電層1006被形成而未損毀該叢集工具內之真空。在一實施例中,每一層係形成於一不同溫度下,以量身定做薄膜特性而不招 惹顯著的上升時間損失。更進一步,相對於在批次處理工具內進行製造,藉由在一叢集工具內製造這些層,該層堆疊之整體均勻性可被最佳化。例如,根據本發明一實施例,藉由在一叢集工具內製造層1002、1004及1006,橫跨單一晶圓各層1002、1004及1006之堆疊厚度變異性可降低多達約30%。在一示範性實施例中,1cr係大約為第一介電層1002厚度之1-2%範圍內。在一特定實施例中,該叢集工具係一單晶圓叢集工具。 Therefore, according to an embodiment of the present invention, the oxide-nitride-oxide stack including the first dielectric layer 1002, the charge trap layer 1004, and the second dielectric layer 1006 is formed in a cluster tool in one operation. By manufacturing these layers in a single operation in the process chamber, the original interface between the first dielectric layer 1002 and the charge trap layer 1004 and between the charge trap layer 1004 and the second dielectric layer 1006 can be preserved . In one embodiment, the first dielectric layer 1002, the charge trap layer 1004, and the second dielectric layer 1006 are formed without damaging the vacuum in the cluster tool. In one embodiment, each layer is formed at a different temperature to tailor the film characteristics without drawing Cause significant rise time loss. Furthermore, as opposed to manufacturing in batch processing tools, by manufacturing these layers in a cluster tool, the overall uniformity of the layer stack can be optimized. For example, according to an embodiment of the present invention, by fabricating layers 1002, 1004, and 1006 in a cluster tool, the stack thickness variability of layers 1002, 1004, and 1006 across a single wafer can be reduced by up to about 30%. In an exemplary embodiment, 1cr is approximately within the range of 1-2% of the thickness of the first dielectric layer 1002. In a specific embodiment, the cluster tool is a single wafer cluster tool.

依據包含第一介電層1002、電荷捕獲層1004及第二介電層1006之氧化物-氮化物-氧化物堆疊製造,一非揮發性電荷捕獲記憶體元件可被製造以包含該氧化物-氮化物-氧化物堆疊之圖案化部分。圖10E根據本發明一實施例說明一非揮發性電荷捕獲記憶體元件之剖面圖。 According to the oxide-nitride-oxide stack manufacturing comprising the first dielectric layer 1002, the charge trap layer 1004, and the second dielectric layer 1006, a non-volatile charge trap memory device can be manufactured to contain the oxide- The patterned part of the nitride-oxide stack. 10E illustrates a cross-sectional view of a non-volatile charge trap memory device according to an embodiment of the invention.

參考至第6E圖,一非揮發性電荷捕獲記憶體元件包含形成於基板1000上方之氧化物-氮化物-氧化物堆疊之圖案化部分。該氧化物-氮化物-氧化物堆疊包含第一介電層1002、電荷捕獲層1004及第二介電層1006。一閘極層1008係置於第二介電層1006上。該非揮發性電荷捕獲記憶體元件進一步包含在基板1000內分別位於該氧化物-氮化物-氧化物堆疊一側上之源極和汲極區域1012,以定義該氧化物-氮化物-氧化物堆疊下面基板1000內之通道區域1014。一對介電間隔側壁1010隔離第一介電層1002、電荷捕獲層1004、第二介電層1006及閘極層1008之側壁。在一特定實施例中,通道區域1014係為P型摻雜,而在一替代性實施例中,通道區域1014係N型摻雜。 Referring to FIG. 6E, a non-volatile charge trapping memory device includes a patterned portion of an oxide-nitride-oxide stack formed on the substrate 1000. The oxide-nitride-oxide stack includes a first dielectric layer 1002, a charge trap layer 1004, and a second dielectric layer 1006. A gate layer 1008 is placed on the second dielectric layer 1006. The non-volatile charge trap memory device further includes source and drain regions 1012 respectively located on one side of the oxide-nitride-oxide stack in the substrate 1000 to define the oxide-nitride-oxide stack The channel area 1014 in the lower substrate 1000. A pair of dielectric spacer sidewalls 1010 isolate the sidewalls of the first dielectric layer 1002, the charge trap layer 1004, the second dielectric layer 1006, and the gate layer 1008. In a specific embodiment, the channel region 1014 is P-type doped, and in an alternative embodiment, the channel region 1014 is N-type doped.

根據本發明一實施例,連結圖10E所述之非揮發性電荷捕獲記憶體元件係一半導體-氧化物-氮化物-氧化物-半導體型元件。按照慣例, SONOS代表“半導體-氧化物-氮化物-氧化物-半導體”,其中,該第一個“半導體”參考至該通道區域材料,該第一個“氧化物”參考至該穿隧介電層,“氮化物”參考至該電荷捕獲介電層,該第二個“氧化物”參考至該頂部介電層(也是已知之阻擋介電層),以及該第二個“半導體”參考至該閘極層。因此,根據本發明一實施例,第一介電層1002係一穿隧介電層,且第二介電層1006係一阻擋介電層。 According to an embodiment of the present invention, the non-volatile charge trap memory device described in FIG. 10E is connected to a semiconductor-oxide-nitride-oxide-semiconductor device. By convention, SONOS stands for "semiconductor-oxide-nitride-oxide-semiconductor", where the first "semiconductor" refers to the channel region material, and the first "oxide" refers to the tunneling dielectric layer, "Nitride" refers to the charge trapping dielectric layer, the second "oxide" refers to the top dielectric layer (also known as blocking dielectric layer), and the second "semiconductor" refers to the gate Polar layer. Therefore, according to an embodiment of the present invention, the first dielectric layer 1002 is a tunneling dielectric layer, and the second dielectric layer 1006 is a blocking dielectric layer.

閘極層1008可由適合在一半導體-氧化物-氮化物-氧化物-半導體型電晶體操作期間提供一偏壓之任何導體或半導體材料所構成。根據本發明一實施例,閘極層1008係經由一化學氣相沉積製程所形成且由摻雜多晶矽所構成。在另一實施例中,閘極層1008係經由物理氣相沉積製程所形成且由可包含金屬氮化物、金屬碳化物、金屬矽化物、鉿、鋯、鈦、鉭、鋁、釕、鈀、鉑、鈷或鎳之含金屬材料所構成,但不限於此。 The gate layer 1008 can be made of any conductor or semiconductor material suitable for providing a bias voltage during the operation of a semiconductor-oxide-nitride-oxide-semiconductor transistor. According to an embodiment of the present invention, the gate layer 1008 is formed by a chemical vapor deposition process and is composed of doped polysilicon. In another embodiment, the gate layer 1008 is formed by a physical vapor deposition process and may include metal nitride, metal carbide, metal silicide, hafnium, zirconium, titanium, tantalum, aluminum, ruthenium, palladium, It is composed of platinum, cobalt, or nickel-containing metal materials, but not limited to this.

基板1000內之源極和汲極區域1012可為具有與通道區域1014相反導電性之任何區域。例如,根據本發明一實施例,源極及汲極區域1012係N型摻雜區域,而通道區域1014係一P型摻雜區域。在一實施例中,基板1000及因此所形成之通道區域1014係由具有1x1015-1x1019原子/立方公分範圍硼濃度之硼摻雜單結晶矽所構成。在那個實施例中,源極及汲極區域1012係由具有5x1016-5x1019原子/立方公分範圍之N型摻雜物濃度之磷或砷摻雜區域所構成。在一特定實施例中,源極及汲極區域1012在基板1000內具有80-200奈米範圍之深度。根據本發明一替代性實施例,源極及汲極區域1012係P型摻雜區域,而通道區域1014係一N型摻雜區域。 The source and drain regions 1012 in the substrate 1000 can be any regions with opposite conductivity to the channel region 1014. For example, according to an embodiment of the present invention, the source and drain regions 1012 are N-type doped regions, and the channel region 1014 is a P-type doped regions. In one embodiment, the substrate 1000 and the channel region 1014 formed thereby are composed of boron-doped monocrystalline silicon with a boron concentration in the range of 1×10 15 -1× 10 19 atoms/cm ^3. In that embodiment, the source and drain regions 1012 are composed of phosphorus or arsenic doped regions with an N-type dopant concentration in the range of 5× 10 16 -5× 10 19 atoms/cm ^3. In a specific embodiment, the source and drain regions 1012 have a depth in the range of 80-200 nanometers in the substrate 1000. According to an alternative embodiment of the present invention, the source and drain regions 1012 are P-type doped regions, and the channel region 1014 is an N-type doped region.

在本發明另一觀點中,一電荷捕獲層可包含多個組成成分區 域,其中,最接近一穿隧介電層之組成成分區域係承受一基氧化製程。圖11根據本發明一實施例說明代表一非揮發性電荷捕獲記憶體元件之製造方法中之一系列操作之流程圖1100。圖12A-12E根據本發明一實施例說明代表製造一非揮發性電荷捕獲記憶體元件之操作剖面圖。 In another aspect of the present invention, a charge trap layer may include multiple component regions The region, where the component region closest to a tunneling dielectric layer is subjected to a basic oxidation process. FIG. 11 illustrates a flowchart 1100 representing a series of operations in a manufacturing method of a non-volatile charge trap memory device according to an embodiment of the present invention. 12A-12E illustrate cross-sectional views representing the operation of manufacturing a non-volatile charge trapping memory device according to an embodiment of the present invention.

圖12A根據本發明一實施例說明對應至圖11流程圖中之操作1102之具有一第一介電層形成於其上之基板剖面圖。參考至流程圖1100之操作1102及相對應圖12A,基板1200係於一叢集工具之第一製程腔室內承受一第一基氧化製程以形成一第一介電層1202。基板1200及第一介電層1202可分別由連結自圖10A及10B之基板1000及第一介電層1002所述之材料所構成。用以形成第一介電層1202之基氧化製程可類似於連結圖10B所述之用以形成第一介電層1002之基氧化製程。 12A illustrates a cross-sectional view of a substrate having a first dielectric layer formed thereon corresponding to operation 1102 in the flowchart of FIG. 11 according to an embodiment of the present invention. Referring to operation 1102 of the flowchart 1100 and corresponding to FIG. 12A, the substrate 1200 is subjected to a first base oxidation process in the first process chamber of a cluster tool to form a first dielectric layer 1202. The substrate 1200 and the first dielectric layer 1202 may be formed of the materials described in connection with the substrate 1000 and the first dielectric layer 1002 of FIGS. 10A and 10B, respectively. The base oxidation process used to form the first dielectric layer 1202 can be similar to the base oxidation process used to form the first dielectric layer 1002 described in connection with FIG. 10B.

參考至流程圖1100之操作1104,形成第一介電層1202之後,且在任何進一步處理之前,第一介電層1202可承受一氮化製程。該氮化製程可類似於連結流程圖900之操作904所述之氮化製程。在一實施例中,該氮化製程係實施於與形成第一介電層1202所使用之相同製程腔室內。在另一實施例中,該氮化製程發生於一獨立製程腔室內。替代性地,本氮化步驟可被略過。 Referring to operation 1104 of flowchart 1100, after forming the first dielectric layer 1202 and before any further processing, the first dielectric layer 1202 can be subjected to a nitridation process. The nitriding process can be similar to the nitriding process described in connection with operation 904 of flowchart 900. In one embodiment, the nitridation process is performed in the same process chamber used to form the first dielectric layer 1202. In another embodiment, the nitridation process occurs in a separate process chamber. Alternatively, this nitridation step can be skipped.

圖12B根據本發明一實施例說明對應至圖11流程圖中之操作1106之具有一電荷捕獲層之富氧氮氧化矽部分形成於其上之基板剖面圖。參考至流程圖1100之操作1106及相對應圖12B,一富氧氮氧化矽部分1204A係形成於該叢集工具之第二製程腔室內之第一介電層1202上。富氧氮氧化矽部分1204A可由一富氧氮氧化矽材料所構成且由連結自圖10C之 第一區域1004A所述之技術所形成。 12B illustrates a cross-sectional view of a substrate on which an oxygen-rich silicon oxynitride portion with a charge trapping layer is formed corresponding to operation 1106 in the flowchart of FIG. 11 according to an embodiment of the present invention. Referring to operation 1106 of flowchart 1100 and corresponding to FIG. 12B, an oxygen-rich silicon oxynitride portion 1204A is formed on the first dielectric layer 1202 in the second process chamber of the cluster tool. The oxygen-rich silicon oxynitride portion 1204A may be composed of an oxygen-rich silicon oxynitride material and is connected to the one shown in FIG. 10C The first area 1004A is formed by the technique described above.

