TWI706924B - Optical glass and optical components - Google Patents

Optical glass and optical components Download PDF

Info

Publication number
TWI706924B
TWI706924B TW105107156A TW105107156A TWI706924B TW I706924 B TWI706924 B TW I706924B TW 105107156 A TW105107156 A TW 105107156A TW 105107156 A TW105107156 A TW 105107156A TW I706924 B TWI706924 B TW I706924B
Authority
TW
Taiwan
Prior art keywords
glass
content
addition
ratio
optical
Prior art date
Application number
TW105107156A
Other languages
Chinese (zh)
Other versions
TW201634416A (en
Inventor
武藤秀樹
藤原康裕
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57008627&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI706924(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW201634416A publication Critical patent/TW201634416A/en
Application granted granted Critical
Publication of TWI706924B publication Critical patent/TWI706924B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本發明提供一種光學玻璃,該光學玻璃能夠降低原材料費等生產成本、熔融性和熱穩定性優秀,而且具有低溫軟化性的高折射率低色散。本發明還提供一種由該光學玻璃構成的光學元件和光學玻璃材料。在該光學玻璃中,RE1相對於NWF1的比[RE1/NWF1]為0.35以上;HR1相對於RE1的比[HR1/RE1]為0.33以下;Nb2O5的含量相對於Nb2O5和Ta2O5的合計含量的質量比[Nb2O5/(Nb2O5+Ta2O5)]為2/3以上;RE1相對於D1的比[RE1/D1]為0.90以上;L1相對於NWF1和RE1的合計值的比[L1/(NWF1+RE1)]為0.78以上;阿貝數(νd)為39.0以上、45.0以下,該阿貝數(νd)與折射率(nd)滿足下述式(1):nd

Figure 105107156-A0101-11-0001-26
2.235-0.01×νd。 The present invention provides an optical glass, which can reduce production costs such as raw material costs, has excellent melting properties and thermal stability, and has low-temperature softening properties, high refractive index and low dispersion. The invention also provides an optical element and optical glass material composed of the optical glass. In this optical glass, the ratio of RE1 to NWF1 [RE1/NWF1] is 0.35 or more; the ratio of HR1 to RE1 [HR1/RE1] is 0.33 or less; the content of Nb 2 O 5 is relative to Nb 2 O 5 and Ta mass total content 2 O 5 ratio [Nb 2 O 5 / (Nb 2 O 5 + Ta 2 O 5)] is more than 2/3; REl ratio D1 with respect to the [RE1 / D1] is 0.90 or more; Ll relative The ratio [L1/(NWF1+RE1)] to the total value of NWF1 and RE1 is 0.78 or more; Abbe number (νd) is 39.0 or more and 45.0 or less, and the Abbe number (νd) and refractive index (nd) satisfy the following Formula (1): nd
Figure 105107156-A0101-11-0001-26
2.235-0.01×νd.

Description

光學玻璃及光學元件 Optical glass and optical components

本發明關於一種光學玻璃,可降低製造成本、熔融性和熱穩定性優秀的高折射率低色散。本發明還關於一種由該光學玻璃構成的光學元件。 The present invention relates to an optical glass, which can reduce manufacturing cost, has high melting property and thermal stability and has high refractive index and low dispersion. The invention also relates to an optical element composed of the optical glass.

通常,高折射率低色散的光學玻璃含有氧化硼和氧化鑭等稀土類氧化物。在這樣的光學玻璃中,為了在不減少阿貝數(Abbe number,νd)的情況下提高折射率,需要提高稀土類氧化物的含量。但是,當在這樣的光學玻璃中提高稀土類氧化物的含量時,玻璃的熱穩定性會下降,在製造玻璃的過程中玻璃會晶化,難以得到透明的玻璃(玻璃會失透(Devitrification))。因此,當在不減小阿貝數的情況下提高折射率時,製造光學玻璃將變得困難。 Generally, high refractive index and low dispersion optical glass contains rare earth oxides such as boron oxide and lanthanum oxide. In such an optical glass, in order to increase the refractive index without reducing the Abbe number (νd), it is necessary to increase the content of rare earth oxides. However, when the content of rare earth oxides in such optical glass is increased, the thermal stability of the glass will decrease, and the glass will crystallize during the glass manufacturing process, making it difficult to obtain transparent glass (glass devitrification (Devitrification) ). Therefore, when the refractive index is increased without reducing the Abbe number, it becomes difficult to manufacture optical glass.

另一方面,在光學系統的設計中,折射率高、阿貝數也大的光學玻璃在校正色像差、使光學系統高功能化、緊湊化方面的利用價值高。 On the other hand, in the design of an optical system, an optical glass with a high refractive index and a large Abbe number has a high utility value in correcting chromatic aberrations and making the optical system more functional and compact.

在具有高折射率低色散特性的玻璃中,適合於精密壓製成型的玻璃中大量地導入了具有使玻璃在低溫軟化的作用的鋅(Zn)或鋰(Li)。這樣的玻璃在專利文獻1~7中有所述。 Among glasses with high refractive index and low dispersion characteristics, a large amount of zinc (Zn) or lithium (Li), which has the effect of softening the glass at low temperature, is introduced into glass suitable for precision press molding. Such glass is described in Patent Documents 1-7.

高折射率低色散玻璃,特別是具有在光學特性圖 (也稱為阿貝圖表)中連接(阿貝數(νd)、折射率(nd))為A(45、1.785)和B(40、1.835)的2點的直線C上以及折射率(nd)比直線C高的範圍的光學特性的玻璃在光學設計上利用價值高。 High refractive index and low dispersion glass, especially with optical characteristics (Also known as Abbe diagram) on a straight line C connecting (Abbe number (νd), refractive index (nd)) two points A (45, 1.785) and B (40, 1.835) and the refractive index (nd ) Glass with optical properties in a range higher than the straight line C has high utility value in optical design.

另一方面,如專利文獻1、2、6所述的那樣,為了在維持熱穩定性的同時降低玻璃化轉變溫度(Tg),這種玻璃需要導入大量的氧化鉭。但是,氧化鉭稀少且價值高,不容易作為玻璃原料而得到穩定的供給。此外,氧化鉭的價格極高,成為使玻璃的價格上升的原因。 On the other hand, as described in Patent Documents 1, 2, and 6, in order to lower the glass transition temperature (Tg) while maintaining thermal stability, such glass needs to introduce a large amount of tantalum oxide. However, tantalum oxide is scarce and high in value, and it is not easy to obtain a stable supply as a glass raw material. In addition, the price of tantalum oxide is extremely high, which has caused the price of glass to rise.

另一方面,在專利文獻3~5、7中公開了削減了鉭(Ta)的含量的玻璃,但是其折射率比上述直線C低,不滿足光學設計方面的要求。 On the other hand, Patent Documents 3 to 5 and 7 disclose glass with a reduced content of tantalum (Ta), but its refractive index is lower than the above-mentioned straight line C, which does not meet the requirements of optical design.

此外,要求改善光學玻璃的熔融性。藉由改善玻璃的熔融性,從而對於透射率和澄清性能夠期待令人滿意的改善效果。具體如下。 In addition, it is required to improve the meltability of optical glass. By improving the meltability of the glass, a satisfactory improvement effect can be expected for transmittance and clarity. details as follows.

首先,說明改善熔融性對透射率的影響。 First, the effect of improving meltability on transmittance is explained.

通常,在熔融性差的玻璃的情況下,存在玻璃原料在玻璃中產生熔融殘留的問題。這樣的玻璃原料的熔融殘留會導致玻璃組成的改變、玻璃的均質性變差。因此,通常會提高熔融溫度、延長熔融時間來進行製造,使得不會產生玻璃原料的熔融殘留。 Generally, in the case of glass with poor melting properties, there is a problem that the glass raw material generates molten residue in the glass. The melting residue of such glass raw materials causes a change in the glass composition and deterioration of the homogeneity of the glass. Therefore, generally, the melting temperature is increased and the melting time is prolonged for production so that no melting residue of the glass raw material is generated.

但是,雖然提高熔融溫度、延長熔融時間可消除玻璃原料的熔融殘留的問題,但是會招致熔融容器劣化、生產成本增大這樣的新問題。特別是,熔融玻璃對熔融容器的侵蝕是個大問題。 However, increasing the melting temperature and prolonging the melting time can eliminate the problem of the melting residue of the glass raw material, but it will cause new problems such as deterioration of the melting vessel and increase in production costs. In particular, the erosion of molten glass on the molten container is a big problem.

通常,在熔融像光學玻璃那樣要求高均質性的玻璃時,作為熔融容器而廣泛使用鉑製坩堝等貴金屬制坩堝。與由其它材料構成的坩堝相比,貴金屬製的坩堝不易受到熔融玻璃的侵蝕。但是,如上所述,在將熔融性差的玻璃進行熔融的情況下,高溫的熔融玻璃與坩堝長時間接觸,因此即使是貴金屬製的坩堝也會受到熔融玻璃的侵蝕。 Generally, when melting glass that requires high homogeneity like optical glass, a crucible made of precious metals such as a platinum crucible is widely used as a melting vessel. Compared with crucibles made of other materials, crucibles made of precious metals are less susceptible to corrosion by molten glass. However, as described above, when the glass with poor melting properties is melted, the high-temperature molten glass is in contact with the crucible for a long time, so even the crucible made of noble metal is corroded by the molten glass.

例如,在鉑製坩堝的情況下,有時會由於熔融玻璃的侵蝕而使構成坩堝的鉑作為固體而混入到熔融玻璃中。這樣的固體在玻璃中會成為雜質而成為光的散射源。此外,當坩堝被輕微地侵蝕而使鉑作為離子溶入到熔融玻璃時,由於溶入到玻璃中的鉑離子的光吸收,作為產品的光學玻璃的著色會增強、可見光區域的透射率會降低。 For example, in the case of a platinum crucible, the platinum constituting the crucible may be mixed into the molten glass as a solid due to erosion of the molten glass. Such solids become impurities in glass and become light scattering sources. In addition, when the crucible is slightly corroded and platinum is dissolved as ions into the molten glass, the light absorption of the platinum ions dissolved in the glass increases the coloration of the product optical glass and reduces the transmittance in the visible light region. .

另一方面,如果是熔融性優秀的玻璃,則不易產生玻璃原料的熔融殘留的問題。因此,不需要提高熔融溫度、延長熔融時間,能夠抑制熔融玻璃對熔融容器的侵蝕。進而,還能抑制熔融溫度的高溫化、熔融時間的延長導致的玻璃的透射率的降低。 On the other hand, if it is a glass with excellent meltability, the problem of the melting residue of the glass raw material is unlikely to occur. Therefore, it is not necessary to increase the melting temperature and extend the melting time, and it is possible to suppress the erosion of the molten glass to the melting vessel. Furthermore, it is also possible to suppress the decrease in the transmittance of the glass due to the increase in the melting temperature and the extension of the melting time.

即,藉由改善熔融性,從而能夠改善玻璃的均質性並且抑制可見光區域的透射率降低。 That is, by improving the meltability, it is possible to improve the homogeneity of the glass and suppress a decrease in the transmittance in the visible light region.

接著,說明改善熔融性對澄清性的影響。 Next, the effect of improving meltability on clarity is explained.

通常,在將批料原料(調配了複數種化合物的原料)粗熔解(rough melt)而製作碎玻璃原料、將碎玻璃原料再熔融(remelt)而製造光學玻璃的方法(粗熔解-再熔融方式)中,在改善再熔融的熔融玻璃的消泡(即,改善澄清性(脫泡性))時,較 佳碎玻璃中包含的氣體成分大量溶解在澄清前的熔融玻璃中,即,較佳提高澄清前的熔融玻璃中的氣體成分的溶解量。 Generally, a method of rough melting batch raw materials (raw materials prepared with multiple compounds) to produce cullet raw materials, and remelting the cullet raw materials to produce optical glass (rough melting-remelting method) ), when improving the defoaming of the remelted molten glass (that is, improving the clarity (defoaming)), it is more A large amount of gas components contained in the cullet are dissolved in the molten glass before clarification, that is, it is preferable to increase the amount of dissolved gas components in the molten glass before clarification.

在此,氣體成分例如是批料原料所包含的硼酸、碳酸鹽、硝酸鹽、硫酸鹽、氫氧化物等被加熱、分解而產生的水蒸氣、COx、NOx及SOx等氣體。 Here, the gas components are, for example, gases such as water vapor, CO x , NO x, and SO x generated by heating and decomposing boric acid, carbonate, nitrate, sulfate, hydroxide, etc. contained in the batch material.

如上所述,在製造熔融性差的玻璃時,需要提高熔融溫度、延長熔融時間來進行製造,使得不會產生玻璃原料的熔融殘留。特別是,在高溫下容易從批料原料的熔融物釋放出來自原料的氣體,如果粗熔解的時間再變長,碎玻璃中就不會留下足夠的氣體成分。 As described above, when manufacturing a glass with poor melting properties, it is necessary to increase the melting temperature and prolong the melting time for manufacturing so that no melting residue of the glass raw material occurs. In particular, it is easy to release gas from the raw materials from the melt of the batch raw materials at high temperatures. If the coarse melting time becomes longer, sufficient gas components will not remain in the cullet.

通常,藉由將碎玻璃再熔融,從而殘存在碎玻璃中的氣體成分會在熔融玻璃中成為氣泡,與微小的氣泡一起形成大的氣泡。關於熔融玻璃中的氣泡,相比微小的氣泡,大的氣泡在熔融玻璃中上浮的速度更快,可迅速到達熔融玻璃的液面,排出到熔融玻璃外。因此,能夠在短時間內進行熔融玻璃的澄清。但是,在像上述那樣熔融性差的玻璃的情況下,碎玻璃中沒有殘存足夠量的氣體成分,因此難以使微小的氣泡生長為大的氣泡,微小的氣泡難以排出到熔融玻璃外。因此,不能進行充分的澄清,導致在作為產品的光學玻璃中殘留有微小的氣泡的問題。 Generally, by remelting the cullet, the gas components remaining in the cullet become bubbles in the molten glass, forming large bubbles together with the minute bubbles. Regarding the bubbles in the molten glass, the large bubbles rise faster in the molten glass than the minute bubbles, and can quickly reach the liquid level of the molten glass and be discharged out of the molten glass. Therefore, clarification of molten glass can be performed in a short time. However, in the case of a glass with poor melting properties as described above, a sufficient amount of gas components does not remain in the cullet, so it is difficult to grow fine bubbles into large bubbles, and it is difficult for the fine bubbles to be discharged out of the molten glass. Therefore, sufficient clarification cannot be performed, which leads to a problem that minute bubbles remain in the optical glass as the product.

另一方面,在熔融性優秀的玻璃的粗熔解中,能夠以較低溫度熔融批料原料。因此,能夠以熔融物中溶入了大量氣體成分的狀態製作碎玻璃。其結果是,只要使用這樣的碎玻璃,就能夠在較短時間內澄清熔融玻璃。 On the other hand, in the rough melting of glass with excellent meltability, batch raw materials can be melted at a relatively low temperature. Therefore, glass cullet can be produced in a state where a large amount of gas components are dissolved in the melt. As a result, as long as such cullet is used, molten glass can be clarified in a short time.

即,藉由改善熔融性,從而能夠改善玻璃的澄清性,能夠增加每單位時間的玻璃的生產量。 That is, by improving the meltability, the clarity of the glass can be improved, and the production volume of the glass per unit time can be increased.

如上所述,藉由改善熔融性,從而不僅能夠改善玻璃的透射率,還能夠改善澄清性。此外,藉由改善熔融性,從而能夠降低玻璃的熔融所消耗的能量,還能夠縮短熔融時間,因此還能夠期待生產成本降低、生產率提高。像這樣,可以說改善熔融性是非常有益的。 As described above, by improving the meltability, it is possible to improve not only the transmittance of the glass, but also the clarity. In addition, by improving the meltability, the energy consumed for melting of the glass can be reduced, and the melting time can also be shortened. Therefore, reduction in production cost and improvement in productivity can also be expected. In this way, it can be said that improving the meltability is very beneficial.

[先前技術文獻] [Prior Technical Literature] [專利文獻] [Patent Literature]

專利文獻1:美國專利第7897533號。 Patent Document 1: US Patent No. 7,897,533.

專利文獻2:日本特開2003-201142。 Patent Document 2: JP 2003-201142.

專利文獻3:日本特開2002-012443。 Patent Document 3: Japanese Patent Application Publication No. 2002-012443.

專利文獻4:日本特表2009-537427。 Patent Document 4: Japanese Special Publication 2009-537427.

專利文獻5:日本特開2003-201142。 Patent Document 5: JP 2003-201142.

專利文獻6:日本特開2009-203083。 Patent Document 6: Japanese Patent Application Publication No. 2009-203083.

專利文獻7:日本特表2009-537427。 Patent Document 7: Japanese Special Publication 2009-537427.

本發明是鑒於這樣的實際情況而完成的,其一目的在於提供一種光學玻璃,該光學玻璃能夠降低原材料費等生產成本、熔融性和熱穩定性優秀,並且具有低溫軟化性的高折射率低色散。本發明的目的還在於提供一種由該光學玻璃構成的光學元件及光學玻璃材料。 The present invention has been completed in view of such actual conditions, and its one object is to provide an optical glass that can reduce production costs such as raw material costs, has excellent melting properties and thermal stability, and has low-temperature softness, high refractive index, and low refractive index. Dispersion. The object of the present invention is also to provide an optical element and an optical glass material composed of the optical glass.

本發明人為了達到上述目的而進行了反復深入研究,結果發現,藉由降低作為比較昂貴的材料的氧化鉭的使用量並且調整構成玻璃的各種玻璃構成成分(以下,稱為玻璃成分)的含有比例的平衡可達到該目的,並基於該認識完成了本發明。 In order to achieve the above-mentioned object, the inventors have conducted intensive studies and found that by reducing the amount of tantalum oxide used as a relatively expensive material, and adjusting the content of various glass components (hereinafter referred to as glass components) constituting the glass The balance of proportions can achieve this objective, and the present invention has been completed based on this knowledge.

即,本發明的要點如下。 That is, the gist of the present invention is as follows.

(1)一種光學玻璃,在該光學玻璃中,RE1相對於NWF1的比[RE1/NWF1]為0.35以上;HR1相對於RE1的比[HR1/RE1]為0.33以下;Nb2O5的含量相對於Nb2O5和Ta2O5的合計含量的質量比[Nb2O5/(Nb2O5+Ta2O5)]為2/3以上;RE1相對於D1的比[RE1/D1]為0.90以上;L1相對於NWF1和RE1的合計值的比[L1/(NWF1+RE1)]為0.78以上;阿貝數(νd)為39.0以上、45.0以下,該阿貝數(νd)與折射率(nd)滿足下述式(1):nd

Figure 105107156-A0101-12-0006-27
2.235-0.01×νd (1) An optical glass in which the ratio of RE1 to NWF1 [RE1/NWF1] is 0.35 or more; the ratio of HR1 to RE1 [HR1/RE1] is 0.33 or less; the content of Nb 2 O 5 is relatively The mass ratio [Nb 2 O 5 /(Nb 2 O 5 +Ta 2 O 5 )] to the total content of Nb 2 O 5 and Ta 2 O 5 is 2/3 or more; the ratio of RE1 to D1 [RE1/D1 ] Is 0.90 or more; the ratio of L1 to the total value of NWF1 and RE1 [L1/(NWF1+RE1)] is 0.78 or more; Abbe number (νd) is 39.0 or more and 45.0 or less, and the Abbe number (νd) is equal to The refractive index (nd) satisfies the following formula (1): nd
Figure 105107156-A0101-12-0006-27
2.235-0.01×νd

式中:當將M(B2O3)、M(SiO2)、M(Al2O3)、M(La2O3)、M(Gd2O3)、M(Y2O3)、M(Yb2O3)、M(LaF3)、M(GdF3)、M(YF3)、M(YbF3)、M(ZnO)、M(Li2O)、M(Na2O)、M(K2O)、M(ZrO2)、M(Nb2O5)、M(TiO2)、M(WO3)、M(Ta2O5)、M(Bi2O3)、M(MgO)、M(CaO)、M(SrO)、M(BaO)分別設為B2O3、SiO2、Al2O3、La2O3、Gd2O3、Y2O3、Yb2O3、LaF3、GdF3、YF3、YbF3、ZnO、Li2O、Na2O、K2O、ZrO2、Nb2O5、TiO2、WO3、Ta2O5、Bi2O3、MgO、CaO、SrO、BaO的分子量時:NWF1=[2×B2O3/M(B2O3)]+[SiO2/M(SiO2)]+[2×Al2O3/M(Al2O3)];RE1=[2 ×La2O3/M(La2O3)]+[2×Gd2O3/M(Gd2O3)]+[2×Y2O3/M(Y2O3)]+[2×Yb2O3/M(Yb2O3)]+[LaF3/M(LaF3)]+[GdF3/M(GdF3)]+[YF3/M(YF3)]+[YbF3/M(YbF3)];HR1=[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[WO3/M(WO3)]+[2×Bi2O3/M(Bi2O3)];D1={[2×Li2O/M(Li2O)]+[2×Na2O/M(Na2O)]+[2×K2O/M(K2O)]}×3+[ZnO/M(ZnO)];L1=[20×Li2O/M(Li2O)]+[16×Na2O/M(Na2O)]+[8×K2O/M(K2O)]+[4×ZnO/M(ZnO)]+[MgO/M(MgO)]+[2×CaO/M(CaO)]+[2×SrO/M(SrO)]+[2×BaO/M(BaO)]+[2×B2O3/M(B2O3)]+[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[4×WO3/M(WO3)]+[8×Bi2O3/M(Bi2O3)]+[2×Ta2O5/M(Ta2O5)]-[2×SiO2/M(SiO2)]-[2×Al2O3/M(Al2O3)]-[2×ZrO2/M(ZrO2)]-[2×La2O3/M(La2O3)]-[2×Gd2O3/M(Gd2O3)]-[2×Y2O3/M(Y2O3)]-[2×Yb2O3/M(Yb2O3)]-[LaF3/M(LaF3)]-[GdF3/M(GdF3)]-[YF3/M(YF3)]-[YbF3/M(YbF3)];上述各玻璃成分的含量為以質量%表示的值。 In the formula: when M(B 2 O 3 ), M(SiO 2 ), M(Al 2 O 3 ), M(La 2 O 3 ), M(Gd 2 O 3 ), M(Y 2 O 3 ) , M(Yb 2 O 3 ), M(LaF 3 ), M(GdF 3 ), M(YF 3 ), M(YbF 3 ), M(ZnO), M(Li 2 O), M(Na 2 O ), M(K 2 O), M(ZrO 2 ), M(Nb 2 O 5 ), M(TiO 2 ), M(WO 3 ), M(Ta 2 O 5 ), M(Bi 2 O 3 ) , M(MgO), M(CaO), M(SrO), M(BaO) are set to B 2 O 3 , SiO 2 , Al 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 , LaF 3 , GdF 3 , YF 3 , YbF 3 , ZnO, Li 2 O, Na 2 O, K 2 O, ZrO 2 , Nb 2 O 5 , TiO 2 , WO 3 , Ta 2 O 5 , Bi 2 O 3 , MgO, CaO, SrO, BaO molecular weight: NWF1=[2×B 2 O 3 /M(B 2 O 3 )]+[SiO 2 /M(SiO 2 )]+[2× Al 2 O 3 /M(Al 2 O 3 )]; RE1=[2 ×La 2 O 3 /M(La 2 O 3 )]+[2×Gd 2 O 3 /M(Gd 2 O 3 )]+ [2×Y 2 O 3 /M(Y 2 O 3 )]+[2×Yb 2 O 3 /M(Yb 2 O 3 )]+[LaF 3 /M(LaF 3 )]+[GdF 3 /M (GdF 3 )]+[YF 3 /M(YF 3 )]+[YbF 3 /M(YbF 3 )]; HR1=[2×Nb 2 O 5 /M(Nb 2 O 5 )]+[TiO 2 /M(TiO 2 )]+[WO 3 /M(WO 3 )]+[2×Bi 2 O 3 /M(Bi 2 O 3 )]; D1={[2×Li 2 O/M(Li 2 O)]+[2×Na 2 O/M(Na 2 O)]+[2×K 2 O/M(K 2 O)]}×3+[ZnO/M(ZnO)]; L1=[20 ×Li 2 O/M(Li 2 O)]+[16×Na 2 O/M(Na 2 O)]+[8×K 2 O/M(K 2 O)]+[4×ZnO/M( ZnO)]+[MgO/M(MgO)]+[2×CaO/M(CaO)]+[2× SrO/M(SrO)]+[2×BaO/M(BaO)]+[2×B 2 O 3 /M(B 2 O 3 )]+[2×Nb 2 O 5 /M(Nb 2 O 5 )]+[TiO 2 /M(TiO 2 )]+[4×WO 3 /M(WO 3 )]+[8×Bi 2 O 3 /M(Bi 2 O 3 )]+[2×Ta 2 O 5 /M(Ta 2 O 5 )]-[2×SiO 2 /M(SiO 2 )]-[2×Al 2 O 3 /M(Al 2 O 3 )]-[2×ZrO 2 /M(ZrO 2 )]-[2×La 2 O 3 /M(La 2 O 3 )]-[2×Gd 2 O 3 /M(Gd 2 O 3 )]-[2×Y 2 O 3 /M(Y 2 O 3 )]-[2×Yb 2 O 3 /M(Yb 2 O 3 )]-[LaF 3 /M(LaF 3 )]-[GdF 3 /M(GdF 3 )]-[YF 3 /M( YF 3 )]-[YbF 3 /M(YbF 3 )]; The content of each glass component mentioned above is a value expressed in mass %.

(2)一種光學玻璃,該光學玻璃是氧化物玻璃,在該光學玻璃中,RE2相對於NWF2的比[RE2/NWF2]為0.35以上;HR2相對於RE2的比[HR2/RE2]為0.33以下;Nb5+的含量相對於Nb5+和Ta5+的合計含量的陽離子比[Nb5+/(Nb5++Ta5+)]為3/4以上;RE2相對於D2的比[RE2/D2]為0.90以上;L2相對於NWF2和RE2的合計值的比[L2/(NWF2+RE2)]為0.78以上;阿貝數(νd)為39.0以上、45.0以下,該阿貝數(νd)與折射率(nd)滿足下述式(1):nd

Figure 105107156-A0101-12-0007-28
2.235-0.01×νd (2) An optical glass, the optical glass is oxide glass, in the optical glass, the ratio of RE2 to NWF2 [RE2/NWF2] is 0.35 or more; the ratio of HR2 to RE2 [HR2/RE2] is 0.33 or less ; with respect to the content of Nb 5+ and Ta cationic Nb 5+ 5+ total content ratio [Nb 5+ / (Nb 5+ + Ta 5+)] is 3/4 or more; RE2, with respect to the ratio of D2 [RE2, /D2] is 0.90 or more; the ratio of L2 to the total value of NWF2 and RE2 [L2/(NWF2+RE2)] is 0.78 or more; Abbe number (νd) is 39.0 or more and 45.0 or less, and the Abbe number (νd ) And refractive index (nd) satisfy the following formula (1): nd
Figure 105107156-A0101-12-0007-28
2.235-0.01×νd

式中:NWF2為B3+、Si4+及Al3+的合計含量;RE2為La3+、Gd3+、Y3+及Yb3+的合計含量;HR2為Nb5+、Ti4+、 W6+及Bi3+的合計含量;D2=(Li++Na++K+)×6+Zn2+;L2=(10×Li+)+(8×Na+)+(4×K+)+(4×Zn+)+Mg2++(2×Ca2+)+(2×Sr2+)+(2×Ba2+)+B3++Nb5++Ti4++(4×W6+)+(4×Bi3+)+Ta5+-(2×Si4+)-Al3+-(2×Zr4+)-La3+-Gd3+-Y3+-Yb3+;上述各玻璃成分的含量為以陽離子%表示的值。 Where: NWF2 is the total content of B 3+ , Si 4+ and Al 3+ ; RE2 is the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ ; HR2 is Nb 5+ , Ti 4+ , W 6+ and Bi 3+ total content; D2=(Li + +Na + +K + )×6+Zn 2+ ; L2=(10×Li + )+(8×Na + )+(4× K + )+(4×Zn + )+Mg 2+ +(2×Ca 2+ )+(2×Sr 2+ )+(2×Ba 2+ )+B 3+ +Nb 5+ +Ti 4+ +(4×W 6+ )+(4×Bi 3+ )+Ta 5+ -(2×Si 4+ )-Al 3+ -(2×Zr 4+ )-La 3+ -Gd 3+ -Y 3+ -Yb 3+ ; The content of each glass component mentioned above is a value expressed in cation %.

(3)一種精密壓製成型用預製件,由上述(1)或(2)所述的光學玻璃構成。 (3) A preform for precision press molding, which is composed of the optical glass described in (1) or (2) above.

(4)一種光學元件,由上述(1)或(2)所述的光學玻璃構成。 (4) An optical element composed of the optical glass described in (1) or (2) above.

根據本發明,能夠提供可降低生產成本、熔融性和熱穩定性優秀,並且具有低溫軟化性的高折射率低色散的光學玻璃及使用該光學玻璃的光學元件。 According to the present invention, it is possible to provide an optical glass with high refractive index and low dispersion that can reduce production costs, is excellent in meltability and thermal stability, and has low-temperature softening properties, and an optical element using the optical glass.

圖1是對公知的玻璃將橫軸設為L1相對於NWF1和RE1的合計值的比[L1/(NWF1+RE1)]及將縱軸設為玻璃化轉變溫度(Tg)而繪製的圖。 Fig. 1 is a graph drawn with the horizontal axis as the ratio [L1/(NWF1+RE1)] of L1 to the total value of NWF1 and RE1 and the vertical axis as the glass transition temperature (Tg) for known glass.

圖2是對公知的玻璃將橫軸設為L2相對於NWF2和RE2的合計值的比[L2/(NWF2+RE2)]及將縱軸設為玻璃化轉變溫度(Tg)而繪製的圖。 Fig. 2 is a graph in which the horizontal axis is the ratio [L2/(NWF2+RE2)] of L2 to the total value of NWF2 and RE2 and the vertical axis is the glass transition temperature (Tg) of known glass.

以下,對用於實施本發明的形態(以下簡稱為“實施形態”)進行詳細說明。以下的本實施形態是用於說明本發明的 例示,其宗旨不是將本發明限定為以下的內容。本發明能夠在其要點的範圍內適當地變形而實施。進而,對於說明重複的部分有時會適當地省略說明,但其並不限定發明的宗旨。另外,在本說明書中,“光學玻璃”是包含複數種玻璃構成成分(玻璃成分)的玻璃組合物,用作與形狀(塊狀、板狀、球狀等)、用途(光學元件用材料、光學元件等)、大小無關的統稱。即,對光學玻璃的形狀、用途、大小沒有限制,任何形狀的光學玻璃、任何用途的光學玻璃、以及任何大小的光學玻璃均屬於本發明的光學玻璃。此外,在本說明書中,有時將光學玻璃簡稱為“玻璃”。 Hereinafter, a mode for implementing the present invention (hereinafter simply referred to as "embodiment") will be described in detail. The following embodiment is used to illustrate the present invention Illustratively, the purpose is not to limit the present invention to the following. The present invention can be suitably modified and implemented within the scope of its gist. Furthermore, the description of overlapping descriptions may be omitted as appropriate, but this does not limit the spirit of the invention. In addition, in this specification, "optical glass" refers to a glass composition containing a plurality of glass constituents (glass components), and is used for shapes (blocks, plates, spheres, etc.), applications (materials for optical elements, Optical components, etc.), a collective term that has nothing to do with size. That is, there are no restrictions on the shape, use, and size of optical glass, and optical glass of any shape, optical glass of any purpose, and optical glass of any size belong to the optical glass of the present invention. In addition, in this specification, optical glass may be simply referred to as "glass".

