TWI706564B - 半導體結構及其形成方法 - Google Patents

半導體結構及其形成方法 Download PDF

Info

Publication number
TWI706564B
TWI706564B TW108128177A TW108128177A TWI706564B TW I706564 B TWI706564 B TW I706564B TW 108128177 A TW108128177 A TW 108128177A TW 108128177 A TW108128177 A TW 108128177A TW I706564 B TWI706564 B TW I706564B
Authority
TW
Taiwan
Prior art keywords
field plate
layer
oxide layer
substrate
gate
Prior art date
Application number
TW108128177A
Other languages
English (en)
Other versions
TW202107701A (zh
Inventor
周政偉
林信志
周鈺傑
洪章响
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108128177A priority Critical patent/TWI706564B/zh
Application granted granted Critical
Publication of TWI706564B publication Critical patent/TWI706564B/zh
Publication of TW202107701A publication Critical patent/TW202107701A/zh

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明的一些實施例提供一種半導體結構,包含:基底;源極結構和汲極結構設置於基底上;閘極結構設置於基底上且於源極結構和汲極結構之間;第一場板設置於基底上;第一氧化物層設置於基底與第一場板之間;第二場板設置於第一場板上且相較於第一場板更靠近汲極結構;平坦化的第二氧化物層設置於第一氧化物層與第二場板之間;以及第三場板設置於第二場板上且相較於第二場板更靠近汲極結構。