根據本發明一實施例參考至流程圖1100中之操作1108,富氧氮氧化矽部分1204A係於該叢集工具之第一製程腔室內承受一第二基氧化製程。該第二基氧化製程可類似於分別連結圖10B及10D所述之用以形成第一介電層1002或第二介電層1006之基氧化製程中之一。在一實施例中,因為富氧氮氧化矽部分1204A係維持於該工具內部環境中,因而保留一原始表面,故實施該第二基氧化製程係可行的依據。在一實施例中,該第二基氧化製程密集富氧氮氧化矽部分1204A。依據該叢集工具內之晶圓傳送邏輯,該第二基氧化製程可實施於與用以形成第一介電層1202所使用之第一基氧化製程相同腔室,也就是第一腔室,或實施於一不同製程腔室,也就是第三製程腔室。因此,根據本發明一實施例,對一第一製程腔室之參考可被使用以代表重新引入至該第一製程腔室中或代表引入至不同於該第一製程腔室之製程腔室中。 According to an embodiment of the present invention, referring to operation 1108 in the flowchart 1100, the oxygen-rich silicon oxynitride portion 1204A is subjected to a second-based oxidation process in the first process chamber of the cluster tool. The second base oxidation process can be similar to one of the base oxidation processes for forming the first dielectric layer 1002 or the second dielectric layer 1006 described in connection with FIGS. 10B and 10D, respectively. In one embodiment, because the oxygen-rich silicon oxynitride portion 1204A is maintained in the internal environment of the tool, and thus retains an original surface, it is a feasible basis to implement the second-based oxidation process. In one embodiment, the second base oxidation process is dense with the oxygen-rich silicon oxynitride portion 1204A. According to the wafer transfer logic in the cluster tool, the second base oxidation process can be performed in the same chamber as the first base oxidation process used to form the first dielectric layer 1202, that is, the first chamber, or Implemented in a different process chamber, that is, the third process chamber. Therefore, according to an embodiment of the present invention, a reference to a first process chamber can be used to represent re-introduction into the first process chamber or to represent introduction into a process chamber different from the first process chamber .

圖12C根據本發明一實施例說明對應至圖11流程圖中之操作1110之具有一電荷捕獲層中之富矽氮氧化矽部分形成於其上之基板剖面圖。參考至流程圖1100之操作1110及相對應圖12C,具有一第一區域1204B及一第二區域1204C之富矽氮氧化矽部分係形成於該叢集工具之第二製程腔室內之富氧氮氧化矽部分1204A上。富矽氮氧化矽部分可由一富矽氮氧化矽材料所構成且由連結自圖10C之第二區域1004B所述之技術所形成。依據該叢集工具內之晶圓傳送邏輯,該電荷捕獲層之富矽氮氧化矽部分沉積可實施於與該電荷捕獲層之富氧氮氧化矽部分1204A沉積相同之腔室,也就是第二腔室,或一不同製程腔室。因此,根據本發明一實施例,對一 第二製程腔室之參考可被使用以代表重新引入至該第二製程腔室中或代表引入至不同於該第二製程腔室之一製程腔室中。 12C illustrates a cross-sectional view of a substrate corresponding to operation 1110 in the flow chart of FIG. 11 with a charge trap layer rich in silicon oxynitride formed thereon according to an embodiment of the present invention. Referring to operation 1110 of the flowchart 1100 and corresponding to FIG. 12C, the silicon-rich silicon oxynitride portion having a first region 1204B and a second region 1204C is formed in the second process chamber of the cluster tool for oxygen-rich nitrogen oxidation The silicon part is on 1204A. The silicon-rich silicon oxynitride portion may be formed of a silicon-rich silicon oxynitride material and formed by the technique described in connection from the second region 1004B of FIG. 10C. According to the wafer transfer logic in the cluster tool, the deposition of the silicon-rich silicon oxynitride portion of the charge trap layer can be performed in the same chamber as the deposition of the oxygen-rich silicon oxynitride portion 1204A of the charge trap layer, that is, the second chamber Chamber, or a different process chamber. Therefore, according to an embodiment of the present invention, The reference to the second process chamber can be used to represent re-introduction into the second process chamber or to represent introduction into a process chamber different from the second process chamber.

圖12D根據本發明一實施例說明對應至圖11流程圖之操作1112之具有一頂部介電層形成於其上之基板剖面圖。參考至流程圖1100之操作1112及相對應圖12D,一第二基板1206係形成於該叢集工具之第一製程腔室內之電荷捕獲層1204上。根據本發明一實施例,第二基板1206係經由一第三基氧化製程來耗用該富矽氮氧化矽部分之第二區域1204C而形成。因此,在一實施例中,在第一介電層1202及第二介電層1206之間所留存之電荷捕獲層1204係如圖12D所述地由富氧氮氧化矽部分1204A及該富矽氮氧化矽部分1204之第一區域1204B所構成。用以耗用該富矽氮氧化矽部分之第二區域1204C以提供第二介電層1206之第三基氧化製程可類似於連結圖10D所述之用以形成第二介電層1006之基氧化製程。依據該叢集工具內之晶圓傳送邏輯,該第三基氧化製程可實施於與形成第一介電層1202所使用之基氧化製程相同之腔室,也就是第一腔室,或例如第三製程腔室之一不同製程腔室。因此,根據本發明一實施例,對一第一製程腔室之參考可被使用以代表重新引入至該第一製程腔室中或代表引入至不同於該第一製程腔室之一製程腔室中。 12D illustrates a cross-sectional view of a substrate with a top dielectric layer formed thereon corresponding to operation 1112 of the flowchart of FIG. 11 according to an embodiment of the present invention. Referring to operation 1112 of flowchart 1100 and corresponding to FIG. 12D, a second substrate 1206 is formed on the charge trapping layer 1204 in the first process chamber of the cluster tool. According to an embodiment of the present invention, the second substrate 1206 is formed by using a third base oxidation process to consume the second region 1204C of the silicon-rich silicon oxynitride portion. Therefore, in one embodiment, the charge trapping layer 1204 remaining between the first dielectric layer 1202 and the second dielectric layer 1206 is composed of the oxygen-rich silicon oxynitride portion 1204A and the silicon-rich silicon as shown in FIG. 12D The first region 1204B of the silicon oxynitride portion 1204 is formed. The third base oxidation process used to consume the second region 1204C of the silicon-rich silicon oxynitride portion to provide the second dielectric layer 1206 can be similar to that described in connection with FIG. 10D for forming the base of the second dielectric layer 1006. Oxidation process. According to the wafer transfer logic in the cluster tool, the third base oxidation process can be implemented in the same chamber as the base oxidation process used to form the first dielectric layer 1202, that is, the first chamber, or, for example, the third One of the process chambers is a different process chamber. Therefore, according to an embodiment of the present invention, a reference to a first process chamber can be used to represent re-introduction into the first process chamber or to represent introduction into a process chamber different from the first process chamber in.

參考至流程圖1100之操作1114,形成第二介電層1206之後,且自該叢集工具中移除基板1200之前,第二介電層1206可進一步在該第一製程腔室內承受一氮化製程。該氮化製程可類似於連結流程圖900之操作910所述之氮化製程。在一實施例中,該氮化製程係實施於與形成第二介電層1206所使用之相同製程腔室內。在另一實施例中,該氮化作用發 生於一獨立製程腔室內。替代性地,本氮化步驟可被略過。 Referring to operation 1114 of flowchart 1100, after forming the second dielectric layer 1206 and before removing the substrate 1200 from the cluster tool, the second dielectric layer 1206 can be further subjected to a nitridation process in the first process chamber . The nitriding process may be similar to the nitriding process described in operation 910 of flowchart 900. In one embodiment, the nitriding process is performed in the same process chamber used to form the second dielectric layer 1206. In another embodiment, the nitriding effect Born in an independent process chamber. Alternatively, this nitridation step can be skipped.

依據包含第一介電層1202、電荷捕獲層1204及第二介電層1206之氧化物-氮化物-氧化物堆疊製造,一非揮發性電荷捕獲記憶體元件可被製造以包含該氧化物-氮化物-氧化物堆疊之圖案化部分。圖12E根據本發明一實施例說明一非揮發性電荷捕獲記憶體元件之剖面圖。 According to the oxide-nitride-oxide stack manufacturing including the first dielectric layer 1202, the charge trap layer 1204, and the second dielectric layer 1206, a non-volatile charge trap memory device can be manufactured to contain the oxide- The patterned part of the nitride-oxide stack. 12E illustrates a cross-sectional view of a non-volatile charge trapping memory device according to an embodiment of the invention.

參考至圖12E,一非揮發性電荷捕獲記憶體元件包含形成於基板1200上方之氧化物-氮化物-氧化物堆疊之圖案化部分。該氧化物-氮化物-氧化物堆疊包含第一介電層1202、電荷捕獲層1204及第二介電層1206。一閘極層1208係置於第二介電層1206上。該非揮發性電荷捕獲記憶體元件進一步包含基板1200內,分別位於該氧化物-氮化物-氧化物堆疊一側上之源極和汲極區域1212,以定義該氧化物-氮化物-氧化物堆疊下之基板1200內之通道區域1214。一對介電間隔側壁1210隔離第一介電層1202、電荷捕獲層1204、第二介電層1206及閘極層1208之側壁。根據本發明一實施例,電荷捕獲層1204係如圖12E所述地由一富氧氮氧化矽部分1204A及一富矽氮氧化矽部分1204B所構成。在一實施例中,該非揮發性電荷捕獲記憶體元件係一半導體-氧化物-氮化物-氧化物-半導體型元件。閘極層1208、源極和汲極區域1212及通道區域1214可由來自連結自圖10E之閘極層1008、源極和汲極區域1012及通道區域1014所述之材料來構成之。 Referring to FIG. 12E, a non-volatile charge trapping memory device includes a patterned portion of an oxide-nitride-oxide stack formed on a substrate 1200. The oxide-nitride-oxide stack includes a first dielectric layer 1202, a charge trap layer 1204, and a second dielectric layer 1206. A gate layer 1208 is placed on the second dielectric layer 1206. The non-volatile charge trap memory device further includes source and drain regions 1212 in the substrate 1200 on one side of the oxide-nitride-oxide stack to define the oxide-nitride-oxide stack The channel area 1214 in the lower substrate 1200. A pair of dielectric spacer sidewalls 1210 isolate the sidewalls of the first dielectric layer 1202, the charge trap layer 1204, the second dielectric layer 1206, and the gate layer 1208. According to an embodiment of the present invention, the charge trapping layer 1204 is composed of an oxygen-rich silicon oxynitride portion 1204A and a silicon-rich silicon oxynitride portion 1204B as shown in FIG. 12E. In one embodiment, the non-volatile charge trapping memory device is a semiconductor-oxide-nitride-oxide-semiconductor device. The gate layer 1208, the source and drain regions 1212, and the channel region 1214 can be formed from the materials described in the gate layer 1008, the source and drain regions 1012, and the channel region 1014 of FIG. 10E.

在本發明另一觀點中,經由一氧化腔室內之基板頂部表面之基氧化作用所形成之介電層在它生長於該基板上時,較不容易受到該基板內之結晶平面方位差的影響。例如,在一實施例中,不同結晶平面氧化速率所引起之銳角效應係藉由形成於一叢集工具之氧化腔室內之介電層而顯 著地降低。圖13A根據本發明一實施例說明包含第一和第二露出結晶平面之基板剖面圖。 In another aspect of the present invention, the dielectric layer formed by base oxidation on the top surface of the substrate in an oxidation chamber is less susceptible to the influence of the crystal plane orientation difference in the substrate when it is grown on the substrate . For example, in one embodiment, the acute angle effect caused by the oxidation rate of different crystal planes is manifested by the dielectric layer formed in the oxidation chamber of a cluster tool Landing lowered. FIG. 13A illustrates a cross-sectional view of a substrate including first and second exposed crystal planes according to an embodiment of the present invention.