此外,在本說明書中,有時使用(數值1)以“(數值1)以下”的方式來表示數值範圍。這樣表示的範圍是小於(數值1)的數值範圍加上(數值1)的數值範圍。以“不足(數值1)”表示的數值範圍是小於(數值1)的數值範圍,不包含(數值1)。有時使用(數值2)以“(數值2)以上”的方式來表示數值範圍。這樣表示的範圍是大於(數值2)的數值範圍加上(數值2)的數值範圍。有時以“超過(數值2)”的方式來表示數值範圍。這樣表示的範圍是大於(數值2)大的數值範圍,不包含(數值2)。 In addition, in this specification, (numerical value 1) may be used to express a numerical range as "(numerical value 1) or less". The range represented in this way is the numerical range smaller than (numerical value 1) plus the numerical range of (numerical value 1). The numerical range indicated by "less than (numerical value 1)" is a numerical range smaller than (numerical value 1), and does not include (numerical value 1). Sometimes (numerical value 2) is used to express the numerical range as "(numerical value 2) or more". The range indicated in this way is the numerical range greater than (numerical value 2) plus the numerical range of (numerical value 2). Sometimes the numerical range is expressed as "exceeding (numerical value 2)". The range indicated in this way is a numerical range larger than (numerical value 2) and does not include (numerical value 2).

首先,作為第1實施形態對以質量%表示的玻璃組成進行說明,接著作為第2實施形態對以陽離子%表示的玻璃組成進行說明。 First, the glass composition expressed in mass% will be explained as the first embodiment, and the glass composition expressed in cation% will be explained as the second embodiment.

第1實施形態 The first embodiment

(以質量%表示的組成) (Composition expressed in mass%)

以下,以氧化物為基準的形式來表示玻璃組成。 Hereinafter, the glass composition is expressed on the basis of oxides.

本發明的第1實施形態的光學玻璃為如下的光學玻璃,在該光學玻璃中,RE1相對於NWF1的比[RE1/NWF1]為0.35以上;HR1相對於RE1的比[HR1/RE1]為0.33以下;Nb2O5的含量相對於Nb2O5和Ta2O5的合計含量的質量比[Nb2O5/(Nb2O5+Ta2O5)]為2/3以上;RE1相對於D1的比[RE1/D1]為0.90以上;L1相對於NWF1和RE1的合計值的比[L1/(NWF1+RE1)]為0.78以上;阿貝數(νd)為39.0以上、45.0以下,該阿貝數(νd)與折射率(nd)滿足下述式(1):nd

Figure 105107156-A0101-12-0010-29
2.235-0.01×νd The optical glass of the first embodiment of the present invention is an optical glass in which the ratio of RE1 to NWF1 [RE1/NWF1] is 0.35 or more; the ratio of HR1 to RE1 [HR1/RE1] is 0.33 or less; the content of Nb 2 O 5 with respect to the mass of Nb 2 O 5 and the total content of Ta 2 O 5 ratio [Nb 2 O 5 / (Nb 2 O 5 + Ta 2 O 5)] is more than 2/3; REl The ratio [RE1/D1] to D1 is 0.90 or more; the ratio of L1 to the total value of NWF1 and RE1 [L1/(NWF1+RE1)] is 0.78 or more; Abbe number (νd) is 39.0 or more and 45.0 or less , The Abbe number (νd) and refractive index (nd) satisfy the following formula (1): nd
Figure 105107156-A0101-12-0010-29
2.235-0.01×νd

式中:當將M(B2O3)、M(SiO2)、M(Al2O3)、M(La2O3)、M(Gd2O3)、M(Y2O3)、M(Yb2O3)、M(LaF3)、M(GdF3)、M(YF3)、M(YbF3)、M(ZnO)、M(Li2O)、M(Na2O)、M(K2O)、M(ZrO2)、M(Nb2O5)、M(TiO2)、M(WO3)、M(Ta2O5)、M(Bi2O3)、M(MgO)、M(CaO)、M(SrO)、M(BaO)分別設為B2O3、SiO2、Al2O3、La2O3、Gd2O3、Y2O3、Yb2O3、LaF3、GdF3、YF3、YbF3、ZnO、Li2O、Na2O、K2O、ZrO2、Nb2O5、TiO2、WO3、Ta2O5、Bi2O3、MgO、CaO、SrO、BaO的分子量時:NWF1=[2×B2O3/M(B2O3)]+[SiO2/M(SiO2)]+[2×Al2O3/M(Al2O3)];RE1=[2×La2O3/M(La2O3)]+[2×Gd2O3/M(Gd2O3)]+[2×Y2O3/M(Y2O3)]+[2×Yb2O3/M(Yb2O3)]+[LaF3/M(LaF3)]+[GdF3/M(GdF3)]+[YF3/M(YF3)]+[YbF3/M(YbF3)];HR1=[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[WO3/M(WO3)]+[2×Bi2O3/M(Bi2O3)];D1={[2×Li2O/M(Li2O)]+[2×Na2O/M(Na2O)]+[2×K2O/M(K2O)]}×3+[ZnO/M(ZnO)];L1=[20×Li2O/M(Li2O)]+[16×Na2O/M(Na2O)]+[8×K2O/M (K2O)]+[4×ZnO/M(ZnO)]+[MgO/M(MgO)]+[2×CaO/M(CaO)]+[2×SrO/M(SrO)]+[2×BaO/M(BaO)]+[2×B2O3/M(B2O3)]+[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[4×WO3/M(WO3)]+[8×Bi2O3/M(Bi2O3)]+[2×Ta2O5/M(Ta2O5)]-[2×SiO2/M(SiO2)]-[2×Al2O3/M(Al2O3)]-[2×ZrO2/M(ZrO2)]-[2×La2O3/M(La2O3)]-[2×Gd2O3/M(Gd2O3)]-[2×Y2O3/M(Y2O3)]-[2×Yb2O3/M(Yb2O3)]-[LaF3/M(LaF3)]-[GdF3/M(GdF3)]-[YF3/M(YF3)]-[YbF3/M(YbF3)];上述各玻璃成分的含量是以質量%表示的值。 In the formula: when M(B 2 O 3 ), M(SiO 2 ), M(Al 2 O 3 ), M(La 2 O 3 ), M(Gd 2 O 3 ), M(Y 2 O 3 ) , M(Yb 2 O 3 ), M(LaF 3 ), M(GdF 3 ), M(YF 3 ), M(YbF 3 ), M(ZnO), M(Li 2 O), M(Na 2 O ), M(K 2 O), M(ZrO 2 ), M(Nb 2 O 5 ), M(TiO 2 ), M(WO 3 ), M(Ta 2 O 5 ), M(Bi 2 O 3 ) , M(MgO), M(CaO), M(SrO), M(BaO) are set to B 2 O 3 , SiO 2 , Al 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 , LaF 3 , GdF 3 , YF 3 , YbF 3 , ZnO, Li 2 O, Na 2 O, K 2 O, ZrO 2 , Nb 2 O 5 , TiO 2 , WO 3 , Ta 2 O 5 , Bi 2 O 3 , MgO, CaO, SrO, BaO molecular weight: NWF1=[2×B 2 O 3 /M(B 2 O 3 )]+[SiO 2 /M(SiO 2 )]+[2× Al 2 O 3 /M(Al 2 O 3 )]; RE1=[2×La 2 O 3 /M(La 2 O 3 )]+[2×Gd 2 O 3 /M(Gd 2 O 3 )]+ [2×Y 2 O 3 /M(Y 2 O 3 )]+[2×Yb 2 O 3 /M(Yb 2 O 3 )]+[LaF 3 /M(LaF 3 )]+[GdF 3 /M (GdF 3 )]+[YF 3 /M(YF 3 )]+[YbF 3 /M(YbF 3 )]; HR1=[2×Nb 2 O 5 /M(Nb 2 O 5 )]+[TiO 2 /M(TiO 2 )]+[WO 3 /M(WO 3 )]+[2×Bi 2 O 3 /M(Bi 2 O 3 )]; D1={[2×Li 2 O/M(Li 2 O)]+[2×Na 2 O/M(Na 2 O)]+[2×K 2 O/M(K 2 O)]}×3+[ZnO/M(ZnO)]; L1=[20 ×Li 2 O/M(Li 2 O)]+[16×Na 2 O/M(Na 2 O)]+[8×K 2 O/M (K 2 O)]+[4×ZnO/M( ZnO)]+[MgO/M(MgO)]+[2×CaO/M(CaO)]+[2× SrO/M(SrO)]+[2×BaO/M(BaO)]+[2×B 2 O 3 /M(B 2 O 3 )]+[2×Nb 2 O 5 /M(Nb 2 O 5 )]+[TiO 2 /M(TiO 2 )]+[4×WO 3 /M(WO 3 )]+[8×Bi 2 O 3 /M(Bi 2 O 3 )]+[2×Ta 2 O 5 /M(Ta 2 O 5 )]-[2×SiO 2 /M(SiO 2 )]-[2×Al 2 O 3 /M(Al 2 O 3 )]-[2×ZrO 2 /M(ZrO 2 )]-[2×La 2 O 3 /M(La 2 O 3 )]-[2×Gd 2 O 3 /M(Gd 2 O 3 )]-[2×Y 2 O 3 /M(Y 2 O 3 )]-[2×Yb 2 O 3 /M(Yb 2 O 3 )]-[LaF 3 /M(LaF 3 )]-[GdF 3 /M(GdF 3 )]-[YF 3 /M( YF 3 )]-[YbF 3 /M(YbF 3 )]; the content of each of the above-mentioned glass components is a value expressed in mass %.

另外,在上述式中,表示為三氧化二硼(B2O3)、二氧化矽(SiO2)、三氧化二鋁(Al2O3)、三氧化二鑭(La2O3)、三氧化二釓(Gd2O3)、三氧化二釔(Y2O3)、三氧化二鐿(Yb2O3)、五氧化二鈮(Nb2O5)、二氧化鈦(TiO2)、氧化鎢(WO3)、三氧化二鉍(Bi2O3)、氧化鋰(Li2O)、氧化鈉(Na2O)、氧化鉀(K2O)、氧化鋅(ZnO)、氧化鎂(MgO)、氧化鈣(CaO)、氧化鍶(SrO)、氧化鋇(BaO)、五氧化二鉭(Ta2O5)、二氧化鋯(ZrO2)、氟化鑭(LaF3)、氟化釓(GdF3)、三氟化釔(YF3)及三氟化鐿(YbF3)的各玻璃成分的含量為以質量%表示的各玻璃成分的含有比例。不對NWF1、RE1、HR1、L1、D1附加質量%或%等表示百分率的符號,僅用數值來表示。在以下的記載中也一樣。 In addition, in the above formula, it is expressed as diboron trioxide (B 2 O 3 ), silicon dioxide (SiO 2 ), aluminum trioxide (Al 2 O 3 ), lanthanum trioxide (La 2 O 3 ), Gd 2 O 3 , Y 2 O 3 , Ytterbium trioxide (Yb 2 O 3 ), Niobium pentoxide (Nb 2 O 5 ), Titanium dioxide (TiO 2 ), Tungsten oxide (WO 3 ), bismuth trioxide (Bi 2 O 3 ), lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide (K 2 O), zinc oxide (ZnO), magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), barium oxide (BaO), tantalum pentoxide (Ta 2 O 5 ), zirconium dioxide (ZrO 2 ), lanthanum fluoride (LaF 3 ), fluorine The content of each glass component of cerium sulfide (GdF 3 ), yttrium trifluoride (YF 3 ), and ytterbium trifluoride (YbF 3 ) is the content ratio of each glass component expressed in mass %. NWF1, RE1, HR1, L1, D1, etc. are not added with symbols that indicate percentages such as mass% or %, and are only represented by numerical values. The same is true in the following description.

在本實施形態中,基於以質量%表示的各玻璃成分的含量對本發明的光學玻璃進行說明。因此,以下只要沒有特別說明,各含量就以質量%來表示。 In this embodiment, the optical glass of this invention is demonstrated based on the content of each glass component expressed by mass %. Therefore, unless otherwise specified below, each content is expressed by mass %.

另外,在本說明書中,以質量%表示是指,對於以氧化物、氟化物表示的各玻璃成分,用質量百分率來表示將全 部玻璃成分的合計含量設為100質量%時的各玻璃成分的含量。 In addition, in this specification, expressing by mass% means that for each glass component expressed in oxides and fluorides, the total The total content of the partial glass components is the content of each glass component at 100% by mass.

像後面說明的那樣,有時在玻璃中添加少量三氧化二銻(Sb2O3)、二氧化錫(SnO2)、二氧化鈰(CeO2)作為澄清劑。但是,在本說明書中以質量%表示時,全部玻璃成分的合計含量中不包括Sb2O3、SnO2及CeO2的含量。即,玻璃成分中的Sb2O3、SnO2、CeO2的以質量%表示的各含量表示為,將Sb2O3、SnO2及CeO2以外的全部玻璃成分的合計含量設為100質量%的情況下的Sb2O3、SnO2、CeO2的各含量。在本說明書中將這樣的表示稱為外加。 As described later, a small amount of antimony trioxide (Sb 2 O 3 ), tin dioxide (SnO 2 ), and ceria (CeO 2 ) may be added as a fining agent to the glass. However, when expressed by mass% in this specification, the total content of all glass components does not include the content of Sb 2 O 3 , SnO 2, and CeO 2 . That is, the contents of Sb 2 O 3 , SnO 2 , and CeO 2 in the glass components expressed in mass% are expressed as the total content of all glass components other than Sb 2 O 3 , SnO 2 and CeO 2 as 100 mass The contents of Sb 2 O 3 , SnO 2 , and CeO 2 in the case of %. In this specification, such an expression is called an addition.

此外,合計含量是指複數種玻璃成分的含量(也包括含量為0%的情況)的合計量。此外,質量比是指以質量%表示的玻璃成分的含量(也包括複數種成分的合計含量)彼此的比例(比)。 In addition, the total content refers to the total amount of the content of a plurality of glass components (including the case where the content is 0%). In addition, the mass ratio refers to the ratio (ratio) of the contents of the glass components (including the total contents of a plurality of components) expressed in mass %.

以下,將B2O3的分子量設為M(B2O3),將SiO2的分子量設為M(SiO2),將Al2O3的分子量設為M(Al2O3),將La2O3的分子量設為M(La2O3),將Gd2O3的分子量設為M(Gd2O3),將Y2O3的分子量設為M(Y2O3),將Yb2O3的分子量設為M(Yb2O3),將LaF3的分子量設為M(LaF3),將GdF3的分子量設為M(GdF3),將YF3的分子量設為M(YF3),將YbF3的分子量設為M(YbF3),將ZnO的分子量設為M(ZnO),將Li2O的分子量設為M(Li2O),將Na2O的分子量設為M(Na2O),將K2O的分子量設為M(K2O),將ZrO2的分子量設為M(ZrO2),將Nb2O5的分子量設為M(Nb2O5),將TiO2的分子量設為 M(TiO2),將WO3的分子量設為M(WO3),將Ta2O5的分子量設為M(Ta2O5),將Bi2O3的分子量設為M(Bi2O3),將MgO的分子量設為M(MgO),將CaO的分子量設為M(CaO),將SrO的分子量設為M(SrO),將BaO的分子量設為M(BaO)。 Hereinafter, the molecular weight of B 2 O 3 is M(B 2 O 3 ), the molecular weight of SiO 2 is M(SiO 2 ), and the molecular weight of Al 2 O 3 is M(Al 2 O 3 ), and The molecular weight of La 2 O 3 is M(La 2 O 3 ), the molecular weight of Gd 2 O 3 is M(Gd 2 O 3 ), and the molecular weight of Y 2 O 3 is M(Y 2 O 3 ), Set the molecular weight of Yb 2 O 3 to M(Yb 2 O 3 ), the molecular weight of LaF 3 to M(LaF 3 ), the molecular weight of GdF 3 to M(GdF 3 ), and the molecular weight of YF 3 to M(YF 3 ), the molecular weight of YbF 3 is M(YbF 3 ), the molecular weight of ZnO is M(ZnO), the molecular weight of Li 2 O is M(Li 2 O), and the molecular weight of Na 2 O The molecular weight is M(Na 2 O), the molecular weight of K 2 O is M(K 2 O), the molecular weight of ZrO 2 is M(ZrO 2 ), and the molecular weight of Nb 2 O 5 is M(Nb 2 O 5 ), the molecular weight of TiO 2 is M(TiO 2 ), the molecular weight of WO 3 is M(WO 3 ), the molecular weight of Ta 2 O 5 is M(Ta 2 O 5 ), and Bi The molecular weight of 2 O 3 is M(Bi 2 O 3 ), the molecular weight of MgO is M(MgO), the molecular weight of CaO is M(CaO), the molecular weight of SrO is M(SrO), BaO The molecular weight of is set to M(BaO).

各氧化物的分子量是該氧化物的一個分子中包含的相當於陽離子的原子的數與該原子的原子量的積和該氧化物的一個分子中包含的氧(O)的數與氧的原子量的積的合計,相當於化學式量。此外,各氟化物的分子量是該氟化物的一個分子中包含的相當於陽離子的原子的數與該原子的原子量的積和該氟化物的一個分子中包含的氟(F)的數與氟的原子量的積的合計。而且,每1mol的分子的質量為在其分子量附上單位(g)的值。在表1中,將上述各氧化物、各氟化物的分子量表示到小數點後3位。例如,在以下的說明中只要使用表1所示的數值作為分子量即可。 The molecular weight of each oxide is the product of the number of atoms corresponding to the cation contained in one molecule of the oxide and the atomic weight of the atom and the number of oxygen (O) contained in one molecule of the oxide and the atomic weight of oxygen The total product is equivalent to the chemical formula weight. In addition, the molecular weight of each fluoride is the product of the number of atoms corresponding to the cation contained in one molecule of the fluoride and the atomic weight of the atom and the number of fluorine (F) contained in one molecule of the fluoride and the ratio of fluorine The sum of the products of atomic weights. In addition, the mass per 1 mol of a molecule is a value with a unit (g) attached to its molecular weight. In Table 1, the molecular weights of the above-mentioned oxides and fluorides are shown to three decimal places. For example, in the following description, the numerical value shown in Table 1 may be used as the molecular weight.

Figure 105107156-A0101-12-0013-1
Figure 105107156-A0101-12-0013-1
Figure 105107156-A0101-12-0014-2
Figure 105107156-A0101-12-0014-2

進而,在表2示出以氧化物或氟化物表示玻璃成分時的一個分子中包含的陽離子的個數。 Furthermore, Table 2 shows the number of cations contained in one molecule when the glass component is represented by oxide or fluoride.

Figure 105107156-A0101-12-0014-3
Figure 105107156-A0101-12-0014-3

以下,對本實施形態的光學玻璃進行詳細說明。 Hereinafter, the optical glass of this embodiment is demonstrated in detail.

在本實施形態的光學玻璃中,阿貝數(νd)為39.0以上、45.0以下,折射率(nd)與上述的阿貝數(νd)滿足下述式(1)。 In the optical glass of this embodiment, the Abbe number (νd) is 39.0 or more and 45.0 or less, and the refractive index (nd) and the above-mentioned Abbe number (νd) satisfy the following formula (1).

Figure 105107156-A0101-12-0015-32
Figure 105107156-A0101-12-0015-32

在本實施形態的光學玻璃中,阿貝數(νd)的下限為39.0,較佳為39.5,更佳為40.0,進一步較佳為40.5。阿貝數(νd)的上限為45.0,較佳為44.5,更佳為44.0,進一步較佳為43.5。 In the optical glass of this embodiment, the lower limit of the Abbe number (νd) is 39.0, preferably 39.5, more preferably 40.0, and still more preferably 40.5. The upper limit of the Abbe number (νd) is 45.0, preferably 44.5, more preferably 44.0, still more preferably 43.5.

當阿貝數(νd)為39.0以上時,作為光學元件的材料對於校正色像差是有效的。此外,當阿貝數(νd)大於45.0時,如果不使折射率(nd)下降,則玻璃的熱穩定性會顯著下降,在製造玻璃的過程中容易失透。此外,藉由使折射率(nd)相對於阿貝數(νd)處於由式(1)決定的範圍內,從而能夠製成在光學設計上利用價值高的光學玻璃。折射率(nd)的上限根據玻璃的上述組成範圍自然而然地確定。 When the Abbe number (νd) is 39.0 or more, the material as the optical element is effective for correcting chromatic aberration. In addition, when the Abbe number (νd) is greater than 45.0, if the refractive index (nd) is not lowered, the thermal stability of the glass will be significantly reduced, and the glass will be easily devitrified in the process of manufacturing the glass. In addition, by making the refractive index (nd) relative to the Abbe number (νd) within the range determined by the formula (1), it is possible to produce an optical glass with high utility value in optical design. The upper limit of the refractive index (nd) is naturally determined according to the above composition range of the glass.

在本實施形態的光學玻璃中,後述的NWF1、RE1、HR1意味著每100g玻璃所包含的特定陽離子的莫耳數的合計。在此,NWF1、RE1、HR1是關於本發明的光學玻.璃中的特定的玻璃成分的含量的指標,不附加質量%或%等表示百分率的符號,僅用數值來表示。以下,以NWF1為例進行詳細說明。 In the optical glass of this embodiment, NWF1, RE1, and HR1 described later mean the total number of moles of specific cations contained in 100 g of glass. Here, NWF1, RE1, and HR1 are indicators for the content of specific glass components in the optical glass of the present invention, and symbols representing percentages such as mass% or% are not added, and only numerical values are used. The following takes NWF1 as an example for detailed description.

上述NWF1用下述數學式1來表示。 The above-mentioned NWF1 is represented by the following mathematical formula 1.

[數學式1]

Figure 105107156-A0101-12-0016-4
[Math 1]
Figure 105107156-A0101-12-0016-4

在此,上述數學式1中的[B2O3/M(B2O3)]的分母為三氧化二硼(B2O3)的分子量,分子為三氧化二硼(B2O3)的以質量%表示的含量。 Here, the denominator of [B 2 O 3 /M(B 2 O 3 )] in the above mathematical formula 1 is the molecular weight of diboron trioxide (B 2 O 3 ), and the molecule is diboron trioxide (B 2 O 3 ) The content expressed in mass%.

關於分子,換言之,以質量%表示的三氧化二硼(B2O3)的含量是將每100g玻璃所包含的三氧化二硼(B2O3)的含量用質量(g)表示的含量。 Regarding the molecule, in other words, the content of boron trioxide (B 2 O 3 ) expressed in mass% is the content expressed by mass (g) of the content of boron trioxide (B 2 O 3 ) contained in 100 g of glass .

因此,上述數學式1中的[B2O3/M(B2O3)]相當於每100g玻璃所包含的三氧化二硼(B2O3)的莫耳數。 Therefore, [B 2 O 3 /M(B 2 O 3 )] in the above-mentioned mathematical formula 1 corresponds to the number of moles of boron trioxide (B 2 O 3 ) contained in 100 g of glass.

進而,上述[B2O3/M(B2O3)]乘以1個分子的三氧化二硼(B2O3)所包含的陽離子(B3+)的個數(2)的[2×B2O3/M(B2O3)]相當於每100g玻璃所包含的硼離子(B3+)的莫耳數。 Furthermore, the above-mentioned [B 2 O 3 /M(B 2 O 3 )] is multiplied by the number (2) of cations (B 3+ ) contained in 1 molecule of diboron trioxide (B 2 O 3 ) [ 2×B 2 O 3 /M(B 2 O 3 )] is equivalent to the number of moles of boron ion (B 3+ ) contained in 100 g of glass.

另外,上述數學式1中的[SiO2/M(SiO2)]和[2×Al2O3/M(Al2O3)]也與[2×B2O3/M(B2O3)]的情況相同。 In addition, [SiO 2 /M(SiO 2 )] and [2×Al 2 O 3 /M(Al 2 O 3 )] in the above formula 1 are also related to [2×B 2 O 3 /M(B 2 O 3 )] is the same.

因此,NWF1為每100g玻璃所包含的硼離子(B3+)、矽離子(Si4+)及鋁離子(Al3+)的各莫耳數的合計值。在此,NWF1是關於本發明的光學玻璃中的網絡形成成分的含量的指標,僅由數值來表示。 Therefore, NWF1 is the total value of each mole of boron ion (B 3+ ), silicon ion (Si 4+ ), and aluminum ion (Al 3+ ) contained in 100 g of glass. Here, NWF1 is an index regarding the content of the network forming component in the optical glass of the present invention, and is represented only by a numerical value.

此外,後述的HR1、RE1、R1也與NWF1的情況相同。 In addition, HR1, RE1, and R1 described later are also the same as in the case of NWF1.

<RE1/NWF1> <RE1/NWF1>

在本實施形態的光學玻璃中,NWF1像上述那樣定義。另外,B2O3、SiO2、Al2O3作為玻璃的網絡形成成分而發揮功能。 In the optical glass of this embodiment, NWF1 is defined as described above. In addition, B 2 O 3 , SiO 2 , and Al 2 O 3 function as network forming components of glass.

在本實施形態的光學玻璃中,RE1是將以質量%表示的高折射率低色散化成分La2O3、Gd2O3、Y2O3、Yb2O3、LaF3、GdF3、YF3、YbF3的各含量的各數值分別除以各氧化物、氟化物的分子量,再分別乘以各分子中包含的陽離子的個數的值的合計值(RE1=[2×La2O3/M(La2O3)]+[2×Gd2O3/M(Gd2O3)]+[2×Y2O3/M(Y2O3)]+[2×Yb2O3/M(Yb2O3)]+[LaF3/M(LaF3)]+[GdF3/M(GdF3)]+[YF3/M(YF3)]+[YbF3/M(YbF3)])。即,RE1是每100g玻璃所包含的La3+、Gd3+、Y3+及Yb3+的各莫耳數的合計值。在此,RE1是關於本發明的光學玻璃中的高折射率低色散化成分的含量的指標,僅用數值來表示。 In the optical glass of the present embodiment, RE1 is composed of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 , LaF 3 , GdF 3 , Each value of each content of YF 3 and YbF 3 is divided by the molecular weight of each oxide and fluoride, and then multiplied by the total value of the number of cations contained in each molecule (RE1=[2×La 2 O 3 /M(La 2 O 3 )]+[2×Gd 2 O 3 /M(Gd 2 O 3 )]+[2×Y 2 O 3 /M(Y 2 O 3 )]+[2×Yb 2 O 3 /M(Yb 2 O 3 )]+[LaF 3 /M(LaF 3 )]+[GdF 3 /M(GdF 3 )]+[YF 3 /M(YF 3 )]+[YbF 3 /M (YbF 3 )]). That is, RE1 is the total value of each mole of La 3+ , Gd 3+ , Y 3+ and Yb 3+ contained in 100 g of glass. Here, RE1 is an index regarding the content of the high-refractive-index, low-dispersion component in the optical glass of the present invention, and is represented only by a numerical value.

當NWF1減小時,折射率上升。當RE1增大時,可在阿貝數不大幅減小的情況下使折射率上升。因此,藉由使比[RE1/NWF1]增大,從而能夠在維持低色散特性的同時使折射率上升。 When NWF1 decreases, the refractive index increases. When RE1 increases, the refractive index can be increased without greatly decreasing the Abbe number. Therefore, by increasing the ratio [RE1/NWF1], it is possible to increase the refractive index while maintaining low dispersion characteristics.

為了得到所需的折射率(nd)、阿貝數(νd),在本實施形態的光學玻璃中,比[RE1/NWF1]為0.35以上。 In order to obtain the required refractive index (nd) and Abbe number (νd), in the optical glass of this embodiment, the ratio [RE1/NWF1] is 0.35 or more.

進而,在本實施形態的光學玻璃中,比[RE1/NWF1]的下限較佳為0.36,進而依次更佳為0.37、0.38、0.39、0.40、0.41、0.42、0.43。 Furthermore, in the optical glass of the present embodiment, the lower limit of the ratio [RE1/NWF1] is preferably 0.36, and more preferably 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43 in order.

在本實施形態的光學玻璃中,藉由將比[RE1/NWF1]的下限設為上述範圍,從而能夠使折射率(nd)和阿貝數(νd)成為所需的值。 In the optical glass of the present embodiment, by setting the lower limit of the ratio [RE1/NWF1] to the above range, the refractive index (nd) and Abbe number (νd) can be set to desired values.

當NWF1增大時,可改善玻璃的熱穩定性,在製造玻璃、成型玻璃時不易析出晶體。當RE1減小時,可改善玻 璃的熱穩定性,在製造過程中不易析出晶體。 When NWF1 is increased, the thermal stability of the glass can be improved, and crystals are not easy to precipitate when manufacturing glass and molding glass. When RE1 is reduced, it can improve glass The thermal stability of glass makes it difficult to precipitate crystals during the manufacturing process.

因此,為了改善玻璃的熱穩定性、得到不易析出晶體的玻璃,比[RE1/NWF1]的上限較佳為0.80,進而依次更佳為0.70、0.60、0.55、0.54、0.53、0.52、0.51。藉由將比[RE1/NWF1]的上限設為上述較佳的範圍,從而能夠進一步改善玻璃的熱穩定性。 Therefore, in order to improve the thermal stability of the glass and obtain a glass that does not easily precipitate crystals, the upper limit of the ratio [RE1/NWF1] is preferably 0.80, and more preferably 0.70, 0.60, 0.55, 0.54, 0.53, 0.52, 0.51. By setting the upper limit of the ratio [RE1/NWF1] to the above-mentioned preferable range, the thermal stability of the glass can be further improved.

在本實施形態的光學玻璃中,從提高折射率的觀點出發,NWF1的上限較佳為0.80,進而依次更佳為0.75、0.72、0.70、0.69、0.68。此外,從改善玻璃的熱穩定性的觀點出發,NWF1的下限較佳為0.45,進而依次更佳為0.48、0.50、0.53、0.54、0.55。 In the optical glass of this embodiment, from the viewpoint of increasing the refractive index, the upper limit of NWF1 is preferably 0.80, and more preferably 0.75, 0.72, 0.70, 0.69, and 0.68 in order. In addition, from the viewpoint of improving the thermal stability of the glass, the lower limit of NWF1 is preferably 0.45, and more preferably 0.48, 0.50, 0.53, 0.54, 0.55 in order.

在本實施形態的光學玻璃中,從改善玻璃的熱穩定性的觀點出發,RE1的上限較佳為0.37,更佳為0.35,進一步較佳為0.33,再進一步較佳為0.31。此外,從在不使阿貝數大幅降低的情況下提高折射率的觀點出發,RE1的下限較佳為0.20,更佳為0.22,進一步較佳為0.24,再進一步較佳為0.26。 In the optical glass of this embodiment, from the viewpoint of improving the thermal stability of the glass, the upper limit of RE1 is preferably 0.37, more preferably 0.35, still more preferably 0.33, and still more preferably 0.31. In addition, from the viewpoint of increasing the refractive index without greatly reducing the Abbe number, the lower limit of RE1 is preferably 0.20, more preferably 0.22, still more preferably 0.24, and still more preferably 0.26.

<HR1/RE1> <HR1/RE1>

如前所述,阿貝數(νd)為39.0以上、45.0以下的光學玻璃具有滿足式(1)的折射率在光學設計上意義很大。通常,當使玻璃的折射率增加時,阿貝數會減小、會高色散化。因此,要得到上述光學特性,重要的是在儘量抑制阿貝數(νd)的減小的同時提高折射率。 As described above, an optical glass having an Abbe number (νd) of 39.0 or more and 45.0 or less has a refractive index that satisfies the formula (1), which is significant in terms of optical design. Generally, when the refractive index of glass is increased, the Abbe number will decrease and the dispersion will increase. Therefore, in order to obtain the above-mentioned optical characteristics, it is important to increase the refractive index while suppressing the decrease in Abbe number (νd) as much as possible.

稀土類氧化物和Nb2O5、TiO2、WO3及Bi2O3均具有使玻璃的折射率上升的作用,與稀土類氧化物相比,Nb2O5、 TiO2、WO3及Bi2O3使阿貝數減小的作用(高色散化的作用)強。 Rare earth oxides and Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 all have the effect of increasing the refractive index of glass. Compared with rare earth oxides, Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 has a strong effect of reducing the Abbe number (the effect of increasing dispersion).