Description

半導體結構及其形成方法
本發明實施例係有關於一種半導體結構,特別是有關於一種高電子移動率電晶體。
高電子移動率電晶體(High Electron Mobility Transistor,HEMT)因具有高崩潰電壓、高輸出電壓等優點,廣泛應用於高功率半導體裝置當中。
GaN材料因為具有寬能帶間隙及高速移動電子,所以GaN HEMT在射頻與功率的應用上被積極的開發。一個好的GaN HEMT裝置需要有好的源極至汲極的導通電阻(drain-to-source on resistance,R DS-ON)。然而,在操作HEMT裝置時,高電壓會以及高電場,將對HEMT裝置產生傷害,使R DS-ON增加。R DS-ON的增加亦稱為電流崩塌(current collapse)或R DS-ON分散(R DS-ONdispersion)。
雖然現有的高電子移動率電晶體大致上可改善R DS-ON分散的問題,但並非各方面皆令人滿意。因此,仍需要一種新的高電子移動率電晶體,以符合各方面的需求。
本發明的一些實施例提供一種半導體結構,包含:基底;源極結構和汲極結構設置於基底上;閘極結構設置於基底上且於源極結構和汲極結構之間;第一場板設置於基底上;第一氧化物層設置於基底與第一場板之間;第二場板設置於第一場板上且第二場板相較於第一場板更靠近汲極結構;平坦化的第二氧化物層設置於第一氧化物層與第二場板之間;以及第三場板設置於第二場板上且第三場板相較於第二場板更靠近汲極結構。
本發明的一些實施例提供一種半導體結構的形成方法,包含:提供基底;形成源極結構和汲極結構於基底上;形成閘極結構於基底上且於源極結構和汲極結構之間;形成第一場板於基底上且第一場板;形成第一氧化物層於基底與第一場板之間;形成第二場板於第一場板上且第二場板相較於第一場板更靠近汲極結構;形成平坦化的第二氧化物層設置於第一氧化物層與第二場板之間;以及形成第三場板於第二場板上且第三場板相較於第二場板更靠近汲極結構。
以下公開許多不同的實施方法或是例子來實行本發明實施例之不同特徵,以下描述具體的元件及其排列的實施例以闡述本發明實施例。當然這些實施例僅用以例示,且不該以此限定本發明實施例的範圍。例如,在說明書中提到第一特徵形成於第二特徵之上,其包括第一特徵與第二特徵是直接接觸的實施例,另外也包括於第一特徵與第二特徵之間另外有其他特徵的實施例,亦即,第一特徵與第二特徵並非直接接觸。此外,在不同實施例中可能使用重複的標號或標示,這些重複僅為了簡單清楚地敘述本發明實施例,不代表所討論的不同實施例及/或結構之間有特定的關係。
此外,其中可能用到與空間相對用語,例如「在…下方」、「下方」、「較低的」、「上方」、「較高的」及類似的用語,這些空間相對用語係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相對用語包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相對形容詞也將依轉向後的方位來解釋。
在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。
能理解的是,雖然在此可使用用語「第一」、「第二」、「第三」等來敘述各種元件、組成成分、區域、層、及/或部分,這些元件、組成成分、區域、層、及/或部分不應被這些用語限定,且這些用語僅是用來區別不同的元件、組成成分、區域、層、及/或部分。因此,以下討論的一第一元件、組成成分、區域、層、及/或部分可在不偏離本揭露之教示的情況下被稱為一第二元件、組成成分、區域、層、及/或部分。
雖然所述的一些實施例中的步驟以特定順序進行,這些步驟亦可以其他合邏輯的順序進行。在不同實施例中,可替換或省略一些所述的步驟,亦可於本發明實施例所述的步驟之前、之中、及/或之後進行一些其他操作。本發明實施例中的高電子移動率電晶體可加入其他的特徵。在不同實施例中,可替換或省略一些特徵。
若未特別說明,類似名稱的元件或層可採用類似的材料或方法形成。
本發明實施例提供一種半導體結構及其形成方法。藉由在源極結構和汲極結構之間設置多個往汲極結構方向排列的場板,以分散電場並改善元件特性且提高崩潰電壓;而且由於各場板並非皆獨立地與源極結構或閘極結構電性連結,而是藉由相同的導線來電性連接至源極結構或閘極結構,因此可提高製程裕度(process window)及設計規則。此外,再搭配上平坦化製程,可進一步獲得同時具有場板功能、平坦化的表面輪廓及製程穩定度的半導體結構。
第1至8圖係根據一些實施例繪示出形成半導體結構100的不同階段的剖面示意圖。如第1圖所繪示,提供一基底102。在一些實施例中,基底102可為Al 2O 3(藍寶石(sapphire))基底。此外,基底102亦可為半導體基底。前述半導體基底可為元素半導體,包含矽(silicon)或鍺(germanium);化合物半導體,包含氮化鎵(gallium nitride,GaN)、碳化矽(silicon carbide)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)及/或銻化銦(indium antimonide);合金半導體,包含矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)及/或磷砷銦鎵合金(GaInAsP)、或上述材料之組合。在一些實施例中,基底102可為單晶基底、多層基底(multi-layer substrate)、梯度基底(gradient substrate)、其他適當之基底、或上述之組合。此外,基底102也可以是絕緣層上覆半導體(semiconductor on insulator,SOI)基底,上述絕緣層覆半導體基底可包含底板、設置於底板上之埋藏氧化物層、或設置於埋藏氧化物層上之半導體層。