參考至圖13A,一基板1300具有形成於其上之隔離區域1302。基板1300可由連結自圖10A之基板1000所述材料來構成之。隔離區域1302可由適合黏接至基板1300之絕緣材料所構成。基板1300之一露出部分延伸超過隔離區域1302之頂部表面。根據本發明一實施例,該基板1300之露出部分具有一第一露出結晶平面1304及一第二露出結晶平面1306。在一實施例中,該第一露出結晶平面1304之結晶方位係不同於該第二露出結晶平面1306之結晶方位。在一特定實施例中,基板1300係由矽所構成,第一露出結晶平面1304具有<100>方位,且第二露出結晶平面1306具有<110>方位。 Referring to FIG. 13A, a substrate 1300 has isolation regions 1302 formed thereon. The substrate 1300 may be made of the materials connected from the substrate 1000 of FIG. 10A. The isolation region 1302 can be made of an insulating material suitable for bonding to the substrate 1300. An exposed portion of the substrate 1300 extends beyond the top surface of the isolation region 1302. According to an embodiment of the present invention, the exposed portion of the substrate 1300 has a first exposed crystal plane 1304 and a second exposed crystal plane 1306. In one embodiment, the crystal orientation of the first exposed crystal plane 1304 is different from the crystal orientation of the second exposed crystal plane 1306. In a specific embodiment, the substrate 1300 is made of silicon, the first exposed crystal plane 1304 has a <100> orientation, and the second exposed crystal plane 1306 has a <110> orientation.

基板1300可於一叢集工具內承受一基氧化製程以藉由耗用(氧化)該基板1300之頂部表面來形成一介電層。在一實施例中,經由一基氧化製程來氧化基板1300包含利用由一氫氧基、一氫過氧基或一氧二基所構成的族群中所選之自由基來進行氧化。圖13B根據本發明一實施例說明分別包含第一和第二結晶平面1304和1306並具有一介電層1308形成於其上之基板1300之剖面圖。在一實施例中,如圖13B所示地,介電層1308之第一部分1308A係形成於第一露出結晶平面1304上,且介電層1308之第二部分1308B係形成於第二露出結晶平面1306上。在一實施例中,介電層1308之第一部分1308A之厚度T1係大約等於介電層1308之第二部分1308B之厚度T2,即使第一露出結晶平面1304和第二露出結晶平面1306之結晶平面方位不同亦然。在一特定實施例中,該基板1300之基氧化作用係實施 於大約950-1100攝氏度範圍溫度及大約5-15托耳範圍壓力下。在一實施例中,形成介電層1308之後,基板1300係在大約900-1100攝氏度範圍溫度下,於一含氮大氣之氧化腔室內,回火大約30秒-60秒範圍之持續時間。 The substrate 1300 can be subjected to a base oxidation process in a cluster tool to form a dielectric layer by consuming (oxidizing) the top surface of the substrate 1300. In one embodiment, oxidizing the substrate 1300 through a one-radical oxidation process includes using a radical selected from the group consisting of a hydroxyl group, a hydroperoxy group, or an oxydiyl group for oxidation. FIG. 13B illustrates a cross-sectional view of a substrate 1300 including first and second crystal planes 1304 and 1306, and having a dielectric layer 1308 formed thereon, according to an embodiment of the present invention. In one embodiment, as shown in FIG. 13B, the first portion 1308A of the dielectric layer 1308 is formed on the first exposed crystal plane 1304, and the second portion 1308B of the dielectric layer 1308 is formed on the second exposed crystal plane 1306 on. In one embodiment, the thickness T1 of the first portion 1308A of the dielectric layer 1308 is approximately equal to the thickness T2 of the second portion 1308B of the dielectric layer 1308, even though the crystal planes of the first exposed crystal plane 1304 and the second exposed crystal plane 1306 The same is true for different directions. In a specific embodiment, the base oxidation of the substrate 1300 is performed At a temperature in the range of about 950-1100 degrees Celsius and a pressure in the range of about 5-15 Torr. In one embodiment, after the dielectric layer 1308 is formed, the substrate 1300 is tempered at a temperature in the range of about 900-1100 degrees Celsius in an oxidation chamber containing a nitrogen atmosphere for a duration of about 30 seconds to 60 seconds.

配置方式及替代例Configuration method and alternative example

在一觀點中,本揭示係指向包含一氧化物分離式多層電荷儲存結構之記憶體元件。圖14係說明一這類半導體記憶體元件1400之實施例剖面側視圖。該記憶體元件1400包含內含形成於一基板1408之表面1406上方之氧化物-氮化物-氧化物-氮化物-氧化物結構1404之半導體-氧化物-氮化物-氧化物-氮化物-氧化物-半導體堆疊1402。基板1408包含對準該閘極堆疊1402並由一通道區域1412分開之一或更多擴散區域1410,例如,源極和汲極區域。大體上,該半導體-氧化物-氮化物-氧化物-氮化物-氧化物-半導體結構1402包含形成於其上並接觸該氧化物-氮化物-氧化物-氮化物-氧化物結構1404之多晶矽或金屬閘極層1414。該閘極1414與該基板1408係由該氧化物-氮化物-氧化物-氮化物-氧化物結構1404所分開或電性隔離。該氧化物-氮化物-氧化物-氮化物-氧化物結構1404包含一下方氧化物薄層或穿隧氧化物薄層1416,其將該堆疊1402與該通道區域1412、一頂部或阻擋氧化物層1420和一多層電荷儲存層1404分開或電性隔離。該多層電荷儲存層大體上包含具有不同之矽、氧和氮組成成分之至少二氮化物層,包含一富矽、含氮又缺氧頂部氮化物層1418、一富矽又富氧底部氮化物層1419及一氧化物抗穿隧層1421。 In one aspect, the present disclosure is directed to a memory device including an oxide-separated multilayer charge storage structure. FIG. 14 illustrates a cross-sectional side view of an embodiment of a semiconductor memory device 1400 of this type. The memory device 1400 includes a semiconductor-oxide-nitride-oxide-nitride-oxide structure 1404 containing an oxide-nitride-oxide-nitride-oxide structure 1404 formed over a surface 1406 of a substrate 1408物-Semiconductor stack 1402. The substrate 1408 includes one or more diffusion regions 1410 aligned with the gate stack 1402 and separated by a channel region 1412, for example, source and drain regions. Generally, the semiconductor-oxide-nitride-oxide-nitride-oxide-semiconductor structure 1402 includes polysilicon formed thereon and contacting the oxide-nitride-oxide-nitride-oxide structure 1404 Or the metal gate layer 1414. The gate 1414 and the substrate 1408 are separated or electrically isolated by the oxide-nitride-oxide-nitride-oxide structure 1404. The oxide-nitride-oxide-nitride-oxide structure 1404 includes an underlying oxide thin layer or tunneling oxide thin layer 1416, which stacks the stack 1402 and the channel region 1412, a top or blocking oxide The layer 1420 is separated or electrically isolated from a multilayer charge storage layer 1404. The multi-layer charge storage layer generally includes at least two nitride layers with different silicon, oxygen and nitrogen composition, including a silicon-rich, nitrogen-containing and oxygen-deficient top nitride layer 1418, and a silicon-rich and oxygen-rich bottom nitride layer Layer 1419 and an oxide anti-tunneling layer 1421.

已發現到一富矽又富氧底部氮化物層1419降低程式化及抹除後之電荷損失率,其在該保留模式中係顯現一小電壓偏移,同時,一富 矽、含氮又缺氧頂部氮化物層1418改善該速度並增加程式化和抹除電壓間之初始差異,未危及使用該矽-氧化物-氮氧化物-氧化物-矽結構實施例所製造記憶體元件之電荷損失率,由此延伸該元件操作壽命。 It has been found that a silicon-rich and oxygen-rich bottom nitride layer 1419 reduces the charge loss rate after programming and erasure. It exhibits a small voltage shift in the retention mode, and at the same time, a rich The silicon, nitrogen-containing and oxygen-deficient top nitride layer 1418 improves the speed and increases the initial difference between programming and erasing voltages without compromising the use of the silicon-oxide-oxynitride-oxide-silicon structure embodiment The charge loss rate of the memory device extends the operating life of the device.

已進一步發現到該抗穿隧層1421實質上降低在程式化期間所累積於該上方氮化物層1418界面處之電子電荷穿隧至該底部氮化物層1419之可能性,因而相較於圖1所示結構,產生較低漏電結果。 It has been further found that the anti-tunneling layer 1421 substantially reduces the possibility of electron charges accumulated at the interface of the upper nitride layer 1418 during programming to tunnel to the bottom nitride layer 1419, thus compared to FIG. 1 The structure shown produces lower leakage results.

該多層電荷儲存層可具有約自50埃至150埃之整體厚度且在一些實施例中約少於100埃,同時,該抗穿隧層1421之厚度係約自5埃至20埃,且該些氮化物層1418、1419之厚度實質上係相等。 The multilayer charge storage layer may have an overall thickness of about 50 angstroms to 150 angstroms and in some embodiments less than about 100 angstroms. Meanwhile, the anti-tunneling layer 1421 may have a thickness of about 5 angstroms to 20 angstroms. The thicknesses of the nitride layers 1418 and 1419 are substantially equal.

現在要參考圖15流程圖來說明根據一實施例之形成或製造一分離式多層電荷儲存結構之方法。 Now, referring to the flowchart of FIG. 15, a method of forming or fabricating a separated multilayer charge storage structure according to an embodiment will be described.

參考圖15,該方法始於在一基板(1500)表面上之富矽層上方形成例如一穿隧氧化物層之第一氧化物層。如上所述地,該穿隧氧化物層可經由包含一電漿氧化製程、現場蒸汽產生技術(ISSG)或一基氧化製程之任何合適手段來形成或沉積之。在一實施例中,該基氧化製程涉及將氫氣(H2)及氧氣(O2)流入一處理腔室或熔爐中,以經由氧化耗用一部分基板來造成該穿隧氧化物層生長。 Referring to FIG. 15, the method starts with forming a first oxide layer, such as a tunnel oxide layer, over a silicon-rich layer on the surface of a substrate (1500). As mentioned above, the tunnel oxide layer can be formed or deposited by any suitable means including a plasma oxidation process, in-situ steam generation technology (ISSG), or a base oxidation process. In one embodiment, the basic oxidation process involves flowing hydrogen (H 2 ) and oxygen (O 2 ) into a processing chamber or furnace to consume a portion of the substrate through oxidation to cause the tunnel oxide layer to grow.

接著,該多層電荷儲存層之第一或底部氮化物或含氮化物層係形成於該穿隧氧化物層(1502)一表面上。在一實施例中,該些氮化物層係以一低壓化學氣相沉積製程,使用例如矽烷(SiH4)、氯矽烷(SiH3Cl)、二氯矽烷或DCS(SiH2Cl2)、四氯矽烷(SiCl4)或雙三級丁氨基矽烷(BTBAS)類之矽來源,例如氮氣(H2)、氨(NH3)、三氧化氮(NO3)或氧化亞氮(N2O)類之氮來源, 及例如氧氣(O2)或氧化亞氮(N2O)類之富氧氣體來形成或沉積之。替代性地,已由氘取代氫之氣體可被使用,例如包含以氘化氨(ND3)取代氨。以氘取代氫有利於鈍化該矽-氧化物界面處之矽懸空鍵,由此增加該些元件之NBTI(負偏壓溫度不穩定性)壽命。 Next, the first or bottom nitride or nitride-containing layer of the multilayer charge storage layer is formed on a surface of the tunneling oxide layer (1502). In one embodiment, the nitride layers are deposited by a low-pressure chemical vapor deposition process, using silane (SiH 4 ), chlorosilane (SiH 3 Cl), dichlorosilane or DCS (SiH 2 Cl 2 ), four Silicon sources such as chlorosilane (SiCl 4 ) or double tertiary butylamino silane (BTBAS), such as nitrogen (H 2 ), ammonia (NH 3 ), nitrogen trioxide (NO 3 ) or nitrous oxide (N 2 O) Such as nitrogen sources, and oxygen-rich gas such as oxygen (O 2 ) or nitrous oxide (N 2 O) to form or deposit it. Alternatively, a gas in which hydrogen has been replaced by deuterium may be used, for example, including the replacement of ammonia with deuterated ammonia (ND 3 ). Substituting deuterium for hydrogen is beneficial to passivate the silicon dangling bonds at the silicon-oxide interface, thereby increasing the NBTI (Negative Bias Temperature Instability) lifetime of these devices.