可是,在精密壓製成型中,如果玻璃與壓製成型模的模材料反應,玻璃表面的透明度就會下降,還會產生玻璃與壓製成型模熔著的問題。在精密壓製成型中,與壓製成型模的模材料反應的物質主要是玻璃成分中的在高溫下容易發生價數的變化的成分,即Nb2O5、TiO2、WO3、Bi2O3。另一方面,雖然稀土類氧化物與Nb2O5、TiO2、WO3、Bi2O3同樣具有使折射率上升的作用,但是與Nb2O5、TiO2、WO3、Bi2O3不同,在精密壓製成型時的高溫狀態下不易發生價數的變化,與模材料的反應性較低。因此,期望相對於稀土類氧化物的含量將成為玻璃與模材料的化學反應的主要原因的Nb2O5、TiO2、WO3、Bi2O3的含量抑制在一定量以下。 However, in precision press molding, if the glass reacts with the molding material of the press molding die, the transparency of the glass surface will decrease, and the problem of melting of the glass and the press molding die will also occur. In precision press molding, the substances that react with the mold material of the press molding die are mainly the components of the glass composition that are prone to change in valence at high temperatures, namely Nb 2 O 5 , TiO 2 , WO 3 , Bi 2 O 3 . On the other hand, although rare earth oxides have the same effect of increasing the refractive index as Nb 2 O 5 , TiO 2 , WO 3 , and Bi 2 O 3, they have the same effect as Nb 2 O 5 , TiO 2 , WO 3 , and Bi 2 O 3 is different, it is not easy to change the valence under the high temperature state during precision press molding, and the reactivity with the mold material is low. Therefore, it is desirable to suppress the content of Nb 2 O 5 , TiO 2 , WO 3 , and Bi 2 O 3 which is the main cause of the chemical reaction between the glass and the mold material relative to the content of the rare earth oxide.

在本實施形態的光學玻璃中,HR1是將以質量%表示的高折射率高色散化成分Nb2O5、TiO2、WO3、Bi2O3的各含量的各數值分別除以各玻璃成分的分子量、再分別乘以各分子中包含的陽離子的個數的值的合計值(HR1=[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[WO3/M(WO3)]+[2×Bi2O3/M(Bi2O3)])。即,HR1是每100g玻璃所包含的Nb5+、Ti4+、W6+及Bi3+的各莫耳數的合計值。在此,HR1是關於本發明的光學玻璃中的高折射率高色散化成分的含量的指標,僅由數值表示。 In the optical glass of this embodiment, HR1 is the value of each content of the high refractive index and high dispersion component Nb 2 O 5 , TiO 2 , WO 3 , and Bi 2 O 3 expressed in mass% divided by each glass The total value of the molecular weight of each component and the number of cations contained in each molecule (HR1=[2×Nb 2 O 5 /M(Nb 2 O 5 )]+[TiO 2 /M(TiO 2 )]+[WO 3 /M(WO 3 )]+[2×Bi 2 O 3 /M(Bi 2 O 3 )]). That is, HR1 is the total value of each mole of Nb 5+ , Ti 4+ , W 6+ and Bi 3+ contained in 100 g of glass. Here, HR1 is an index regarding the content of the high-refractive-index and high-dispersion component in the optical glass of the present invention, and is represented only by numerical values.

藉由使HR1相對於RE1的比[HR1/RE1]減小,從而能夠抑制阿貝數的降低,進而能夠抑制精密壓製成型時的玻璃與模材料的反應,提高精密壓製成型的玻璃制光學元件的生產性。 By reducing the ratio of HR1 to RE1 [HR1/RE1], it is possible to suppress the decrease in Abbe number, thereby suppressing the reaction between glass and mold material during precision press molding, and improve precision press molding of glass optical components The productivity.

根據這樣的理由,在本實施形態的光學玻璃中,比[HR1/RE1]為0.33以下。 For such reasons, in the optical glass of the present embodiment, the ratio [HR1/RE1] is 0.33 or less.

進而,在本實施形態的光學玻璃中,比[HR1/RE1]的上限較佳為0.32,進而依次更佳為0.31、0.30、0.29、0.28、0.27、0.25。 Furthermore, in the optical glass of the present embodiment, the upper limit of the ratio [HR1/RE1] is preferably 0.32, and more preferably 0.31, 0.30, 0.29, 0.28, 0.27, and 0.25 in order.

當比[HR1/RE1]減小時,示出玻璃的熱穩定性降低的傾向,示出玻璃化轉變溫度上升的傾向。此外,與HR1相比,RE1對增加折射率的貢獻更大,因此從製作折射率更高的玻璃的觀點出發,在上述的範圍內,較佳比[HR1/RE1]大。因此,從改善玻璃的熱穩定性、降低玻璃化轉變溫度的觀點出發,或者從進一步提高折射率的觀點出發,比[HR1/RE1]的下限較佳為0.04,進而依次更佳為0.08、0.10、0.11、0.13、0.15、0.16。 When the ratio [HR1/RE1] decreases, the thermal stability of the glass tends to decrease, and the glass transition temperature tends to increase. In addition, RE1 has a greater contribution to increasing the refractive index than HR1. Therefore, from the viewpoint of making a glass with a higher refractive index, it is preferably greater than [HR1/RE1] in the above range. Therefore, from the viewpoint of improving the thermal stability of the glass and lowering the glass transition temperature, or from the viewpoint of further increasing the refractive index, the lower limit of the ratio [HR1/RE1] is preferably 0.04, and more preferably 0.08, 0.10. , 0.11, 0.13, 0.15, 0.16.

在本實施形態的光學玻璃中,從抑制阿貝數的減小、藉由精密壓製成型更穩定地製造高質量的光學元件的觀點出發,HR1的上限較佳為0.100,進而依次更佳為0.090、0.080、0.070、0.060。此外,從進一步提高折射率、進一步改善玻璃的熱穩定性的觀點出發,HR1的下限較佳為0.010,進而依次更佳為0.020、0.030、0.040。 In the optical glass of this embodiment, from the viewpoint of suppressing the decrease in Abbe number and producing high-quality optical elements more stably by precision press molding, the upper limit of HR1 is preferably 0.100, and further preferably 0.090. , 0.080, 0.070, 0.060. In addition, from the viewpoint of further increasing the refractive index and further improving the thermal stability of the glass, the lower limit of HR1 is preferably 0.010, and more preferably 0.020, 0.030, and 0.040 in this order.

<Nb2O5/(Nb2O5+Ta2O5)> <Nb 2 O 5 /(Nb 2 O 5 +Ta 2 O 5 )>

在本實施形態的光學玻璃中,Nb2O5的含量相對於Nb2O5和Ta2O5的合計含量的質量比[Nb2O5/(Nb2O5+Ta2O5)]為2/3以上。即,本實施形態的光學玻璃包含Nb2O5,且將Nb2O5的含量設為Ta2O5的含量的2倍以上。 In the optical glass of the present embodiment in, Nb 2 O 5 content relative to Nb mass total content 2 O 5 and Ta 2 O 5 ratio [Nb 2 O 5 / (Nb 2 O 5 + Ta 2 O 5)] Is more than 2/3. That is, the optical glass of the present embodiment contains Nb 2 O 5 , and the content of Nb 2 O 5 is twice or more the content of Ta 2 O 5 .

進而,在本實施形態的光學玻璃中,質量比[Nb2O5/(Nb2O5+Ta2O5)]的下限較佳為0.67,進而依次更佳為0.70、0.80、0.90、0.95、0.98、0.99。此外,質量比[Nb2O5/(Nb2O5+Ta2O5)]的上限較佳為1.00。 Furthermore, in the optical glass of this embodiment, the lower limit of the mass ratio [Nb 2 O 5 /(Nb 2 O 5 +Ta 2 O 5 )] is preferably 0.67, and more preferably 0.70, 0.80, 0.90, 0.95 in this order. , 0.98, 0.99. In addition, the upper limit of the mass ratio [Nb 2 O 5 /(Nb 2 O 5 +Ta 2 O 5 )] is preferably 1.00.

藉由將質量比[Nb2O5/(Nb2O5+Ta2O5)]的下限設為上述範圍,從而能夠抑制折射率的降低、維持玻璃的熱穩定性。進而,藉由將質量比[Nb2O5/(Nb2O5+Ta2O5)]的下限設為上述範圍,從而還能夠相對於Nb2O5的含量使Ta2O5的含量相對地減少、削減非常昂貴的Ta的使用量。 By setting the lower limit of the mass ratio [Nb 2 O 5 /(Nb 2 O 5 +Ta 2 O 5 )] to the above range, it is possible to suppress the decrease in refractive index and maintain the thermal stability of the glass. Furthermore, by setting the lower limit of the mass ratio [Nb 2 O 5 /(Nb 2 O 5 +Ta 2 O 5 )] to the above range, the content of Ta 2 O 5 can also be adjusted relative to the content of Nb 2 O 5 Relatively reduce and reduce the usage of very expensive Ta.

<RE1/D1> <RE1/D1>

通常,適合於精密壓製成型的具有低溫軟化性的玻璃含有具有使玻璃化轉變溫度(Tg)降低的作用的Li2O、Na2O、K2O或ZnO的任一種以上。特別是,在這樣的玻璃中,使玻璃化轉變溫度(Tg)降低的作用強的Li2O和ZnO的含量多。但是,這些玻璃成分在製造玻璃的過程中容易從熔融玻璃揮發。 Generally, glass with low-temperature softening properties suitable for precision press molding contains any one or more of Li 2 O, Na 2 O, K 2 O, or ZnO, which has an effect of lowering the glass transition temperature (Tg). In particular, in such glass, there are many contents of Li 2 O and ZnO, which have a strong effect of lowering the glass transition temperature (Tg). However, these glass components are easily volatilized from molten glass in the process of manufacturing glass.

當特定的玻璃成分即易揮發的玻璃成分從熔融玻璃選擇性地揮發時,玻璃的組成比會改變,折射率(nd)、阿貝數(νd)等特性不能成為所需的值。其結果是,難以穩定地生產具有所需的特性的玻璃。此外,如果在將熔融玻璃成型時特定的玻璃成分從高溫的玻璃表面揮發,則會在玻璃表面生成被稱為條紋的光學不均質部。在要求高均質性的光學玻璃中,產生這樣的條紋不是較佳的。 When a specific glass component, that is, a volatile glass component, is selectively volatilized from the molten glass, the composition ratio of the glass changes, and characteristics such as refractive index (nd) and Abbe number (νd) cannot become required values. As a result, it is difficult to stably produce glass with desired characteristics. In addition, if a specific glass component volatilizes from a high-temperature glass surface when the molten glass is molded, optical inhomogeneities called streaks are generated on the glass surface. In optical glass requiring high homogeneity, it is not preferable to produce such stripes.

本申請的發明人藉由調查發現,熔融玻璃的揮發性依賴於易揮發的Li2O、Na2O、K2O及ZnO的含量與不易揮 發的La2O3、Gd2O3、Y2O3及Yb2O3的稀土類氧化物的含量的比。 The inventor of the present application found through investigation that the volatility of molten glass depends on the content of volatile Li 2 O, Na 2 O, K 2 O, and ZnO, and the non-volatile La 2 O 3 , Gd 2 O 3 , and Y The ratio of the content of rare earth oxides of 2 O 3 and Yb 2 O 3 .

在本實施形態的光學玻璃中,D1是將以質量%表示的Li2O、Na2O及K2O的各含量的數值分別除以各玻璃成分的分子量,再分別乘以各分子中包含的陽離子的個數和3的值與將以質量%表示的ZnO的含量的數值除以分子量、再乘以分子中包含的陽離子的個數的值的合計值(D1=[2×Li2O/M(Li2O)]×3+[2×Na2O/M(Na2O)]×3+[2×K2O/M(K2O)]×3+[ZnO/M(ZnO)])。乘以3是因為Li2O、Na2O及K2O比ZnO易揮發。即,D1能夠表示為D1={[2×Li2O/M(Li2O)]+[2×Na2O/M(Na2O)]+[2×K2O/M(K2O)]}×3+[ZnO/M(ZnO)]。D1是關於本發明的光學玻璃中的揮發性成分的含量的指標,僅由數值表示。 In the optical glass of this embodiment, D1 is the value of each content of Li 2 O, Na 2 O, and K 2 O expressed in mass% divided by the molecular weight of each glass component, and then multiplied by the content of each molecule The total value of the number of cations and the value of 3 and the value of ZnO content expressed in mass% divided by the molecular weight and multiplied by the number of cations contained in the molecule (D1=[2×Li 2 O /M(Li 2 O)]×3+[2×Na 2 O/M(Na 2 O)]×3+[2×K 2 O/M(K 2 O)]×3+[ZnO/M( ZnO)]). Multiply by 3 because Li 2 O, Na 2 O, and K 2 O are more volatile than ZnO. That is, D1 can be expressed as D1={[2×Li 2 O/M(Li 2 O)]+[2×Na 2 O/M(Na 2 O)]+[2×K 2 O/M(K 2 O)]}×3+[ZnO/M(ZnO)]. D1 is an index regarding the content of volatile components in the optical glass of the present invention, and is represented only by numerical values.

D1是將促進熔融玻璃的揮發的因數數值化的值。另一方面,RE1是將抑制熔融玻璃的揮發的因數數值化的值。即,藉由使RE1相對於D1的比[RE1/D1]增大,從而能夠抑制熔融玻璃的揮發。 D1 is a value obtained by digitizing a factor that promotes the volatilization of molten glass. On the other hand, RE1 is a value obtained by digitizing a factor for suppressing volatilization of molten glass. That is, by increasing the ratio [RE1/D1] of RE1 to D1, it is possible to suppress volatilization of molten glass.

像這樣,比[RE1/D1]是表示熔融玻璃即玻璃熔液的揮發性的指標。藉由將比[RE1/D1]設為0.90以上,從而能夠抑制熔融玻璃的揮發。其結果是,能夠穩定地生產具有所需的特性的光學玻璃。此外,還能夠保持玻璃的高均質性。因此,在本實施形態的光學玻璃中,比[RE1/D1]為0.90以上。 In this way, the ratio [RE1/D1] is an index indicating the volatility of molten glass, that is, molten glass. By setting the ratio [RE1/D1] to 0.90 or more, the volatilization of molten glass can be suppressed. As a result, it is possible to stably produce optical glass having desired characteristics. In addition, the high homogeneity of the glass can be maintained. Therefore, in the optical glass of this embodiment, the ratio [RE1/D1] is 0.90 or more.

進而,從抑制熔融玻璃的揮發的觀點出發,在本實施形態的光學玻璃中,比[RE1/D1]的下限較佳為0.95,進而依次更佳為0.98、1.00、1.05、1.10、1.12、1.13。 Furthermore, from the viewpoint of suppressing volatilization of molten glass, in the optical glass of the present embodiment, the lower limit of the ratio [RE1/D1] is preferably 0.95, and more preferably 0.98, 1.00, 1.05, 1.10, 1.12, 1.13 in order. .

另一方面,當比[RE1/D1]減小時,玻璃化轉變溫度(Tg)會降低,精密壓製成型時的玻璃的溫度會降低。其結果是,在精密壓製成型時不易發生玻璃與壓製成型模的反應,容易維持壓製成型後的玻璃表面的透明性,容易抑制玻璃與壓製成型模的熔著。從這樣的觀點出發,比[RE1/D1]的上限較佳為2.5,進而依次更佳為2.3、2.2、2.15、2.10、2.08、2.07。 On the other hand, when the ratio [RE1/D1] decreases, the glass transition temperature (Tg) will decrease, and the temperature of the glass during precision press molding will decrease. As a result, the reaction between the glass and the press mold is less likely to occur during precision press molding, the transparency of the glass surface after press molding is easily maintained, and the fusion of the glass and the press mold is easily suppressed. From such a viewpoint, the upper limit of the ratio [RE1/D1] is preferably 2.5, and more preferably 2.3, 2.2, 2.15, 2.10, 2.08, 2.07 in order.

從抑制熔融玻璃的揮發的觀點出發,在本實施形態的光學玻璃中,D1的上限較佳為0.33,進而依次更佳為0.30、0.28、0.26、0.25。另一方面,從降低玻璃化轉變溫度的觀點出發,D1的下限較佳為0.05,進而依次更佳為0.08、0.10、0.12、0.13。 From the viewpoint of suppressing volatilization of molten glass, in the optical glass of the present embodiment, the upper limit of D1 is preferably 0.33, and more preferably 0.30, 0.28, 0.26, and 0.25 in this order. On the other hand, from the viewpoint of lowering the glass transition temperature, the lower limit of D1 is preferably 0.05, and more preferably 0.08, 0.10, 0.12, 0.13 in this order.

<L1/(NWF1+RE1)> <L1/(NWF1+RE1)>

將玻璃成分大致分為具有使玻璃化轉變溫度(Tg)相對降低的作用的成分和具有使玻璃化轉變溫度(Tg)相對上升的作用的成分。具有使玻璃化轉變溫度(Tg)相對降低的作用的成分主要是Li2O、Na2O、K2O、ZnO、MgO、CaO、SrO、BaO、B2O3、Nb2O5、TiO2、WO3、Bi2O3、Ta2O5。另一方面,相對於上述玻璃成分,具有使玻璃化轉變溫度(Tg)相對上升的作用的成分主要是SiO2、Al2O3、ZrO2、La2O3、Gd2O3、Y2O3、Yb2O3、LaF3、GdF3、YF3、YbF3The glass component is roughly divided into a component having a function of relatively lowering the glass transition temperature (Tg) and a component having a function of relatively increasing the glass transition temperature (Tg). The components that have the effect of relatively lowering the glass transition temperature (Tg) are mainly Li 2 O, Na 2 O, K 2 O, ZnO, MgO, CaO, SrO, BaO, B 2 O 3 , Nb 2 O 5 , TiO 2. WO 3 , Bi 2 O 3 , Ta 2 O 5 . On the other hand, with respect to the above-mentioned glass components, the components that have the effect of increasing the glass transition temperature (Tg) are mainly SiO 2 , Al 2 O 3 , ZrO 2 , La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 , Yb 2 O 3 , LaF 3 , GdF 3 , YF 3 , YbF 3 .

本申請發明人進行研究的結果發現,L1相對於NWF1和RE1的合計值的比[L1/(NWF1+RE1)]與玻璃化轉變溫度(Tg)之間存在相關關係,其中,L1是將以質量%表示的上述玻璃成分的各含量的數值分別除以各玻璃成分的分子量,再分 別乘以各分子中包含的陽離子的個數,進而作為係數分別乘以各玻璃成分對玻璃化轉變溫度(Tg)的影響度的值的合計值。在表3示出表示上述玻璃成分對玻璃化轉變溫度(Tg)的影響度的係數。 The inventors of the present application have conducted research and found that there is a correlation between the ratio of L1 to the total value of NWF1 and RE1 [L1/(NWF1+RE1)] and the glass transition temperature (Tg), where L1 is The value of each content of the above glass components expressed by mass% is divided by the molecular weight of each glass component, and then divided Do not multiply by the number of cations contained in each molecule, and use it as the total value of the coefficients respectively multiplied by the degree of influence of each glass component on the glass transition temperature (Tg). Table 3 shows coefficients indicating the degree of influence of the glass components on the glass transition temperature (Tg).

Figure 105107156-A0101-12-0024-5
Figure 105107156-A0101-12-0024-5

這樣的L1能夠表示為L1=[10×2×Li2O/M(Li2O)]+[8×2×Na2O/M(Na2O)]+[4×2×K2O/M(K2O)]+[4×1×ZnO/M(ZnO)]+[1×1×MgO/M(MgO)]+[2×1×CaO/M(CaO)]+[2×1×SrO/M(SrO)]+[2×1×BaO/M(BaO)]+[1×2×B2O3/M(B2O3)]+[1×2×Nb2O5/M(Nb2O5)]+[1×1×TiO2/M(TiO2)]+[4×1×WO3/M(WO3)]+[4×2×Bi2O3/M(Bi2O3)]+[1×2×Ta2O5/M(Ta2O5)]+[-2×1×SiO2/M(SiO2)]+[-1×2×Al2O3/M(Al2O3)]+[-2×1×ZrO2/M(ZrO2)]+[-1×2×La2O3/M(La2O3)]+[-1×2×Gd2O3/M(Gd2O3)]+[-1×2×Y2O3/M(Y2O3)]+[-1×2×Yb2O3/M(Yb2O3)]+[-1×1×LaF3/M(LaF3)]+[-1×1×GdF3/M(GdF3)]+[-1×1×YF3/M(YF3)]+[-1×1×YbF3/M(YbF3)]。 Such L1 can be expressed as L1=[10×2×Li 2 O/M(Li 2 O)]+[8×2×Na 2 O/M(Na 2 O)]+[4×2×K 2 O /M(K 2 O)]+[4×1×ZnO/M(ZnO)]+[1×1×MgO/M(MgO)]+[2×1×CaO/M(CaO)]+[2 ×1×SrO/M(SrO)]+[2×1×BaO/M(BaO)]+[1×2×B 2 O 3 /M(B 2 O 3 )]+[1×2×Nb 2 O 5 /M(Nb 2 O 5 )]+[1×1×TiO 2 /M(TiO 2 )]+[4×1×WO 3 /M(WO 3 )]+[4×2×Bi 2 O 3 /M(Bi 2 O 3 )]+[1×2×Ta 2 O 5 /M(Ta 2 O 5 )]+[-2×1×SiO 2 /M(SiO 2 )]+[-1× 2×Al 2 O 3 /M(Al 2 O 3 )]+[-2×1×ZrO 2 /M(ZrO 2 )]+[-1×2×La 2 O 3 /M(La 2 O 3 ) ]+[-1×2×Gd 2 O 3 /M(Gd 2 O 3 )]+[-1×2×Y 2 O 3 /M(Y 2 O 3 )]+[-1×2×Yb 2 O 3 /M(Yb 2 O 3 )]+[-1×1×LaF 3 /M(LaF 3 )]+[-1×1×GdF 3 /M(GdF 3 )]+[-1×1× YF 3 /M(YF 3 )]+[-1×1×YbF 3 /M(YbF 3 )].

即,值L1能夠表示為L1=[20×Li2O/M(Li2O)]+[16×Na2O/M(Na2O)]+[8×K2O/M(K2O)]+[4×ZnO/M(ZnO)]+[MgO /M(MgO)]+[2×CaO/M(CaO)]+[2×SrO/M(SrO)]+[2×BaO/M(BaO)]+[2×B2O3/M(B2O3)]+[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[4×WO3/M(WO3)]+[8×Bi2O3/M(Bi2O3)]+[2×Ta2O5/M(Ta2O5)]-[2×SiO2/M(SiO2)]-[2×Al2O3/M(Al2O3)]-[2×ZrO2/M(ZrO2)]-[2×La2O3/M(La2O3)]-[2×Gd2O3/M(Gd2O3)]-[2×Y2O3/M(Y2O3)]-[2×Yb2O3/M(Yb2O3)]-[LaF3/M(LaF3)]-[GdF3/M(GdF3)]-[YF3/M(YF3)]-[YbF3/M(YbF3)]。 That is, the value L1 can be expressed as L1=[20×Li 2 O/M(Li 2 O)]+[16×Na 2 O/M(Na 2 O)]+[8×K 2 O/M(K 2 O)]+[4×ZnO/M(ZnO)]+[MgO /M(MgO)]+[2×CaO/M(CaO)]+[2×SrO/M(SrO)]+[2×BaO /M(BaO)]+[2×B 2 O 3 /M(B 2 O 3 )]+[2×Nb 2 O 5 /M(Nb 2 O 5 )]+[TiO 2 /M(TiO 2 ) ]+[4×WO 3 /M(WO 3 )]+[8×Bi 2 O 3 /M(Bi 2 O 3 )]+[2×Ta 2 O 5 /M(Ta 2 O 5 )]-[ 2×SiO 2 /M(SiO 2 )]-[2×Al 2 O 3 /M(Al 2 O 3 )]-[2×ZrO 2 /M(ZrO 2 )]-[2×La 2 O 3 / M(La 2 O 3 )]-[2×Gd 2 O 3 /M(Gd 2 O 3 )]-[2×Y 2 O 3 /M(Y 2 O 3 )]-[2×Yb 2 O 3 /M(Yb 2 O 3 )]-[LaF 3 /M(LaF 3 )]-[GdF 3 /M(GdF 3 )]-[YF 3 /M(YF 3 )]-[YbF 3 /M(YbF 3 )].

L1是關於本發明的光學玻璃中影響玻璃化轉變溫度(Tg)的成分的含量的指標,僅由數值表示。 L1 is an index regarding the content of components that affect the glass transition temperature (Tg) in the optical glass of the present invention, and is represented only by numerical values.

圖1是將橫軸設為L1相對於NWF1和RE1的合計值的比[L1/(NWF1+RE1)]及將縱軸設為玻璃化轉變溫度(Tg),對公知的玻璃繪製了比[L1/(NWF1+RE1)]與玻璃化轉變溫度(Tg)的圖,其中,NWF1對應於玻璃成分中的網絡形成成分,RE1對應於稀土類氧化物及稀土類氟化物。從圖1可清楚地看出,點基本分佈在直線上,可知比[L1/(NWF1+RE1)]與玻璃化轉變溫度(Tg)存在相關關係。 Fig. 1 is the ratio [L1/(NWF1+RE1)] of L1 to the total value of NWF1 and RE1 on the horizontal axis and the glass transition temperature (Tg) on the vertical axis, and the ratio is plotted against a known glass [ L1/(NWF1+RE1)] and the glass transition temperature (Tg) graph, where NWF1 corresponds to the network forming component in the glass composition, and RE1 corresponds to rare earth oxides and rare earth fluorides. It can be clearly seen from Figure 1 that the points are basically distributed on a straight line, and the ratio [L1/(NWF1+RE1)] has a correlation with the glass transition temperature (Tg).

即,隨著比[L1/(NWF1+RE1)]的增加,玻璃化轉變溫度(Tg)降低,隨著比[L1/(NWF1+RE1)]的減小,玻璃化轉變溫度(Tg)上升。 That is, as the ratio [L1/(NWF1+RE1)] increases, the glass transition temperature (Tg) decreases, and as the ratio [L1/(NWF1+RE1)] decreases, the glass transition temperature (Tg) increases .

像這樣,藉由使比[L1/(NWF1+RE1)]增加,從而能夠使玻璃化轉變溫度(Tg)降低,能夠提供適合於精密壓製成型的玻璃,即,能夠提供具有低溫軟化性的玻璃。此外,藉由使比[L1/(NWF1+RE1)]增加,從而能夠改善玻璃的熔融性,即,玻璃原料不會產生熔融殘留,能夠提供均質的玻璃。 In this way, by increasing the ratio [L1/(NWF1+RE1)], the glass transition temperature (Tg) can be lowered, and glass suitable for precision press molding can be provided, that is, glass with low-temperature softening properties can be provided . In addition, by increasing the ratio [L1/(NWF1+RE1)], it is possible to improve the meltability of the glass, that is, the glass raw material does not produce melting residue, and it is possible to provide a homogeneous glass.

為了得到具有低溫軟化性和良好的熔融性的光學玻璃,在本實施形態的光學玻璃中,比[L1/(NWF1+RE1)]為0.78以上。 In order to obtain an optical glass having low-temperature softening properties and good melting properties, in the optical glass of the present embodiment, the ratio [L1/(NWF1+RE1)] is 0.78 or more.

進而,在本實施形態的光學玻璃中,比[L1/(NWF1+RE1)]的下限較佳為0.80,進而依次更佳為0.85、0.90、0.91、0.92、0.95、1.00、1.05。 Furthermore, in the optical glass of the present embodiment, the lower limit of the ratio [L1/(NWF1+RE1)] is preferably 0.80, and more preferably 0.85, 0.90, 0.91, 0.92, 0.95, 1.00, 1.05 in this order.

藉由將比[L1/(NWF1+RE1)]的下限設為上述範圍,從而能夠得到適合於精密壓製成型的低溫軟化性,並且能夠改善玻璃的熔融性。當比[L1/(NWF1+RE1)]過大時,示出玻璃的熱穩定性降低的傾向,示出折射率降低的傾向。從維持所需的折射率和熱穩定性的觀點出發,比[L1/(NWF1+RE1)]的上限較佳為2,進而依次更佳為1.8、1.6、1.5。 By setting the lower limit of the ratio [L1/(NWF1+RE1)] to the above range, low-temperature softening properties suitable for precision press molding can be obtained, and the melting properties of glass can be improved. When the ratio [L1/(NWF1+RE1)] is too large, the thermal stability of the glass tends to decrease, and the refractive index tends to decrease. From the viewpoint of maintaining the required refractive index and thermal stability, the upper limit of the ratio [L1/(NWF1+RE1)] is preferably 2, and more preferably 1.8, 1.6, and 1.5 in order.

<R1/NWF1> <R1/NWF1>

在本實施形態的光學玻璃中,R1是將以質量%表示的鹼土類金屬氧化物MgO、CaO、SrO及BaO的各含量的數值分別除以各玻璃成分的分子量的值的合計值(R1=[MgO/M(MgO)]+[CaO/M(CaO)]+[SrO/M(SrO)]+[BaO/M(BaO)])。即,R1是每100g玻璃所包含的Mg2+、Ca2+、Sr2+及Ba2+的各莫耳數的合計值。R1是關於本發明的光學玻璃中的鹼土類金屬氧化物的含量的指標,僅由數值表示。 In the optical glass of this embodiment, R1 is the total value of the value of each content of alkaline earth metal oxides MgO, CaO, SrO, and BaO expressed in mass% divided by the molecular weight of each glass component (R1= [MgO/M(MgO)]+[CaO/M(CaO)]+[SrO/M(SrO)]+[BaO/M(BaO)]). That is, R1 is the total value of each molar number of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ contained in 100 g of glass. R1 is an index regarding the content of alkaline earth metal oxides in the optical glass of the present invention, and is represented only by numerical values.

將網絡形成成分B2O3、SiO2、Al2O3與鹼土類金屬氧化物MgO、CaO、SrO、BaO相比較,網絡形成成分比鹼土類金屬氧化物抑制阿貝數的減小的作用更大。 Comparing the network forming components B 2 O 3 , SiO 2 , Al 2 O 3 with the alkaline earth metal oxides MgO, CaO, SrO, BaO, the network forming components inhibit the decrease in Abbe number than the alkaline earth metal oxides Bigger.

因此,R1相對於NWF1的比[R1/NWF1]的上限較 佳為0.30,進而依次更佳為0.25、0.20、0.19、0.15、0.10、0.05、0.02。此外,比[R1/NWF1]的下限較佳為0。另外,比[R1/NWF1]也可以為0。 Therefore, the upper limit of the ratio of R1 to NWF1 [R1/NWF1] is lower Preferably it is 0.30, and more preferably is 0.25, 0.20, 0.19, 0.15, 0.10, 0.05, 0.02 in order. In addition, the lower limit of the ratio [R1/NWF1] is preferably 0. In addition, the ratio [R1/NWF1] may be zero.

藉由將比[R1/NWF1]的上限設為上述範圍,從而能夠抑制阿貝數的減小。 By setting the upper limit of the ratio [R1/NWF1] to the above range, it is possible to suppress the decrease in Abbe number.

<玻璃組成> <Glass composition>

以下,對玻璃組成進行詳細說明。另外,只要沒有特別說明,各種玻璃成分的含量等就以質量%表示。另外,合計含量是複數種玻璃成分的含量的合計量,也包括各含量為0%的情況。 Hereinafter, the glass composition will be described in detail. In addition, unless otherwise specified, the contents of various glass components and the like are expressed in mass %. In addition, the total content is the total amount of the content of a plurality of glass components, and the case where each content is 0% is also included.

在本實施形態的光學玻璃中,B2O3的含量的上限較佳為32%,進而依次更佳為30%、28%、26%、25%、24%。此外,B2O3的含量的下限較佳為10%,進而依次更佳為13%、14%、15%、16%。 In the optical glass of the present embodiment, the upper limit of the content of B 2 O 3 is preferably 32%, and more preferably 30%, 28%, 26%, 25%, and 24% in this order. In addition, the lower limit of the content of B 2 O 3 is preferably 10%, and more preferably 13%, 14%, 15%, and 16% in this order.