接著,在基底102上形成緩衝層104。在一些實施例中,緩衝層104包含III-V族半導體,例如GaN。緩衝層104亦可包含AlGaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族半導體材料或上述之組合。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE) 、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、有機金屬氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、化學氣相沉積法(chemical vapor deposition,CVD)、原子層沉積法(atomic layer deposition,ALD)、物理氣相沉積法(physical vapor deposition,PVD)、分子束沉積法(molecular beam deposition,MBD)、電漿增強化學氣相沉積法(plasma enhanced chemical vapor deposition,CVD)、其他適當之方法、或上述之組合在基底102上形成緩衝層104。
接著,在緩衝層104上形成阻障層106,在一些實施例中,阻障層106包含與緩衝層104相異之材料。阻障層106可包含III-V族半導體,例如Al xGa 1-xN,其中0>x>1。阻障層106亦可包含GaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料、或上述之組合。在一些實施例中,可藉由分子束磊晶法、氫化物氣相磊晶法、有機金屬氣相沉積法、化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在緩衝層104上形成阻障層106。
由於緩衝層104與阻障層106之材料相異,其能帶間隙(band gap)不同,緩衝層104與阻障層106的界面處形成異質接面(heterojunction)。異質接面處的能帶彎曲,導帶(conduction band)彎曲深處形成量子井(quantum well),將壓電效應(Piezoelectricity)所產生的電子約束於量子井中,因此在緩衝層104與阻障層106的界面處形成二維電子氣(two-dimensional electron gas,2DEG),進而形成導通電流。如第1圖所示,在緩衝層104與阻障層106的界面處形成通道區108,通道區108即為二維電子氣形成導通電流之處。
接下來請參閱第2圖,在阻障層106上形成閘極電極110、閘極保護層112及介電層114。詳細而言,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在阻障層106上依序形成導電層和保護層。然後,藉由合適的製程例如旋轉塗佈或化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法或其他合適的沉積法或前述之組合,將光阻材料形成於阻障層106的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻(reactive ion etch,RIE)、中性束蝕刻(neutral beam etch,NBE)、類似蝕刻或前述之組合,來移除未被圖案化的光阻層覆蓋的導電層和保護層而形成閘極電極110和閘極保護層112。在一些實施例中,閘極電極110可包含GaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、MgGaN、其他適當參雜的III-V族材料、或上述之組合。在一特定實施例中,閘極電極110包含GaN。在一些實施例中,閘極保護層112可包含多晶矽、金屬(例如鎢、鈦、鋁、銅、鉬、鎳、鉑、其相似物、或以上之組合)、金屬合金、金屬氮化物(例如氮化鎢、氮化鉬、氮化鈦、氮化鉭、其相似物、或以上之組合)、金屬矽化物(例如矽化鎢、矽化鈦、矽化鈷、矽化鎳、矽化鉑、矽化鉺、其相似物、或以上之組合)、金屬氧化物(氧化釕、氧化銦錫、其相似物、或以上之組合)、其他適用的導電材料、或上述之組合。在一特定實施例中,閘極保護層112可包含金屬氮化物,例如氮化鈦(TiN)。
接著,可藉由蝕刻或其他合適的方法,來移除圖案化的光阻層。在一些實施例中,可進一步對閘極保護層112執行蝕刻製程,使閘極保護層112的側壁位於閘極電極110的側壁之間。在另一些實施例中,閘極保護層112的側壁與閘極電極110的側壁對齊。藉由設置閘極保護層112於閘極電極110上,可確保閘極不受製程流程影響其功能。
然後,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在阻障層106、閘極電極110和閘極保護層112上形成介電層114。舉例而言,在阻障層106、閘極電極110和閘極保護層112上順應性地形成介電層114。詳細而言,在阻障層106的頂面上、閘極電極110的側壁及頂面上和閘極保護層112的側壁及頂面上形成介電層114。在一些實施例中,介電層114包含SiO 2、SiN 3、SiON、Al 2O 3、MgO、Sc 2O 3、HfO 2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、LaO、ZrO、TiO 2、ZnO 2、ZrO 2、AlSiN 3、SiC、或Ta 2O 5、其他適當的介電材料、或上述之組合。在一特定實施例中,介電層114包含Al 2O 3
接下來請參閱第3圖,在基底102上形成第一氧化物層116。詳細而言,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在介電層114上形成第一氧化物層116。第一氧化物層116可包含SiO 2、SiN 3、SiON、Al 2O 3、MgO、Sc 2O 3、HfO 2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、LaO、ZrO、TiO 2、ZnO 2、ZrO 2或Ta 2O 5、其他適當的氧化物、或上述之組合。在一特定實施例中,第一氧化物層116包含SiO 2。然後,對第一氧化物層116執行平坦化製程,例如化學機械研磨(chemical mechanical polishing)製程。第一氧化層116的頂面及第一氧化層116的最底面之間的垂直距離為第一氧化層116的第一厚度H1。第一氧化物層116的第一厚度H1可為100nm~400nm。在一些實施例中,第一氧化物層116的厚度可為100nm~200nm、200nm~300nm或300nm~400nm。