例如,該下方或底部氮化物層可藉由將該基板放置於一沉積腔室並引進包富氧化亞氮、氨及二氯矽烷之製程氣體,同時,維持該腔室在大約自5毫托耳(mT)至500毫托耳壓力下並維持該基板在大約700攝氏度至850攝氏度,且在一些實施例中至少約為760攝氏度之溫度下,持續一段大約自2.5分鐘至20分鐘的時間,而被沉積於該穿隧氧化物層上方。尤其,該製程氣體可包含以約從8:1至1:8比值混合氧化亞氮和氨之第一氣體混合物及約從1:7至7:1比值混合二氯矽烷和氨之第二氣體混合物,且可以大約每分鐘5至200標準立方公分(sccm)之流速來引進。已發現到在這些條件下所產生或沉積之氮氧化物層產生一富矽又富氧之底部氮化物層。 For example, the lower or bottom nitride layer can be prepared by placing the substrate in a deposition chamber and introducing process gases rich in nitrous oxide, ammonia, and dichlorosilane, while maintaining the chamber at approximately 5 mTorr Ear (mT) to 500 millitorr pressure and maintaining the substrate at a temperature of about 700 to 850 degrees Celsius, and in some embodiments at least about 760 degrees Celsius, for a period of about 2.5 minutes to 20 minutes, It is deposited on the tunnel oxide layer. In particular, the process gas may include a first gas mixture of nitrous oxide and ammonia in a ratio of about 8:1 to 1:8, and a second gas of dichlorosilane and ammonia in a ratio of about 1:7 to 7:1. The mixture can be introduced at a flow rate of about 5 to 200 standard cubic centimeters (sccm) per minute. It has been found that the oxynitride layer produced or deposited under these conditions produces a silicon-rich and oxygen-rich bottom nitride layer.

接著,該抗穿隧層係形成或沉積於該底部氮化物層(1504)之表面上。如同具有該穿隧氧化物層般地,該抗穿隧層可經由包含一電漿氧化製程、現場蒸汽產生技術(ISSG)或一基氧化製程之任何合適手段來形成或沉積之。在一實施例中,該基氧化製程涉及將氫氣(H2)及氧氣(O2)流入一批次處理腔室或熔爐中,以經由氧化耗用一部分底部氮化物層來造成該抗穿隧層之生長。 Then, the anti-tunneling layer is formed or deposited on the surface of the bottom nitride layer (1504). As with the tunneling oxide layer, the anti-tunneling layer can be formed or deposited by any suitable means including a plasma oxidation process, in-situ steam generation technology (ISSG), or a base oxidation process. In one embodiment, the basic oxidation process involves flowing hydrogen (H 2 ) and oxygen (O 2 ) into a batch processing chamber or furnace to consume a portion of the bottom nitride layer through oxidation to cause the tunneling resistance The growth of layers.

該多層電荷儲存層之第二或頂部氮化物層係接著形成於該抗穿隧層(1506)之表面上。該頂部氮化物層可以一化學氣相沉積製程,使用包富氧化亞氮、氨及二氯矽烷之製程氣體,於大約自5毫托耳至500毫托耳 腔室壓力下,並於大約700攝氏度至850攝氏度,且在一些實施例中至少約為760攝氏度之基板溫度下,持續一段大約自2.5分鐘至20分鐘時間,而被沉積於該抗穿隧層1421上方。尤其,該製程氣體可包含以約從8:1至1:8比值混合氧化亞氮和氨之第一氣體混合物及約從1:7至7:1比值混合二氯矽烷和氨之第二氣體混合物,且可以大約每分鐘5至20標準立方公分之流速來引進。已發現到在這些條件下所產生或沉積之氮氧化物層產生一富矽、含氮又缺氧之頂部氮化物層1418,其改善該速度並增加在程式化和抹除電壓間之初始差異,未危及使用該矽-氧化物-氮氧化物-氧化物-矽結構實施例所製造記憶體元件之電荷損失率,由此延伸該元件操作壽命。 The second or top nitride layer of the multilayer charge storage layer is then formed on the surface of the anti-tunneling layer (1506). The top nitride layer can be processed by a chemical vapor deposition process, using process gases rich in nitrous oxide, ammonia, and dichlorosilane, from about 5 mtorr to 500 mtorr It is deposited on the anti-tunneling layer under chamber pressure at a substrate temperature of about 700°C to 850°C, and in some embodiments at least about 760°C, for a period of about 2.5 minutes to 20 minutes 1421 above. In particular, the process gas may include a first gas mixture of nitrous oxide and ammonia in a ratio of about 8:1 to 1:8, and a second gas of dichlorosilane and ammonia in a ratio of about 1:7 to 7:1. The mixture can be introduced at a flow rate of approximately 5 to 20 standard cubic centimeters per minute. It has been found that the oxynitride layer produced or deposited under these conditions produces a silicon-rich, nitrogen-containing and oxygen-deficient top nitride layer 1418, which improves the speed and increases the initial difference between programming and erasing voltages , The charge loss rate of the memory device manufactured using the silicon-oxide-oxynitride-oxide-silicon structure embodiment is not compromised, thereby extending the operating life of the device.

在一些實施例中,該富矽、含氮又缺氧頂部氮化物層可以一化學氣相沉積製程,使用包含以約從1:7至7:1比值混合雙三級丁氨基矽烷和氨(NH3)之製程氣體,來沉積於該抗穿隧層上方,以進一步包含一所選碳濃度而增加其中之捕獲數量。在該第二氮氧化物層中之所選碳濃度可包含大約從5%至15%之碳濃度。 In some embodiments, the silicon-rich, nitrogen-containing and oxygen-deficient top nitride layer may be a chemical vapor deposition process using a mixture of bi-tertiary butylaminosilane and ammonia in a ratio of approximately from 1:7 to 7:1 ( NH 3 ) process gas is deposited on the anti-tunneling layer to further include a selected carbon concentration to increase the amount of trapped therein. The selected carbon concentration in the second oxynitride layer may comprise a carbon concentration of approximately from 5% to 15%.

最後,一頂部阻擋氧化物層或高溫氧化物層係形成於該多層電荷儲存層(1508)之第二層表面上。如同具有該穿隧氧化物層及該抗穿隧層般地,該高溫氧化物層可經由包含一電漿氧化製程、現場蒸汽產生技術(ISSG)或一基氧化製程之任何合適手段來形成或沉積之。在一實施例中,該高溫氧化物層係使用執行於一電漿製程腔室內之電漿氧化作用來形成。本製程所使用之典型沉積條件係在1500瓦至10000瓦範圍之射頻功率,佔有氫氣量百分比在0%至90%之間之氫氣和氧氣混合物,基板溫度介於300C至400C之間,沉積時間係20至60秒。 Finally, a top blocking oxide layer or high temperature oxide layer is formed on the surface of the second layer of the multilayer charge storage layer (1508). As with the tunneling oxide layer and the anti-tunneling layer, the high-temperature oxide layer can be formed by any suitable means including a plasma oxidation process, in-situ steam generation technology (ISSG), or a base oxidation process. Deposit it. In one embodiment, the high temperature oxide layer is formed using plasma oxidation performed in a plasma processing chamber. The typical deposition conditions used in this process are radio frequency power in the range of 1500 to 10000 watts, a mixture of hydrogen and oxygen with a percentage of hydrogen between 0% and 90%, the substrate temperature between 300C and 400C, and the deposition time It takes 20 to 60 seconds.

替代性地,該高溫氧化物層係使用一現場蒸氣產生氧化製程來形成之。在一實施例中,該現場蒸氣產生技術係在大約從8至12托耳壓力及大約1050℃溫度下,利用已添加大約從0.5%至33%之氫之富氧氣混合物於例如來自上述應用材料公司之現場蒸氣產生腔室之RTP腔室內執行之。該沉積時間係在20至60秒範圍內。 Alternatively, the high temperature oxide layer is formed using an in-situ steam generation oxidation process. In one embodiment, the on-site steam generation technology utilizes an oxygen-rich mixture to which hydrogen has been added from about 0.5% to 33% at a pressure of about from 8 to 12 Torr and a temperature of about 1050°C. It is implemented in the RTP chamber of the company's on-site steam generation chamber. The deposition time is in the range of 20 to 60 seconds.

會理解到在任一實施例中,該頂部氮化物層之厚度可隨著在形成該高溫氧化物層之製程期間,多少該頂部氮化物層會被有效地耗用或氧化而做調整或增加。 It will be understood that in any embodiment, the thickness of the top nitride layer can be adjusted or increased according to how much the top nitride layer is effectively consumed or oxidized during the process of forming the high temperature oxide layer.

選擇性地,該方法可進一步包含在該高溫氧化物層一表面上形成或沉積一含金屬或多晶矽層,以形成該電晶體或元件(1508)之閘極層。該閘極層可為例如由一化學氣相沉積製程所沉積之多晶矽層,以形成一矽-氧化物-氮化物-氧化物-氮化物-氧化物-矽(SONOS)結構。 Optionally, the method may further include forming or depositing a metal-containing or polysilicon layer on a surface of the high-temperature oxide layer to form the gate layer of the transistor or device (1508). The gate layer can be, for example, a polysilicon layer deposited by a chemical vapor deposition process to form a silicon-oxide-nitride-oxide-nitride-oxide-silicon (SONOS) structure.

在另一觀點中,本揭示也指向包含在一基板表面上或上方所形成通道之二或更多側上方之電荷捕獲區域之多閘極或多閘極表面記憶體元件,及其製造方法。多閘極元件包含平面式及非平面式元件兩者。一平面式多閘極元件(未顯示)大體上包含一雙閘極平面式元件,其中,一些第一層被沉積以在接著形成之通道下面形成一第一閘極,且一些第二層被沉積於其上方以形成一第二閘極。一非平面式多閘極元件大體上包含形成於一基板表面上或上方並由一閘極環繞於三或更多側上之水平或垂直通道。 In another point of view, the present disclosure is also directed to a multi-gate or multi-gate surface memory device including a charge trapping region above two or more sides of a channel formed on or above a substrate surface, and a manufacturing method thereof. Multi-gate devices include both planar and non-planar devices. A planar multi-gate device (not shown) generally includes a dual-gate planar device, in which some first layers are deposited to form a first gate under the channel that is subsequently formed, and some second layers are Deposited on it to form a second gate. A non-planar multi-gate device generally includes horizontal or vertical channels formed on or above a substrate surface and surrounded by a gate on three or more sides.

圖16A說明包含一電荷捕獲區域之非平面式多閘極元件實施例。參考至圖16A,該記憶體元件1600,通常稱之為鰭狀物場效電晶體,包含由位於連接該記憶體元件之源極1608和汲極1610之基板1606上之一 表面1604上方之半導體材料薄膜或薄層所形成之通道1602。該通道1602之三邊側係由形成該元件之閘極1612之鰭狀物所封閉。該閘極1612(自源極至汲極方向進行估測)之厚度決定該元件之有效通道長度。 FIG. 16A illustrates an embodiment of a non-planar multi-gate device including a charge trapping region. Referring to FIG. 16A, the memory device 1600, commonly referred to as a fin field effect transistor, includes one of the substrates 1606 connected to the source 1608 and the drain 1610 of the memory device. A channel 1602 formed by a thin film or layer of semiconductor material above the surface 1604. The three sides of the channel 1602 are closed by the fins forming the gate 1612 of the device. The thickness of the gate 1612 (estimated from source to drain) determines the effective channel length of the device.