B2O3為玻璃的網絡形成成分,具有改善玻璃的熔融性並且抑制阿貝數的減小的作用。此外,與SiO2相比不易使玻璃化轉變溫度(Tg)上升。當B2O3的含量少時,有玻璃的熱穩定性和熔融性降低的傾向。另一方面,當B2O3的含量多時,有折射率(nd)、化學耐久性降低的傾向。因此,從改善玻璃的熱穩定性、熔融性及成型性等的觀點出發,較佳B2O3的含量的下限為上述範圍。另一方面,從在得到所需的折射率的同時良好地維持化學耐久性的觀點出發,B2O3的含量的上限較佳為上述範圍。 B 2 O 3 is a network-forming component of glass, and has the effect of improving the meltability of glass and suppressing the decrease in Abbe number. In addition, it is difficult to increase the glass transition temperature (Tg) compared to SiO 2 . When the content of B 2 O 3 is small, the thermal stability and meltability of the glass tend to decrease. On the other hand, when the content of B 2 O 3 is large, the refractive index (nd) and chemical durability tend to decrease. Therefore, from the viewpoint of improving the thermal stability, meltability, and moldability of the glass, the lower limit of the B 2 O 3 content is preferably within the above range. On the other hand, from the viewpoint of obtaining a desired refractive index while maintaining good chemical durability, the upper limit of the content of B 2 O 3 is preferably the above range.

在本實施形態的光學玻璃中,SiO2的含量的上限 較佳為10%,進而依次更佳為8%、7%、6%、5%、4%、3%。此外,SiO2的含量的下限較佳為0%。另外,SiO2的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of SiO 2 is preferably 10%, and more preferably 8%, 7%, 6%, 5%, 4%, and 3% in this order. In addition, the lower limit of the content of SiO 2 is preferably 0%. In addition, the content of SiO 2 may be 0%.

SiO2為玻璃的網絡形成成分,具有改善玻璃的化學耐久性、耐候性、提高熔融玻璃的黏性、使熔融玻璃容易成型為玻璃的作用。當SiO2的含量少時,有玻璃的熱穩定性、化學耐久性降低的傾向。另一方面,當SiO2的含量多時,有玻璃的熔融性、低溫軟化性降低的傾向,即,有玻璃化轉變溫度上升、玻璃原料產生熔融殘留的傾向。因此,從改善玻璃的熔融性、低溫軟化性的觀點出發,SiO2的含量的上限較佳為上述範圍。 SiO 2 is a network-forming component of glass, which has the function of improving the chemical durability and weather resistance of glass, increasing the viscosity of molten glass, and making it easy to form molten glass into glass. When the content of SiO 2 is small, the thermal stability and chemical durability of the glass tend to decrease. On the other hand, when the content of SiO 2 is large, the meltability and low-temperature softening properties of the glass tend to decrease, that is, the glass transition temperature rises, and the glass raw material tends to cause molten residue. Therefore, from the viewpoint of improving the meltability and low-temperature softening properties of the glass, the upper limit of the content of SiO 2 is preferably the above range.

在本實施形態的光學玻璃中,Al2O3的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,Al2O3的含量的下限較佳為0%。另外,Al2O3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Al 2 O 3 is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1 %. In addition, the lower limit of the content of Al 2 O 3 is preferably 0%. In addition, the content of Al 2 O 3 may be 0%.

Al2O3為具有改善玻璃的化學耐久性、耐候性的作用的玻璃成分,可以考慮作為網絡形成成分。但是,當Al2O3的含量增多時,容易產生折射率(nd)降低、玻璃的熱穩定性降低、玻璃化轉變溫度(Tg)上升、熔融性降低等問題。從避免這樣的問題的觀點出發,Al2O3的含量的上限較佳為上述範圍。 Al 2 O 3 is a glass component that has the effect of improving the chemical durability and weather resistance of glass, and can be considered as a network forming component. However, when the content of Al 2 O 3 increases, problems such as a decrease in the refractive index (nd), a decrease in the thermal stability of the glass, an increase in the glass transition temperature (Tg), and a decrease in meltability are likely to occur. From the viewpoint of avoiding such a problem, the upper limit of the content of Al 2 O 3 is preferably the above range.

在本實施形態的光學玻璃中,玻璃的網絡形成成分B2O3、SiO2及Al2O3的合計含量[B2O3+SiO2+Al2O3]的上限較佳為34%,進而依次更佳為32%、30%、28%、26%、25%、24%。此外,合計含量[B2O3+SiO2+Al2O3]的下限較佳為10%, 進而依次更佳為13%、15%、17%、18%、19%。 In the optical glass of this embodiment, the upper limit of the total content [B 2 O 3 +SiO 2 +Al 2 O 3 ] of the glass network forming components B 2 O 3 , SiO 2 and Al 2 O 3 is preferably 34% , And then more preferably 32%, 30%, 28%, 26%, 25%, 24%. In addition, the lower limit of the total content [B 2 O 3 +SiO 2 +Al 2 O 3 ] is preferably 10%, and more preferably 13%, 15%, 17%, 18%, and 19% in order.

藉由將合計含量[B2O3+SiO2+Al2O3]的上限設為上述範圍,從而容易將折射率維持在所需的範圍。此外,藉由將合計含量[B2O3+SiO2+Al2O3]的下限設為上述範圍,從而可改善玻璃的熱穩定性、容易進一步抑制玻璃的失透。 By setting the upper limit of the total content [B 2 O 3 +SiO 2 +Al 2 O 3 ] to the above range, it is easy to maintain the refractive index in the desired range. In addition, by setting the lower limit of the total content [B 2 O 3 +SiO 2 +Al 2 O 3 ] to the above range, the thermal stability of the glass can be improved and the devitrification of the glass can be further suppressed.

此外,在本實施形態的光學玻璃中,B2O3的含量相對於B2O3、SiO2及Al2O3的合計含量的質量比[B2O3/(B2O3+SiO2+Al2O3)]的下限較佳為0.50,進而依次更佳為0.60、0.70、0.80、0.85。也能夠將質量比[B2O3/(B2O3+SiO2+Al2O3)]設為1。 Further, in the optical glass of the present embodiment, the content of B 2 O 3 with respect to B 2 O 3, the quality of the total content of SiO 2 and Al 2 O 3 ratio [B 2 O 3 / (B 2 O 3 + SiO The lower limit of 2 +Al 2 O 3 )] is preferably 0.50, and more preferably 0.60, 0.70, 0.80, and 0.85 in order. The mass ratio [B 2 O 3 /(B 2 O 3 +SiO 2 +Al 2 O 3 )] can also be set to 1.

當質量比[B2O3/(B2O3+SiO2+Al2O3)]小時,有玻璃的熔融性下降並且玻璃化轉變溫度Tg上升的傾向。因此,從維持良好的熔融性、玻璃的低溫軟化性的觀點出發,質量比[B2O3/(B2O3+SiO2+Al2O3)]的下限較佳為上述範圍。 When the mass ratio [B 2 O 3 /(B 2 O 3 +SiO 2 +Al 2 O 3 )] is small, the meltability of the glass decreases and the glass transition temperature Tg tends to increase. Therefore, from the viewpoint of maintaining good meltability and low-temperature softening properties of glass, the lower limit of the mass ratio [B 2 O 3 /(B 2 O 3 +SiO 2 +Al 2 O 3 )] is preferably in the above range.

也能夠將質量比[B2O3/(B2O3+SiO2+Al2O3)]設為1,但是藉由含有少量SiO2,從而容易使成型時的熔融玻璃的黏度成為適合於成型的黏度。 It is also possible to set the mass ratio [B 2 O 3 /(B 2 O 3 +SiO 2 +Al 2 O 3 )] to 1, but by containing a small amount of SiO 2 , it is easy to make the viscosity of the molten glass suitable during molding For the viscosity of the molding.

在本實施形態的光學玻璃中,La2O3、Gd2O3、Y2O3及Yb2O3的合計含量[La2O3+Gd2O3+Y2O3+Yb2O3]的上限較佳為65%,進而依次更佳為60%、57%、55%、53%、52%。此外,合計含量[La2O3+Gd2O3+Y2O3+Yb2O3]的下限較佳為35%,進而依次更佳為38%、41%、44%、45%、46%。 In the optical glass of this embodiment, the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 [La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Yb 2 O The upper limit of 3 ] is preferably 65%, and more preferably 60%, 57%, 55%, 53%, 52% in this order. In addition, the lower limit of the total content [La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ] is preferably 35%, and more preferably 38%, 41%, 44%, 45%, 46%.

從實現所需的折射率、阿貝數的觀點出發,合計含量[La2O3+Gd2O3+Y2O3+Yb2O3]的下限較佳為上述範圍。從改 善玻璃的熱穩定性、低溫軟化性的觀點出發,合計含量[La2O3+Gd2O3+Y2O3+Yb2O3]的上限較佳為上述範圍。 From the viewpoint of achieving the required refractive index and Abbe number, the lower limit of the total content [La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Yb 2 O 3 ] is preferably the above range. From the viewpoint of improving the thermal stability and low-temperature softening properties of the glass, the upper limit of the total content [La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Yb 2 O 3 ] is preferably the above range.

在本實施形態的光學玻璃中,La2O3的含量的上限較佳為50%,進而依次更佳為45%、42%、40%、38%、37%。此外,La2O3的含量的下限較佳為10%,進而依次更佳為15%、17%、19%、20%、21%、22%。 In the optical glass of this embodiment, the upper limit of the content of La 2 O 3 is preferably 50%, and more preferably 45%, 42%, 40%, 38%, 37% in order. In addition, the lower limit of the content of La 2 O 3 is preferably 10%, and more preferably 15%, 17%, 19%, 20%, 21%, 22% in order.

La2O3除了上述的作用以外還具有改善玻璃的化學耐久性的作用。進而,在稀土類氧化物成分中,La2O3是即使含量較多也不易使熱穩定性降低的成分。因此,從改善玻璃的熱穩定性、化學耐久性的觀點出發,La2O3的含量的下限較佳為上述範圍。此外,從改善玻璃的熱穩定性的觀點出發,La2O3的含量的上限較佳為上述範圍。 La 2 O 3 has the effect of improving the chemical durability of the glass in addition to the aforementioned effects. Furthermore, among the rare earth oxide components, La 2 O 3 is a component that does not easily degrade thermal stability even if the content is large. Therefore, from the viewpoint of improving the thermal stability and chemical durability of the glass, the lower limit of the content of La 2 O 3 is preferably the above range. In addition, from the viewpoint of improving the thermal stability of the glass, the upper limit of the content of La 2 O 3 is preferably the above range.

在本實施形態的光學玻璃中,Gd2O3的含量的上限較佳為50%,進而依次更佳為45%、40%、35%、31%、30%、29%。此外,Gd2O3的含量的下限較佳為1%,進而依次更佳為2%、3%、5%、7%、10%、11%、12%。 In the optical glass of this embodiment, the upper limit of the content of Gd 2 O 3 is preferably 50%, and more preferably 45%, 40%, 35%, 31%, 30%, 29% in order. In addition, the lower limit of the content of Gd 2 O 3 is preferably 1%, and more preferably 2%, 3%, 5%, 7%, 10%, 11%, 12% in order.

Gd2O3除了上述的作用以外還具有改善玻璃的化學耐久性的作用。進而,Gd2O3藉由在玻璃中與La2O3共存,從而還具有提高玻璃的熱穩定性的作用。因此,從改善玻璃的熱穩定性、化學耐久性的觀點出發,Gd2O3的含量的下限較佳為上述範圍。此外,從改善玻璃的熱穩定性的觀點出發,Gd2O3的含量的上限較佳為上述範圍。 In addition to the above-mentioned effects, Gd 2 O 3 also has the effect of improving the chemical durability of the glass. Furthermore, Gd 2 O 3 coexists with La 2 O 3 in the glass, thereby also having an effect of improving the thermal stability of the glass. Therefore, from the viewpoint of improving the thermal stability and chemical durability of the glass, the lower limit of the content of Gd 2 O 3 is preferably the above range. In addition, from the viewpoint of improving the thermal stability of the glass, the upper limit of the content of Gd 2 O 3 is preferably the above range.

在本實施形態的光學玻璃中,Y2O3的含量的上限較佳為10%,進而依次更佳為8%、5%、4%、3%。此外,Y2O3 的含量的下限較佳為0%。另外,Y2O3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Y 2 O 3 is preferably 10%, and more preferably 8%, 5%, 4%, and 3% in this order. In addition, the lower limit of the content of Y 2 O 3 is preferably 0%. In addition, the content of Y 2 O 3 may be 0%.

Y2O3除了上述的作用以外還具有改善玻璃的化學耐久性的作用。進而,Y2O3藉由在玻璃中與La2O3共存,從而還具有提高玻璃的熱穩定性的作用。因此,從改善玻璃的熱穩定性的觀點出發,Y2O3的含量較佳為上述範圍。 In addition to the above-mentioned effects, Y 2 O 3 also has the effect of improving the chemical durability of the glass. Furthermore, Y 2 O 3 coexists with La 2 O 3 in the glass, thereby also having an effect of improving the thermal stability of the glass. Therefore, from the viewpoint of improving the thermal stability of the glass, the content of Y 2 O 3 is preferably within the above range.

在本實施形態的光學玻璃中,Yb2O3的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Yb2O3的含量的下限較佳為0%。另外,Yb2O3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Yb 2 O 3 is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, and 0.05% in order. In addition, the lower limit of the content of Yb 2 O 3 is preferably 0%. In addition, the content of Yb 2 O 3 may be 0%.

Yb2O3與La2O3、Gd2O3及Y2O3同樣是具有在不使阿貝數大幅降低的情況下提高折射率的作用的玻璃成分。但是,與La2O3、Gd2O3、Y2O3相比Yb2O3的分子量大,因此會使玻璃的比重增大。當玻璃的比重增大時,光學元件的質量會增大。例如,如果將質量大的透鏡組裝到自動對焦式的攝像鏡頭,在自動對焦時驅動鏡頭所需的功率就會增大,電池的消耗加劇。因此,期望降低Yb2O3的含量來抑制玻璃的比重增大。 Yb 2 O 3, like La 2 O 3 , Gd 2 O 3, and Y 2 O 3, is a glass component that has the effect of increasing the refractive index without greatly reducing the Abbe number. However, Yb 2 O 3 has a higher molecular weight than La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 , and therefore increases the specific gravity of the glass. When the specific gravity of the glass increases, the quality of the optical element increases. For example, if a high-quality lens is assembled into an auto-focusing camera lens, the power required to drive the lens during auto-focusing will increase, and battery consumption will increase. Therefore, it is desirable to reduce the content of Yb 2 O 3 to suppress an increase in the specific gravity of the glass.

此外,Yb2O3在近紅外區域具有吸收。因此,Yb2O3的含量多的玻璃在近紅外區域的光吸收強,對於監視攝像機、夜視攝像機等在近紅外區域要求高透射率的用途不是較佳的。從改善這樣的問題的觀點出發,Yb2O3的含量較佳為上述範圍。 In addition, Yb 2 O 3 has absorption in the near infrared region. Therefore, glass with a large content of Yb 2 O 3 has strong light absorption in the near-infrared region, and is not preferable for applications requiring high transmittance in the near-infrared region, such as surveillance cameras and night vision cameras. From the viewpoint of improving such problems, the content of Yb 2 O 3 is preferably within the above range.

在本實施形態的光學玻璃中,LaF3的含量的上限根據鹵化物的含量來決定,因此沒有特別限制,但是較佳為5%,進而依次更佳為3%、2%、1%、0.5%。此外,LaF3的含 量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of LaF 3 is determined by the content of the halide, so there is no particular limitation, but it is preferably 5%, and more preferably 3%, 2%, 1%, 0.5 %. In addition, the content of LaF 3 may also be 0%.

在本實施形態的光學玻璃中,GdF3的含量的上限根據鹵化物的含量來決定,因此沒有特別限制,但是較佳為5%,進而依次更佳為3%、2%、1%、0.5%。此外,GdF3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of GdF 3 is determined by the content of the halide, so there is no particular limitation, but it is preferably 5%, and more preferably 3%, 2%, 1%, 0.5 %. In addition, the content of GdF 3 may also be 0%.

在本實施形態的光學玻璃中,YF3的含量的上限根據鹵化物的含量來決定,因此沒有特別限制,但是較佳為5%,進而依次更較佳為3%、2%、1%、0.5%。此外,YF3的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of YF 3 is determined by the content of the halide, so there is no particular limitation, but it is preferably 5%, and more preferably 3%, 2%, 1%, 0.5%. In addition, the content of YF 3 may also be 0%.

在本實施形態的光學玻璃中,YbF3的含量的上限根據鹵化物的含量來決定,因此沒有特別限制,但是較佳為3%,進而依次更佳為2%、1%、0.5%。此外,YbF3的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of YbF 3 is determined according to the content of the halide, and therefore is not particularly limited, but it is preferably 3%, and more preferably 2%, 1%, and 0.5% in this order. In addition, the content of YbF 3 may also be 0%.

在本實施形態的光學玻璃中,La2O3的含量相對於La2O3、Gd2O3、Y2O3及Yb2O3的合計含量[La2O3+Gd2O3+Y2O3+Yb2O3]的質量比[La2O3/(La2O3+Gd2O3+Y2O3+Yb2O3)]的上限較佳為0.99,進而依次更佳為0.95、0.90、0.85、0.80、0.76、0.74、0.73。此外,質量比[La2O3/(La2O3+Gd2O3+Y2O3+Yb2O3)]的下限較佳為0.3,進而依次更佳為0.35、0.4、0.45、0.46。 In the optical glass of this embodiment, the content of La 2 O 3 is relative to the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 [La 2 O 3 +Gd 2 O 3 + The upper limit of the mass ratio of Y 2 O 3 +Yb 2 O 3 ] [La 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Yb 2 O 3 )] is preferably 0.99, and in turn More preferably, it is 0.95, 0.90, 0.85, 0.80, 0.76, 0.74, 0.73. In addition, the lower limit of the mass ratio [La 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Yb 2 O 3 )] is preferably 0.3, and more preferably 0.35, 0.4, 0.45, 0.46.

藉由使質量比[La2O3/(La2O3+Gd2O3+Y2O3+Yb2O3)]的上限為上述範圍,從而能夠將熱穩定性、熔融性維持為良好的狀態。此外,藉由使質量比[La2O3/(La2O3+Gd2O3+Y2O3+Yb2O3)]的下限為上述範圍,從而能夠將熱穩定性、熔融性維 持為良好的狀態。 By setting the upper limit of the mass ratio [La 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Yb 2 O 3 )] to the above range, the thermal stability and meltability can be maintained Good condition. In addition, by setting the lower limit of the mass ratio [La 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Yb 2 O 3 )] to the above range, the thermal stability and melting property can be improved. Maintained in good condition.

在本實施形態的光學玻璃中,ZnO的含量的上限較佳為25%,進而依次更佳為22%、20%、18%、17%、16%。此外,ZnO的含量的下限較佳為5%,進而依次更佳為8%、9%、10%、11%。 In the optical glass of this embodiment, the upper limit of the content of ZnO is preferably 25%, and more preferably 22%, 20%, 18%, 17%, and 16% in order. In addition, the lower limit of the content of ZnO is preferably 5%, and more preferably 8%, 9%, 10%, and 11% in this order.

ZnO是具有在維持折射率的同時使玻璃化轉變溫度(Tg)降低的作用和在將玻璃熔融時促進玻璃的原料的熔融的作用(即,改善熔融性的作用)的玻璃成分。此外,與鹼土類金屬等其它二價金屬成分相比,ZnO改善玻璃的熱穩定性、降低液相線溫度的作用強。但是,當ZnO的含量增多時,示出阿貝數(νd)減少、玻璃高色散化的傾向。因此,從降低玻璃化轉變溫度(Tg)、改善玻璃的熔融性、熱穩定性的觀點出發,ZnO的含量的下限較佳為上述範圍。此外,從使玻璃低色散化的觀點出發,ZnO的含量的上限較佳為上述範圍。 ZnO is a glass component having the function of reducing the glass transition temperature (Tg) while maintaining the refractive index and the function of promoting the melting of the raw material of the glass when the glass is melted (that is, the function of improving the meltability). In addition, compared with other divalent metal components such as alkaline earth metals, ZnO has a strong effect on improving the thermal stability of glass and lowering the liquidus temperature. However, when the content of ZnO increases, the Abbe number (νd) decreases and the glass tends to increase dispersion. Therefore, from the viewpoint of lowering the glass transition temperature (Tg) and improving the meltability and thermal stability of the glass, the lower limit of the content of ZnO is preferably the above range. In addition, from the viewpoint of lowering the dispersion of the glass, the upper limit of the content of ZnO is preferably in the above range.

在本實施形態的光學玻璃中,Li2O的含量的上限較佳為4.0%,進而依次更佳為3.0%、2.0%、1.6%、1.2%、0.8%、0.4%。此外,Li2O的含量的下限較佳為0%。 In the optical glass of the present embodiment, the upper limit of the content of Li 2 O is preferably 4.0%, and more preferably 3.0%, 2.0%, 1.6%, 1.2%, 0.8%, 0.4% in order. In addition, the lower limit of the content of Li 2 O is preferably 0%.

Li2O是降低玻璃化轉變溫度(Tg)的作用強、對於得到低溫軟化性有用的玻璃成分。此外,Li2O還發揮改善玻璃的熔融性的作用。另一方面,當Li2O的含量增多時,有折射率(nd)降低的傾向。因此,從在維持所需的光學特性的同時降低玻璃化轉變溫度(Tg)的觀點出發,Li2O的含量較佳為上述範圍。 Li 2 O is a glass component that has a strong effect of lowering the glass transition temperature (Tg) and is useful for obtaining low-temperature softening properties. In addition, Li 2 O also plays a role in improving the meltability of glass. On the other hand, when the content of Li 2 O increases, the refractive index (nd) tends to decrease. Therefore, from the viewpoint of lowering the glass transition temperature (Tg) while maintaining the required optical properties, the content of Li 2 O is preferably within the above-mentioned range.

在本實施形態的光學玻璃中,ZrO2的含量的上限 較佳為15%,進而依次更佳為12%、10%、8%、7%、6%。此外,ZrO2的含量的下限較佳為0.1%,進而依次更佳為0.5%、1.0%、1.5%、2.0%、2.5%、3.0%。 In the optical glass of the present embodiment, the upper limit of the content of ZrO 2 is preferably 15%, and more preferably 12%, 10%, 8%, 7%, and 6% in this order. In addition, the lower limit of the content of ZrO 2 is preferably 0.1%, and more preferably 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0% in order.

ZrO2為具有提高折射率(nd)並且改善玻璃的熱穩定性的作用的玻璃成分。但是,當ZrO2的含量過多時,示出玻璃的熱穩定性降低的傾向,玻璃化轉變溫度(Tg)上升,此外,玻璃原料容易產生熔融殘留。因此,從抑制玻璃化轉變溫度(Tg)的上升、良好地維持玻璃的熔融性和熱穩定性、實現所需的光學特性的觀點出發,ZrO2的含量的上限較佳為上述範圍。另一方面,從在實現所需的光學特性的同時改善玻璃的熱穩定性的觀點出發,ZrO2的含量的下限較佳為上述範圍。 ZrO 2 is a glass component having functions of increasing the refractive index (nd) and improving the thermal stability of glass. However, when the content of ZrO 2 is too large, the thermal stability of the glass tends to decrease, the glass transition temperature (Tg) is increased, and the glass raw material is likely to be melted. Therefore, from the viewpoint of suppressing the increase in the glass transition temperature (Tg), maintaining the meltability and thermal stability of the glass well, and achieving the required optical properties, the upper limit of the content of ZrO 2 is preferably within the above range. On the other hand, from the viewpoint of improving the thermal stability of the glass while achieving desired optical properties, the lower limit of the content of ZrO 2 is preferably the above range.

在本實施形態的光學玻璃中,Nb2O5的含量的上限較佳為15%,進而依次更佳為12%、10%、9%、8%、7%、6%。此外,Nb2O5的含量的下限較佳為0.1%,進而依次更佳為0.3%、0.5%、1.0%、1.2%、1.5%、2.0%。 In the optical glass of the present embodiment, the upper limit of the content of Nb 2 O 5 is preferably 15%, and more preferably 12%, 10%, 9%, 8%, 7%, and 6% in order. In addition, the lower limit of the Nb 2 O 5 content is preferably 0.1%, and more preferably 0.3%, 0.5%, 1.0%, 1.2%, 1.5%, and 2.0% in order.

Nb2O5具有提高折射率並且改善玻璃的熱穩定性的作用。此外,還具有改善玻璃的化學耐久性的作用。Nb2O5是替代具有高折射率低色散特性且改善玻璃的熱穩定性的作用大的Ta2O5的玻璃成分,是對於降低極其昂貴且具有使玻璃的熔融性降低的作用的Ta2O5的含量重要的玻璃成分。 Nb 2 O 5 has the effect of increasing the refractive index and improving the thermal stability of the glass. In addition, it also has the effect of improving the chemical durability of the glass. Ta large effect the thermal stability of the glass component Nb 2 O 5 is an alternative to having a high refractive index and low dispersion characteristics and improved glass 2 O 5, and is extremely expensive, and reducing glass has a melting-reducing effect of the Ta 2 The content of O 5 is an important glass component.

當Nb2O5的含量過多時,示出玻璃的熱穩定性降低的傾向,並且示出阿貝數(νd)減小、玻璃高色散化的傾向。此外,有玻璃的著色變強的傾向。因此,從維持玻璃的熱穩定性的觀點出發,Nb2O5的含量的下限較佳為上述範圍。另一方 面,從維持玻璃的熱穩定性、抑制玻璃的著色增大的觀點出發,Nb2O5的含量的上限較佳為上述範圍。 When the content of Nb 2 O 5 is too large, the thermal stability of the glass tends to decrease, and the Abbe number (νd) decreases, and the glass tends to increase dispersion. In addition, the coloration of glass tends to become stronger. Therefore, from the viewpoint of maintaining the thermal stability of the glass, the lower limit of the Nb 2 O 5 content is preferably the above range. On the other hand, from the viewpoint of maintaining the thermal stability of the glass and suppressing the increase in coloration of the glass, the upper limit of the Nb 2 O 5 content is preferably within the above range.

在本實施形態的光學玻璃中,Ta2O5的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.3%、0.2%、0.1%、0.05%。此外,Ta2O5的含量的下限較佳為0%。另外,Ta2O5的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Ta 2 O 5 is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, 0.3%, 0.2%, 0.1 %, 0.05%. In addition, the lower limit of the content of Ta 2 O 5 is preferably 0%. In addition, the content of Ta 2 O 5 may be 0%.

如前所述,Ta2O5為具有高折射率低色散特性且具有改善玻璃的熱穩定性的作用的玻璃成分。與其它的玻璃成分相比較,Ta2O5是極其昂貴的成分,當Ta2O5的含量增多時,玻璃的生產成本會增大。此外,與其它的玻璃成分相比Ta2O5的分子量大,因此會使玻璃的比重增大,結果使玻璃制光學元件的重量增大。進而,當使Ta2O5的含量增加時,玻璃的熔融性會降低,在將玻璃熔融時容易產生玻璃原料的熔融殘留。因此,Ta2O5的含量較佳為上述範圍。 As mentioned above, Ta 2 O 5 is a glass component that has high refractive index and low dispersion characteristics and has the effect of improving the thermal stability of glass. Compared with other glass components, Ta 2 O 5 is an extremely expensive component. When the content of Ta 2 O 5 increases, the production cost of the glass will increase. In addition, since the molecular weight of Ta 2 O 5 is higher than that of other glass components, the specific gravity of the glass increases, and as a result, the weight of the glass optical element increases. Furthermore, when the content of Ta 2 O 5 is increased, the meltability of the glass is reduced, and when the glass is melted, melting residue of the glass raw material is likely to occur. Therefore, the content of Ta 2 O 5 is preferably within the above range.

在本實施形態的光學玻璃中,Nb2O5、TiO2、WO3及Bi2O3的合計含量[Nb2O5+TiO2+WO3+Bi2O3]的上限較佳為15%,進而依次更佳為13%、12%、11%、10%、9%、8%、7%。此外,合計含量[Nb2O5+TiO2+WO3+Bi2O3]的下限較佳為0.1%,進而依次更佳為0.3%、0.5%、1%、1.2%、1.5%、2%、3%、4%、5%。 In the optical glass of this embodiment, the upper limit of the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 [Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 ] is preferably 15 %, and more preferably 13%, 12%, 11%, 10%, 9%, 8%, 7% in order. In addition, the lower limit of the total content [Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 ] is preferably 0.1%, and more preferably 0.3%, 0.5%, 1%, 1.2%, 1.5%, 2 %, 3%, 4%, 5%.

TiO2、WO3及Bi2O3與Nb2O5一同是具有提高折射率的作用的玻璃成分,藉由適量含有,從而還具有改善玻璃的熱穩定性的作用。此外,當提高這些玻璃成分的含量時,阿貝數(νd)減小。因此,將這些玻璃成分稱為高折射率高色散化成 分。從抑制阿貝數(νd)的減小、抑制玻璃的著色增大的觀點出發,合計含量[Nb2O5+TiO2+WO3+Bi2O3]的上限較佳為上述範圍。此外,從在保持高折射率的同時改善玻璃的熱穩定性的觀點出發,合計含量[Nb2O5+TiO2+WO3+Bi2O3]的下限較佳為上述範圍。 TiO 2 , WO 3 and Bi 2 O 3 together with Nb 2 O 5 are glass components that have the effect of increasing the refractive index, and when contained in an appropriate amount, they also have the effect of improving the thermal stability of the glass. In addition, when the content of these glass components is increased, the Abbe number (νd) decreases. Therefore, these glass components are referred to as high refractive index and high dispersion components. From the viewpoint of suppressing the decrease in Abbe number (νd) and the increase in coloration of glass, the upper limit of the total content [Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 ] is preferably the above range. In addition, from the viewpoint of improving the thermal stability of the glass while maintaining a high refractive index, the lower limit of the total content [Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 ] is preferably the above range.

在本實施形態的光學玻璃中,TiO2、WO3及Bi2O3的合計含量[TiO2+WO3+Bi2O3]的上限較佳為15%,進而依次更佳為12%、10%、9%、8%、7%、6.5%。此外,合計含量[TiO2+WO3+Bi2O3]的下限較佳為0%,進而依次更佳為0.1%、0.5%、1%、1.5%、2%、2.5%、3%。 In the optical glass of this embodiment, the upper limit of the total content of TiO 2 , WO 3 and Bi 2 O 3 [TiO 2 +WO 3 +Bi 2 O 3 ] is preferably 15%, and more preferably 12%, 10%, 9%, 8%, 7%, 6.5%. In addition, the lower limit of the total content [TiO 2 +WO 3 +Bi 2 O 3 ] is preferably 0%, and more preferably 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% in order.

在高折射率高色散化成分中,與Nb2O5相比,TiO2、WO3及Bi2O3容易使玻璃的著色增大。從抑制玻璃的著色增大的觀點出發,合計含量[TiO2+WO3+Bi2O3]的上限較佳為上述範圍。 Among the high-refractive-index and high-dispersion components, TiO 2 , WO 3 and Bi 2 O 3 tend to increase the coloring of glass compared to Nb 2 O 5 . From the viewpoint of suppressing the increase in coloration of the glass, the upper limit of the total content [TiO 2 +WO 3 +Bi 2 O 3 ] is preferably within the above range.

在本實施形態的光學玻璃中,WO3的含量的上限較佳為15%,進而依次更佳為13%、12%、11%、10%、9%、8%、7%。此外,WO3的含量的下限較佳為0%,進而依次更佳為0.1%、0.5%、1%、1.5%、2%、2.5%、3%。 In the optical glass of this embodiment, the upper limit of the content of WO 3 is preferably 15%, and more preferably 13%, 12%, 11%, 10%, 9%, 8%, and 7% in order. In addition, the lower limit of the content of WO 3 is preferably 0%, and more preferably 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% in order.

在高折射率高色散化成分中,WO3具有使玻璃化轉變溫度(Tg)降低的作用。但是,當WO3的含量過多時,阿貝數(νd)減少,難以實現所需的光學特性。此外,玻璃的著色會增大。從抑制阿貝數(νd)的減小、防止玻璃的著色增大的觀點出發,WO3的含量的上限較佳為上述範圍。另外,WO3的含量也可以為0%。此外,為了得到WO3的抑制玻璃化轉變溫度(Tg) 上升的效果,WO3的含量的下限較佳為上述範圍。 Among the high-refractive-index and high-dispersion components, WO 3 has the effect of lowering the glass transition temperature (Tg). However, when the content of WO 3 is too large, the Abbe number (νd) decreases, making it difficult to achieve the desired optical characteristics. In addition, the coloration of the glass increases. From the viewpoint of suppressing the decrease in Abbe number (νd) and preventing the increase in coloration of the glass, the upper limit of the content of WO 3 is preferably the above range. In addition, the content of WO 3 may be 0%. Further, in order to obtain the effect of suppressing the glass transition temperature (Tg) rises WO 3, the lower limit of the preferred content of WO 3 in the above range.