接著,在基底102上形成第一場板118a。詳細而言,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在第一氧化物層116上導電層。在一些實施例中,導電層可包含多晶矽、金屬(例如鎢、鈦、鋁、銅、鉬、鎳、鉑、其相似物、或以上之組合)、金屬合金、金屬氮化物(例如氮化鎢、氮化鉬、氮化鈦、氮化鉭、其相似物、或以上之組合)、金屬矽化物(例如矽化鎢、矽化鈦、矽化鈷、矽化鎳、矽化鉑、矽化鉺、其相似物、或以上之組合)、金屬氧化物(氧化釕、氧化銦錫、其相似物、或以上之組合)、其他適用的導電材料、或上述之組合。然後,對導電層執行圖案化製程以形成第一場板118a,其中第一場板118a與閘極電極110部分重疊。詳細而言,第一場板118a的左側壁在閘極電極110的左側壁及右側壁之間。
接著,在基底102上形成第二氧化物層120。詳細而言,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在第一氧化物層116和第一場板118a上形成第二氧化物層120。在一些實施例中,第二氧化物層120的材料可與第一氧化層116相同。然後,對第二氧化物層120執行平坦化製程,例如化學機械研磨(chemical mechanical polishing)製程。第二氧化層120的頂面及第二氧化層120的底面之間的垂直距離為第二氧化層120的第二厚度H2。第二氧化物層120的第二厚度H2可為100nm~400nm。在一些實施例中,第二氧化物層120的厚度可為100nm~200nm、200nm~300nm或300nm~400nm。
接下來請參閱第4圖,藉由合適的製程例如旋轉塗佈或化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法或其他合適的沉積法或前述之組合,將光阻材料形成於第二氧化物層120的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻、中性束蝕刻、類似蝕刻或前述之組合,來蝕刻穿過第二氧化物層120、第一氧化物層116及介電層114,以形成對應於閘極電極110且露出部分閘極保護層112的頂面的開口;且蝕刻穿過第二氧化物層120以形成對應於第一場板118a且露出部分第一場板118a的頂面的另一開口。
接著,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合,在第二氧化物層120上和在開口中形成金屬層。然後,將金屬層圖案化以形成閘極金屬層122及第二場板118b,其中閘極金屬層122使閘極電極110與第一場板118a電性連接;且第二場板118b與閘極金屬層122之間具有開口。閘極結構123包含閘極金屬層122、閘極保護層112和閘極電極110。第二場板118b與第一場板118a部分重疊。詳細而言,第二場板118b的左側壁在第一場板118a的左側壁及右側壁之間。
接下來請參閱第5圖,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合,在第二氧化物層120、閘極金屬層122和第二場板118b上順應性地形成第三氧化物層124。詳細而言,在第二氧化物層120的頂面上、在閘極金屬層122的側壁及頂面上和在第二場板118b的側壁及頂面上形成第三氧化物層124。在一些實施例中,第三氧化物層124的材料可與第一氧化層116相同。第三氧化物層124的沉積厚度為第三厚度H3。第三氧化物層124的第三厚度H3可為100nm~400nm。在一些實施例中,第三氧化物層124的厚度可為100nm~200nm、200nm~300nm或300nm~400nm。在一些實施例中,可對第三氧化物層124執行平坦化製程,例如化學機械研磨製程。
接著,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合,在第三氧化物層124上形成導電層。在一些實施例中,導電層的材料可與先前所述的材料相同。然後,將導電層圖案化以形成第三場板118c。第三場板118c與第二場板118b部分重疊。詳細而言,第三場板118c的左側壁在第二場板118b的左側壁及右側壁之間。在一些實施例中,第三場板118c可與第二場板對齊。詳細而言,第三場板118c的左側壁與第二場板118b的右側壁對齊。
接著,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合,在第三氧化物層124和第三場板118c上形成第四氧化物層126。在一些實施例中,第四氧化物層126的材料可與第一氧化層116相同。然後,對第四氧化物層126執行平坦化製程,例如化學機械研磨製程。第四氧化物層126的頂面及第四氧化物層126的最底面之間的垂直距離為第四氧化物層126的第四厚度H4。第四氧化物層126的第四厚度H4可為100nm~400nm。在一些實施例中,第四氧化物層126的第四厚度H4可為100nm~200nm、200nm~300nm或300nm~400nm。
接下來請參閱第6圖,執行圖案化製程,開口128a、開口128b、開口128c及開口128d。開口128a和開口128b穿過第四氧化物層126、第三氧化物層124、第二氧化物層120、第一氧化物層116、介電層114、阻障層106及部分通道區108。開口128c穿過第四氧化物層126及第三氧化物層124。開口128d穿過第四氧化物層126。開口128a和開口128b位於閘極結構123的相對兩側,其中開口128a用於形成後續的源極結構135A;且開口128b用於形成後續的汲極結構135B。開口128c對應至第二場板118b且露出第二場板118b的頂面;而開口128d對應至第三場板118c且露出第三場板118c的頂面。
接著,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合,在第四氧化物層126的頂面及開口128a、128b、128c和128d的側壁及底部上形成導電層。然後,藉由圖案化製程及蝕刻製程,將導電層圖案化以在開口128a形成部分作為源極電極的導電層130a;且在開口128b形成作為汲極電極的導電層130b。導電層130a之位於開口128d以外且位於第四氧化物層126上的部分作為第四場板118d。由於第四場板118d是導電層130a的一部分,所以可以減少製程數量而降低成本及節省時間。在一些實施例中,可在不同製程中形成第四場板118d,而不將導電層130a的其中一部分直接作為第四場板118d。