根據本揭示,圖16A之非平面式多閘極記憶體元件1600可包含一分離式電荷捕獲區域。圖16B係圖16A之非平面式多閘極元件之一部分剖面圖,包含一部分基板1606、通道1602及說明一多層電荷儲存層1614之閘極1612。該閘極1612進一步包含位在一凸起通道1602上方之穿隧氧化物層1616、一阻擋介電層1618及位在該阻擋層上方以形成該記憶體元件1600之控制閘極之金屬閘極層1620。在一些實施例中,可以一摻雜多晶矽代替金屬來進行沉積,以提供一多晶矽閘極層。該通道1602及閘極1612可直接形成於基板1606上或在該基板上或上方所形成之例如一埋入式氧化物層之絕緣或介電層1622上。 According to the present disclosure, the non-planar multi-gate memory device 1600 of FIG. 16A may include a separate charge trap region. 16B is a partial cross-sectional view of the non-planar multi-gate device of FIG. 16A, including a portion of the substrate 1606, the channel 1602, and the gate 1612 illustrating a multilayer charge storage layer 1614. The gate 1612 further includes a tunnel oxide layer 1616 positioned above a raised channel 1602, a blocking dielectric layer 1618, and a metal gate positioned above the blocking layer to form the control gate of the memory device 1600层1620. In some embodiments, a doped polysilicon can be deposited instead of metal to provide a polysilicon gate layer. The channel 1602 and the gate 1612 can be formed directly on the substrate 1606 or on an insulating or dielectric layer 1622 such as a buried oxide layer formed on or above the substrate.

參考至圖16B,該多層電荷儲存層1614包含較接近該穿隧氧化物層1616之至少一含氮下方或底部電荷捕獲層1624及位在該底部電荷捕獲層上面之一上方或頂部電荷捕獲層1626。大體上,該頂部電荷捕獲層1626包含一富矽又缺氧氮化物層並包含散佈於多個電荷捕獲層之多數電荷捕獲,而該底部電荷捕獲層1624包含一富氧氮化物或氮氧化矽層且相對於該頂部電荷捕獲層係富氧的,以減少其中之電荷捕獲數量。富氧係意謂著在該底部電荷捕獲層1624中之氧濃度係大約從15至40%,然而在頂部電荷捕獲層1626中之氧濃度係大約小於5%。 Referring to FIG. 16B, the multi-layer charge storage layer 1614 includes at least one nitrogen-containing lower or bottom charge trap layer 1624 that is closer to the tunnel oxide layer 1616 and a top or top charge trap layer located above one of the bottom charge trap layers 1626. In general, the top charge trap layer 1626 includes a silicon-rich and oxynitride layer and includes a majority of charge traps dispersed in a plurality of charge trap layers, and the bottom charge trap layer 1624 includes an oxynitride or silicon oxynitride The top charge trap layer is oxygen-rich to reduce the amount of charge trapped therein. The oxygen-rich system means that the oxygen concentration in the bottom charge trap layer 1624 is approximately from 15 to 40%, while the oxygen concentration in the top charge trap layer 1626 is approximately less than 5%.

在一實施例中,該阻擋介電層1618也包含例如一高溫氧化物之氧化物層,以提供一ONNO結構。該通道1602及該上方ONNO結構可 直接形成於一矽基板1606上並位在一摻雜多晶矽閘極層1620上方以提供一SONNOS結構。 In one embodiment, the blocking dielectric layer 1618 also includes an oxide layer such as a high-temperature oxide to provide an ONNO structure. The channel 1602 and the upper ONNO structure can It is formed directly on a silicon substrate 1606 and above a doped polysilicon gate layer 1620 to provide a SONNOS structure.

在一些實施例中,例如圖16B所示那個,該多層電荷儲存層1614進一步包含至少一中間或抗穿隧薄層1628,包含例如一氧化物之介電層以將該頂部電荷捕獲層1626與該底部電荷捕獲層1624分開。如上所述地,該抗穿隧層1628實質上降低在程式化期間所累積於該上方氮化物層1626界面處之電子電荷穿隧至該底部氮化物層1624之可能性。 In some embodiments, such as the one shown in FIG. 16B, the multilayer charge storage layer 1614 further includes at least one intermediate or anti-tunneling thin layer 1628, including a dielectric layer such as an oxide to connect the top charge trap layer 1626 with The bottom charge trap layer 1624 is separated. As described above, the anti-tunneling layer 1628 substantially reduces the possibility that the electron charges accumulated at the interface of the upper nitride layer 1626 during the programming period will tunnel to the bottom nitride layer 1624.

如同上述實施例,該底部電荷捕獲層1624及該頂部電荷捕獲層1626中任一者或兩者可包含氮化矽或氮氧化矽,並可例如經由包富氧化亞氮/氨及二氯矽烷/氨氣體混合物之化學氣相沉積製程,以量身定做之比值和流速來提供一富矽又富氧之氮氧化物層而形成之。該多層電荷儲存結構之第二氮化物層係接著形成於該中間氧化物層上。該頂部電荷捕獲層1626具有不同於該底部電荷捕獲層1624那個之氧、氮及/或矽化學計量組成成分,也可經由一化學氣相沉積製程,使用包含二氯矽烷/氨及氧化亞氮/氨氣體混合物之製程氣體,以量身定做之比值和流速來提供一富矽又富氧之氮氧化物層而形成或沉積之。 As in the above embodiment, either or both of the bottom charge trap layer 1624 and the top charge trap layer 1626 may include silicon nitride or silicon oxynitride, and may be enriched in nitrous oxide/ammonia and dichlorosilane, for example. The chemical vapor deposition process of ammonia gas mixture is formed by providing a silicon-rich and oxygen-rich oxynitride layer at a tailor-made ratio and flow rate. The second nitride layer of the multilayer charge storage structure is then formed on the intermediate oxide layer. The top charge trap layer 1626 has a different oxygen, nitrogen, and/or silicon stoichiometric composition from that of the bottom charge trap layer 1624. A chemical vapor deposition process can also be used to include dichlorosilane/ammonia and nitrous oxide. The process gas of the ammonia gas mixture is formed or deposited by providing a silicon-rich and oxygen-rich oxynitride layer at a tailored ratio and flow rate.

在包含一富氧化物之中間或抗穿隧層1628之那些實施例中,該抗穿隧層可使用基氧化作用來氧化該底部氮氧化物層至一所選深度而形成之。基氧化作用可在例如1000-1100攝氏度溫度下使用一單晶圓工具或在800-900攝氏度溫度下使用一批次反應器工具來執行之。一氫氣和氧氣混合物可在300-500托耳壓力下運用於一批次製程或在10-15托耳壓力下使用一單一氣相工具,使用一單晶圓工具則持續1-2分鐘時間,或者,使用一 批次製程則持續30分鐘-1小時時間。 In those embodiments that include an oxide-rich intermediate or anti-tunneling layer 1628, the anti-tunneling layer can be formed by using base oxidation to oxidize the bottom oxynitride layer to a selected depth. The base oxidation can be performed using, for example, a single wafer tool at a temperature of 1000-1100 degrees Celsius or a batch of reactor tools at a temperature of 800-900 degrees Celsius. A mixture of hydrogen and oxygen can be used in a batch process at a pressure of 300-500 Torr or a single gas phase tool at a pressure of 10-15 Torr, and a single wafer tool can last for 1-2 minutes. Or, use a The batch process lasts from 30 minutes to 1 hour.

最後,在包含一富氧化物之阻擋介電層1618之那些實施例中,該氧化物可經由任何合適手段來形成或沉積之。在一實施例中,該阻擋介電層1618之氧化物係以一高溫氧化物化學氣相沉積製程來沉積之高溫氧化物。替代性地,該阻擋介電層1618或阻擋氧化物層可為熱生長,然而會理解到,在本實施例中,該頂部氮化物厚度可隨著在熱生長該阻擋氧化物層之製程期間,多少該頂部氮化物層會被有效地耗用或氧化而做調整或增加。一第三選項係使用基氧化作用來氧化該頂部氮化物層至一所選深度。 Finally, in those embodiments that include an oxide-rich blocking dielectric layer 1618, the oxide can be formed or deposited by any suitable means. In one embodiment, the oxide of the blocking dielectric layer 1618 is a high temperature oxide deposited by a high temperature oxide chemical vapor deposition process. Alternatively, the blocking dielectric layer 1618 or the blocking oxide layer may be thermally grown. However, it will be understood that in this embodiment, the thickness of the top nitride may increase during the process of thermally growing the blocking oxide layer. How much of the top nitride layer will be effectively consumed or oxidized to adjust or increase. A third option is to use base oxidation to oxidize the top nitride layer to a selected depth.

該底部電荷捕獲層1624之合適厚度可從大約30埃至大約160埃(具有一些變異值,例如,±10埃),其中,大約5-20埃厚度可經由基氧化作用來耗用,以形成該抗穿隧層1628。該頂部電荷捕獲層1626之合適厚度可至少為30埃。在一些實施例中,該頂部電荷捕獲層1626可形成高達130埃厚,其中,30-70埃厚度可經由基氧化作用來耗用,以形成該阻擋介電層1618。在一些實施例中,在該底部電荷捕獲層1624及頂部電荷捕獲層1626間之厚度比值係大約1:1,然而其它比值也是可行的。 The suitable thickness of the bottom charge trap layer 1624 can be from about 30 angstroms to about 160 angstroms (with some variation, for example, ±10 angstroms), wherein the thickness of about 5-20 angstroms can be consumed by base oxidation to form The anti-tunneling layer 1628. The suitable thickness of the top charge trap layer 1626 may be at least 30 angstroms. In some embodiments, the top charge trapping layer 1626 can be formed up to 130 angstroms thick, of which 30-70 angstroms thickness can be consumed by base oxidation to form the blocking dielectric layer 1618. In some embodiments, the thickness ratio between the bottom charge trap layer 1624 and the top charge trap layer 1626 is about 1:1, but other ratios are also possible.

在其它實施例中,該頂部電荷捕獲層1626及該阻擋介電層1618中任一者或兩者可包含一高介電係數介電質。合適高介電係數介電質包含例如矽氧氮化鉿、矽氧化鉿或氧化鉿類之含鉿材料,例如矽氧氮化鋯、矽氧化鋯或氧化鋯類之含鋯材料,及例如三氧化二釔類之含釔材料。 In other embodiments, either or both of the top charge trap layer 1626 and the blocking dielectric layer 1618 may include a high-k dielectric. Suitable high-k dielectrics include hafnium-containing materials such as hafnium silicon oxynitride, hafnium silicon oxide or hafnium oxide, zirconium-containing materials such as zirconium silicon oxynitride, zirconium oxide or zirconium oxide, and three Yttrium-containing materials such as yttrium oxide.

在圖17A及17B所示之另一實施例中,該記憶體元件可包含由位在連接該記憶體元件之源極和汲極之基板上之一表面上方之半導體材料薄膜所形成之奈米線通道。奈米線通道係意謂著在一結晶矽材料薄條 帶內所形成之傳導通道,具有最大剖面尺寸約為10奈米(nm)或更小,且較佳地,大約小於6奈米。選擇性地,該通道可被形成以相對於該通道一長軸具有<100>表面結晶方位。 In another embodiment shown in FIGS. 17A and 17B, the memory device may include a nanometer film formed by a thin film of semiconductor material located on a surface of a substrate connecting the source and drain of the memory device. Line channel. Nanowire channel system means a thin strip of crystalline silicon material The conductive channel formed in the band has a maximum cross-sectional dimension of about 10 nanometers (nm) or less, and preferably, about less than 6 nanometers. Optionally, the channel can be formed to have a <100> surface crystalline orientation relative to a long axis of the channel.

參考至圖17A,該記憶體元件1700包含形成自一基板1706上之表面上或上方之半導體材料薄膜或薄層並連接該記憶體元件之源極1708和汲極1710之水平奈米線通道1702。在所示實施例中,該元件具有繞式閘極(GAA)結構,其中,該奈米通道1702之所有邊側係由該元件之閘極1712所封閉。該閘極1712(自源極至汲極方向進行估測)之厚度決定該元件之有效通道長度。 Referring to FIG. 17A, the memory device 1700 includes a thin film or thin layer of semiconductor material formed on or above the surface of a substrate 1706 and connected to the source electrode 1708 of the memory device and the drain electrode 1710 of the horizontal nanowire channel 1702 . In the illustrated embodiment, the device has a gate-wound (GAA) structure, wherein all sides of the nanochannel 1702 are closed by the gate 1712 of the device. The thickness of the gate 1712 (estimated from the source to drain direction) determines the effective channel length of the device.