在本實施形態的光學玻璃中,TiO2的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,TiO2的含量的下限較佳為0%。另外,TiO2的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of TiO 2 is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1% in order. In addition, the lower limit of the content of TiO 2 is preferably 0%. In addition, the content of TiO 2 may also be 0%.

在高折射率高色散化成分中,TiO2為比較容易使玻璃的著色增大的玻璃成分。此外,TiO2在精密壓製成型時會與壓製成型模的成型面之間進行反應,其結果是,壓製成型後的玻璃的表面的透明性降低(白濁),此外,容易使玻璃表面產生微小的氣泡。因此,從製作著色少、表面品質好的光學元件的觀點出發,TiO2的含量較佳為上述範圍。 Among the high refractive index and high dispersion components, TiO 2 is a glass component that is relatively easy to increase the coloration of glass. In addition, TiO 2 reacts with the molding surface of the press molding die during precision press molding. As a result, the transparency of the glass surface after press molding is reduced (white turbidity). In addition, it is easy to cause fine particles on the glass surface. bubble. Therefore, from the viewpoint of producing an optical element with little coloration and good surface quality, the content of TiO 2 is preferably within the above-mentioned range.

在本實施形態的光學玻璃中,Bi2O3的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,Bi2O3的含量的下限較佳為0%。另外,Bi2O3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Bi 2 O 3 is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1 %. In addition, the lower limit of the content of Bi 2 O 3 is preferably 0%. In addition, the content of Bi 2 O 3 may be 0%.

在高折射率高色散化成分中,Bi2O3的分子量大,是使玻璃的比重增大並且使玻璃的著色增大的玻璃成分,因此較佳降低Bi2O3的含量。因此,Bi2O3的含量較佳為上述範圍。 Among the high-refractive-index and high-dispersion components, Bi 2 O 3 has a large molecular weight and is a glass component that increases the specific gravity of the glass and increases the coloration of the glass. Therefore, it is preferable to reduce the content of Bi 2 O 3 . Therefore, the content of Bi 2 O 3 is preferably within the above range.

在本實施形態的光學玻璃中,Na2O的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,Na2O的含量的下限較佳為0%。另外,Na2O的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of Na 2 O is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. . In addition, the lower limit of the content of Na 2 O is preferably 0%. In addition, the content of Na 2 O may be 0%.

在本實施形態的光學玻璃中,K2O的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、 0.5%、0.1%。此外,K2O的含量的下限較佳為0%。另外,K2O的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of K 2 O is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. . In addition, the lower limit of the K 2 O content is preferably 0%. In addition, the content of K 2 O may be 0%.

Na2O和K2O均具有改善玻璃的熔融性的作用,但是當它們的含量增多時,折射率(nd)、玻璃的熱穩定性、化學耐久性、耐候性會下降。因此,Na2O和K2O的各含量分別較佳設為上述範圍。 Both Na 2 O and K 2 O have the effect of improving the meltability of the glass, but when their content increases, the refractive index (nd), thermal stability, chemical durability, and weather resistance of the glass will decrease. Therefore, each content of Na 2 O and K 2 O is preferably set to the aforementioned range.

在本實施形態的光學玻璃中,Li2O、Na2O及K2O的合計含量[Li2O+Na2O+K2O]的上限較佳為6%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%。此外,合計含量[Li2O+Na2O+K2O]的下限較佳為0%。 In the optical glass of this embodiment, the upper limit of the total content of Li 2 O, Na 2 O, and K 2 O [Li 2 O+Na 2 O+K 2 O] is preferably 6%, and more preferably 4 in order. %, 3%, 2.5%, 2%, 1.5%, 1%. In addition, the lower limit of the total content [Li 2 O+Na 2 O+K 2 O] is preferably 0%.

Li2O是降低玻璃化轉變溫度(Tg)的作用強、對於得到低溫軟化性有用的玻璃成分。此外,Li2O還發揮改善玻璃的熔融性的作用。另一方面,當Li2O的含量增多時,有折射率(nd)降低的傾向。此外,Na2O和K2O均具有改善玻璃的熔融性的作用,但是當它們的含量增多時,折射率(nd)、玻璃的熱穩定性、化學耐久性、耐候性會降低。因此,Li2O、Na2O及K2O的合計含量[Li2O+Na2O+K2O]較佳為上述範圍。 Li 2 O is a glass component that has a strong effect of lowering the glass transition temperature (Tg) and is useful for obtaining low-temperature softening properties. In addition, Li 2 O also plays a role in improving the meltability of glass. On the other hand, when the content of Li 2 O increases, the refractive index (nd) tends to decrease. In addition, both Na 2 O and K 2 O have the effect of improving the meltability of the glass, but when their content increases, the refractive index (nd), thermal stability of the glass, chemical durability, and weather resistance will decrease. Therefore, the total content of Li 2 O, Na 2 O, and K 2 O [Li 2 O+Na 2 O+K 2 O] is preferably within the aforementioned range.

在本實施形態的光學玻璃中,Rb2O的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%。此外,Rb2O的含量的下限較佳為0%。另外,Rb2O的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of Rb 2 O is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, and 0.1% in order. In addition, the lower limit of the content of Rb 2 O is preferably 0%. In addition, the content of Rb 2 O may be 0%.

在本實施形態的光學玻璃中,Cs2O的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%。此外,Cs2O的含量的下限較佳為0%。另外,Cs2O的含 量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of Cs 2 O is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, and 0.1% in order. In addition, the lower limit of the content of Cs 2 O is preferably 0%. In addition, the content of Cs 2 O may be 0%.

Rb2O和Cs2O均具有改善玻璃的熔融性的作用,但是當它們的含量增多時,折射率(nd)、玻璃的熱穩定性、化學耐久性、耐候性會下降。因此,Rb2O和Cs2O的各含量分別較佳為上述範圍。 Both Rb 2 O and Cs 2 O have the effect of improving the meltability of the glass, but when their content increases, the refractive index (nd), thermal stability, chemical durability, and weather resistance of the glass will decrease. Therefore, each content of Rb 2 O and Cs 2 O is preferably within the above-mentioned range.

在本實施形態的光學玻璃中,MgO的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%。此外,MgO的含量的下限較佳為0%。另外,MgO的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of MgO is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, and 1% in this order. In addition, the lower limit of the content of MgO is preferably 0%. In addition, the content of MgO may be 0%.

在本實施形態的光學玻璃中,CaO的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%。此外,CaO的含量的下限較佳為0%。另外,CaO的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of CaO is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, and 1% in this order. In addition, the lower limit of the content of CaO is preferably 0%. In addition, the content of CaO may be 0%.

在本實施形態的光學玻璃中,SrO的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,SrO的含量的下限較佳為0%。另外,SrO的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the SrO content is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1% in order. In addition, the lower limit of the content of SrO is preferably 0%. In addition, the content of SrO may be 0%.

在本實施形態的光學玻璃中,BaO的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,BaO的含量的下限較佳為0%。另外,BaO的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of BaO is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1% in order. In addition, the lower limit of the content of BaO is preferably 0%. In addition, the content of BaO may be 0%.

MgO、CaO、SrO、BaO均為具有改善玻璃的熔融性的作用的玻璃成分。但是,當這些玻璃成分的含量增多時,玻璃的熱穩定性會降低,玻璃容易失透。因此,這些玻璃成分 的各含量分別較佳為上述範圍。 MgO, CaO, SrO, and BaO are all glass components that have an effect of improving the meltability of glass. However, when the content of these glass components increases, the thermal stability of the glass decreases, and the glass tends to devitrify. Therefore, these glass components Each content of is preferably within the above-mentioned range.

在本實施形態的光學玻璃中,MgO、CaO、SrO及BaO的合計含量[MgO+CaO+SrO+BaO]的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%。此外,合計含量[MgO+CaO+SrO+BaO]的下限較佳為0%。另外,合計含量[MgO+CaO+SrO+BaO]也可以為0%。 In the optical glass of this embodiment, the upper limit of the total content of MgO, CaO, SrO, and BaO [MgO+CaO+SrO+BaO] is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%. In addition, the lower limit of the total content [MgO+CaO+SrO+BaO] is preferably 0%. In addition, the total content [MgO+CaO+SrO+BaO] may be 0%.

從維持玻璃的熱穩定性的觀點出發,合計含量[MgO+CaO+SrO+BaO]較佳為上述範圍。 From the viewpoint of maintaining the thermal stability of the glass, the total content [MgO+CaO+SrO+BaO] is preferably in the above range.

在本實施形態的光學玻璃中,B2O3、SiO2、Al2O3、La2O3、Gd2O3、Y2O3、ZnO、Li2O、ZrO2及Nb2O5的合計含量[B2O3+SiO2+Al2O3+La2O3+Gd2O3+Y2O3+ZnO+Li2O+ZrO2+Nb2O5]的上限較佳為100%。此外,合計含量[B2O3+SiO2+Al2O3+La2O3+Gd2O3+Y2O3+ZnO+Li2O+ZrO2+Nb2O5]的下限較佳為79%,進而依次更佳為80%、82%、84%、86%、88%。 In the optical glass of this embodiment, B 2 O 3 , SiO 2 , Al 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZnO, Li 2 O, ZrO 2 and Nb 2 O 5 The total content of [B 2 O 3 +SiO 2 +Al 2 O 3 +La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +ZnO+Li 2 O+ZrO 2 +Nb 2 O 5 ] has a better upper limit Is 100%. In addition, the total content [B 2 O 3 +SiO 2 +Al 2 O 3 +La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +ZnO+Li 2 O+ZrO 2 +Nb 2 O 5 ] has a lower limit 79% is preferred, and 80%, 82%, 84%, 86%, 88% are more preferred.

在本實施形態中,B2O3、SiO2及Al2O3為玻璃的網絡形成成分,La2O3、Gd2O3及Y2O3為在不使阿貝數大幅減小的情況下提高折射率的玻璃成分,ZnO和Li2O為具有在不使折射率大幅降低的情況下使玻璃化轉變溫度(Tg)降低的作用的玻璃成分,此外,ZrO2和Nb2O5為具有提高玻璃的折射率並且改善玻璃的熱穩定性的作用的玻璃成分。因此,合計含量[B2O3+SiO2+Al2O3+La2O3+Gd2O3+Y2O3+ZnO+Li2O+ZrO2+Nb2O5]較佳為上述範圍。 In this embodiment, B 2 O 3 , SiO 2 and Al 2 O 3 are the network forming components of the glass, and La 2 O 3 , Gd 2 O 3 and Y 2 O 3 are those that do not significantly reduce the Abbe number. In the case of glass components that increase the refractive index, ZnO and Li 2 O are glass components that have the effect of lowering the glass transition temperature (Tg) without greatly reducing the refractive index. In addition, ZrO 2 and Nb 2 O 5 It is a glass component that has the function of increasing the refractive index of the glass and improving the thermal stability of the glass. Therefore, the total content [B 2 O 3 +SiO 2 +Al 2 O 3 +La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +ZnO+Li 2 O+ZrO 2 +Nb 2 O 5 ] is preferably The above range.

在本實施形態的光學玻璃中,三氧化二鎵(Ga2O3)的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、 2%、1.5%、1%、0.5%、0.1%。此外,Ga2O3的含量的下限較佳為0%。另外,Ga2O3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of gallium trioxide (Ga 2 O 3 ) is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1 %, 0.5%, 0.1%. In addition, the lower limit of the content of Ga 2 O 3 is preferably 0%. In addition, the content of Ga 2 O 3 may be 0%.

在本實施形態的光學玻璃中,三氧化二銦(In2O3)的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,In2O3的含量的下限較佳為0%。另外,In2O3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of indium trioxide (In 2 O 3 ) is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1 %, 0.5%, 0.1%. In addition, the lower limit of the content of In 2 O 3 is preferably 0%. In addition, the content of In 2 O 3 may be 0%.

在本實施形態的光學玻璃中,三氧化二鈧(Sc2O3)的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,Sc2O3的含量的下限較佳為0%。另外,Sc2O3的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of scandium trioxide (Sc 2 O 3 ) is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1 %, 0.5%, 0.1%. In addition, the lower limit of the content of Sc 2 O 3 is preferably 0%. In addition, the content of Sc 2 O 3 may be 0%.

在本實施形態的光學玻璃中,二氧化鉿(HfO2)的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,HfO2的含量的下限較佳為0%。另外,HfO2的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of hafnium dioxide (HfO 2 ) is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5 %, 0.1%. In addition, the lower limit of the content of HfO 2 is preferably 0%. In addition, the content of HfO 2 may also be 0%.

Ga2O3、In2O3、Sc2O3、HfO2均具有提高折射率(nd)的作用。但是,這些玻璃成分昂貴,此外,也不是對於達到發明的目的所必需的玻璃成分。因此,較佳Ga2O3、In2O3、Sc2O3、HfO2的各含量為上述範圍。 Ga 2 O 3 , In 2 O 3 , Sc 2 O 3 , and HfO 2 all have the effect of increasing the refractive index (nd). However, these glass components are expensive, and in addition, they are not necessary for achieving the purpose of the invention. Therefore, it is preferable that the respective contents of Ga 2 O 3 , In 2 O 3 , Sc 2 O 3 , and HfO 2 fall within the aforementioned range.

在本實施形態的光學玻璃中,Lu2O3的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%。此外,Lu2O3的含量的下限較佳為0%。另外,Lu2O3的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Lu 2 O 3 is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1 %. In addition, the lower limit of the content of Lu 2 O 3 is preferably 0%. In addition, the content of Lu 2 O 3 may be 0%.

三氧化二鎦(Lu2O3)具有提高折射率(nd)的作用,但是與Yb2O3同樣分子量大,因此也是使玻璃的比重增加的玻 璃成分。因此,較佳降低Lu2O3的含量,Lu2O3的含量較佳為上述範圍。 Diprosium trioxide (Lu 2 O 3 ) has the effect of increasing the refractive index (nd), but it has a large molecular weight like Yb 2 O 3 and therefore is also a glass component that increases the specific gravity of glass. Thus, preferred to reduce the content of Lu 2 O 3, Lu 2 O 3 content is preferably in the above range.

在本實施形態的光學玻璃中,二氧化鍺(GeO2)的含量的上限較佳為3%,進而依次更佳為2%、1%、0.5%、0.1%。此外,GeO2的含量的下限較佳為0%。另外,GeO2的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of germanium dioxide (GeO 2 ) is preferably 3%, and more preferably 2%, 1%, 0.5%, and 0.1% in order. In addition, the lower limit of the content of GeO 2 is preferably 0%. In addition, the content of GeO 2 may also be 0%.

GeO2具有提高折射率(nd)的作用,但是在通常使用的玻璃成分中是尤其昂貴的成分。因此,從降低玻璃的製造成本的觀點出發,GeO2的含量較佳為上述範圍。 GeO 2 has the effect of increasing the refractive index (nd), but is a particularly expensive component among commonly used glass components. Therefore, from the viewpoint of reducing the manufacturing cost of glass, the content of GeO 2 is preferably within the above range.

此外,在本實施形態的光學玻璃中,五氧化二磷(P2O5)的含量的上限較佳為5%,進而依次更佳為4%、3%、2%、1%、0.5%、0.1%。此外,P2O5的含量的下限較佳為0%。另外,P2O5的含量也可以為0%。 In addition, in the optical glass of this embodiment, the upper limit of the content of phosphorus pentoxide (P 2 O 5 ) is preferably 5%, and more preferably 4%, 3%, 2%, 1%, 0.5% in order. , 0.1%. In addition, the lower limit of the content of P 2 O 5 is preferably 0%. In addition, the content of P 2 O 5 may be 0%.

P2O5是使折射率(nd)降低的玻璃成分,還是使玻璃的熱穩定性降低的成分。從製作具有所需的光學特性、熱穩定性優秀的玻璃的觀點出發,P2O5的含量較佳為上述範圍。 P 2 O 5 is a glass component that lowers the refractive index (nd) and a component that lowers the thermal stability of glass. From the viewpoint of producing a glass having required optical properties and excellent thermal stability, the content of P 2 O 5 is preferably within the above-mentioned range.

本實施形態的光學玻璃較佳主要由上述的玻璃成分構成,即,較佳由B2O3、SiO2、Al2O3、La2O3、Gd2O3、Y2O3、Yb2O3、LaF3、GdF3、YF3、YbF3、ZnO、Li2O、ZrO2、Nb2O5、Ta2O5、WO3、TiO2、Bi2O3、Na2O、K2O、Rb2O、Cs2O、MgO、CaO、SrO、BaO、Ga2O3、In2O3、Sc2O3、HfO2、Lu2O3、Yb2O3、GeO2及P2O5構成,上述的玻璃成分的合計含量較佳大於95%,更佳大於98%,進一步較佳大於99%,再進一步較佳大於99.5%。 The optical glass of this embodiment is preferably mainly composed of the above-mentioned glass components, that is, preferably composed of B 2 O 3 , SiO 2 , Al 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 , LaF 3 , GdF 3 , YF 3 , YbF 3 , ZnO, Li 2 O, ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , TiO 2 , Bi 2 O 3 , Na 2 O, K 2 O, Rb 2 O, Cs 2 O, MgO, CaO, SrO, BaO, Ga 2 O 3 , In 2 O 3 , Sc 2 O 3 , HfO 2 , Lu 2 O 3 , Yb 2 O 3 , GeO 2 And P 2 O 5 , the total content of the above glass components is preferably greater than 95%, more preferably greater than 98%, further preferably greater than 99%, and still more preferably greater than 99.5%.

在本實施形態的光學玻璃中,TeO2的含量的上限較佳為3%,進而依次更佳為2%、1%、0.5%、0.1%。此外,TeO2的含量的下限較佳為0%。另外,TeO2的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the TeO 2 content is preferably 3%, and more preferably 2%, 1%, 0.5%, and 0.1% in this order. In addition, the lower limit of the TeO 2 content is preferably 0%. In addition, the content of TeO 2 may be 0%.

TeO2為提高折射率nd的成分,但是具有毒性,因此較佳降低TeO2的含量。因此,TeO2的含量較佳為上述範圍。 TeO 2 is a component that increases the refractive index nd, but it is toxic, so it is preferable to reduce the content of TeO 2 . Therefore, the content of TeO 2 is preferably within the above range.

在本實施形態的光學玻璃中,在作為玻璃成分含有鹵化物的情況下,例如像LaF3、GdF3、YF3、YbF3那樣作為陽離子與鹵離子(陰離子)的化合物而含有。 In the optical glass of the present embodiment, when a halide is contained as a glass component, it is contained as a compound of a cation and a halide ion (anion) such as LaF 3 , GdF 3 , YF 3 , and YbF 3 , for example.

導入到熔融玻璃的鹵化物的鹵離子的一部分被置換為同樣是陰離子且大量溶解在熔融玻璃中的氧離子。置換為氧離子的F-、Cl-、Br-、I-等鹵離子均成為氣體而從熔融玻璃揮發。由於鹵素的揮發,產生玻璃的特性改變、玻璃的均質性下降、熔融設備的消耗變得顯著等問題。因此,即使在含有鹵化物的情況下,也較佳減少其含量。 A part of the halide ions of the halide introduced into the molten glass is replaced with oxygen ions which are also anions and are dissolved in a large amount in the molten glass. Replaced with oxygen ions F -, Cl -, Br - , I - , etc. have become a halide gas volatilized from the molten glass. Due to the volatilization of halogens, problems such as changes in the characteristics of the glass, reduced homogeneity of the glass, and significant consumption of melting equipment have occurred. Therefore, even in the case of containing halide, it is better to reduce its content.

由於上述理由,即使在作為玻璃成分含有鹵化物的情況下,也較佳將鹵化物的含量限制為少量,使得全部玻璃成分中的氧化物的比例(質量比)不會為95質量%以下。 For the above reasons, even when a halide is contained as a glass component, it is preferable to limit the content of the halide to a small amount so that the ratio (mass ratio) of oxides in the total glass component will not be 95% by mass or less.

即,在本實施形態的光學玻璃中,全部玻璃成分中的氧化物的含量較佳大於95質量%。進而,全部玻璃成分中的氧化物的含量的下限依次更較佳為97質量%、99質量%、99.5質量%、99.9質量%、99.95質量%、99.99質量%,全部玻璃成分中的氧化物的含量也可以為100質量%。全部玻璃成分中的氧化物的含量為100質量%的玻璃實質上不包含鹵化物。 That is, in the optical glass of this embodiment, the content of oxides in all glass components is preferably greater than 95% by mass. Furthermore, the lower limit of the content of oxides in all glass components is more preferably 97% by mass, 99% by mass, 99.5% by mass, 99.9% by mass, 99.95% by mass, and 99.99% by mass in this order. The content may also be 100% by mass. The glass in which the oxide content in all glass components is 100% by mass does not substantially contain halide.

另外,本實施形態的光學玻璃較佳基本上由上述玻璃成分構成,但是在不妨礙本發明的作用效果的範圍內,也能夠含有其它成分。此外,在本發明中,不排除含有不可避免的雜質。 In addition, the optical glass of the present embodiment is preferably basically composed of the above-mentioned glass components, but it may contain other components within a range that does not hinder the effects of the present invention. In addition, in the present invention, the inclusion of unavoidable impurities is not excluded.

<其它的成分組成> <Other component composition>

鉛(Pb)、砷(As)、鎘(Cd)、鉈(Tl)、鈹(Be)、硒(Se)均具有毒性。因此,較佳本實施形態的光學玻璃不含有這些元素作為玻璃成分。 Lead (Pb), arsenic (As), cadmium (Cd), thallium (Tl), beryllium (Be), and selenium (Se) are all toxic. Therefore, it is preferable that the optical glass of this embodiment does not contain these elements as glass components.

鈾(U)、釷(Th)、鐳(Ra)均為放射性元素。因此,較佳本實施形態的光學玻璃不含有這些元素作為玻璃成分。 Uranium (U), thorium (Th), and radium (Ra) are all radioactive elements. Therefore, it is preferable that the optical glass of this embodiment does not contain these elements as glass components.

釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鈰(Ce)會使玻璃的著色增大,可能成為螢光的產生源。因此,較佳本實施形態的光學玻璃不含有這些元素作為玻璃成分。 Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Copper (Cu), Pr (Pr), Neodymium (Nd), Fertium (Pm), Samarium (Sm), Europium (Eu), Podium (Tb), Dysprosium (Dy), 鈥 (Ho), Erbium (Er), Tm (Tm), and cerium (Ce) will increase the coloration of glass and may become fluorescent Source of light. Therefore, it is preferable that the optical glass of this embodiment does not contain these elements as glass components.

Sb(Sb2O3)、Sn(SnO2)、Ce(CeO2)為作為澄清劑發揮功能的能夠任選添加的元素。其中,Sb(Sb2O3)為澄清效果大的澄清劑。但是,Sb(Sb2O3)的氧化性強,如果使Sb(Sb2O3)的添加量增多,在精密壓製成型時玻璃所包含的Sb(Sb2O3)就會氧化壓製成型模的成型面。因此,在重複進行精密壓製成型的過程中成型面會顯著劣化,變得不能進行精密壓製成型。此外,成型的光學元件的表面品質會降低。與Sb(Sb2O3)相比,Sn(SnO2)、Ce(CeO2)的澄清效果小。當大量添加Ce(CeO2)時,玻璃的著色會變強。因此,在添加澄清劑的情況下,較佳在添 加Sb(Sb2O3)的同時注意其添加量。 Sb (Sb 2 O 3 ), Sn (SnO 2 ), and Ce (CeO 2 ) are elements that can be optionally added that function as a fining agent. Among them, Sb (Sb 2 O 3 ) is a clarifying agent with a large clarifying effect. However, Sb (Sb 2 O 3 ) is highly oxidizing. If the amount of Sb (Sb 2 O 3 ) added is increased, the Sb (Sb 2 O 3 ) contained in the glass will be oxidized during precision press molding. The molding surface. Therefore, in the process of repeating precision press molding, the molding surface will be significantly deteriorated, making it impossible to perform precision press molding. In addition, the surface quality of the molded optical element may be reduced. Compared with Sb(Sb 2 O 3 ), Sn(SnO 2 ) and Ce(CeO 2 ) have lower clarification effects. When Ce(CeO 2 ) is added in a large amount, the coloration of the glass becomes stronger. Therefore, in the case of adding a clarifying agent, it is preferable to pay attention to the addition amount while adding Sb (Sb 2 O 3 ).

Sb2O3的含量以外加方式來表示。即,將Sb2O3、SnO2及CeO2以外的全部玻璃成分的合計含量設為100質量%時的Sb2O3的含量的範圍較佳為不足1質量%,更佳為不足0.5質量%,進一步較佳為不足0.1質量%。Sb2O3的含量也可以為0質量%。 The content of Sb 2 O 3 is expressed in an additive manner. That is, the range of the content of Sb 2 O 3 when the total content of all glass components other than Sb 2 O 3 , SnO 2 and CeO 2 is 100% by mass is preferably less than 1% by mass, more preferably less than 0.5% by mass %, more preferably less than 0.1% by mass. The content of Sb 2 O 3 may be 0% by mass.

SnO2的含量也以外加方式來表示。即,將SnO2、Sb2O3及CeO2以外的全部玻璃成分的合計含量設為100質量%時的SnO2的含量的範圍較佳為不足2質量%,更佳為不足1質量%,進一步較佳為不足0.5質量%,再進一步較佳為不足0.1質量%。SnO2的含量也可以為0質量%。藉由將SnO2的含量設為上述範圍,從而能夠改善玻璃的澄清性。 The content of SnO 2 is also expressed in an additive manner. That is, the range of the SnO 2 content when the total content of all glass components other than SnO 2 , Sb 2 O 3 and CeO 2 is 100% by mass is preferably less than 2% by mass, more preferably less than 1% by mass, It is more preferably less than 0.5% by mass, and still more preferably less than 0.1% by mass. The content of SnO 2 may be 0% by mass. By setting the content of SnO 2 in the above range, the clarity of the glass can be improved.

CeO2的含量也為以外加方式來表示。即,將CeO2、Sb2O3、SnO2以外的全部玻璃成分的合計含量設為100質量%時的CeO2的含量的範圍較佳為不足2質量%,更佳為不足1質量%,進一步較佳為不足0.5質量%,再進一步較佳為不足0.1質量%。CeO2的含量也可以為0質量%。藉由將CeO2的含量設為上述範圍,從而能夠改善玻璃的澄清性。 The content of CeO 2 is also expressed in an additive manner. That is, the range of the CeO 2 content when the total content of all glass components other than CeO 2 , Sb 2 O 3 and SnO 2 is 100% by mass is preferably less than 2% by mass, more preferably less than 1% by mass, It is more preferably less than 0.5% by mass, and still more preferably less than 0.1% by mass. The content of CeO 2 may be 0% by mass. By setting the content of CeO 2 in the above range, the clarity of the glass can be improved.

本發明的實施形態的光學玻璃的折射率(nd)和阿貝數(νd)大、均質、著色少、玻璃化轉變溫度(Tg)低,因此適合於作為精密壓製成型用光學玻璃。 The optical glass of the embodiment of the present invention has a large refractive index (nd) and Abbe number (νd), homogeneity, less coloration, and a low glass transition temperature (Tg), so it is suitable as an optical glass for precision press molding.

本發明的實施形態的光學玻璃的玻璃組成例如能夠藉由ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry,電感耦合電漿原子發射光譜法)或者適宜地藉由 離子色譜法、ICP-MS(Inductively Coupled Plasma-Mass Spectrometry,電感耦合電漿質譜法)等方法來進行定量。藉由ICP-AES求出的分析值有時包含例如分析值的±5%左右的測定誤差。此外,在本說明書和本發明中,玻璃的構成成分的含量為0%或不包含意味著實質上不包含該構成成分,指的是該構成成分的含量為雜質水平程度以下。 The glass composition of the optical glass of the embodiment of the present invention can be, for example, ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry, Inductively Coupled Plasma-Atomic Emission Spectrometry) or suitably Quantitative methods such as ion chromatography and ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). The analysis value obtained by ICP-AES may include, for example, a measurement error of about ±5% of the analysis value. In addition, in this specification and the present invention, the content of the constituent component of the glass being 0% or not containing means that the constituent component is not substantially contained, and it means that the content of the constituent component is equal to or less than the impurity level.

(玻璃特性) (Glass characteristics)

<玻璃化轉變溫度(Tg)> <Glass transition temperature (Tg)>

本實施形態的光學玻璃的玻璃化轉變溫度(Tg)的上限較佳為630℃,進而依次更佳為625℃、620℃、615℃、610℃、605℃、600℃。此外,玻璃化轉變溫度Tg的下限較佳為570℃。 The upper limit of the glass transition temperature (Tg) of the optical glass of this embodiment is preferably 630°C, and more preferably 625°C, 620°C, 615°C, 610°C, 605°C, and 600°C in this order. In addition, the lower limit of the glass transition temperature Tg is preferably 570°C.

藉由使玻璃化轉變溫度(Tg)的上限滿足上述範圍,從而在精密壓製成型時無需過度提高玻璃、壓製成型模的溫度即可進行高精度的壓製成型。其結果是,能夠降低壓製成型模的消耗,能夠延長壓製成型模的壽命。此外,藉由降低玻璃化轉變溫度(Tg),從而能夠抑制精密壓製成型時的玻璃與壓製成型模的成型面的反應,能夠提高藉由壓製成型得到的光學元件表面的形狀精度,能夠提高表面的透明性。 By making the upper limit of the glass transition temperature (Tg) meet the above range, high-precision press molding can be performed without excessively increasing the temperature of the glass and press-forming mold during precise press-forming. As a result, the consumption of the press molding die can be reduced, and the life of the press molding die can be extended. In addition, by lowering the glass transition temperature (Tg), the reaction between the glass and the molding surface of the press molding die during precision press molding can be suppressed, and the shape accuracy of the optical element surface obtained by press molding can be improved, and the surface can be improved Transparency.

<玻璃的光線透射性> <Light Transmittance of Glass>

在本實施形態中,光線透射性能夠藉由著色度(λ5)、著色度(λ80)來評價。 In this embodiment, the light transmittance can be evaluated by the degree of coloring (λ5) and the degree of coloring (λ80).

使用具有2個互相平行的進行了光學拋光的平面的玻璃(厚度為10.0mm±0.1mm),從上述2個平面中的一個平 面使光線垂直地入射該平面。然後,算出從另一個平面射出的透射光的強度(Iout)與入射光的強度(Iin)的比(Iout/Iin),即,算出外部透射率。使用分光光度計,一邊在例如280~700nm的範圍內掃描入射光的波長一邊測定外部透射率,由此得到光譜透射率曲線。 Use a glass (thickness of 10.0mm±0.1mm) with two optically polished planes that are parallel to each other, from one of the two planes above. The surface makes the light incident perpendicular to the plane. Then, the ratio (Iout/Iin) of the intensity (Iout) of the transmitted light emitted from the other plane to the intensity (Iin) of the incident light (Iout/Iin) is calculated, that is, the external transmittance is calculated. Using a spectrophotometer, the external transmittance is measured while scanning the wavelength of incident light in the range of, for example, 280 to 700 nm, thereby obtaining a spectral transmittance curve.

外部透射率隨著入射光的波長從玻璃的短波長側的吸收端向長波長側移動而增加,示出高的值。 The external transmittance increases as the wavelength of incident light moves from the absorption end of the glass on the short-wavelength side to the long-wavelength side, and shows a high value.

λ5為外部透射率成為5%的波長,λ80為外部透射率成為80%的波長。在280~700nm的波長區域中,在λ5的長波長側玻璃的外部透射率示出大於5%的值。此外,在上述波長區域中,在λ80的長波長側玻璃的外部透射率示出大於80%的值。 λ5 is the wavelength at which the external transmittance becomes 5%, and λ80 is the wavelength at which the external transmittance becomes 80%. In the wavelength region of 280 to 700 nm, the external transmittance of the glass on the long wavelength side of λ5 shows a value greater than 5%. In addition, in the aforementioned wavelength region, the external transmittance of the glass on the long wavelength side of λ80 shows a value greater than 80%.