可理解的是,雖然本發明的實施例繪示四個場板,但本發明所屬技術領域中具有通常知識者可根據實際需要,來決定場板的數量,例如兩個場板、三個場板、五個場板、六個場板或更多。此外,雖然本發明的實施例的第二場板118b、第三場板118c及第四場板118d皆透過同一條導線(例如導電層130a)電性連接至源極結構135A,但本發明所屬技術領域中具有通常知識者可根據實際需要,一些場板透過另一條導線電性連接至閘極結構。舉例而言,藉由一條導線,將第二場板118b和第三場板118c電性連接至閘極結構123;且藉由另一條導線,將第四場板118d電性連接至源極結構135A。
接下來請參閱第7圖,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在導電層130a、導電層130b及第四氧化物層126上形成第五氧化物層132。在一些實施例中,第五氧化物層132的材料可與第一氧化層116相同。接著,藉由圖案化製程及蝕刻製程在第五氧化物層132中形成對應至開口128a且露出部分導電層130a的導孔、及對應至開口128b且露出部分導電層130b的另一導孔。
然後,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合,在第五氧化物層132上及導孔中形成金屬層。在一些實施例中,金屬層可包含銅、鋁、鉬、鎢、金、鉻、鎳、鉑、鈦、銥、銠、上述之合金、上述之組合或其它導電性佳的金屬材料。然後,對金屬層執行圖案化,以分別形成源極金屬134a和汲極金屬134b。源極結構135A包含源極金屬134a、位於開口中的第五氧化物層132和導電層130a作為源極電極的部分。汲極結構135B包含汲極金屬134b、位於開口中的第五氧化物層132和導電層130b作為汲極電極的部分。
如第7圖所示,在源極結構135A和汲極結構135B之間設置多個往汲極結構135B方向排列的場板。詳細而言,第二場板118b相較於第一場板118a更靠近汲極結構135B、第三場板118c相較於第二場板118b更靠近汲極結構135B且第四場板118d相較於第三場板118c更靠近汲極結構135B。
接下來請參閱第8圖,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在第五氧化物層132、源極金屬134a和汲極金屬134b上形成第六氧化物層136。在一些實施例中,第六氧化物層136的材料可與第一氧化層116相同。然後,對第六氧化物層136執行圖案化製程,以形成露出源極金屬134a的頂面的開口和汲極金屬134b的頂面的另一開口。
接著,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在第六氧化物層136上及開口中形成金屬層138。然後,對金屬層138執行圖案化製程,使金屬層138具有一開口,使得金屬層138的一部分與源極結構電性連接;另一部分與汲極結構電性連接。
接著,藉由化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合,在金屬層138上及金屬層138的開口中形成氮化物層140。在一些實施例中,氮化物層140可包含氮化鈦(titanium nitride)、氮化矽(silicon nitride)(Si 3N 4)、氮氧化矽(silicon oxynitride)、碳氮化矽(silicon carbonitride)、類似材料或前述之組合。在一特定實施例中,氮化物層140可包含Si 3N 4
相較於習知技術,本發明實施例所提供之半導體結構及其形成方法至少具有以下優點: (1)藉由在源極結構和汲極結構之間設置多個往汲極結構方向排列的場板,以分散電場減少R DS-ON分散的問題並提高崩潰電壓;而且由於各場板並非皆獨立地與源極結構或閘極結構電性連結,而是藉由相同的導線來電性連接至源極結構或閘極結構,因此可提高製程裕度及設計規則。 (2)再者,由於各場板是設置於不同的氧化層上,因此可調整各場板與阻障層之間的距離,而進一步提升崩潰電壓。 (3)由於對各氧化物層執行平坦化製程,所以在一些蝕刻製程中,可以避免其底下的金屬層或導電層因為氧化物層的厚度不均或覆蓋性不佳,而受到傷害。 (4)此外,設置單一場板時,在場板的邊緣會出現很大的電場峰值。因此,相較於設置一個總長度等於多個往汲極結構方向排列場板的總長度的單一場板,設置多個往汲極結構方向排列的場板可有效分散電場的強度,而避免出現很大的電場峰值。
雖然本發明的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。
100:半導體結構
102:基底
104:緩衝層
106:阻障層
108:通道區
110:閘極電極
112:閘極保護層
114:介電層
116:第一氧化物層
118a:第一場板
118b:第二場板
118c:第三場板
118d:第四場板
120:第二氧化物層
122:閘極金屬層
123:閘極結構
124:第三氧化物層
126:第四氧化物層
128a、128b、128c、128d:開口
130a、130b:導電層
132:第五氧化物層
134a:源極金屬
134b:汲極金屬
135A:源極結構
135B:汲極結構
136:第六氧化物層
138:金屬層
140:氮化物層
H1:第一厚度
H2:第二厚度
H3:第三厚度
H4:第四厚度
以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1至8圖係根據一些實施例繪示出形成半導體結構的不同階段的剖面示意圖。
100:半導體結構
102:基底
104:緩衝層
106:阻障層
108:通道區
110:閘極電極
112:閘極保護層
114:介電層
116:第一氧化物層
118a:第一場板
118b:第二場板
118c:第三場板
118d:第四場板
120:第二氧化物層
122:閘極金屬層
124:第三氧化物層
126:第四氧化物層
130a、130b:導電層
132:第五氧化物層
134a:源極金屬
134b:汲極金屬
136:第六氧化物層
138:金屬層
140:氮化物層

