TWI705935B - 礬土燒結體以及光學元件用底層基板 - Google Patents

礬土燒結體以及光學元件用底層基板 Download PDF

Info

Publication number
TWI705935B
TWI705935B TW105114677A TW105114677A TWI705935B TW I705935 B TWI705935 B TW I705935B TW 105114677 A TW105114677 A TW 105114677A TW 105114677 A TW105114677 A TW 105114677A TW I705935 B TWI705935 B TW I705935B
Authority
TW
Taiwan
Prior art keywords
sintered body
bauxite
alumina
mass
alumina sintered
Prior art date
Application number
TW105114677A
Other languages
English (en)
Other versions
TW201708112A (zh
Inventor
松島潔
渡邊守道
佐藤圭
七瀧努
Original Assignee
日商日本碍子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本碍子股份有限公司 filed Critical 日商日本碍子股份有限公司
Publication of TW201708112A publication Critical patent/TW201708112A/zh
Application granted granted Critical
Publication of TWI705935B publication Critical patent/TWI705935B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/442Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Led Devices (AREA)

Abstract

本發明的礬土燒結體,其具有以X射線照射時在2θ=20°~70°的範圍的X射線繞射輪廓,以勞特格法求得的c面配向度為5%以上的面,含有Mg、F,Mg/F的質量比為0.05~3500,Mg的含量為30~3500質量ppm,結晶粒徑為15~200μm,將縱370.0μm×寬372.0μm的視野,以倍率1000倍拍攝的照片,目視時直徑0.2~0.6μm的氣孔為250個以下,直徑0.2~0.6μm的氣孔的體積對上述礬土燒結體的體積比為130體積ppm以下。本發明的礬土燒結體,作成0.5mm厚時,在450~1000nm的直線穿透率為60%以上。總之,本發明的礬土燒結體,即使c面配向度為5%以上,直線穿透率高而透明性優良。