藉由使用將λ80短波長化的光學玻璃,從而能夠提供可理想地再現色彩的光學元件。此外,藉由使用將λ5短波長化的光學玻璃,從而在使用紫外線固化型黏接劑對製作的光學元件進行黏接時,能夠充分地確保玻璃的紫外光的透射量(黏接劑的固化所需的量),能夠提高黏接強度,進而能夠縮短紫外光的照射時間。 By using optical glass that shortens the wavelength of λ80, it is possible to provide optical elements that can reproduce colors ideally. In addition, by using optical glass with a shorter wavelength of λ5, when the manufactured optical element is bonded with a UV-curable adhesive, the UV light transmission of the glass can be sufficiently ensured (curing of the adhesive) The required amount) can increase the bonding strength and thereby shorten the UV irradiation time.

根據這樣的理由,λ80的範圍較佳為450nm以下,更佳為445nm以下,進一步較佳為440nm以下。λ80的下限的目標為370nm。此外,λ5的範圍較佳為360nm以下,更佳為350nm以下。λ5的下限的目標為200nm。 For such reasons, the range of λ80 is preferably 450 nm or less, more preferably 445 nm or less, and still more preferably 440 nm or less. The target of the lower limit of λ80 is 370 nm. In addition, the range of λ5 is preferably 360 nm or less, more preferably 350 nm or less. The target of the lower limit of λ5 is 200 nm.

<玻璃的比重> <Specific gravity of glass>

本實施形態的光學玻璃為高折射率低色散玻璃且比重不 大。通常,如果能夠降低玻璃的比重,就能夠減小透鏡的重量。其結果是,能夠降低搭載有透鏡的攝像機鏡頭的自動對焦驅動的功耗。另一方面,當過度減小比重時,會導致折射率(nd)的降低、熱穩定性的降低。因此,比重(d)的上限較佳為5.20,進而依次更佳為5.10、5.08、5.05。此外,從提高折射率、改善熱穩定性的觀點出發,比重(d)的下限較佳為4.2,進而依次更佳為4.3、4.4、4.5。 The optical glass of this embodiment is a high refractive index and low dispersion glass and has a low specific gravity Big. Generally, if the specific gravity of the glass can be reduced, the weight of the lens can be reduced. As a result, it is possible to reduce the power consumption of the autofocus drive of the lens-mounted camera lens. On the other hand, when the specific gravity is excessively reduced, the refractive index (nd) will decrease and the thermal stability will decrease. Therefore, the upper limit of the specific gravity (d) is preferably 5.20, and more preferably 5.10, 5.08, and 5.05 in this order. In addition, from the viewpoint of increasing the refractive index and improving the thermal stability, the lower limit of the specific gravity (d) is preferably 4.2, and more preferably 4.3, 4.4, and 4.5 in this order.

<液相線溫度> <Liquid temperature>

本實施形態的光學玻璃的液相線溫度的上限較佳為1200℃,進而依次更佳為1180℃、1170℃、1160℃、1150℃。此外,液相線溫度的下限較佳為970℃,進而依次更佳為980℃、1000℃、1030℃、1050℃。根據本實施形態的光學玻璃,可改善玻璃的熱穩定性,因此可得到在削減Ta的含量的同時玻璃化轉變溫度(Tg)低的高折射率低色散玻璃。 The upper limit of the liquidus temperature of the optical glass of the present embodiment is preferably 1200°C, and more preferably 1180°C, 1170°C, 1160°C, and 1150°C in this order. In addition, the lower limit of the liquidus temperature is preferably 970°C, and more preferably 980°C, 1000°C, 1030°C, and 1050°C in this order. According to the optical glass of the present embodiment, the thermal stability of the glass can be improved. Therefore, it is possible to obtain a high-refractive-index, low-dispersion glass with a low glass transition temperature (Tg) while reducing the content of Ta.

(光學玻璃的製造) (Manufacture of optical glass)

本發明的實施形態的光學玻璃只要以成為上述規定的組成的方式調配玻璃原料並按照公知的玻璃製造方法對調配的玻璃原料進行製作即可。例如,調配複數種化合物並充分混合而制成批料原料,將批料原料放入到鉑坩堝中進行粗熔解(rough melt)。將藉由粗熔解得到的熔融物驟冷、粉碎而製作碎玻璃。進而將碎玻璃放入到鉑坩堝中進行加熱、再熔融(remelt)而製成熔融玻璃,進而在進行澄清、均質化後將熔融玻璃成型、緩冷而得到光學玻璃。熔融玻璃的成型、緩冷只要應用公知的方法進行即可。 The optical glass of the embodiment of the present invention only needs to prepare the glass raw materials so as to have the above-mentioned predetermined composition and prepare the prepared glass raw materials according to a known glass production method. For example, a plurality of compounds are blended and mixed thoroughly to form a batch material, and the batch material is put into a platinum crucible for rough melt. The melt obtained by rough melting is quenched and crushed to produce glass cullet. Furthermore, the cullet was put into a platinum crucible, heated, and remelt (remelt) to make molten glass, and after clarification and homogenization, the molten glass was shaped and slowly cooled to obtain optical glass. The molding and slow cooling of the molten glass may be performed by applying a known method.

另外,只要能夠在玻璃中導入所需含量的所需玻璃成分,調配批料原料時使用的化合物就沒有特別限定,作為這樣的化合物,可舉出氧化物、碳酸鹽、硝酸鹽、氫氧化物、氟化物等。 In addition, as long as the required glass component can be introduced into the glass in the required content, the compound used when preparing the batch material is not particularly limited. Examples of such compounds include oxides, carbonates, nitrates, and hydroxides. , Fluoride, etc.

(光學元件等的製造) (Manufacture of optical components, etc.)

使用本發明的實施形態的光學玻璃來製作光學元件時只要應用公知的方法即可。例如,將玻璃原料熔融而製成熔融玻璃,將該熔融玻璃流入到鑄模而成型為板狀,製作由本發明的光學玻璃構成的玻璃材料。然後,將該板狀的玻璃材料以規定體積分成幾部分,對玻璃表面進行拋光而製作精密壓製成型用玻璃材料(精密壓製成型用預製件)。 What is necessary is just to apply a well-known method when manufacturing an optical element using the optical glass of embodiment of this invention. For example, a glass raw material is melted to make molten glass, the molten glass is poured into a mold and molded into a plate shape, and a glass material composed of the optical glass of the present invention is produced. Then, the plate-shaped glass material is divided into several parts in a predetermined volume, and the glass surface is polished to produce a glass material for precision press molding (preform for precision press molding).

或者,將熔融玻璃滴下,將滴下的熔融玻璃滴成型而製作精密壓製成型用玻璃材料(精密壓製成型用預製件)。 Alternatively, the molten glass is dropped, and the dropped molten glass drop is molded to produce a glass material for precision press molding (preform for precision press molding).

接著,將這些精密壓製成型用預製件加熱、進行精密壓製成型而製作光學元件。在精密壓製成型後,也可以根據需要進行定心磨邊等加工。 Next, these preforms for precision press molding are heated and precision press molded to produce optical elements. After precision press molding, centering and edging can also be processed as needed.

也可以根據使用目的在製作的光學元件的光學功能面鍍覆防反射膜、全反射膜等。 According to the purpose of use, an anti-reflection film, a total reflection film, etc. may be coated on the optical function surface of the optical element produced.

作為光學元件,能夠例示非球面透鏡、微透鏡、透鏡陣列等各種透鏡、衍射光柵等。 As the optical element, various lenses such as aspheric lenses, microlenses, lens arrays, and diffraction gratings can be exemplified.

第2實施形態 Second embodiment

(以陽離子%表示的組成) (Composition expressed in cation %)

在本實施形態(第2實施形態)中,作為本發明的第2觀點,基於以陽離子%表示的各成分的含量對本發明的光學玻璃進行 說明。因此,以下只要沒有特別說明,各含量就以陽離子%表示。 In this embodiment (the second embodiment), as the second viewpoint of the present invention, the optical glass of the present invention is evaluated based on the content of each component expressed in cationic %. Description. Therefore, unless otherwise specified below, each content is expressed in cationic %.

此外,在本說明書中,以陽離子%表示是指,對於以陽離子表示的各玻璃成分,用莫耳百分率來表示將全部的陽離子成分的合計含量設為100%時的各玻璃成分的含量。此外,合計含量是指複數種陽離子成分的含量(也包括含量為0%的情況)的合計量。此外,陽離子比是指以陽離子%表示的陽離子成分彼此的含量(也包括複數種陽離子成分的合計含量)的比例(比)。 In addition, in this specification, the expression in cation% means that for each glass component expressed in cation, the content of each glass component when the total content of all cation components is 100% is expressed in molar percentage. In addition, the total content refers to the total amount of the content of a plurality of cationic components (including the case where the content is 0%). In addition, the cation ratio refers to the ratio (ratio) of the contents of the cation components (including the total contents of a plurality of cation components) expressed in cation %.

此外,陽離子成分的價數(例如B3+的價數為+3,Si4+的價數為+4,La3+的價數為+3,Nb5+的價數為+5,Ti4+的價數為+4,W6+的價數為+6)是根據本發明所屬技術領域慣用的值確定的。在該技術領域中,在以氧化物表示玻璃成分B、Si、La、Nb、Ti、W時表示為B2O3、SiO2、La2O3、Nb2O5、TiO2、WO3也是根據在該技術領域中的慣用的標記法來確定的。因此,在分析玻璃組成時,可以不分析陽離子成分的價數。此外,陰離子成分的價數(例如O2-的價數為-2)也與陽離子成分的價數同樣是根據慣用的值確定的,與像上述那樣將玻璃成分表示為例如氧化物B2O3、SiO2、La2O3是同樣的。因此,在分析玻璃組成時,可以不分析陰離子成分的價數。 In addition, the valence of the cation component (for example, the valence of B 3+ is +3 , the valence of Si 4+ is +4, the valence of La 3+ is +3 , the valence of Nb 5+ is +5, and Ti The valence of 4+ is +4, and the valence of W 6+ is +6) is determined according to the values customary in the technical field of the present invention. In this technical field, when the glass components B, Si, La, Nb, Ti, and W are expressed as oxides, they are expressed as B 2 O 3 , SiO 2 , La 2 O 3 , Nb 2 O 5 , TiO 2 , WO 3 It is also determined according to the usual notation in this technical field. Therefore, when analyzing the glass composition, it is not necessary to analyze the valence of the cationic component. In addition, the valence of the anion component (for example, the valence of O 2- is -2) is also determined based on the usual value like the valence of the cation component, and the glass component is expressed as the oxide B 2 O as described above. 3. SiO 2 and La 2 O 3 are the same. Therefore, when analyzing the glass composition, it is not necessary to analyze the valence of the anion component.

另外,第2實施形態中的各玻璃成分的作用、效果與第1實施形態中的各玻璃成分的作用、效果相同,因此以下對於與第1實施形態的說明重複的事項,將以各成分的含量、合計含量、陽離子比的數值範圍(包括較佳的範圍)為中心進行說明,對上述重複事項進行適當省略。 In addition, the functions and effects of each glass component in the second embodiment are the same as those in the first embodiment. Therefore, the following descriptions of the first embodiment will be based on the functions and effects of each glass component. The content, the total content, and the numerical range (including the preferable range) of the cation ratio will be mainly described, and the above-mentioned overlapping items will be appropriately omitted.

本實施形態的光學玻璃為氧化物玻璃,在該光學玻璃中,RE2相對於NWF2的比[RE2/NWF2]為0.35以上;HR2相對於RE2的比[HR2/RE2]為0.33以下;Nb5+的含量相對於Nb5+和Ta5+的合計含量的陽離子比[Nb5+/(Nb5++Ta5+)]為3/4以上;RE2相對於D2的比[RE2/D2]為0.90以上;L2相對於NWF2和RE2的合計值的比[L2/(NWF2+RE2)]為0.78以上;阿貝數(νd)為39.0以上、45.0以下,對於該阿貝數(νd),折射率(nd)滿足下述式(1):nd

Figure 105107156-A0101-12-0051-31
2.235-0.01×νd The optical glass of this embodiment is oxide glass. In this optical glass, the ratio of RE2 to NWF2 [RE2/NWF2] is 0.35 or more; the ratio of HR2 to RE2 [HR2/RE2] is 0.33 or less; Nb 5+ The cation ratio [Nb 5+ /(Nb 5+ +Ta 5+ )] relative to the total content of Nb 5+ and Ta 5+ is 3/4 or more; the ratio of RE2 to D2 [RE2/D2] is 0.90 or more; the ratio of L2 to the total value of NWF2 and RE2 [L2/(NWF2+RE2)] is 0.78 or more; Abbe number (νd) is 39.0 or more and 45.0 or less. For this Abbe number (νd), refraction The rate (nd) satisfies the following formula (1): nd
Figure 105107156-A0101-12-0051-31
2.235-0.01×νd

式中:NWF2為B3+、Si4+及Al3+的合計含量;RE2為La3+、Gd3+、Y3+及Yb3+的合計含量;HR2為Nb5+、Ti4+、W6+及Bi3+的合計含量;D2=(Li++Na++K+)×6+Zn2+;L2=(10×Li+)+(8×Na+)+(4×K+)+(4×Zn+)+Mg2++(2×Ca2+)+(2×Sr2+)+(2×Ba2+)+B3++Nb5++Ti4++(4×W6+)+(4×Bi3+)+Ta5+-(2×Si4+)-Al3+-(2×Zr4+)-La3+-Gd3+-Y3+-Yb3+;上述各成分的含量為以陽離子%表示的值。 Where: NWF2 is the total content of B 3+ , Si 4+ and Al 3+ ; RE2 is the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ ; HR2 is Nb 5+ , Ti 4+ , W 6+ and Bi 3+ total content; D2=(Li + +Na + +K + )×6+Zn 2+ ; L2=(10×Li + )+(8×Na + )+(4× K + )+(4×Zn + )+Mg 2+ +(2×Ca 2+ )+(2×Sr 2+ )+(2×Ba 2+ )+B 3+ +Nb 5+ +Ti 4+ +(4×W 6+ )+(4×Bi 3+ )+Ta 5+ -(2×Si 4+ )-Al 3+ -(2×Zr 4+ )-La 3+ -Gd 3+ -Y 3+ -Yb 3+ ; The content of each of the above components is a value expressed in cationic %.

另外,在上述式中,表示為B3+、Si4+、Al3+、La3+、Gd3+、Y3+、Yb3+、Nb5+、Ti4+、W6+、Bi3+、Li+、Na+、K+、Zn+、Mg2+、Ca2+、Sr2+、Ba2+、Ta5+、Zr4+及La3+的各成分的含量為以陽離子%表示的各成分的含量。此外,L2、D2是關於本發明的光學玻璃中的特定的玻璃成分的含量的指標,僅由數值表示,不附加陽離子%或%。對於以下的記載也是同樣的。 In addition, in the above formula, it is expressed as B 3+ , Si 4+ , Al 3+ , La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Nb 5+ , Ti 4+ , W 6+ , Bi The content of each component of 3+ , Li + , Na + , K + , Zn + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Ta 5+ , Zr 4+ and La 3+ are cations % Indicates the content of each ingredient. In addition, L2 and D2 are indexes regarding the content of the specific glass component in the optical glass of the present invention, and are represented only by numerical values, and cation% or% is not added. The same applies to the following description.

以下,對本實施形態的光學玻璃進行詳細說明。 Hereinafter, the optical glass of this embodiment is demonstrated in detail.

本實施形態的光學玻璃的阿貝數(νd)為39.0以上、45.0以下,折射率(nd)與上述的阿貝數(νd)滿足下述式(1)。 The Abbe number (νd) of the optical glass of the present embodiment is 39.0 or more and 45.0 or less, and the refractive index (nd) and the aforementioned Abbe number (νd) satisfy the following formula (1).

Figure 105107156-A0101-12-0052-6
Figure 105107156-A0101-12-0052-6

在本實施形態的光學玻璃中,阿貝數(νd)為39.0以上、45.0以下,阿貝數(νd)的下限較佳為39.5,更佳為40.0,進一步較佳為40.5。阿貝數(νd)的上限較佳為44.5,更佳為44.0,進一步較佳為43.5。 In the optical glass of the present embodiment, the Abbe number (νd) is 39.0 or more and 45.0 or less, and the lower limit of the Abbe number (νd) is preferably 39.5, more preferably 40.0, and still more preferably 40.5. The upper limit of the Abbe number (νd) is preferably 44.5, more preferably 44.0, and still more preferably 43.5.

在本實施形態的光學玻璃中,上述NWF2、RE2、HR2意味著每100g玻璃所包含的特定陽離子的以陽離子%表示的合計含量。 In the optical glass of the present embodiment, the above-mentioned NWF2, RE2, and HR2 mean the total content of specific cations contained in 100 g of glass expressed in cation %.

<RE2/NWF2> <RE2/NWF2>

在本實施形態的光學玻璃中,NWF2是以陽離子%表示的網絡形成成分B3+、Si4+及Al3+的各含量的合計含量(NWF2=B3++Si4++Al3+)。 In the optical glass of this embodiment, NWF2 is the total content of the network forming components B 3+ , Si 4+ and Al 3+ expressed in cationic% (NWF2=B 3+ +Si 4+ +Al 3+ ).

此外,在本實施形態的光學玻璃中,RE2是以陽離子%表示的高折射率低色散化成分La3+、Gd3+、Y3+及Yb3+的各含量的合計含量(RE2=La3++Gd3++Y3++Yb3+)。 In addition, in the optical glass of this embodiment, RE2 is the total content of the high refractive index and low dispersion components La 3+ , Gd 3+ , Y 3+ and Yb 3+ expressed in cationic% (RE2=La 3+ +Gd 3+ +Y 3+ +Yb 3+ ).

在本實施形態的光學玻璃中,RE2相對於NWF2的比例,即陽離子比[RE2/NWF2]為0.35以上。 In the optical glass of this embodiment, the ratio of RE2 to NWF2, that is, the cation ratio [RE2/NWF2] is 0.35 or more.

在本實施形態的光學玻璃中,陽離子比[RE2/NWF2]的下限較佳為0.40。此外,陽離子比[RE2/NWF2]的上限較佳為0.55。 In the optical glass of this embodiment, the lower limit of the cation ratio [RE2/NWF2] is preferably 0.40. In addition, the upper limit of the cation ratio [RE2/NWF2] is preferably 0.55.

在本實施形態的光學玻璃中,NWF2的上限較佳為0.74,更佳為0.72,進一步較佳為0.70,再進一步較佳為0.69。此外,NWF2的下限較佳為0.45,更佳為0.48,進一步較佳為 0.50,再進一步較佳為0.51。 In the optical glass of this embodiment, the upper limit of NWF2 is preferably 0.74, more preferably 0.72, still more preferably 0.70, and still more preferably 0.69. In addition, the lower limit of NWF2 is preferably 0.45, more preferably 0.48, and still more preferably 0.50, still more preferably 0.51.

在本實施形態的光學玻璃中,RE2的上限較佳為31,更佳為29,進一步較佳為28,再進一步較佳為27。此外,RE2的下限較佳為19,更佳為21,進一步較佳為22,再進一步較佳為23。 In the optical glass of this embodiment, the upper limit of RE2 is preferably 31, more preferably 29, still more preferably 28, and still more preferably 27. In addition, the lower limit of RE2 is preferably 19, more preferably 21, further preferably 22, and still more preferably 23.

<HR2/RE2> <HR2/RE2>

在本實施形態的光學玻璃中,HR2是以陽離子%表示的高折射率高色散化成分Nb5+、Ti4+、W6+及Bi3+的各含量的合計含量(HR2=Nb5++Ti4++W6++Bi3+)。 In the optical glass of this embodiment, HR2 is the total content of the high refractive index and high dispersion components Nb 5+ , Ti 4+ , W 6+ and Bi 3+ expressed in cationic% (HR2=Nb 5+ +Ti 4+ +W 6+ +Bi 3+ ).

在本實施形態的光學玻璃中,HR2相對於RE2的比例,即陽離子比[HR2/RE2]為0.33以下。 In the optical glass of this embodiment, the ratio of HR2 to RE2, that is, the cation ratio [HR2/RE2] is 0.33 or less.

在本實施形態的光學玻璃中,陽離子比[HR2/RE2]的上限較佳為0.32,進而依次更佳為0.31、0.30、0.29、0.28、0.27、0.25。此外,陽離子比[HR2/RE2]的下限較佳為0.04,進而依次更佳為0.08、0.10、0.11、0.13、0.15、0.16。 In the optical glass of the present embodiment, the upper limit of the cation ratio [HR2/RE2] is preferably 0.32, and more preferably 0.31, 0.30, 0.29, 0.28, 0.27, and 0.25 in order. In addition, the lower limit of the cation ratio [HR2/RE2] is preferably 0.04, and more preferably 0.08, 0.10, 0.11, 0.13, 0.15, and 0.16 in order.

從實現所需的折射率和阿貝數、提供適合於精密壓製成型的光學玻璃的觀點出發,陽離子比[HR2/RE2]較佳為上述範圍。 From the viewpoint of achieving the required refractive index and Abbe number and providing optical glass suitable for precision press molding, the cation ratio [HR2/RE2] is preferably in the above range.

在本實施形態的光學玻璃中,HR2的上限較佳為9,進而依次更佳為8.0、7.5、7.0、6.5、6.0。此外,HR2的下限較佳為1,進而依次更佳為2.0、2.5、3.0、3.5、4.0。 In the optical glass of this embodiment, the upper limit of HR2 is preferably 9, and more preferably 8.0, 7.5, 7.0, 6.5, and 6.0 in this order. In addition, the lower limit of HR2 is preferably 1, and more preferably 2.0, 2.5, 3.0, 3.5, and 4.0 in order.

<Nb5+/(Nb5++Ta5+)> <Nb 5+ /(Nb 5+ +Ta 5+ )>

在本實施形態的光學玻璃中,Nb5+的含量相對於Nb5+和Ta5+的合計含量的比例,即陽離子比[Nb5+/(Nb5++Ta5+)]為3/4 以上。 In the optical glass of the present embodiment aspect, with respect to the content of Nb 5+ and Ta, the ratio of the total content of Nb 5+ 5+, i.e., the cation ratio [Nb 5+ / (Nb 5+ + Ta 5+)] 3 / 4 and above.

在本實施形態的光學玻璃中,陽離子比[Nb5+/(Nb5++Ta5+)]的下限較佳為0.76,進而依次更佳為0.78、0.80、0.85、0.90、0.95、0.97、0.99、1。此外,陽離子比[Nb5+/(Nb5++Ta5+)]的上限較佳為1。另外,陽離子比[Nb5+/(Nb5++Ta5+)]也可以為1。 In the optical glass of this embodiment, the lower limit of the cation ratio [Nb 5+ /(Nb 5+ +Ta 5+ )] is preferably 0.76, and more preferably 0.78, 0.80, 0.85, 0.90, 0.95, 0.97, 0.99, 1. In addition, the upper limit of the cation ratio [Nb 5+ /(Nb 5+ +Ta 5+ )] is preferably 1. In addition, the cation ratio [Nb 5+ /(Nb 5+ +Ta 5+ )] may be 1.

<RE2/D2> <RE2/D2>

在本實施形態的光學玻璃中,D2是以陽離子%表示的更容易揮發的Li+、Na+及K+的各含量的值乘以6的值與以陽離子%表示的易揮發的Zn2+的含量的值的合計值(D2=(Li+×6)+(Na+×6)+(K+×6)+Zn2+)。即,D2能夠表示為D2=(Li++Na++K+)×6+Zn2+。D2是關於本發明的光學玻璃中的揮發性成分的含量的指標,僅由數值表示。 In the optical glass of the present embodiment, D2 is the value of each content of Li + , Na + and K + which is more volatile in cationic %, multiplied by 6, and the volatile Zn 2+ in cationic% The total value of the value of the content (D2=(Li + ×6)+(Na + ×6)+(K + ×6)+Zn 2+ ). That is, D2 can be expressed as D2=(Li + +Na + +K + )×6+Zn 2+ . D2 is an index regarding the content of volatile components in the optical glass of the present invention, and is represented only by numerical values.

D2是對促進將玻璃熔融時的揮發的因數進行數值化的值,RE2是對抑制將玻璃熔融時的揮發的因數進行數值化的值。即,比[RE2/D2]為表示玻璃熔液的揮發性的指標。 D2 is a value that digitizes the factor that promotes volatilization when the glass is melted, and RE2 is a value that digitizes the factor that suppresses volatilization when the glass is melted. That is, the ratio [RE2/D2] is an index indicating the volatility of the glass melt.

因此,在本實施形態的光學玻璃中,比[RE2/D2]為0.90以上。 Therefore, in the optical glass of this embodiment, the ratio [RE2/D2] is 0.90 or more.

在本實施形態的光學玻璃中,比[RE2/D2]的下限較佳為0.95,進而依次更佳為1.00、1.05、1.10、1.15、1.20。此外,比[RE2/D2]的上限較佳為5,進而依次更佳為4、3、2.7、2.5、2.4。 In the optical glass of this embodiment, the lower limit of the ratio [RE2/D2] is preferably 0.95, and more preferably 1.00, 1.05, 1.10, 1.15, and 1.20 in this order. In addition, the upper limit of the ratio [RE2/D2] is preferably 5, and more preferably 4, 3, 2.7, 2.5, and 2.4 in order.

藉由將比[RE2/D2]設為0.90以上,從而能夠抑制熔融玻璃即玻璃熔液的揮發。其結果是,能夠穩定地生產具有 所需的特性的光學玻璃。此外,還能夠保持玻璃的高均質性。另一方面,藉由將比[RE2/D2]的上限設為5,從而能夠改善玻璃的熔融性,並且能夠抑制玻璃化轉變溫度Tg的上升,能夠藉由精密壓製成型穩定地製造高質量的玻璃制的光學元件。 By setting the ratio [RE2/D2] to 0.90 or more, it is possible to suppress volatilization of molten glass, which is a molten glass. As a result, it can stably produce Optical glass with required characteristics. In addition, the high homogeneity of the glass can be maintained. On the other hand, by setting the upper limit of the ratio [RE2/D2] to 5, the meltability of the glass can be improved, the glass transition temperature Tg can be suppressed, and high-quality high-quality can be manufactured stably by precision press molding Optical components made of glass.

<L2/(NWF2+RE2)> <L2/(NWF2+RE2)>

將玻璃成分大致分為具有使玻璃化轉變溫度(Tg)相對降低的作用的成分和具有使玻璃化轉變溫度(Tg)相對上升的作用的成分。具有使玻璃化轉變溫度Tg相對降低的作用的成分主要為Li+、Na+、K+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、B3+、Nb5+、Ti4+、W6+、Bi3+、Ta5+。另一方面,相對於上述玻璃成分,具有使玻璃化轉變溫度Tg相對上升的作用的成分主要為Si4+、Al3+、Zr4+、La3+、Gd3+、Y3+、Yb3+The glass component is roughly divided into a component having a function of relatively lowering the glass transition temperature (Tg) and a component having a function of relatively increasing the glass transition temperature (Tg). The components that have the effect of relatively reducing the glass transition temperature Tg are mainly Li + , Na + , K + , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , B 3+ , Nb 5 + , Ti 4+ , W 6+ , Bi 3+ , Ta 5+ . On the other hand, with respect to the above-mentioned glass components, the components having the effect of increasing the glass transition temperature Tg are mainly Si 4+ , Al 3+ , Zr 4+ , La 3+ , Gd 3+ , Y 3+ , Yb 3+ .

本申請發明人進行研究的結果發現,L2相對於NWF2和RE2的合計值的比[L2/(NWF2+RE2)]與玻璃化轉變溫度Tg之間存在相關關係,其中,L2是對以陽離子%表示的上述成分的各含量的值分別作為係數乘以各成分對玻璃化轉變溫度(Tg)的影響度的值的合計值。另外,在表4示出表示以陽離子比為基準的上述成分對玻璃化轉變溫度Tg的影響度的係數。 The inventors of the present application have conducted research and found that there is a correlation between the ratio of L2 to the total value of NWF2 and RE2 [L2/(NWF2+RE2)] and the glass transition temperature Tg, where L2 is the ratio of cations The values of the respective contents of the above-mentioned components are shown as the total value of the coefficient multiplied by the value of the degree of influence of each component on the glass transition temperature (Tg). In addition, Table 4 shows coefficients indicating the degree of influence of the above-mentioned components on the glass transition temperature Tg based on the cation ratio.

Figure 105107156-A0101-12-0055-7
Figure 105107156-A0101-12-0055-7

這樣的L2能夠表示為L2=(10×Li+)+(8×Na+)+(4×K+)+(4×Zn+)+(1×Mg2+)+(2×Ca2+)+(2×Sr2+)+(2×Ba2+)+(1×B3+)+(1×Nb5+)+(1×Ti4+)+(4×W6+)+(4×Bi3+)+(1×Ta5+)+(-2×Si4+)+(-1×Al3+)+(-2×Zr4+)+(-1×La3+)+(-1×Gd3+)+(-1×Y3+)+(-1×Yb3+)。 Such L2 can be expressed as L2=(10×Li + )+(8×Na + )+(4×K + )+(4×Zn + )+(1×Mg 2+ )+(2×Ca 2+ )+(2×Sr 2+ )+(2×Ba 2+ )+(1×B 3+ )+(1×Nb 5+ )+(1×Ti 4+ )+(4×W 6+ )+ (4×Bi 3+ )+(1×Ta 5+ )+(-2×Si 4+ )+(-1×Al 3+ )+(-2×Zr 4+ )+(-1×La 3+ )+(-1×Gd 3+ )+(-1×Y 3+ )+(-1×Yb 3+ ).

即,L2能夠表示為L2=(10×Li+)+(8×Na+)+(4×K+)+(4×Zn+)+Mg2++(2×Ca2+)+(2×Sr2+)+(2×Ba2+)+B3++Nb5++Ti4++(4×W6+)+(4×Bi3+)+Ta5+-(2×Si4+)-Al3+-(2×Zr4+)-La3+-Gd3+-Y3+-Yb3+That is, L2 can be expressed as L2=(10×Li + )+(8×Na + )+(4×K + )+(4×Zn + )+Mg 2+ +(2×Ca 2+ )+(2 ×Sr 2+ )+(2×Ba 2+ )+B 3+ +Nb 5+ +Ti 4+ +(4×W 6+ )+(4×Bi 3+ )+Ta 5+ -(2×Si 4+ )-Al 3+ -(2×Zr 4+ )-La 3+ -Gd 3+ -Y 3+ -Yb 3+ .

圖2是將橫軸設為L2相對於NWF2與RE2的合計值的比[L2/(NWF2+RE2)]及將縱軸設為玻璃化轉變溫度(Tg)而對公知的玻璃繪製了比[L2/(NWF2+RE2)]和玻璃化轉變溫度(Tg)的圖,其中,NWF2是玻璃成分中網絡形成成分的合計含量,RE2稀土類離子的合計含量。從圖2可明確地看出,點基本分佈在直線上,可知比[L2/(NWF2+RE2)]與玻璃化轉變溫度(Tg)存在相關關係。 Fig. 2 is the ratio [L2/(NWF2+RE2)] of L2 to the total value of NWF2 and RE2 on the horizontal axis and the glass transition temperature (Tg) on the vertical axis, and the ratio is plotted against known glass [ L2/(NWF2+RE2)] and a graph of glass transition temperature (Tg), where NWF2 is the total content of network forming components in the glass composition, and the total content of RE2 rare earth ions. It can be clearly seen from Figure 2 that the points are basically distributed on a straight line, and the ratio [L2/(NWF2+RE2)] has a correlation with the glass transition temperature (Tg).

即,隨著比[L2/(NWF2+RE2)]的增加,玻璃化轉變溫度(Tg)降低,隨著比[L2/(NWF2+RE2)]的減小,玻璃化轉變溫度(Tg)上升。 That is, as the ratio [L2/(NWF2+RE2)] increases, the glass transition temperature (Tg) decreases, and as the ratio [L2/(NWF2+RE2)] decreases, the glass transition temperature (Tg) increases .