Claims (12)

  1. 一種半導體結構,包括:一基底;一源極結構和一汲極結構,設置於該基底上;一閘極結構,設置於該基底上且於該源極結構和該汲極結構之間;一第一場板,設置於該基底上;一第一氧化物層,設置於該基底與該第一場板之間;一第二場板,設置於該第一場板上且該第二場板相較於該第一場板更靠近該汲極結構;一平坦化的第二氧化物層,設置於該第一氧化物層與該第二場板之間;以及一第三場板,設置於該第二場板上且該第三場板相較於該第二場板更靠近該汲極結構;其中該第三場板之靠近該源極結構的一端相較於該第二場板之靠近該源極結構的一端更靠近該汲極結構,且該第二場板之靠近該源極結構的該端相較於該第一場板之靠近該源極結構的一端更靠近該汲極結構。
  2. 如申請專利範圍第1項所述之半導體結構,其中該第二場板與該第一場板部分重疊。
  3. 如申請專利範圍第2項所述之半導體結構,其中該第三場板與該第二場板不重疊。
  4. 如申請專利範圍第1項所述之半導體結構,其中該第 二場板或該第三場板與該源極結構電性連接。
  5. 如申請專利範圍第1項所述之半導體結構,其中該第二場板和該第三場板皆與該源極結構電性連接。
  6. 如申請專利範圍第1項所述之半導體結構,其中該閘極結構包括:一閘極電極,設置於該基底上;一閘極保護層,設置於該閘極上;以及一閘極金屬層,設置於該閘極保護層上。
  7. 一種半導體結構的形成方法,包括:提供一基底;形成一源極結構和一汲極結構於該基底上;形成一閘極結構於該基底上且於該源極結構和該汲極結構之間;形成一第一場板於該基底上;形成一第一氧化物層於該基底與該第一場板之間;形成一第二場板於該第一場板上且該第二場板相較於該第一場板更靠近該汲極結構;形成一平坦化的第二氧化物層,設置於該第一氧化物層與該第二場板之間;以及形成一第三場板於該第二場板上且該第三場板相較於該第二場板更靠近該汲極結構;其中,該第三場板之靠近該源極結構的一端相較於該第二場板之靠近該源極結構的一端更靠近該汲極結構,且該第二場板之靠近該源極結構的該端相較於該第一場板之靠近該源極結構的一端更靠近該汲極結構。
  8. 如申請專利範圍第7項所述之半導體結構的形成方法,其中該第二場板與該第一場板部分重疊。
  9. 如申請專利範圍第7項所述之半導體結構的形成方法,其中該第三場板與該第二場板部分重疊。
  10. 如申請專利範圍第7項所述之半導體結構的形成方法,其中該第二場板或該第三場板與該源極結構電性連接。
  11. 如申請專利範圍第7項所述之半導體結構的形成方法,其中該第二場板和該第三場板皆與該源極結構電性連接。
  12. 如申請專利範圍第7項所述之半導體結構的形成方法,其中該閘極結構包括:形成一閘極電極於該基底上;形成一閘極保護層於該閘極上;以及形成一閘極金屬層於該閘極保護層上。
TW108128177A 2019-08-08 2019-08-08 半導體結構及其形成方法 TWI706564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108128177A TWI706564B (zh) 2019-08-08 2019-08-08 半導體結構及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108128177A TWI706564B (zh) 2019-08-08 2019-08-08 半導體結構及其形成方法