根據本揭示,圖17A之非平面式多閘極記憶體元件1700可包含一分離式電荷捕獲區域。圖17B係圖17A之非平面式多閘極元件之一部分剖面圖,包含一部分基板1706、通道1702及說明一分離式電荷儲存區域之閘極1612。參考至圖17B,該閘極1712包含位在該奈米線通道1702上方之穿隧氧化物層1714、一分離式電荷捕獲區域、一阻擋介電層1716及位在該阻擋層上方以形成該記憶體元件1600之控制閘極之閘極層1718。該閘極層1718可包括一沉積金屬或一摻雜多晶矽。該分離式電荷捕獲區域包含較接近該穿隧氧化物層1714之至少一含氮化物之內部電荷捕獲層1720及位在該內部電荷捕獲層上方之一外部電荷捕獲層1722。大體上,該外部電荷捕獲層1722包括一富矽又缺氧氮化物層並包括散佈於多個電荷捕獲層之多數電荷捕獲,而該內部電荷捕獲層1720包括一富氧氮化物或氮氧化矽層且相對於該外部電荷捕獲層係富氧的,以減少其中之電荷捕獲數量。 According to the present disclosure, the non-planar multi-gate memory device 1700 of FIG. 17A may include a separate charge trap region. FIG. 17B is a partial cross-sectional view of the non-planar multi-gate device of FIG. 17A, including a portion of the substrate 1706, the channel 1702, and the gate 1612 illustrating a separate charge storage region. Referring to FIG. 17B, the gate 1712 includes a tunnel oxide layer 1714 located above the nanowire channel 1702, a separate charge trapping region, a blocking dielectric layer 1716, and a blocking dielectric layer 1716 located above the blocking layer to form the The gate layer 1718 of the control gate of the memory device 1600. The gate layer 1718 may include a deposited metal or a doped polysilicon. The separated charge trapping region includes at least one nitride-containing internal charge trapping layer 1720 closer to the tunneling oxide layer 1714 and an external charge trapping layer 1722 located above the internal charge trapping layer. Generally, the outer charge trapping layer 1722 includes a silicon-rich and oxynitride layer and includes a plurality of charge traps dispersed in a plurality of charge trapping layers, and the internal charge trapping layer 1720 includes an oxynitride or silicon oxynitride layer. The outer charge trapping layer is oxygen-rich to reduce the amount of charge trapped therein.

在一些實施例中,如同所示那個,該分離式電荷捕獲區域進 一步包含至少一中間或抗穿隧薄層1724,包括例如一氧化物介電層,以將外部電荷捕獲層1722與內部電荷捕獲層1720分開。該抗穿隧層1724實質上降低在程式化期間所累積於外部電荷捕獲層1722界面處之電子電荷穿隧至該內部氮化物層1720之可能性,因而導致較低漏電。 In some embodiments, like the one shown, the separate charge trapping region One step includes at least one intermediate or anti-tunneling thin layer 1724, including, for example, an oxide dielectric layer to separate the outer charge trap layer 1722 from the inner charge trap layer 1720. The anti-tunneling layer 1724 substantially reduces the possibility of electron charges accumulated at the interface of the outer charge trap layer 1722 during the programming period to tunnel to the inner nitride layer 1720, thereby resulting in lower leakage.

如同上述實施例,該內部電荷捕獲層1720及該外部電荷捕獲層1722中任一者或兩者可包括氮化矽或氮氧化矽,並可例如經由包富氧化亞氮/氨及二氯矽烷/氨氣體混合物之化學氣相沉積製程以量身定做之比值和流速來提供一富矽又富氧之氮氧化物層而形成之。該多層電荷儲存結構之第二氮化物層接著被形成於該中間氧化物層上。該外部電荷捕獲層1722具有不同於該內部電荷捕獲層1720那個之氧、氮及/或矽化學計量組成成分,也可經由一化學氣相沉積製程,使用包含二氯矽烷/氨及氧化亞氮/氨氣體混合物之製程氣體,以量身定做之比值和流速來提供一富矽又缺氧之頂部氮化物層而形成或沉積之。 As in the above embodiment, either or both of the internal charge trapping layer 1720 and the external charge trapping layer 1722 may include silicon nitride or silicon oxynitride, and may be enriched in nitrous oxide/ammonia and dichlorosilane, for example. The chemical vapor deposition process of the ammonia gas mixture provides a silicon-rich and oxygen-rich oxynitride layer at a tailor-made ratio and flow rate. The second nitride layer of the multilayer charge storage structure is then formed on the intermediate oxide layer. The external charge trap layer 1722 has a different oxygen, nitrogen, and/or silicon stoichiometric composition from that of the internal charge trap layer 1720. It can also be used through a chemical vapor deposition process including dichlorosilane/ammonia and nitrous oxide The process gas of the ammonia gas mixture is formed or deposited by providing a silicon-rich and oxygen-deficient top nitride layer at a tailored ratio and flow rate.

在包含一富氧化物之中間或抗穿隧層1724之那些實施例中,該抗穿隧層可使用基氧化作用來氧化該內部電荷捕獲層1720至一所選深度而形成之。基氧化作用可在例如1000-1100攝氏度溫度下使用一單晶圓工具或在800-900攝氏度溫度下使用一批次反應器工具來執行之。一氫氣和氧氣混合物可在300-500托耳壓力下運用於一批次製程或在10-15托耳壓力下使用一單一氣相工具,使用一單晶圓工具則持續1-2分鐘時間,或者,使用一批次製程則持續30分鐘-1小時時間。 In those embodiments that include an oxide-rich intermediate or anti-tunneling layer 1724, the anti-tunneling layer can be formed by oxidizing the internal charge trapping layer 1720 to a selected depth using base oxidation. The base oxidation can be performed using, for example, a single wafer tool at a temperature of 1000-1100 degrees Celsius or a batch of reactor tools at a temperature of 800-900 degrees Celsius. A mixture of hydrogen and oxygen can be used in a batch process at a pressure of 300-500 Torr or a single gas phase tool at a pressure of 10-15 Torr, and a single wafer tool can last for 1-2 minutes. Or, using a batch process lasts 30 minutes to 1 hour.

最後,在包括氧化物之阻擋介電層1716之那些實施例中,該氧化物可經由任何合適手段來形成或沉積之。在一實施例中,該阻擋介 電層1716之氧化物係以一高溫氧化物化學氣相沉積製程來沉積之高溫氧化物。替代性地,該阻擋介電層1716或阻擋氧化物層可為熱生長,然而會理解到,在本實施例中,該外部電荷捕獲層1722之厚度也許需要隨著在熱生長該阻擋氧化物層之製程期間,多少該頂部氮化物層被有效地耗用或氧化而做調整或增加。 Finally, in those embodiments that include the blocking dielectric layer 1716 of oxide, the oxide may be formed or deposited by any suitable means. In one embodiment, the blocking medium The oxide of the electrical layer 1716 is a high temperature oxide deposited by a high temperature oxide chemical vapor deposition process. Alternatively, the blocking dielectric layer 1716 or the blocking oxide layer may be thermally grown. However, it will be understood that, in this embodiment, the thickness of the external charge trapping layer 1722 may need to grow as the blocking oxide is thermally grown. During the layer manufacturing process, how much of the top nitride layer is effectively consumed or oxidized to adjust or increase.

該內部電荷捕獲層1720之合適厚度可從大約30埃至大約80埃(具有一些變異值,例如,±10埃),其中,大約5-20埃厚度可經由基氧化作用來耗用,以形成該抗穿隧層1724。該外部電荷捕獲層1722之合適厚度至少為30埃。在一些實施例中,該外部電荷捕獲層1722可形成高達170埃厚,其中,30-70埃厚度可經由基氧化作用來耗用,以形成該阻擋介電層1716。在一些實施例中,在該內部電荷捕獲層1720及該外部電荷捕獲層1722間之厚度比值係大約1:1,然而其它比值也是可行的。 The appropriate thickness of the internal charge trapping layer 1720 can be from about 30 angstroms to about 80 angstroms (with some variation, for example, ±10 angstroms), wherein the thickness of about 5-20 angstroms can be consumed by radical oxidation to form The anti-tunneling layer 1724. The suitable thickness of the external charge trap layer 1722 is at least 30 angstroms. In some embodiments, the external charge trapping layer 1722 can be formed up to 170 angstroms thick, wherein the thickness of 30-70 angstroms can be consumed by base oxidation to form the blocking dielectric layer 1716. In some embodiments, the thickness ratio between the inner charge trap layer 1720 and the outer charge trap layer 1722 is about 1:1, however other ratios are also feasible.

在其它實施例中,該外部電荷捕獲層1722及該阻擋介電層1716中任一者或兩者可包括一高介電係數介電質。合適高介電係數介電質包含例如矽氧氮化鉿、矽氧化鉿或氧化鉿類之含鉿材料,例如矽氧氮化鋯、矽氧化鋯或氧化鋯類之含鋯材料,及例如三氧化二釔類之含釔材料。 In other embodiments, either or both of the external charge trapping layer 1722 and the blocking dielectric layer 1716 may include a high-k dielectric. Suitable high-k dielectrics include hafnium-containing materials such as hafnium silicon oxynitride, hafnium silicon oxide or hafnium oxide, zirconium-containing materials such as zirconium silicon oxynitride, zirconium oxide or zirconium oxide, and three Yttrium-containing materials such as yttrium oxide.

圖17C說明圖17A中安排成位元成本可調或BiCS架構1726之非平面式多閘極元件1700垂直串之剖面圖。該架構1726由一非平面式多閘極元件1700垂直串或堆疊所構成,其中,每一個元件或單元包含位在該基板1706上方並連接該記憶體元件之源極和汲極(未顯示於圖形中)之通道1702,具有一繞式閘極(GAA)結構,其中,該奈米線通道1702之所有邊側係由一閘極1712所封閉。相較於一簡單層堆疊,該BiCS架構減少關鍵性 微影成像步驟數,使得每一記憶體位元之成本下降。 17C illustrates a cross-sectional view of a vertical string of non-planar multi-gate devices 1700 arranged in an adjustable bit cost or BiCS architecture 1726 in FIG. 17A. The structure 1726 is composed of a vertical series or stack of non-planar multi-gate devices 1700, wherein each device or unit includes a source and a drain (not shown in the above) that are located above the substrate 1706 and connected to the memory device The channel 1702 in the figure) has a gate-wound (GAA) structure, wherein all sides of the nanowire channel 1702 are closed by a gate 1712. Compared to a simple layer stack, the BiCS architecture reduces criticality The number of lithographic imaging steps reduces the cost of each memory bit.

在另一實施例中,該記憶體元件係或包含一非平面式元件,包含由一基板上之一些傳導半導體層上方或之處凸出的半導體材料內或之中所形成之一垂直奈米線通道。在圖18A切面所示之本實施例一版本中,該記憶體元件1800包括由連接該元件之源極1804和汲極1806之半導體材料圓柱體中所形成之垂直奈米線通道1802。該通道1802係由一穿隧氧化物層1808、一電荷捕獲區域1810、一阻擋層1812及位於該阻擋層上面以形成該記憶體元件1800之控制閘極之閘極層1814所環繞。該通道1802可包含在一實質上實心半導體材料圓柱體外層內之環狀區域,或包含形成於一介電填充材料圓柱體上方之環狀層。如同上述水平奈米線,該通道1802可包括用以形成一單結晶通道之多晶矽或再結晶多晶矽。選擇性地,於該通道1802包含一結晶矽所在處,該通道可被形成以相對於該通道一長軸具有<100>表面結晶方位。 In another embodiment, the memory device may include a non-planar device, including a vertical nanometer formed by a semiconductor material protruding above or at some conductive semiconductor layers on a substrate. Line channel. In a version of this embodiment shown in the cross-section of FIG. 18A, the memory device 1800 includes a vertical nanowire channel 1802 formed in a cylinder of semiconductor material connecting the source 1804 and the drain 1806 of the device. The channel 1802 is surrounded by a tunnel oxide layer 1808, a charge trapping region 1810, a barrier layer 1812, and a gate layer 1814 on the barrier layer to form the control gate of the memory device 1800. The channel 1802 may include a ring-shaped area within an outer layer of a substantially solid semiconductor material cylinder, or include a ring-shaped layer formed above a cylinder of dielectric filling material. Like the horizontal nanowire described above, the channel 1802 may include polysilicon or recrystallized polysilicon to form a single crystal channel. Optionally, where the channel 1802 contains a crystalline silicon, the channel can be formed to have a <100> surface crystalline orientation relative to a long axis of the channel.