像這樣,藉由使比[L2/(NWF2+RE2)]增加,從而能夠使玻璃化轉變溫度(Tg)降低,能夠提供適合於精密壓製成型的玻璃,即,能夠提供具有低溫軟化性的玻璃。此外,藉由使比[L2/(NWF2+RE2)]增加,從而可改善玻璃的熔融性。即,玻璃原料不會產生熔融殘留,能夠提供均質的玻璃。 In this way, by increasing the ratio [L2/(NWF2+RE2)], the glass transition temperature (Tg) can be lowered, and glass suitable for precision press molding can be provided, that is, glass with low-temperature softening properties can be provided . In addition, by increasing the ratio [L2/(NWF2+RE2)], the meltability of the glass can be improved. That is, the glass raw material does not generate a molten residue, and a homogeneous glass can be provided.

在本實施形態的光學玻璃中,比[L2/(NWF2+RE2)] 為0.78以上。 In the optical glass of this embodiment, the ratio [L2/(NWF2+RE2)] It is 0.78 or more.

在本實施形態的光學玻璃中,比[L2/(NWF2+RE2)]的下限較佳為0.80,進而依次更佳為0.85、0.90、0.95、1.00、1.05。 In the optical glass of this embodiment, the lower limit of the ratio [L2/(NWF2+RE2)] is preferably 0.80, and more preferably 0.85, 0.90, 0.95, 1.00, 1.05 in order.

從得到適合於精密壓製成型的低溫軟化性並且改善玻璃的熔融性的觀點出發,較佳比[L2/(NWF2+RE2)]的下限為上述範圍。 From the viewpoint of obtaining low-temperature softening properties suitable for precision press molding and improving the meltability of the glass, the lower limit of the preferred ratio [L2/(NWF2+RE2)] is the above range.

<玻璃組成> <Glass composition>

以下,對玻璃組成進行詳細說明。另外,只要沒有特別說明,各種玻璃構成成分(玻璃成分)的含量等以陽離子%或陰離子%表示。本實施形態的光學玻璃為氧化物玻璃,藉由確定陽離子成分的含有比率(含量),從而能夠確定玻璃組成。 Hereinafter, the glass composition will be described in detail. In addition, unless otherwise specified, the content of various glass constituents (glass components) and the like are represented by cationic% or anionic %. The optical glass of this embodiment is an oxide glass, and the glass composition can be determined by determining the content ratio (content) of the cationic component.

在本實施形態的光學玻璃中,B3+的含量的上限較佳為65%,進而依次更佳為62%、60%、57%、56%、55%。此外,B3+的含量的下限較佳為40%,進而依次更佳為43%、45%、46%、47%、48%。 In the optical glass of the present embodiment, the upper limit of the B 3+ content is preferably 65%, and more preferably 62%, 60%, 57%, 56%, and 55% in this order. In addition, the lower limit of the content of B 3+ is preferably 40%, and more preferably 43%, 45%, 46%, 47%, 48% in order.

在本實施形態的光學玻璃中,Si4+的含量的上限較佳為10%,進而依次更佳為8%、7%、6%、5%。此外,Si4+的含量的下限較佳為0%。另外,Si4+的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the Si 4+ content is preferably 10%, and more preferably 8%, 7%, 6%, and 5% in this order. In addition, the lower limit of the content of Si 4+ is preferably 0%. In addition, the content of Si 4+ may be 0%.

在本實施形態的光學玻璃中,Al3+的含量的上限較佳為10%,進而依次更佳為7%、5%、4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Al3+的含量的下限較佳為0%。另外,Al3+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Al 3+ is preferably 10%, and more preferably 7%, 5%, 4%, 3%, 2.5%, 2%, 1.5%, 1% in order , 0.5%, 0.1%, 0.05%. In addition, the lower limit of the content of Al 3+ is preferably 0%. In addition, the content of Al 3+ may be 0%.

在本實施形態的光學玻璃中,B3+、Si4+及Al3+的 合計含量[B3++Si4++Al3+]的上限較佳為62,進而依次更佳為60、58、56、55。合計含量[B3++Si4++Al3+]的下限較佳為40,進而依次更佳為43、45、46、48。 In the optical glass of this embodiment, the upper limit of the total content of B 3+ , Si 4+ and Al 3+ [B 3+ +Si 4+ +Al 3+ ] is preferably 62, and more preferably 60, 58, 56, 55. The lower limit of the total content [B 3+ +Si 4+ +Al 3+ ] is preferably 40, and more preferably 43, 45, 46, and 48 in order.

在本實施形態的光學玻璃中,B3+的含量相對於B3+、Si4+及Al3+的合計含量[B3++Si4++Al3+]的比例,即陽離子比[B3+/(B3++Si4++Al3+)]的上限較佳為1。此外,陽離子比[B3+/(B3++Si4++Al3+)]的下限較佳為0.70,進而依次更佳為0.75、0.80、0.85、0.88、0.90。另外,陽離子比[B3+/(B3++Si4++Al3+)]也可以為1。 In the optical glass of the present embodiment, the relative content of B 3+ B 3+, the total content of Si 4+ and Al 3+ [+ Si 4+ + Al 3+ B 3+] ratio, i.e. ratio of the cation [ The upper limit of B 3+ /(B 3+ +Si 4+ +Al 3+ )] is preferably 1. In addition, the lower limit of the cation ratio [B 3+ /(B 3+ +Si 4+ +Al 3+ )] is preferably 0.70, and more preferably 0.75, 0.80, 0.85, 0.88, 0.90 in order. In addition, the cation ratio [B 3+ /(B 3+ +Si 4+ +Al 3+ )] may be 1.

在本實施形態的光學玻璃中,La3+、Gd3+、Y3+及Yb3+的合計含量[La3++Gd3++Y3++Yb3+]的上限較佳為35%,進而依次更佳為30%、28%、27%。此外,合計含量[La3++Gd3++Y3++Yb3+]的下限較佳為16%,進而依次更佳為18%、20%、21%、22%、23%。 In the optical glass of this embodiment, the upper limit of the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ [La 3+ +Gd 3+ +Y 3+ +Yb 3+ ] is preferably 35 %, and more preferably 30%, 28%, 27%. In addition, the lower limit of the total content [La 3+ +Gd 3+ +Y 3+ +Yb 3+ ] is preferably 16%, and more preferably 18%, 20%, 21%, 22%, 23% in order.

在本實施形態的光學玻璃中,La3+的含量的上限較佳為27%,進而依次更佳為25%、23%、22%、21%、20%、19%。此外,La3+的含量的下限較佳為5%,進而依次更佳為8%、9%、10%、11%。 In the optical glass of this embodiment, the upper limit of the content of La 3+ is preferably 27%, and more preferably 25%, 23%, 22%, 21%, 20%, 19% in order. In addition, the lower limit of the La 3+ content is preferably 5%, and more preferably 8%, 9%, 10%, and 11% in this order.

在本實施形態的光學玻璃中,Gd3+的含量的上限較佳為22%,進而依次更佳為20%、18%、15%、14%、13%。此外,Gd3+的含量的下限較佳為1%,進而依次更佳為2%、3%、4%、5%。 In the optical glass of this embodiment, the upper limit of the Gd 3+ content is preferably 22%, and more preferably 20%, 18%, 15%, 14%, and 13% in this order. In addition, the lower limit of the content of Gd 3+ is preferably 1%, and more preferably 2%, 3%, 4%, and 5% in this order.

在本實施形態的光學玻璃中,Y3+的含量的上限較佳為15%,進而依次更佳為12%、10%、8%、5%、4%、3%。 此外,Y3+的含量的下限較佳為0%。 In the optical glass of the present embodiment, the upper limit of the content of Y 3+ is preferably 15%, and more preferably 12%, 10%, 8%, 5%, 4%, and 3% in this order. In addition, the lower limit of the content of Y 3+ is preferably 0%.

在本實施形態的光學玻璃中,Yb3+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.3%、0.2%、0.1%、0.05%、0.01%。此外,Yb3+的含量的下限較佳為0%。另外,Yb3+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Yb 3+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.3% in order , 0.2%, 0.1%, 0.05%, 0.01%. In addition, the lower limit of the Yb 3+ content is preferably 0%. In addition, the content of Yb 3+ may be 0%.

在本實施形態的光學玻璃中,La3+的含量相對於La3+、Gd3+、Y3+及Yb3+的合計含量[La3++Gd3++Y3++Yb3+]的比例,即陽離子比[La3+/(La3++Gd3++Y3++Yb3+)]的上限較佳為0.99,進而依次更佳為0.97、0.95、0.93、0.90、0.85、0.80、0.77、0.76、0.75。此外,陽離子比[La3+/(La3++Gd3++Y3++Yb3+)]的下限較佳為0.3,進而依次更佳為0.4、0.45、0.46、0.47、0.48。藉由使陽離子比[La3+/(La3++Gd3++Y3++Yb3+)]為上述範圍,從而能夠改善熱穩定性和熔融性。 In the optical glass of this embodiment, the content of La 3+ is relative to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ [La 3+ +Gd 3+ +Y 3+ +Yb 3+ ] Ratio, that is, the upper limit of the cation ratio [La 3+ /(La 3+ +Gd 3+ +Y 3+ +Yb 3+ )] is preferably 0.99, and more preferably 0.97, 0.95, 0.93, 0.90, 0.85, 0.80, 0.77, 0.76, 0.75. In addition, the lower limit of the cation ratio [La 3+ /(La 3+ +Gd 3+ +Y 3+ +Yb 3+ )] is preferably 0.3, and more preferably 0.4, 0.45, 0.46, 0.47, and 0.48 in this order. By setting the cation ratio [La 3+ /(La 3+ +Gd 3+ +Y 3+ +Yb 3+ )] within the above range, thermal stability and melting properties can be improved.

在本實施形態的光學玻璃中,La3+、Gd3+、Y3+及Yb3+的合計含量[La3++Gd3++Y3++Yb3+]相對於B3+、Si4+及Al3+的合計含量[B3++Si4++Al3+]的比例,即陽離子比[(La3++Gd3++Y3++Yb3+)/(B3++Si4++Al3+)]的上限較佳為0.80,進而依次更佳為0.70、0.60、0.55、0.52、0.51。此外,陽離子比[(La3++Gd3++Y3++Yb3+)/(B3++Si4++Al3+)]的下限較佳為0.35,進而依次更佳為0.36、0.37、0.38、0.39、0.40、0.41、0.42、0.43。 In the optical glass of the present embodiment, the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ [La 3+ +Gd 3+ +Y 3+ +Yb 3+ ] is relative to B 3+ , The ratio of the total content of Si 4+ and Al 3+ [B 3+ +Si 4+ +Al 3+ ], that is, the cation ratio [(La 3+ +Gd 3+ +Y 3+ +Yb 3+ )/(B The upper limit of 3+ +Si 4+ +Al 3+ )] is preferably 0.80, and more preferably 0.70, 0.60, 0.55, 0.52, 0.51. In addition, the lower limit of the cation ratio [(La 3+ +Gd 3+ +Y 3+ +Yb 3+ )/(B 3+ +Si 4+ +Al 3+ )] is preferably 0.35, and more preferably 0.36. , 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43.

在本實施形態的光學玻璃中,Zn2+的含量的上限較佳為25%,進而依次更佳為22%、20%、18%、17%、16%、15%。此外,Zn2+的含量的下限較佳為5%,進而更佳為8%、9%、10%、 11%、12%。 In the optical glass of the present embodiment, the upper limit of the content of Zn 2+ is preferably 25%, and more preferably 22%, 20%, 18%, 17%, 16%, and 15% in order. In addition, the lower limit of the content of Zn 2+ is preferably 5%, and more preferably 8%, 9%, 10%, 11%, or 12%.

在本實施形態的光學玻璃中,Zr4+的含量的上限較佳為9%,進而依次更佳為8%、7%、6%、5%、4.5%、4%。此外,Zr4+的含量的下限較佳為0%,進而依次更佳為0.1%、0.5%、1%、1.5%、2%、2.5%。 In the optical glass of this embodiment, the upper limit of the content of Zr 4+ is preferably 9%, and more preferably 8%, 7%, 6%, 5%, 4.5%, and 4% in this order. In addition, the lower limit of the content of Zr 4+ is preferably 0%, and more preferably 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5% in order.

在本實施形態的光學玻璃中,Nb5+的含量的上限較佳為9%,進而依次更佳為8%、7%、6%、5%、4.5%、4%。此外,Nb5+的含量的下限較佳為0.1%,進而依次更佳為0.2%、0.3%、0.5%、1%、2%。 In the optical glass of the present embodiment, the upper limit of the Nb 5+ content is preferably 9%, and more preferably 8%, 7%, 6%, 5%, 4.5%, and 4% in this order. In addition, the lower limit of the Nb 5+ content is preferably 0.1%, and more preferably 0.2%, 0.3%, 0.5%, 1%, and 2% in order.

在本實施形態的光學玻璃中,Ta5+的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Ta5+的含量的下限較佳為0%。另外,Ta5+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Ta 5+ is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, and 0.05% in order. In addition, the lower limit of the content of Ta 5+ is preferably 0%. In addition, the content of Ta 5+ may be 0%.

在本實施形態的光學玻璃中,Nb5+、Ti4+、W6+及Bi3+的合計含量[Nb5++Ti4++W6++Bi3+]的上限較佳為10%,進而更佳為9.0%、8.0%、7.0%、6.5%、6.0%。此外,合計含量[Nb5++Ti4++W6++Bi3+]的下限較佳為0.1%,進而更佳為0.2%、0.3%、0.5%、1%、1.5%、2%、2.5%、3%。 In the optical glass of this embodiment, the upper limit of the total content [Nb 5+ +Ti 4+ +W 6+ +Bi 3+ ] of Nb 5+ , Ti 4+ , W 6+ and Bi 3+ is preferably 10 %, more preferably 9.0%, 8.0%, 7.0%, 6.5%, 6.0%. In addition, the lower limit of the total content [Nb 5+ +Ti 4+ +W 6+ +Bi 3+ ] is preferably 0.1%, and more preferably 0.2%, 0.3%, 0.5%, 1%, 1.5%, 2% , 2.5%, 3%.

在本實施形態的光學玻璃中,Ti4+、W6+及Bi3+的合計含量[Ti4++W6++Bi3+]的上限較佳為6%,進而依次更佳為5.5%、5%、4.5%、4%。此外,合計含量[Ti4++W6++Bi3+]的下限較佳為0%,進而依次更佳為0.05%、0.1%、0.5%、1.0%、1.5%、2.0%。 In the optical glass of the present embodiment, the upper limit of the total content of Ti 4+ , W 6+ and Bi 3+ [Ti 4+ +W 6+ +Bi 3+ ] is preferably 6%, and then more preferably 5.5 %, 5%, 4.5%, 4%. In addition, the lower limit of the total content [Ti 4+ +W 6+ +Bi 3+ ] is preferably 0%, and more preferably 0.05%, 0.1%, 0.5%, 1.0%, 1.5%, 2.0% in order.

在本實施形態的光學玻璃中,W6+的含量的上限較 佳為6%,進而依次更佳為5%、4%。此外,W6+的含量的下限較佳為0%,進而依次更佳為0.1%、0.5%、0.8%、1%、1.5%。另外,W6+的含量也可以為0%。此外,為了得到W6+的抑制玻璃化轉變溫度Tg上升的效果,也可以將W6+的含量設為0.5%以上。 In the optical glass of this embodiment, the upper limit of the content of W 6+ is preferably 6%, and more preferably 5% and 4% in this order. In addition, the lower limit of the content of W 6+ is preferably 0%, and more preferably 0.1%, 0.5%, 0.8%, 1%, and 1.5% in order. In addition, the content of W 6+ may be 0%. Further, in order to obtain the effect of suppressing the glass transition temperature Tg W 6+ rise, may be W 6+ content is set to 0.5% or more.

在本實施形態的光學玻璃中,Ti4+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Ti4+的含量的下限較佳為0%。另外,Ti4+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Ti 4+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. , 0.05%. In addition, the lower limit of the content of Ti 4+ is preferably 0%. In addition, the content of Ti 4+ may be 0%.

在本實施形態的光學玻璃中,Bi3+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Bi3+的含量的下限較佳為0%。另外,Bi3+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Bi 3+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. , 0.05%. In addition, the lower limit of the content of Bi 3+ is preferably 0%. In addition, the content of Bi 3+ may be 0%.

在本實施形態的光學玻璃中,Li+的含量的上限較佳為10%,進而依次更佳為8%、6%、5%、4%、3%、2.5%。此外,Li+的含量的下限較佳為0%。另外,Li+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Li + is preferably 10%, and more preferably 8%, 6%, 5%, 4%, 3%, 2.5% in this order. In addition, the lower limit of the content of Li + is preferably 0%. In addition, the content of Li + may be 0%.

在本實施形態的光學玻璃中,Na+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Na+的含量的下限較佳為0%。另外,Na+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the Na + content is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, 0.05%. In addition, the lower limit of the Na + content is preferably 0%. In addition, the content of Na + may be 0%.

在本實施形態的光學玻璃中,K+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,K+的含量的下限較佳為0%。另外, K+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the K + content is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, 0.05%. In addition, the lower limit of the K + content is preferably 0%. In addition, the content of K + may be 0%.

在本實施形態的光學玻璃中,Li+、Na+及K+的合計含量[Li++Na++K+]的上限較佳為10%,進而依次更佳為8%、6%、5%、4%、3.5%、3%。此外,合計含量[Li++Na++K+]的下限較佳為0%。另外,合計含量[Li++Na++K+]也可以為0%。 In the optical glass of the present embodiment, the upper limit of the total content of Li + , Na + and K + [Li + +Na + +K + ] is preferably 10%, and more preferably 8%, 6%, 5 %, 4%, 3.5%, 3%. In addition, the lower limit of the total content [Li + +Na + +K + ] is preferably 0%. In addition, the total content [Li + +Na + +K + ] may be 0%.

在本實施形態的光學玻璃中,Rb+的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Rb+的含量的下限較佳為0%。另外,Rb+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Rb + is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, and 0.05% in order. In addition, the lower limit of the content of Rb + is preferably 0%. In addition, the content of Rb + may be 0%.

在本實施形態的光學玻璃中,Cs+的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Cs+的含量的下限較佳為0%。另外,Cs+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Cs + is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, and 0.05% in order. In addition, the lower limit of the Cs + content is preferably 0%. In addition, the content of Cs + may be 0%.

在本實施形態的光學玻璃中,Mg2+的含量的上限較佳為10%,進而依次更佳為7%、5%、4%、3%、2%、1.5%、1%、0.5%、0.1%。此外,Mg2+的含量的下限較佳為0%。另外,Mg2+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Mg 2+ is preferably 10%, and more preferably 7%, 5%, 4%, 3%, 2%, 1.5%, 1%, 0.5%. , 0.1%. In addition, the lower limit of the content of Mg 2+ is preferably 0%. In addition, the content of Mg 2+ may be 0%.

在本實施形態的光學玻璃中,Ca2+的含量的上限較佳為10%,進而依次更佳為7%、5%、4%、3%、2%、1.5%、1%、0.5%、0.1%。此外,Ca2+的含量的下限較佳為0%。另外,Ca2+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Ca 2+ is preferably 10%, and more preferably 7%, 5%, 4%, 3%, 2%, 1.5%, 1%, 0.5%. , 0.1%. In addition, the lower limit of the content of Ca 2+ is preferably 0%. In addition, the content of Ca 2+ may be 0%.

在本實施形態的光學玻璃中,Sr2+的含量的上限較佳為10%,進而依次更佳為7%、5%、4%、3%、2%、1.5%、1%、0.5%、0.1%。此外,Sr2+的含量的下限較佳為0%。另外, Sr2+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Sr 2+ is preferably 10%, and more preferably 7%, 5%, 4%, 3%, 2%, 1.5%, 1%, 0.5%. , 0.1%. In addition, the lower limit of the content of Sr 2+ is preferably 0%. In addition, the content of Sr 2+ may be 0%.

在本實施形態的光學玻璃中,Ba2+的含量的上限較佳為10%,進而依次更佳為7%、5%、4%、3%、2%、1.5%、1%、0.5%、0.1%。此外,Ba2+的含量的下限較佳為0%。另外,Ba2+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Ba 2+ is preferably 10%, and more preferably 7%, 5%, 4%, 3%, 2%, 1.5%, 1%, 0.5% , 0.1%. In addition, the lower limit of the content of Ba 2+ is preferably 0%. In addition, the content of Ba 2+ may be 0%.

在本實施形態的光學玻璃中,Mg2+、Ca2+、Sr2+及Ba2+的合計含量[Mg2++Ca2++Sr2++Ba2+]的上限較佳為10%,進而依次更佳為7%、5%、4%、3%、2%、1.5%、1%、0.5%、0.1%。此外,合計含量[Mg2++Ca2++Sr2++Ba2+]的下限較佳為0%。另外,合計含量[Mg2++Ca2++Sr2++Ba2+]也可以為0%。 In the optical glass of the present embodiment, the upper limit of the total content [Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ ] of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ is preferably 10 %, and more preferably 7%, 5%, 4%, 3%, 2%, 1.5%, 1%, 0.5%, 0.1% in order. In addition, the lower limit of the total content [Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ ] is preferably 0%. In addition, the total content [Mg 2+ +Ca 2+ +Sr 2+ +Ba 2+ ] may be 0%.

在本實施形態的光學玻璃中,Ga3+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Ga3+的含量的下限較佳為0%。另外,Ga3+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Ga 3+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1% , 0.05%. In addition, the lower limit of the content of Ga 3+ is preferably 0%. In addition, the content of Ga 3+ may be 0%.

在本實施形態的光學玻璃中,In3+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,In3+的含量的下限較佳為0%。另外,In3+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of In 3+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. , 0.05%. In addition, the lower limit of the content of In 3+ is preferably 0%. In addition, the content of In 3+ may be 0%.

在本實施形態的光學玻璃中,Sc3+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Sc3+的含量的下限較佳為0%。另外,Sc3+的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of Sc 3+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. , 0.05%. In addition, the lower limit of the content of Sc 3+ is preferably 0%. In addition, the content of Sc 3+ may be 0%.

在本實施形態的光學玻璃中,Hf4+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、 0.5%、0.1%、0.05%。此外,Hf4+的含量的下限較佳為0%。另外,Hf4+的含量也可以為0%。 In the optical glass of the present embodiment, the upper limit of the content of Hf 4+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. , 0.05%. In addition, the lower limit of the content of Hf 4+ is preferably 0%. In addition, the content of Hf 4+ may be 0%.

在本實施形態的光學玻璃中,Lu3+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Lu3+的含量的下限較佳為0%。另外,Lu3+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Lu 3+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. , 0.05%. In addition, the lower limit of the content of Lu 3+ is preferably 0%. In addition, the content of Lu 3+ may be 0%.

在本實施形態的光學玻璃中,Ge4+的含量的上限較佳為5%,進而依次更佳為4%、3%、2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Ge4+的含量的下限較佳為0%。另外,Ge4+的含量也可以為0%。 In the optical glass of this embodiment, the upper limit of the content of Ge 4+ is preferably 5%, and more preferably 4%, 3%, 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%. , 0.05%. In addition, the lower limit of the content of Ge 4+ is preferably 0%. In addition, the content of Ge 4+ may be 0%.

此外,在本實施形態的光學玻璃中,P5+的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,P5+的含量的下限較佳為0%。另外,P5+的含量也可以為0%。 In addition, in the optical glass of the present embodiment, the upper limit of the content of P 5+ is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, and 0.05% in order. In addition, the lower limit of the content of P 5+ is preferably 0%. In addition, the content of P 5+ may be 0%.

本實施形態的光學玻璃的陽離子成分較佳主要由上述的成分構成,即較佳由B3+、Si4+、Al3+、La3+、Gd3+、Y3+、Yb3+、Zn2+、Zr4+、Nb5+、Ta5+、W6+、Ti4+、Bi3+、Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、Ba2+、Ga3+、In3+、Sc3+、Hf4+、Lu3+、Ge4+及P5+構成,上述的成分的合計含量較佳大於95%,更佳大於98%,進一步較佳大於99%,再進一步較佳大於99.5%。 The cationic components of the optical glass of this embodiment are preferably mainly composed of the above-mentioned components, that is, preferably composed of B 3+ , Si 4+ , Al 3+ , La 3+ , Gd 3+ , Y 3+ , Yb 3+ , Zn 2+ , Zr 4+ , Nb 5+ , Ta 5+ , W 6+ , Ti 4+ , Bi 3+ , Li + , Na + , K + , Rb + , Cs + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Ga 3+ , In 3+ , Sc 3+ , Hf 4+ , Lu 3+ , Ge 4+ and P 5+ , the total content of the above components is preferably greater than 95%, More preferably, it is greater than 98%, further preferably greater than 99%, and still more preferably greater than 99.5%.

在本實施形態的光學玻璃中,Te4+的含量的上限較佳為3%,進而依次更佳為2.5%、2%、1.5%、1%、0.5%、0.1%、0.05%。此外,Te4+的含量的下限較佳為0%。另外,Te4+的含 量也可以為0%。 In the optical glass of this embodiment, the upper limit of the Te 4+ content is preferably 3%, and more preferably 2.5%, 2%, 1.5%, 1%, 0.5%, 0.1%, and 0.05% in order. In addition, the lower limit of the Te 4+ content is preferably 0%. In addition, the content of Te 4+ may be 0%.

本發明的玻璃為氧化物玻璃,陰離子成分中的主成分為O2-。陰離子成分O2-的含量的範圍較佳超過95陰離子%且在100陰離子%以下,更佳超過97陰離子%且在100陰離子%以下,進一步較佳超過99陰離子%且在100陰離子%以下,再進一步較佳超過99.5陰離子%且在100陰離子%以下,更進一步較佳超過99.9陰離子%且在100陰離子%以下,再更進一步較佳為100陰離子%。 The glass of the present invention is an oxide glass, and the main component of the anion component is O 2- . The content of the anion component O 2- is preferably more than 95 anion% and less than 100 anion%, more preferably more than 97 anion% and less than 100 anion%, more preferably more than 99 anion% and less than 100 anion%, and It is more preferably more than 99.5% anion% and less than 100 anion%, still more preferably more than 99.9 anion% and less than 100 anion%, and still more preferably 100 anion%.

本發明的玻璃也可以包含O2-以外的陰離子成分。作為O2-以外的陰離子成分,能夠例示出F-、Cl-、Br-、I-。但是,F-、Cl-、Br-、I-均容易在玻璃的熔融過程中揮發。由於這些成分的揮發,會產生玻璃的特性改變、玻璃的均質性下降、熔融設備的消耗變得顯著等問題。因此,F-、Cl-、Br-及I-的含量的合計較佳不足5陰離子%,更佳不足3陰離子%,進一步較佳不足1陰離子%,再進一步較佳不足0.5陰離子%,更進一步較佳不足0.1陰離子%,再更進一步較佳為0陰離子%。 The glass of the present invention may contain anion components other than O 2- . As an anion component other than 2- O, can be exemplified F -, Cl -, Br - , I -. However, F -, Cl -, Br -, I - are easily volatilized during melting glass. Due to the volatilization of these components, problems such as a change in the characteristics of the glass, a decrease in the homogeneity of the glass, and significant consumption of melting equipment will occur. Thus, F -, Cl -, Br - and I - total content is preferably less than 5% anionic, anionic% more preferably less than 3, more preferred less than 1 anionic%, and further preferably less than 0.5% anionic, further It is preferably less than 0.1 anion%, and still more preferably 0 anion%.

另外,陰離子%是指將全部的陰離子成分的含量的合計設為100%時的莫耳百分率。 In addition, the anion% refers to the molar percentage when the total content of all anion components is 100%.

本實施形態的光學玻璃較佳基本上由上述成分構成,但是在不妨礙本發明的作用效果的範圍內,也能夠含有其它成分。此外,在本發明中不排除含有不可避免的雜質。 It is preferable that the optical glass of this embodiment basically consists of the above-mentioned components, but it may contain other components within the range which does not impair the effect of this invention. In addition, the inclusion of unavoidable impurities is not excluded in the present invention.

第2實施形態中的其它成分組成能夠設為與第1實施形態相同。此外,第2實施形態的玻璃特性、光學玻璃的製造及光學元件等的製造也能夠設為與第1實施形態相同。 The other component compositions in the second embodiment can be made the same as those in the first embodiment. In addition, the glass characteristics of the second embodiment, the production of optical glass, the production of optical elements, and the like can also be made the same as those of the first embodiment.

以上對本發明的實施形態進行了說明,但是本發明不限定於這樣的實施形態,可以在不脫離本發明的要點的範圍內以各種方式來實施。 The embodiments of the present invention have been described above, but the present invention is not limited to such embodiments, and can be implemented in various ways within the scope not departing from the gist of the present invention.

此外,在本說明書中,以質量%表示和陽離子%表示對光學玻璃的玻璃組成進行了說明,但是各表示方法能夠藉由例如後述那樣的換算方法進行相互轉換。 In addition, in this specification, the glass composition of the optical glass has been described in terms of mass% expression and cationic% expression, but each expression method can be mutually converted by, for example, a conversion method as described later.

有時以氧化物為基準來表示玻璃組成的定量分析的結果、玻璃成分,玻璃成分的含量以質量%表示。這樣的組成的表示能夠藉由例如下述的方法換算為以陽離子%、陰離子%表示的組成。 Sometimes the result of a quantitative analysis of the glass composition and the glass component are expressed on the basis of oxides, and the content of the glass component is expressed in mass %. The expression of such a composition can be converted into a composition expressed in cation% and anion% by the following method, for example.

由陽離子A和氧構成的氧化物表示為AmOn。m和n分別是根據化學計量法確定的整數。例如,對於B3+,以氧化物為基準的表示為B2O3,m=2,n=3,對於Si4+,則為SiO2,m=1,n=2。 The oxide composed of cation A and oxygen is represented by A m O n . m and n are respectively integers determined according to stoichiometry. For example, for B 3+ , the oxide-based representation is B 2 O 3 , m=2, n=3, and for Si 4+ , it is SiO 2 , m=1, n=2.

首先,將以質量%表示的AmOn的含量除以AmOn的分子量,再乘以m。將該值設為P。然後,對所有的玻璃成分求P的總和。當將P的總和設為ΣP時,以使ΣP成為100%的方式對各玻璃成分的P的值進行歸一化的值即為以陽離子%表示的As+的含量。在此,s為2n/m。 First, the content of A m O n will be divided by the mass% of the molecular weight of A m O n, multiplied by m. Set this value to P. Then, the sum of P is calculated for all glass components. When the sum of P is ΣP, the value of the P value of each glass component that is normalized so that ΣP becomes 100% is the content of As + expressed in cation %. Here, s is 2n/m.

要根據以陽離子%表示的各成分的含量來算出以質量%表示的各成分的含量,只要進行與上述步驟相反的步驟即可。 To calculate the content of each component expressed in mass% from the content of each component expressed in cation %, it is only necessary to perform a step opposite to the above procedure.

另外,ΣP中不包含能夠作為澄清劑而少量添加的Sb2O3、SnO2、CeO2。而且,將Sb2O3、SnO2、CeO2的各含量 設為外加的含量。關於外加的含量,如前所述。 In addition, ΣP does not include Sb 2 O 3 , SnO 2 , and CeO 2 that can be added in small amounts as a fining agent. In addition, each content of Sb 2 O 3 , SnO 2 , and CeO 2 is an additional content. Regarding the additional content, as mentioned above.

關於上述的分子量,如前所述。 The above-mentioned molecular weight is as described above.

[實施例] [Example]

以下,藉由實施例對本發明進行更詳細的說明,但是本發明並不限定於這些實施例。 Hereinafter, the present invention will be described in more detail with examples, but the present invention is not limited to these examples.

(實施例1) (Example 1)

在表5A~7A和表5B~7B示出本發明的實施例的光學玻璃(試樣1~23)的玻璃組成及其特性值。 Tables 5A to 7A and Tables 5B to 7B show the glass composition and characteristic values of the optical glasses (samples 1 to 23) of the examples of the present invention.