Publications (2)

Publication Number Publication Date
TWI706564B true TWI706564B (zh) 2020-10-01
TW202107701A TW202107701A (zh) 2021-02-16

Family

ID=74091631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108128177A TWI706564B (zh) 2019-08-08 2019-08-08 半導體結構及其形成方法

Country Status (1)

Country Link
TW (1) TWI706564B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200607092A (en) * 2004-05-11 2006-02-16 Cree Inc Wide bandgap transistors Wide bandgap transistors with multiple field plates
CN105720096A (zh) * 2013-12-27 2016-06-29 电力集成公司 高电子迁移率晶体管
TW201709419A (zh) * 2015-08-29 2017-03-01 台灣積體電路製造股份有限公司 半導體元件與其製作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200607092A (en) * 2004-05-11 2006-02-16 Cree Inc Wide bandgap transistors Wide bandgap transistors with multiple field plates
CN105720096A (zh) * 2013-12-27 2016-06-29 电力集成公司 高电子迁移率晶体管
TW201709419A (zh) * 2015-08-29 2017-03-01 台灣積體電路製造股份有限公司 半導體元件與其製作方法

Also Published As

Publication number Publication date
TW202107701A (zh) 2021-02-16

Similar Documents

Publication Publication Date Title
US10276682B2 (en) High electron mobility transistor
US20220336631A1 (en) Semiconductor device
US10164106B2 (en) Semiconductor device and a method for fabricating the same
US11114532B2 (en) Semiconductor structures and methods of forming the same
CN113016074B (zh) 半导体器件
CN211578757U (zh) 高电子迁移率晶体管
TWI735938B (zh) 半導體裝置及其製造方法
CN103296077B (zh) 半导体结构及其形成方法
CN112490285A (zh) 半导体装置及其制作方法
CN112420825A (zh) 半导体结构及其形成方法
CN110690275B (zh) 半导体装置及其制造方法
TWI706564B (zh) 半導體結構及其形成方法
TW202042308A (zh) 半導體裝置及其製造方法
US11955522B2 (en) Semiconductor structure and method of forming the same
CN117981087A (zh) 降低漏电流的氮化镓半导体装置及其制造方法
TWI719722B (zh) 半導體結構及其形成方法
CN111987141A (zh) 半导体装置及其制造方法
US20240105787A1 (en) Semiconductor devices and methods of fabrication thereof
US20240162306A1 (en) Method for manufacturing semiconductor device
US20230361198A1 (en) Transistor with dielectric spacers and method of fabrication therefor
EP4290582A1 (en) Method for manufacturing high-electron-mobility transistor
US20230361183A1 (en) Transistor with dielectric spacers and field plate and method of fabrication therefor
CN112909089A (zh) 半导体结构及其形成方法
CN116799051A (zh) 高电子迁移率晶体管元件及其制造方法