在一些實施例中,例如圖18B所示那個,該電荷捕獲區域1810可為一分離式電荷捕獲區域,包含最接近該穿隧氧化物層1808之至少一第一或內部電荷捕獲層1816及一第二或外部電荷捕獲層1818。選擇性地,該第一和第二電荷捕獲層可由一中間氧化物或抗穿隧層1820所分開。 In some embodiments, such as the one shown in FIG. 18B, the charge trapping region 1810 may be a separate charge trapping region, including at least a first or internal charge trapping layer 1816 that is closest to the tunneling oxide layer 1808 and a The second or outer charge trap layer 1818. Optionally, the first and second charge trapping layers can be separated by an intermediate oxide or anti-tunneling layer 1820.

如同上述實施例,該第一電荷捕獲層1816及該第二電荷捕獲層1818中任一者或兩者可包括氮化矽或氮氧化矽,並可經由例如包富氧化亞氮/氨及二氯矽烷/氨氣體混合物之化學氣相沉積製程,以量身定做之比值和流速來提供一富矽又富氧之氮氧化物層而形成之。 As in the above embodiment, either or both of the first charge trap layer 1816 and the second charge trap layer 1818 may include silicon nitride or silicon oxynitride, and may be enriched with nitrous oxide/ammonia and two The chemical vapor deposition process of chlorosilane/ammonia gas mixture is formed by providing a silicon-rich and oxygen-rich oxynitride layer with a tailored ratio and flow rate.

最後,該第二電荷捕獲層1818及該阻擋層1812中任一者或 兩者可包括一高介電係數介電質,例如,矽氧氮化鉿、矽氧化鉿、氧化鉿、矽氧氮化鋯、矽氧化鋯、氧化鋯或三氧化二釔。 Finally, any one of the second charge trapping layer 1818 and the blocking layer 1812 or Both can include a high-k dielectric, for example, hafnium silicon oxynitride, hafnium silicon oxide, hafnium oxide, zirconium silicon oxynitride, zirconium silicon oxide, zirconium oxide, or yttrium oxide.

該第一電荷捕獲層1816之合適厚度可從大約30埃至大約80埃(具有一些變異值,例如,±10埃),其中,大約5-20埃厚度可經由基氧化作用來耗用,以形成該抗穿隧層1820。該第二電荷捕獲層1818之合適厚度至少為30埃,且該阻擋介電層1812之合適厚度可約為30-70埃。 The suitable thickness of the first charge trapping layer 1816 can be from about 30 angstroms to about 80 angstroms (with some variation, for example, ±10 angstroms), wherein the thickness of about 5-20 angstroms can be consumed by radical oxidation to The anti-tunneling layer 1820 is formed. The suitable thickness of the second charge trap layer 1818 is at least 30 angstroms, and the suitable thickness of the blocking dielectric layer 1812 can be about 30-70 angstroms.

圖18A之記憶體元件1800不是使用一閘極優先就是使用閘極後製方案來製造之。圖19A-F說明用於製造圖18A之非平面式多閘極元件之閘極優先方案。圖20A-F說明用於製造圖18A之非平面式多閘極元件之閘極後製方案。 The memory device 1800 of FIG. 18A is manufactured using either a gate first or a post-gate manufacturing scheme. Figures 19A-F illustrate the gate priority scheme for manufacturing the non-planar multi-gate device of Figure 18A. 20A-F illustrate a post-gate fabrication scheme for manufacturing the non-planar multi-gate device of FIG. 18A.

參考至圖19A,在一閘極優先方案中,例如一阻擋氧化物之第一或下方介電層1902係形成於一基板1906內,例如一源極或一汲極之第一摻雜擴散區域1904上方。一閘極層1908係沉積於該第一介電層1902上方以形成該元件之控制閘極,且一第二或上方介電層1910形成於其上方。如同上述實施例,該第一和第二介電層1902、1910可經由化學氣相沉積製程、基氧化製程來沉積,或經由氧化一部分下層或下方基板而形成之。該閘極層1908可包括經由化學氣相沉積製程所沉積之金屬或摻雜多晶矽。大體上,該閘極層1908之厚度約為40-50埃,且該第一和第二介電層1902、1910約為20-80埃。 Referring to FIG. 19A, in a gate-first scheme, for example, a first or lower dielectric layer 1902 of a blocking oxide is formed in a substrate 1906, such as a first doped diffusion region of a source or a drain Above 1904. A gate layer 1908 is deposited on the first dielectric layer 1902 to form the control gate of the device, and a second or upper dielectric layer 1910 is formed on it. As in the above embodiment, the first and second dielectric layers 1902 and 1910 can be deposited by a chemical vapor deposition process, a base oxidation process, or formed by oxidizing a part of the underlying layer or the underlying substrate. The gate layer 1908 may include metal or doped polysilicon deposited through a chemical vapor deposition process. Generally, the thickness of the gate layer 1908 is about 40-50 angstroms, and the first and second dielectric layers 1902 and 1910 are about 20-80 angstroms.

參考至圖19B,一第一開口1912係蝕刻穿透該上方閘極層1908及該第一和第二介電層1902、1910,到達該基板1906內之擴散區域1904。接著,穿隧氧化物層1914、電荷捕獲區域1916及阻擋介電層1918 係接著沉積於該開口中,並將該上方介電層1910之表面平坦化以產生圖19C所示之中間結構。 Referring to FIG. 19B, a first opening 1912 is etched through the upper gate layer 1908 and the first and second dielectric layers 1902 and 1910 to reach the diffusion region 1904 in the substrate 1906. Next, the tunnel oxide layer 1914, the charge trapping region 1916 and the blocking dielectric layer 1918 It is then deposited in the opening, and the surface of the upper dielectric layer 1910 is planarized to produce the intermediate structure shown in FIG. 19C.

雖未顯示,但是會了解到如同上述實施例,該電荷捕獲區域1916可包含一分離式電荷捕獲區域,包括較接近該穿隧氧化物層1914之至少一下方或底部電荷捕獲層及位在該底部電荷捕獲層上面之一上方或頂部電荷捕獲層。大體上,該頂部電荷捕獲層包括一富矽又缺氧之氮化物層,並包括散佈於多個電荷捕獲層之多數電荷捕獲,而該底部電荷捕獲層包括一富氧氮化物或氮氧化矽,且相對於該頂部電荷捕獲層係富氧的,以減少其中之電荷捕獲數量。在一些實施例中,該分離式電荷捕獲區域1916進一步包含至少一中間或抗穿隧薄層,該薄層包括例如一氧化物之介電質以分開該頂部電荷捕獲層與該底部電荷捕獲層。 Although not shown, it will be understood that, as in the above-mentioned embodiment, the charge trapping region 1916 may include a separate charge trapping region, including at least a lower or bottom charge trapping layer closer to the tunnel oxide layer 1914 and located on the One above the bottom charge trapping layer or the top charge trapping layer. Generally, the top charge trapping layer includes a silicon-rich and oxygen-deficient nitride layer, and includes a plurality of charge traps dispersed in a plurality of charge trapping layers, and the bottom charge trapping layer includes an oxynitride or silicon oxynitride , And relative to the top charge trap layer is oxygen-rich to reduce the amount of charge trapped therein. In some embodiments, the separated charge trapping region 1916 further includes at least one intermediate or anti-tunneling thin layer including a dielectric such as an oxide to separate the top charge trap layer and the bottom charge trap layer .

接著,圖19D之第二或通道開口1920係異向性地蝕刻穿透穿隧氧化物層1914、電荷捕獲區域1916及阻擋介電層1918。參考至圖19E,一半導體材料1922係沉積於該通道開口中,以於其中形成一垂直通道1924。該垂直通道1924可包含在一實質上實心半導體材料圓柱體外層內之環狀區域,或如圖19E所示地,可包含環繞一介電填充材料1926圓柱體之獨立半導體材料層1922。 Next, the second or via opening 1920 of FIG. 19D is anisotropically etched through the tunnel oxide layer 1914, the charge trapping region 1916, and the blocking dielectric layer 1918. Referring to FIG. 19E, a semiconductor material 1922 is deposited in the channel opening to form a vertical channel 1924 therein. The vertical channel 1924 may include a ring-shaped area within an outer layer of a substantially solid semiconductor material cylinder, or, as shown in FIG. 19E, may include a separate semiconductor material layer 1922 surrounding a 1926 cylinder of dielectric filling material.

參考至圖19F,將該上方介電層1910表面平坦化,且包含形成於其中之例如一源極或一汲極之第二摻雜擴散區域1930之半導體材料層1928沉積於該上方介電層上方以形成所示元件。 Referring to FIG. 19F, the surface of the upper dielectric layer 1910 is planarized, and a semiconductor material layer 1928 including a second doped diffusion region 1930 such as a source or a drain formed therein is deposited on the upper dielectric layer Above to form the elements shown.

參考至圖20A,在一閘極後製方案中,例如一氧化物之介電層2002係形成於一基板2006表面上之犧牲層2004上方,一開口係蝕刻穿 透該介電及犧牲層並於其中形成一垂直通道2008。如同上述實施例,該垂直通道2008可包含在例如多晶矽或單結晶矽之實質上實心半導體材料2010圓柱體之外層內之環狀區域,或可包含環繞一介電填充材料(未顯示)圓柱體之獨立半導體材料層。該介電層2002可包括能夠電性隔離該記憶體元件1800中接著形成之閘極層與一上方電性作用層或另一記憶體元件之例如氧化矽的任何合適介電材料。該犧牲層2004可包括相對於該介電層2002、基板2006和垂直通道2008之材料可具有高選擇性來蝕刻或移除之任何合適材料。 Referring to FIG. 20A, in a post-gate manufacturing solution, for example, an oxide dielectric layer 2002 is formed on the sacrificial layer 2004 on the surface of a substrate 2006, and an opening is etched through A vertical channel 2008 is formed through the dielectric and sacrificial layer. As in the above embodiment, the vertical channel 2008 may include a ring-shaped area in the outer layer of a substantially solid semiconductor material 2010 cylinder, such as polysilicon or monocrystalline silicon, or may include a cylinder surrounding a dielectric filling material (not shown) The independent semiconductor material layer. The dielectric layer 2002 may include any suitable dielectric material, such as silicon oxide, capable of electrically isolating the gate layer subsequently formed in the memory device 1800 from an upper electrically active layer or another memory device. The sacrificial layer 2004 can include any suitable material that can be etched or removed with high selectivity relative to the material of the dielectric layer 2002, the substrate 2006, and the vertical channel 2008.

參考至圖20B,一第二開口2012係蝕刻穿透介電及犧牲層2002、2004,到達該基板1906,且該犧牲層2004被蝕刻或移除。該犧牲層2004可包括相對於該介電層2002、基板2006和垂直通道2008之材料可具有高選擇性來蝕刻或移除之任何合適材料。在一實施例中,該犧牲層2004包括可經由緩衝式氧化物蝕刻技術(BOE蝕刻技術)來移除。 Referring to FIG. 20B, a second opening 2012 is etched through the dielectric and sacrificial layers 2002, 2004 to reach the substrate 1906, and the sacrificial layer 2004 is etched or removed. The sacrificial layer 2004 can include any suitable material that can be etched or removed with high selectivity relative to the material of the dielectric layer 2002, the substrate 2006, and the vertical channel 2008. In one embodiment, the sacrificial layer 2004 can be removed by a buffered oxide etching technique (BOE etching technique).

參考至圖20C及20D,穿隧氧化物層2014、電荷捕獲區域2016及阻擋介電層2018係依序沉積於該開口中,且將該介電層2002之表面平坦化以產生圖20C所示之中間結構。在一些實施例中,例如圖20D所示那個,該電荷捕獲區域2016可為一分離式電荷捕獲區域,包含最接近該穿隧氧化物層2014之至少一第一或內部電荷捕獲層2016a及一第二或外部電荷捕獲層2016b。選擇性地,該第一和第二電荷捕獲層可由一中間氧化物或抗穿隧層2020所分開。 Referring to FIGS. 20C and 20D, the tunnel oxide layer 2014, the charge trapping region 2016 and the blocking dielectric layer 2018 are sequentially deposited in the opening, and the surface of the dielectric layer 2002 is planarized to produce the one shown in FIG. 20C The intermediate structure. In some embodiments, such as the one shown in FIG. 20D, the charge trapping region 2016 may be a separate charge trapping region, including at least one first or internal charge trapping layer 2016a closest to the tunneling oxide layer 2014 and one The second or outer charge trap layer 2016b. Optionally, the first and second charge trapping layers can be separated by an intermediate oxide or anti-tunneling layer 2020.