在此,在表5A~7A中以質量%表示來表示試樣1~23的玻璃組成,在表5B~7B中以陽離子%表示來表示試樣1~23的玻璃組成。即,雖然在表5A~7A和表5B~7B中玻璃組成的表示方法不同,但是相同試樣編號的光學玻璃意味著具有相同組成的相同的光學玻璃。因此,表5A~7A和表5B~7B實質上示出了相同的光學玻璃及其結果。後述的表8A、表8B及表9A、表9B也是同樣的。 Here, in Tables 5A to 7A, the glass compositions of samples 1 to 23 are expressed in mass %, and in Tables 5B to 7B, the glass compositions of samples 1 to 23 are expressed in cationic %. That is, although the expression method of the glass composition is different in Tables 5A to 7A and Tables 5B to 7B, the optical glass with the same sample number means the same optical glass with the same composition. Therefore, Tables 5A to 7A and Tables 5B to 7B essentially show the same optical glass and its results. The same applies to Table 8A, Table 8B, Table 9A, and Table 9B described later.

另外,在表5B~9B中以陽離子%表示來表示玻璃組成,但是陰離子成分均全部為O2-。即,表5B~9B所述的組成,其O2-的含量均為100陰離子%。 In addition, in Tables 5B to 9B, the glass composition is represented by cationic %, but the anionic components are all O 2- . That is, in the compositions described in Tables 5B to 9B, the content of O 2- is 100 anion%.

此外,表5A~9A中的以質量%表示的組成是將表5B~9B中的以陽離子%表示的組成進行變換的組成。 In addition, the composition represented by mass% in Tables 5A to 9A is a composition obtained by converting the composition represented by cationic% in Tables 5B to 9B.

對用以下的步驟製作的光學玻璃進行了各種評價。將結果示於表5A~7A和表5B~7B。 Various evaluations were performed on the optical glass produced by the following procedure. The results are shown in Tables 5A to 7A and Tables 5B to 7B.

<光學玻璃的熔解、成型> <The melting and molding of optical glass>

準備與玻璃的構成成分對應的氧化物、氫氧化物、碳酸鹽 及硝酸鹽作為原材料,以使得到的光學玻璃的玻璃組成為各表所示的各組成的方式稱量、調配上述原材料,將原材料充分混合而製成調配原料。將得到的調配原料(批料原料)放入到鉑坩堝,連同坩堝一起放入到設定為1250~1350℃的範圍的電爐內,一邊進行120~180分鐘的熔融一邊進行攪拌而謀求均質化和脫泡(澄清)。此後,從電爐取出放入有熔融玻璃的鉑坩堝,傾斜鉑坩堝而將熔融玻璃澆鑄到預熱了的模具中。藉由將模具放置在溫度被設定為玻璃化轉變溫度(Tg)附近的電爐中5~10分鐘來進行模具的預熱,在澆鑄熔融玻璃時將模具從電爐中取出進行使用。為了使澆鑄的玻璃的形狀不變形,在將玻璃在鑄模中靜置數秒~數十秒後,將玻璃連同鑄模一起立即轉移到緩冷爐內,在設定為玻璃化轉變溫度Tg附近的緩冷爐內進行大約1小時的退火,然後緩冷至室溫而得到各光學玻璃。另外,試樣的製備全部在大氣環境中進行。 Prepare oxides, hydroxides, and carbonates corresponding to the composition of the glass And nitrate as a raw material, the above-mentioned raw materials are weighed and blended so that the glass composition of the obtained optical glass becomes each composition shown in each table, and the raw materials are fully mixed to prepare a blended raw material. Put the obtained blended raw materials (batch raw materials) into a platinum crucible, and put them together with the crucible into an electric furnace set in the range of 1250 to 1350°C, and stir while melting for 120 to 180 minutes to achieve homogenization and Deaeration (clarification). After that, the platinum crucible containing the molten glass was taken out from the electric furnace, and the platinum crucible was tilted to cast the molten glass into the preheated mold. Preheat the mold by placing the mold in an electric furnace whose temperature is set to around the glass transition temperature (Tg) for 5-10 minutes, and remove the mold from the electric furnace for use when casting molten glass. In order to prevent the shape of the cast glass from deforming, after the glass is allowed to stand in the mold for a few seconds to tens of seconds, the glass is immediately transferred to the slow cooling furnace together with the mold, and the glass transition temperature Tg is set to slow cooling. Annealing was performed in the furnace for about 1 hour, and then slowly cooled to room temperature to obtain each optical glass. In addition, all sample preparations were performed in an atmospheric environment.

在得到的玻璃中未發現原料的熔融殘留、晶體的析出、氣泡等異物,確認為均質性高的光學玻璃。 No foreign matter such as melting residue of raw materials, precipitation of crystals, and bubbles were found in the obtained glass, and it was confirmed that it was an optical glass with high homogeneity.

<光學玻璃的評價> <Evaluation of Optical Glass>

測定所得到的各光學玻璃的折射率(nd)、阿貝數(νd)、玻璃化轉變溫度(Tg)、著色度(λ80)、著色度(λ5)、比重。 The refractive index (nd), Abbe number (νd), glass transition temperature (Tg), coloring degree (λ80), coloring degree (λ5), and specific gravity of each obtained optical glass were measured.

用如下方法來測定折射率(nd)、阿貝數(νd)、玻璃化轉變溫度(Tg)、比重、著色度(λ5)、著色度(λ80)、液相線溫度。 The refractive index (nd), Abbe number (νd), glass transition temperature (Tg), specific gravity, degree of coloring (λ5), degree of coloring (λ80), and liquidus temperature were measured by the following methods.

(1)玻璃組成的確認 (1) Confirmation of glass composition

選取適量像上述那樣得到的各光學玻璃,使用電感耦合電 漿原子發射光譜法(ICP-AES法)對各成分的含量進行定量,由此測定玻璃組成,確認其與表5A~7A和表5B~7B所示的各試樣的氧化物組成一致。 Select an appropriate amount of each optical glass obtained as above, and use inductive coupling The content of each component was quantified by plasma atomic emission spectrometry (ICP-AES method), thereby measuring the glass composition, and confirming that it was consistent with the oxide composition of each sample shown in Tables 5A to 7A and Tables 5B to 7B.

(2)折射率(nd)、阿貝數(νd) (2) Refractive index (nd), Abbe number (νd)

根據日本光學玻璃工業會標準的折射率測定法,以可得到能夠充分退火的試樣的形狀(例如40mm×40mm以下的方形,厚度為25mm以下)且足以製作後述的棱鏡的大小的玻璃的方式切斷緩冷至室溫的光學玻璃。然後,以使玻璃的溫度能夠追隨於升溫的升溫速度(例如40~50℃/小時)升溫至玻璃化轉變溫度Tg~(Tg+30℃)之間的溫度,保持90分鐘~180分鐘而除去玻璃中的應力。接著,以降溫速度-30℃/小時×4小時的條件對玻璃進行緩冷,然後藉由放置冷卻而得到光學玻璃。加工得到的光學玻璃而製作棱鏡,使用島津儀器製造公司製造的精密分光計GMR-1(商品名稱)測定折射率(nd)、折射率(nF)、折射率(nc)。此外,使用折射率(nd)、折射率(nF)、折射率(nc)的各測定值算出阿貝數(νd)。 According to the refractive index measurement method of the Japan Optical Glass Industry Association, it is possible to obtain a sample shape that can be sufficiently annealed (for example, a square of 40 mm × 40 mm or less, and a thickness of 25 mm or less) and a method sufficient to produce glass of the size of a prism described later Cut the optical glass slowly cooled to room temperature. Then, the temperature of the glass is raised to a temperature between the glass transition temperature Tg~(Tg+30°C) so that the temperature of the glass can follow the heating rate (for example, 40-50°C/hour), and the temperature is kept for 90 to 180 minutes to remove Stress in glass. Next, the glass was slowly cooled at a temperature drop rate of -30°C/hour×4 hours, and then left to cool to obtain an optical glass. The obtained optical glass was processed to produce a prism, and the refractive index (nd), refractive index (nF), and refractive index (nc) were measured using a precision spectrometer GMR-1 (trade name) manufactured by Shimadzu Instruments Manufacturing Co., Ltd. In addition, the Abbe number (νd) was calculated using the respective measured values of the refractive index (nd), refractive index (nF), and refractive index (nc).

(3)玻璃化轉變溫度(Tg) (3) Glass transition temperature (Tg)

使用理學公司(Rigaku Corporation)製造的熱機械分析裝置,以4℃/分鐘的升溫速度進行測定。 A thermomechanical analyzer manufactured by Rigaku Corporation was used to measure at a temperature increase rate of 4°C/min.

(4)比重 (4) Specific gravity

藉由阿基米德法進行測定。 Measured by Archimedes method.

(5)著色度(λ5)、著色度(λ80) (5) Coloring degree (λ5), coloring degree (λ80)

將厚度為10mm±0.1mm的玻璃作為試樣,使用分光光度計測定光譜透射率。根據光譜透射率算出λ5、λ80。 A glass with a thickness of 10 mm ± 0.1 mm was used as a sample, and the spectral transmittance was measured using a spectrophotometer. Calculate λ5 and λ80 from the spectral transmittance.

(6)液相線溫度 (6) Liquidus temperature

將大約5cc(5ml)玻璃放入到鉑製坩堝中,在1250℃~1350℃加熱15分鐘後,冷卻到玻璃化轉變溫度(Tg)以下。將冷卻了的玻璃移動到規定溫度的爐內保持2小時,然後將未發現晶體的析出的最低溫度定義為液相線溫度。使用倍率為100倍的光學顯微鏡藉由目視方式確定有無晶體析出。 Put approximately 5cc (5ml) of glass into a platinum crucible, heat it at 1250°C to 1350°C for 15 minutes, and then cool it to below the glass transition temperature (Tg). The cooled glass was moved into a furnace at a predetermined temperature and kept for 2 hours, and then the lowest temperature at which no crystal precipitation was observed was defined as the liquidus temperature. Using an optical microscope with a magnification of 100 times, the presence or absence of crystal precipitation was confirmed visually.

Figure 105107156-A0101-12-0070-8
Figure 105107156-A0101-12-0070-8

Figure 105107156-A0101-12-0071-9
Figure 105107156-A0101-12-0071-9

Figure 105107156-A0101-12-0072-10
Figure 105107156-A0101-12-0072-10

Figure 105107156-A0305-02-0075-1
Figure 105107156-A0305-02-0075-1

Figure 105107156-A0305-02-0076-2
Figure 105107156-A0305-02-0076-2

Figure 105107156-A0305-02-0077-3
Figure 105107156-A0305-02-0077-3

(實施例2) (Example 2)

使用在實施例1中得到的各種光學玻璃製作精密壓製成型用預製件。預製件的製作方法使用公知的方法。 The various optical glasses obtained in Example 1 were used to produce preforms for precision press molding. The production method of the preform uses a known method.

將該預製件在氮環境中加熱、軟化,用壓製成型 模進行精密壓製成型而將玻璃成型為非球面透鏡形狀。從壓製成型模取出成型的玻璃進行退火,製作由在實施例1中製作的各種光學玻璃構成的非球面透鏡。 The preform is heated and softened in a nitrogen environment, and molded by pressing The mold is precisely pressed to shape the glass into an aspheric lens shape. The molded glass was taken out from the press molding die and annealed to produce aspheric lenses composed of various optical glasses produced in Example 1.

在像這樣製作的非球面透鏡的表面沒有發現白濁(透明性降低)、氣泡、傷痕等缺陷。 No defects such as white turbidity (decrease in transparency), bubbles, and scratches were found on the surface of the aspheric lens produced in this way.

(比較例1) (Comparative example 1)

對專利文獻6(日本特開2009-203083)的實施例1、實施例4、實施例14、實施例19、實施例21這5種組成(試樣24~28),以可得到具有這些組成的玻璃的方式調配原料,將其放入到鉑製坩堝中,在1300℃經2小時進行熔融。另外,熔融物的質量為200g。 For Example 1, Example 4, Example 14, Example 19, and Example 21 of Patent Document 6 (Japanese Patent Laid-Open No. 2009-203083), the five compositions (samples 24 to 28) can be obtained with these compositions The raw materials are prepared in the form of glass, put in a platinum crucible, and melted at 1300°C for 2 hours. In addition, the mass of the melt was 200 g.

在表8A和表8B示出試樣24~28的玻璃組成及其特性值。試樣24~28的組成不包含Nb,因此均發生了失透(析出晶體)。 Table 8A and Table 8B show the glass compositions of samples 24 to 28 and their characteristic values. The composition of samples 24 to 28 did not contain Nb, and therefore all had devitrification (precipitation of crystals).

Figure 105107156-A0305-02-0079-4
Figure 105107156-A0305-02-0079-4

Figure 105107156-A0305-02-0080-5
Figure 105107156-A0305-02-0080-5

(比較例2) (Comparative example 2)

再現了專利文獻3(日本特開2002-12443)的實施例2、專利文獻7(日本特表2009-537427)的實施例4、實施例8、實施例15的玻璃(試樣29~32)。在表9A和表9B示出試樣29~32的玻璃組成及其特性值。在試樣29~32的組成中,作為揮發性的指標的比RE1/D1、比RE2/D2均小,熔融狀態的玻璃的揮發量增多。 Example 2 of Patent Document 3 (Japanese Patent Application Publication No. 2002-12443), Example 4, Example 8, and Example 15 of Patent Document 7 (Japanese Patent Application Publication No. 2009-537427) were reproduced (samples 29 to 32) . Table 9A and Table 9B show the glass compositions of samples 29 to 32 and their characteristic values. In the composition of samples 29 to 32, the ratios RE1/D1 and RE2/D2, which are indicators of volatility, are all smaller, and the amount of volatility of glass in a molten state increases.

Figure 105107156-A0305-02-0081-6
Figure 105107156-A0305-02-0081-6

Figure 105107156-A0305-02-0082-7
Figure 105107156-A0305-02-0082-7

將由試樣29~32的玻璃構成的試樣(大約50mg)在1200℃熔融1小時,測定熔融前後的質量,求出質量減少量和質量減少率。在表10示出試樣29~32的熔融前的質量、由熔融造成的質量減少量和質量減少率。由試樣的熔融造成的質量減少是由於熔融玻璃的揮發而造成的。 Samples (approximately 50 mg) composed of the glass of samples 29 to 32 were melted at 1200°C for 1 hour, and the masses before and after the melting were measured to determine the mass reduction amount and mass reduction rate. Table 10 shows the masses before melting, the mass reduction amount due to melting, and the mass reduction rate of samples 29 to 32. The mass reduction caused by the melting of the sample is due to the volatilization of the molten glass.

Figure 105107156-A0101-12-0081-18
Figure 105107156-A0101-12-0081-18

另外,試樣的質量減少量根據TG-DTA來測定。另一方面,對本申請實施例的各玻璃進行了同樣的實驗,質量減少率均為0.74%以下,是上述試樣29~32的玻璃的質量減少率的1/3~1/2這樣小的值。 In addition, the mass reduction of the sample was measured based on TG-DTA. On the other hand, the same experiment was performed on each glass of the examples of the present application, and the mass reduction rate was all 0.74% or less, which was as small as 1/3 to 1/2 of the mass reduction rate of the glass of the above samples 29 to 32 value.

(比較例3) (Comparative example 3)

將專利文獻7(日本特表2009-537427)的實施例4(試樣30)的玻璃在1200℃分別保持2小時、4小時、6小時,進行冷卻而測定了折射率(nd),得到表11所示的結果。 The glass of Example 4 (Sample 30) of Patent Document 7 (Japanese Patent Application Publication No. 2009-537427) was held at 1200°C for 2 hours, 4 hours, and 6 hours, respectively, and then cooled to measure the refractive index (nd) to obtain a table The result shown in 11.

Figure 105107156-A0101-12-0081-20
Figure 105107156-A0101-12-0081-20

另一方面,本申請實施例的試樣16的玻璃的折射率(nd)的變化如表12所示。 On the other hand, the change of the refractive index (nd) of the glass of the sample 16 of the example of the present application is shown in Table 12.

Figure 105107156-A0101-12-0081-21
Figure 105107156-A0101-12-0081-21

在試樣16以外的本申請實施例的玻璃中,在1200℃保持2小時後的折射率(nd)與保持6小時後的折射率(nd)的差的絕對值也不足0.00070。另外,在任一情況下,與易揮發的成分相比,不易揮發的成分提高折射率的作用強,因此藉由延長保持時間,從而折射率上升。 In the glasses of the examples of the present application other than Sample 16, the absolute value of the difference between the refractive index (nd) after holding at 1200°C for 2 hours and the refractive index (nd) after holding for 6 hours is also less than 0.00070. In addition, in either case, the non-volatile component has a stronger effect of increasing the refractive index than the volatile component, and therefore the refractive index increases by extending the retention time.

像這樣,可知藉由增大作為揮發性的指標的比[RE1/D1]、比[RE2/D2],從而能夠降低揮發,能夠使折射率(nd)的變化量降低到1/7~1/4。 In this way, it can be seen that by increasing the ratio [RE1/D1] and the ratio [RE2/D2], which are indicators of volatility, volatilization can be reduced, and the change in refractive index (nd) can be reduced to 1/7~1 /4.

Claims (5)

一種光學玻璃,在該光學玻璃中,RE1相對於NWF1的比[RE1/NWF1]為0.35以上;HR1相對於RE1的比[HR1/RE1]為0.33以下;Nb2O5的含量相對於Nb2O5和Ta2O5的合計含量的質量比[Nb2O5/(Nb2O5+Ta2O5)]為2/3以上;RE1相對於D1的比[RE1/D1]為0.90以上;L1相對於NWF1和RE1的合計值的比[L1/(NWF1+RE1)]為1.05以上;阿貝數(νd)為39.0以上、未滿45.0,該阿貝數(νd)與折射率(nd)滿足下述式(1):式(1)nd
Figure 105107156-A0305-02-0085-8
2.235-0.01×νd式中:當將M(B2O3)、M(SiO2)、M(Al2O3)、M(La2O3)、M(Gd2O3)、M(Y2O3)、M(Yb2O3)、M(LaF3)、M(GdF3)、M(YF3)、M(YbF3)、M(ZnO)、M(Li2O)、M(Na2O)、M(K2O)、M(ZrO2)、M(Nb2O5)、M(TiO2)、M(WO3)、M(Ta2O5)、M(Bi2O3)、M(MgO)、M(CaO)、M(SrO)、M(BaO)分別設為B2O3、SiO2、Al2O3、La2O3、Gd2O3、Y2O3、Yb2O3、LaF3、GdF3、YF3、YbF3、ZnO、Li2O、Na2O、K2O、ZrO2、Nb2O5、TiO2、WO3、Ta2O5、Bi2O3、MgO、CaO、SrO、BaO的分子量時;NWF1=[2×B2O3/M(B2O3)]+[SiO2/M(SiO2)]+[2×Al2O3/M(Al2O3)]; RE1=[2×La2O3/M(La2O3)]+[2×Gd2O3/M(Gd2O3)]+[2×Y2O3/M(Y2O3)]+[2×Yb2O3/M(Yb2O3)]+[LaF3/M(LaF3)]+[GdF3/M(GdF3)]+[YF3/M(YF3)]+[YbF3/M(YbF3)];HR1=[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[WO3/M(WO3)]+[2×Bi2O3/M(Bi2O3)];D1={[2×Li2O/M(Li2O)]+[2×Na2O/M(Na2O)]+[2×K2O/M(K2O)]}×3+[ZnO/M(ZnO)];L1=[20×Li2O/M(Li2O)]+[16×Na2O/M(Na2O)]+[8×K2O/M(K2O)]+[4×ZnO/M(ZnO)]+[MgO/M(MgO)]+[2×CaO/M(CaO)]+[2×SrO/M(SrO)]+[2×BaO/M(BaO)]+[2×B2O3/M(B2O3)]+[2×Nb2O5/M(Nb2O5)]+[TiO2/M(TiO2)]+[4×WO3/M(WO3)]+[8×Bi2O3/M(Bi2O3)]+[2×Ta2O5/M(Ta2O5)]-[2×SiO2/M(SiO2)]-[2×Al2O3/M(Al2O3)]-[2×ZrO2/M(ZrO2)]-[2×La2O3/M(La2O3)]-[2×Gd2O3/M(Gd2O3)]-[2×Y2O3/M(Y2O3)]-[2×Yb2O3/M(Yb2O3)]-[LaF3/M(LaF3)]-[GdF3/M(GdF3)]-[YF3/M(YF3)]-[YbF3/M(YbF3)];上述各玻璃成分的含量為以質量%表示的值。
An optical glass in which the ratio of RE1 to NWF1 [RE1/NWF1] is 0.35 or more; the ratio of HR1 to RE1 [HR1/RE1] is 0.33 or less; the content of Nb 2 O 5 is relative to Nb 2 The mass ratio of the total content of O 5 and Ta 2 O 5 [Nb 2 O 5 /(Nb 2 O 5 +Ta 2 O 5 )] is 2/3 or more; the ratio of RE1 to D1 [RE1/D1] is 0.90 Above; The ratio of L1 to the total value of NWF1 and RE1 [L1/(NWF1+RE1)] is 1.05 or more; Abbe number (νd) is 39.0 or more but less than 45.0, the Abbe number (νd) and refractive index (nd) satisfies the following formula (1): formula (1) nd
Figure 105107156-A0305-02-0085-8
2.235-0.01×νd where: when M(B 2 O 3 ), M(SiO 2 ), M(Al 2 O 3 ), M(La 2 O 3 ), M(Gd 2 O 3 ), M( Y 2 O 3 ), M(Yb 2 O 3 ), M(LaF 3 ), M(GdF 3 ), M(YF 3 ), M(YbF 3 ), M(ZnO), M(Li 2 O), M(Na 2 O), M(K 2 O), M(ZrO 2 ), M(Nb 2 O 5 ), M(TiO 2 ), M(WO 3 ), M(Ta 2 O 5 ), M( Bi 2 O 3 ), M(MgO), M(CaO), M(SrO), M(BaO) are set as B 2 O 3 , SiO 2 , Al 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 , LaF 3 , GdF 3 , YF 3 , YbF 3 , ZnO, Li 2 O, Na 2 O, K 2 O, ZrO 2 , Nb 2 O 5 , TiO 2 , WO 3 , Ta 2 O 5 , Bi 2 O 3 , MgO, CaO, SrO, BaO molecular weight; NWF1=[2×B 2 O 3 /M(B 2 O 3 )]+[SiO 2 /M(SiO 2 ) ]+[2×Al 2 O 3 /M(Al 2 O 3 )]; RE1=[2×La 2 O 3 /M(La 2 O 3 )]+[2×Gd 2 O 3 /M(Gd 2 O 3 )]+[2×Y 2 O 3 /M(Y 2 O 3 )]+[2×Yb 2 O 3 /M(Yb 2 O 3 )]+[LaF 3 /M(LaF 3 )]+ [GdF 3 /M(GdF 3 )]+[YF 3 /M(YF 3 )]+[YbF 3 /M(YbF 3 )]; HR1=[2×Nb 2 O 5 /M(Nb 2 O 5 ) ]+[TiO 2 /M(TiO 2 )]+[WO 3 /M(WO 3 )]+[2×Bi 2 O 3 /M(Bi 2 O 3 )]; D1={[2×Li 2 O /M(Li 2 O)]+[2×Na 2 O/M(Na 2 O)]+[2×K 2 O/M(K 2 O)])×3+[ZnO/M(ZnO)] ; L1=[20×Li 2 O/M(Li 2 O)]+[16×Na 2 O/M(Na 2 O)]+[8×K 2 O/M(K 2 O)]+[4 ×ZnO/M(ZnO)]+[MgO/M(MgO)]+[2×Ca O/M(CaO)]+[2×SrO/M(SrO)]+[2×BaO/M(BaO)]+[2×B 2 O 3 /M(B 2 O 3 )]+[2× Nb 2 O 5 /M(Nb 2 O 5 )]+[TiO 2 /M(TiO 2 )]+[4×WO 3 /M(WO 3 )]+[8×Bi 2 O 3 /M(Bi 2 O 3 )]+[2×Ta 2 O 5 /M(Ta 2 O 5 )]-[2×SiO 2 /M(SiO 2 )]-[2×Al 2 O 3 /M(Al 2 O 3 ) ]-[2×ZrO 2 /M(ZrO 2 )]-[2×La 2 O 3 /M(La 2 O 3 )]-[2×Gd 2 O 3 /M(Gd 2 O 3 )]-[ 2×Y 2 O 3 /M(Y 2 O 3 )]-[2×Yb 2 O 3 /M(Yb 2 O 3 )]-[LaF 3 /M(LaF 3 )]-[GdF 3 /M( GdF 3 )]-[YF 3 /M(YF 3 )]-[YbF 3 /M(YbF 3 )]; the content of each glass component mentioned above is a value expressed in mass %.
一種光學玻璃,該光學玻璃是氧化物玻璃,在該光學玻璃中,RE2相對於NWF2的比[RE2/NWF2]為0.35以上;HR2相對於RE2的比[HR2/RE2]為0.33以下;Nb5+的含量相對於Nb5+和Ta5+的合計含量的陽離子比[Nb5+/(Nb5++Ta5+)]為3/4以上;RE2相對於D2的比[RE2/D2]為0.90以上;L2相對於NWF2和RE2的合計值的比[L2/(NWF2+RE2)]為1.05以上; 阿貝數(νd)為39.0以上、未滿45.0,該阿貝數(νd)與折射率(nd)滿足下述式(1):式(1)nd
Figure 105107156-A0305-02-0087-9
2.235-0.01×νd式中:NWF2為B3+、Si4+及Al3+的合計含量;RE2為La3+、Gd3+、Y3+及Yb3+的合計含量;HR2為Nb5+、Ti4+、W6+及Bi3+的合計含量;D2=(Li++Na++K+)×6+Zn2+;L2=(10×Li+)+(8×Na+)+(4×K+)+(4×Zn+)+Mg2++(2×Ca2+)+(2×Sr2+)+(2×Ba2+)+B3++Nb5++Ti4++(4×W6+)+(4×Bi3+)+Ta5+-(2×Si4+)-Al3+-(2×Zr4+)-La3+-Gd3+-Y3+-Yb3+;上述各玻璃成分的含量為以陽離子%表示的值。
An optical glass, the optical glass is oxide glass, in the optical glass, the ratio of RE2 to NWF2 [RE2/NWF2] is 0.35 or more; the ratio of HR2 to RE2 [HR2/RE2] is 0.33 or less; Nb 5 + content with respect to the total Nb 5+ and Ta 5+ content cation [Nb 5+ / (Nb 5+ + Ta 5+)] ratio of 3/4 or more; RE2, the ratio of D2 with respect to [RE2 / D2] Is 0.90 or more; the ratio of L2 to the total value of NWF2 and RE2 [L2/(NWF2+RE2)] is 1.05 or more; Abbe number (νd) is 39.0 or more but less than 45.0, the Abbe number (νd) is The refractive index (nd) satisfies the following formula (1): formula (1) nd
Figure 105107156-A0305-02-0087-9
2.235-0.01×νd where: NWF2 is the total content of B 3+ , Si 4+ and Al 3+ ; RE2 is the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ ; HR2 is Nb 5 + , Ti 4+ , W 6+ and Bi 3+ total content; D2=(Li + +Na + +K + )×6+Zn 2+ ; L2=(10×Li + )+(8×Na + )+(4×K + )+(4×Zn + )+Mg 2+ +(2×Ca 2+ )+(2×Sr 2+ )+(2×Ba 2+ )+B 3+ +Nb 5 + +Ti 4+ +(4×W 6+ )+(4×Bi 3+ )+Ta 5+ -(2×Si 4+ )-Al 3+ -(2×Zr 4+ )-La 3+ - Gd 3+ -Y 3+ -Yb 3+ ; The content of each glass component mentioned above is a value expressed in cation %.
如申請專利範圍第1或2項所述之光學玻璃,其中阿貝數(νd)為39.0以上、44.5以下。 The optical glass described in item 1 or 2 of the scope of patent application, wherein the Abbe number (νd) is 39.0 or more and 44.5 or less. 一種精密壓製成型用預製件,由申請專利範圍第1或2項所述之光學玻璃構成。 A preform for precision press molding, composed of the optical glass described in item 1 or 2 of the scope of patent application. 一種光學元件,由申請專利範圍第1或2項所述之光學玻璃構成。 An optical element composed of the optical glass described in item 1 or 2 of the scope of patent application.
TW105107156A 2015-03-17 2016-03-09 Optical glass and optical components TWI706924B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053823A JP6576657B2 (en) 2015-03-17 2015-03-17 Optical glass and optical element
JP2015-053823 2015-03-17

Publications (2)

Publication Number Publication Date
TW201634416A TW201634416A (en) 2016-10-01
TWI706924B true TWI706924B (en) 2020-10-11

Family

ID=57008627

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109130194A TWI771744B (en) 2015-03-17 2016-03-09 Optical glass and optical components
TW105107156A TWI706924B (en) 2015-03-17 2016-03-09 Optical glass and optical components

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109130194A TWI771744B (en) 2015-03-17 2016-03-09 Optical glass and optical components

Country Status (3)

Country Link
JP (1) JP6576657B2 (en)
CN (1) CN105985017B (en)
TW (2) TWI771744B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707472B (en) * 2016-12-05 2018-10-26 安徽长庚光学科技有限公司 For thermal imaging without thermalization optical lens and its preparation process
CN111108074B (en) * 2017-09-21 2022-07-01 株式会社尼康 Optical glass, optical element comprising optical glass, optical system, interchangeable lens, and optical device
JP7089933B2 (en) * 2018-04-26 2022-06-23 Hoya株式会社 Optical glass and optical elements
CN110937802B (en) * 2019-12-30 2022-07-29 成都光明光电股份有限公司 Optical glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742658A (en) * 2014-01-20 2014-04-23 重庆长江涂装设备有限责任公司 Non-erosive flow-limiting valve used for sealing surface of glue gun

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565354A (en) * 1979-06-21 1981-01-20 Alps Electric Co Ltd Paste for forming transparent conductive film
JPS56164033A (en) * 1980-05-21 1981-12-16 Hoya Corp Optical glass
JP4093524B2 (en) * 2001-02-20 2008-06-04 Hoya株式会社 Optical glass, press-molding preform and optical parts
JP6095356B2 (en) * 2011-12-28 2017-03-15 株式会社オハラ Optical glass and optical element
JP5875572B2 (en) * 2013-04-05 2016-03-02 株式会社オハラ Optical glass, preform material and optical element
JP6014573B2 (en) * 2013-04-05 2016-10-25 株式会社オハラ Optical glass, preform material and optical element
JP6188553B2 (en) * 2013-07-31 2017-08-30 株式会社オハラ Optical glass, preform material and optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742658A (en) * 2014-01-20 2014-04-23 重庆长江涂装设备有限责任公司 Non-erosive flow-limiting valve used for sealing surface of glue gun

Also Published As

Publication number Publication date
TWI771744B (en) 2022-07-21
JP2016172670A (en) 2016-09-29
TW202104113A (en) 2021-02-01
JP6576657B2 (en) 2019-09-18
TW201634416A (en) 2016-10-01
CN105985017A (en) 2016-10-05
CN105985017B (en) 2018-11-30

Similar Documents

Publication Publication Date Title
CN105948483B (en) Optical glass, preform and optical element
TWI691470B (en) Optical glass and optical components
WO2010038597A1 (en) Optical glass and method for suppressing the deterioration of spectral transmittance
JP7445037B2 (en) Optical glass and optical elements
TWI610900B (en) Glass, glass material for press molding, optical component blanks and optical components
JP2016069254A (en) Glass, glass blank for press-forming, optical element blank, and optical element
TWI706924B (en) Optical glass and optical components
JP7003198B2 (en) Glass, press-molded glass materials, optics blanks, and optics
CN115175882B (en) Optical glass and optical element
JP6812147B2 (en) Optical glass, optics blank, and optics
JP2018039729A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP6961547B2 (en) Optical glass and optical elements
JP2013151402A (en) Optical glass, preform and optical element
JP6086941B2 (en) Optical glass and method for suppressing deterioration of spectral transmittance
JP6692570B2 (en) Optical glass, lens preform and optical element
JP2020026381A (en) Optical glass, optical element blank, and optical element
JP2022021586A (en) Optical glass, and optical element
JP2020132510A (en) Optical glass and optical element
JP2018065747A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP2018065748A (en) Glass, glass blank for press-forming, optical element blank, and optical element