接著,一閘極層2022被沉積至該第二開口2012中,並將該上方介電層2002之表面平坦化以產生圖20E所示之中間結構。如同上述實 施例,該閘極層2022可包括一沉積金屬或一摻雜多晶矽。最後,一開口2024係蝕刻穿透該閘極層2022以形成各記憶體元件2026之控制閘極。 Next, a gate layer 2022 is deposited into the second opening 2012, and the surface of the upper dielectric layer 2002 is planarized to produce the intermediate structure shown in FIG. 20E. As above For example, the gate layer 2022 may include a deposited metal or a doped polysilicon. Finally, an opening 2024 is etched through the gate layer 2022 to form the control gate of each memory device 2026.

因此,一非揮發性電荷捕獲記憶體元件之製造方法已被揭示。根據本發明一實施例,一基板係在一叢集工具之第一製程腔室內承受一第一基氧化製程以形成一第一介電層。一電荷捕獲層可接著在該叢集工具之第二製程腔室內沉積於該第一介電層上方。在一實施例中,該電荷捕獲層接著係在該叢集工具之第一製程腔室內承受一第二基氧化製程以在該電荷捕獲層上方形成一第二介電層。藉由在一叢集工具內形成一氧化物-氮化物-氧化物(ONO)堆疊所有各層,各層間之界面損毀可被降低。因此,根據本發明一實施例,一氧化物-氮化物-氧化物堆疊係以一次操作製造於叢集工具內,用以在該氧化物-氮化物-氧化物堆疊各層間保留一原始界面。在一特定實施例中,該叢集工具係一單晶圓叢集工具。 Therefore, a manufacturing method of a non-volatile charge trap memory device has been disclosed. According to an embodiment of the present invention, a substrate is subjected to a first base oxidation process in a first process chamber of a cluster tool to form a first dielectric layer. A charge trapping layer can then be deposited on the first dielectric layer in the second process chamber of the cluster tool. In one embodiment, the charge trapping layer is then subjected to a second base oxidation process in the first process chamber of the cluster tool to form a second dielectric layer on the charge trapping layer. By forming an oxide-nitride-oxide (ONO) stack of all the layers in a cluster tool, the interface damage between the layers can be reduced. Therefore, according to an embodiment of the present invention, an oxide-nitride-oxide stack is fabricated in a cluster tool in one operation to preserve an original interface between the layers of the oxide-nitride-oxide stack. In a specific embodiment, the cluster tool is a single wafer cluster tool.

600‧‧‧基板 600‧‧‧Substrate

602‧‧‧第一介電層 602‧‧‧First dielectric layer

604‧‧‧電荷捕獲層 604‧‧‧Charge trap layer

606‧‧‧第二介電層 606‧‧‧Second dielectric layer

608‧‧‧閘極層 608‧‧‧Gate layer

610‧‧‧介電間隔側壁 610‧‧‧Dielectric spacer

612‧‧‧源極和汲極區域 612‧‧‧source and drain regions

614‧‧‧通道區域 614‧‧‧Access area

Claims (5)

一種記憶體元件,包括:一垂直通道,其係從形成於一基板上的一表面上之一第一擴散區域延伸至形成於該基板上的該表面上方之一第二擴散區域,該垂直通道係將該第一擴散區域電性連接至該第二擴散區域;以及一氧化物-氮化物-氮化物-氧化物(ONNO)堆疊,其係設置在該垂直通道附近,該ONNO堆疊包括:一穿隧氧化物層,其相鄰且接觸該垂直通道;一多層電荷儲存層,其相鄰且接觸該穿隧氧化物層,該多層電荷儲存層包括富氧之第一氮氧化物層和缺氧之第二氮氧化物層,該富氧之第一氮氧化物層相鄰於該穿隧氧化物層,其中,該富氧之第一氮氧化物層之成分致使其實質上無捕獲,該缺氧之第二氮氧化物層相鄰於該富氧之第一氮氧化物層,其中,該缺氧之第二氮氧化物層之成分致使其為密集捕獲;以及一高溫氧化物(HTO)層,其相鄰且接觸該多層電荷儲存層,該HTO層包括該多層電荷儲存層的該缺氧之第二氮氧化物層的氧化部分。 A memory device includes: a vertical channel extending from a first diffusion region formed on a surface of a substrate to a second diffusion region formed on the surface of the substrate, the vertical channel The first diffusion region is electrically connected to the second diffusion region; and an oxide-nitride-nitride-oxide (ONNO) stack is arranged near the vertical channel, and the ONNO stack includes: a A tunnel oxide layer adjacent to and in contact with the vertical channel; a multilayer charge storage layer adjacent to and in contact with the tunnel oxide layer, the multilayer charge storage layer including an oxygen-rich first oxynitride layer and An oxygen-deficient second oxynitride layer, the oxygen-rich first oxynitride layer is adjacent to the tunneling oxide layer, wherein the composition of the oxygen-rich first oxynitride layer is such that it is substantially trapped , The oxygen-deficient second oxynitride layer is adjacent to the oxygen-rich first oxynitride layer, wherein the composition of the oxygen-deficient second oxynitride layer causes it to be densely captured; and a high temperature oxide The (HTO) layer is adjacent to and in contact with the multilayer charge storage layer, and the HTO layer includes the oxidized portion of the oxygen-deficient second oxynitride layer of the multilayer charge storage layer. 如申請專利範圍第1項之記憶體元件,其中,該通道包括多晶矽。 For example, the memory device of the first item in the scope of patent application, wherein the channel includes polysilicon. 如申請專利範圍第2項之記憶體元件,其中,該通道包括再結晶多晶矽。 For example, the memory device of the second item in the scope of patent application, wherein the channel includes recrystallized polysilicon. 如申請專利範圍第1項之記憶體元件,其中,該通道包括一矽奈米線。 For example, the memory device of the first item in the scope of patent application, where the channel includes a silicon nanowire. 如申請專利範圍第1項之記憶體元件,其中,該富氧之第一氮氧化物層與該缺氧之第二氮氧化物層係由包括一氧化物之抗穿隧層所分開。 As for the memory device of the first item of the patent application, the oxygen-rich first oxynitride layer and the oxygen-deficient second oxynitride layer are separated by an anti-tunneling layer including an oxide.
TW106121057A 2012-07-01 2013-07-01 Radical oxidation process for fabricating a nonvolatile charge trap memory device TWI709174B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/539,458 US8940645B2 (en) 2007-05-25 2012-07-01 Radical oxidation process for fabricating a nonvolatile charge trap memory device
US13/539,458 2012-07-01

Publications (2)

Publication Number Publication Date
TW201737344A TW201737344A (en) 2017-10-16
TWI709174B true TWI709174B (en) 2020-11-01

Family

ID=49882446

Family Applications (2)

Application Number Title Priority Date Filing Date
TW102123447A TWI594327B (en) 2012-07-01 2013-07-01 Radical oxidation process for fabricating a nonvolatile charge trap memory device
TW106121057A TWI709174B (en) 2012-07-01 2013-07-01 Radical oxidation process for fabricating a nonvolatile charge trap memory device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW102123447A TWI594327B (en) 2012-07-01 2013-07-01 Radical oxidation process for fabricating a nonvolatile charge trap memory device

Country Status (4)

Country Link
KR (2) KR102018278B1 (en)
CN (2) CN104781916A (en)
TW (2) TWI594327B (en)
WO (1) WO2014008161A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211217B2 (en) 2017-06-20 2019-02-19 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
CN109148468A (en) * 2018-09-26 2019-01-04 长江存储科技有限责任公司 A kind of 3D nand memory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200810116A (en) * 2006-08-02 2008-02-16 Univ Nat Sun Yat Sen Thin film transistor device with nonvolatile memory function
US20080293255A1 (en) * 2007-05-25 2008-11-27 Krishnaswamy Ramkumar Radical oxidation process for fabricating a nonvolatile charge trap memory device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709928B1 (en) * 2001-07-31 2004-03-23 Cypress Semiconductor Corporation Semiconductor device having silicon-rich layer and method of manufacturing such a device
JP2004095918A (en) * 2002-08-30 2004-03-25 Fasl Japan Ltd Semiconductor memory device and its manufacturing method
KR100501457B1 (en) * 2003-02-04 2005-07-18 동부아남반도체 주식회사 Semiconductor device hving a sononos structure for quantum trap device
US7154779B2 (en) * 2004-01-21 2006-12-26 Sandisk Corporation Non-volatile memory cell using high-k material inter-gate programming
US7405125B2 (en) * 2004-06-01 2008-07-29 Macronix International Co., Ltd. Tunnel oxynitride in flash memories
US7504700B2 (en) * 2005-04-21 2009-03-17 International Business Machines Corporation Method of forming an ultra-thin [[HfSiO]] metal silicate film for high performance CMOS applications and semiconductor structure formed in said method
WO2007034376A2 (en) * 2005-09-23 2007-03-29 Nxp B.V. Memory device with a strained base layer and method of manufacturing such a memory device
JP2007251132A (en) * 2006-02-16 2007-09-27 Toshiba Corp Monos type nonvolatile memory cell, nonvolatile memory and manufacture thereof
US20080150003A1 (en) * 2006-12-20 2008-06-26 Jian Chen Electron blocking layers for electronic devices
KR100877100B1 (en) * 2007-04-16 2009-01-09 주식회사 하이닉스반도체 Methods for manufacturing non-volatile memory device
US8614124B2 (en) * 2007-05-25 2013-12-24 Cypress Semiconductor Corporation SONOS ONO stack scaling
KR20090036850A (en) * 2007-10-10 2009-04-15 주식회사 하이닉스반도체 Flash memory device and manufacturing method thereof
KR20090041196A (en) * 2007-10-23 2009-04-28 삼성전자주식회사 Nonvolatile memory device, method of fabricating the same and system incorporating the same
KR20090052682A (en) * 2007-11-21 2009-05-26 삼성전자주식회사 Non-volatile memory device, and memory card and system including the same
US7732891B2 (en) * 2008-06-03 2010-06-08 Kabushiki Kaisha Toshiba Semiconductor device
KR20100000652A (en) * 2008-06-25 2010-01-06 삼성전자주식회사 Non-volatile memory device, and memory card and system including the same
CN102117810A (en) * 2009-12-30 2011-07-06 中国科学院微电子研究所 Charge trapping type nonvolatile memory and manufacturing method thereof
CN104254921B (en) * 2012-03-27 2020-06-12 经度快闪存储解决方案有限责任公司 SONOS stack with separated nitride storage layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200810116A (en) * 2006-08-02 2008-02-16 Univ Nat Sun Yat Sen Thin film transistor device with nonvolatile memory function
US20080293255A1 (en) * 2007-05-25 2008-11-27 Krishnaswamy Ramkumar Radical oxidation process for fabricating a nonvolatile charge trap memory device

Also Published As

Publication number Publication date
KR20150040807A (en) 2015-04-15
TWI594327B (en) 2017-08-01
WO2014008161A1 (en) 2014-01-09
TW201737344A (en) 2017-10-16
KR102018278B1 (en) 2019-09-05
KR20190108619A (en) 2019-09-24
CN109755135A (en) 2019-05-14
CN104781916A (en) 2015-07-15
TW201419419A (en) 2014-05-16
KR102146640B1 (en) 2020-08-21

Similar Documents

Publication Publication Date Title
US10593812B2 (en) Radical oxidation process for fabricating a nonvolatile charge trap memory device
US12009401B2 (en) Memory transistor with multiple charge storing layers and a high work function gate electrode
US11784243B2 (en) Oxide-nitride-oxide stack having multiple oxynitride layers
US20230074163A1 (en) Sonos ono stack scaling
CN111180525B (en) Oxide nitride oxide stack with multiple oxynitride layers
TWI709174B (en) Radical oxidation process for fabricating a nonvolatile charge trap memory device