Description

礬土燒結體以及光學元件用底層基板
本發明係關於礬土燒結體以及光學元件用底層基板。
先前,已知透明的礬土燒結體。例如,在非專利文獻1,對加了MgO的礬土懸浮液施加磁場進行滑鑄,在真空中以1850℃燒製5小時,製作具備配向粒子的透明礬土燒結體。例如,施加12特斯拉的磁場所製作的礬土燒結體,在波長600nm的直線穿透率為70.3%,而配向度高達97%。此外,施加8特斯拉的磁場所製作的礬土燒結體,在波長600nm的直線穿透率為56%左右,而配向度稍高為78%。再者,隨著磁場降低至6特斯拉、4特斯拉,直線穿透率與配向度都會下降。由該結果,得到隨磁場強度的增加,可提高直線穿透率與配向度的結論。
[先行技術文獻] [非專利文獻]
[非專利文獻1]Ceramics International vol.38, pp5557-5561 (2012)
但是,在非專利文獻1,若不施加12特斯拉的高磁場,則不僅無法充分提高配向度,亦無法得到直線穿透率為60%以上的礬土燒結體。可邊施加如此地高磁場邊進行滑鑄的裝置,現在只存在於有限的設施。再者,所得燒結體有許多的氣孔。
本發明係為解決如此的課題而完成者,以提供氣孔少而直線穿透率高的礬土燒結體為主要目標。
本發明的礬土燒結體係具有以照射X射線時在2θ=20°~70°的範圍的X射線繞射輪廓由於勞特格法求得的c面配向度為5%以上的面,含有Mg、F,Mg/F質量比為0.05~3500,Mg的含量為30~3500質量ppm,結晶粒徑為15~200μm,縱370.0μm×寬372.0μm的視野,以倍率1000倍拍攝的照片,目視時直徑0.2~0.6μm的氣孔為250個以下,直徑0.2~0.6μm的氣孔的體積對上述礬土燒結體的體積比為130體積ppm以下。本發明的礬土燒結體,作成0.5mm厚時,在波長450nm~1000nm的直線穿透率為60%以上,透明性優良。至今認為如非專利文獻1只有高配向時可得高的直線穿透率。儘管如此,根據本案發明,只要c面配向度在5%以上,即可得到具有高直線穿透率的礬土燒結體。如此地c面的配向度即使並非如非專利文獻1所述的高配向,亦可使透明性優良的理由雖並不清楚,可認為是含有適量的Mg、F,或結晶粒徑的下限值大到15μm,直徑0.2~0.6μm的氣孔數少,直徑0.2~0.6μm的氣孔的體積比例 低等複合貢獻的結果。
本發明的光學元件用底層基板,係由上述本發明的礬土燒結體所組成的基板。光學元件,可舉例如LED、LD、太陽能電池、傳感器、光電二極體、光學構件、窗材等。
10‧‧‧發光元件
12‧‧‧底層基板
14‧‧‧發光功能層
14a‧‧‧p型層
14b‧‧‧活性層
14c‧‧‧n型層
16‧‧‧安裝基板
20‧‧‧橫型發光元件
22‧‧‧陰極電極
24‧‧‧透光性陽極電極
25‧‧‧陽極電極墊
30‧‧‧縱型發光元件
32‧‧‧陽極電極
34‧‧‧陰極電極
圖1係以TGG法製作礬土燒結體的步驟的示意圖。
圖2係發光元件10的概略剖面圖。
圖3係橫型發光元件20的概略剖面圖。
圖4係長型發光元件30的製造步驟的概略剖面圖。
圖5係板狀礬土粒子的示意圖,(a)平面圖、(b)正面圖。
圖6係礬土燒結體的樣品的外觀照片。
圖7係傾斜角的說明圖。
圖8係搖擺曲線測定的說明圖。
圖9係將高倍率照片排列成連續的照片情形的說明圖。
圖10係將高倍率照片排列成連續的照片情形的說明圖。
以下說明關於本發明的實施形態。本實施形態的礬土燒結體,具有以照射X射線時在2θ=20°~70°的範圍的X射線繞射輪廓,以勞特格法求得的c面配向度為5%以上的面,含有Mg、F,Mg/F的質量比為0.05~3500,Mg的含量為30~3500質量ppm,結晶粒徑為15~200μm,縱370.0μm×寬372.0μm的視野,以倍率1000倍拍攝的照片,目視時直徑0.2~0.6μm的氣孔為250個以下,直徑0.2~0.6μm的氣孔的體積對上述礬土 燒結體的體積比為130體積ppm以下。
c面配向度,係將礬土燒結體的既定剖面(例如平行於c面的剖面)研磨加工為平滑之後,使用XRD裝置(例如,理學製、RINT-TTR III),對該面照射X射線時,以在2θ=20°~70°的範圍的X射線繞射輪廓,以下式算出。所謂c面係礬土的(006)面。式中P係由本實施形態的礬土燒結體的XRD所得之值,P0係由標準α-礬土(JCPDS卡-No.46-1212)所算出之值。本實施形態的礬土燒結體,c面配內度為5%以上的高配向礬土燒結體。
Figure 105114677-A0202-12-0004-1
Mg、F的含量,關於Mg係以ICP(感應耦合電漿)放光分析、F係以D-SIMS(動態二次離子質量分析)測定。Mg/F的質量比,以0.05~3500為佳,以0.1~10更佳,進一步以0.2~3.5為佳。Mg的含量,以30~3500質量ppm為佳,以100~2000質量ppm更佳,進一步以100~1500質量ppm為佳。Mg的添加形態,可舉MgO、MgF2、及MgNO3等。藉由使Mg與F的含量在上述範圍,可得高直線穿透率。此外,由提升直線穿透率的觀點,Mg、C、F以外的雜質元素,各以50ppm以下為佳,各以10ppm以下更佳。關於C以100ppm以下為佳,以70ppm 以下更佳,進一步以50ppm以下為佳。該等的含量,例如,關於C、S係以燃燒(高周波加熱)-紅外線吸收法,關於N係以惰性氣體融解-熱傳導法,關於H係以惰性氣體融解-非分散型紅外線吸收法,該等以外的元素(主要是Si、Fe、Ti、Na、Ca、K、P、V、Cr、Mn、Co、Ni、Cu、Zn、Y、Zr、Pb、Bi、Li、Be、B、Cl、Sc、Ga、Ge、As、Se、Br、Rb、Sr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Cs、Ba、Hf、Ta、V、Ir、Pt、Au、Hg、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu),可以ICP放光分析和ICP質量分析測定。另一方面,在燒結體的彎曲強度的觀點,F的含量較少為佳,以200質量ppm以下為佳。
結晶粒徑係燒結粒徑的平均值,以15~200μm為佳,以20~200μm更佳,以20~150μm更佳,進一步以20~100μm為佳。結晶粒徑,係將礬土燒結體的既定的剖面(例如c面平行的剖面)鏡面研磨,進行熱腐蝕處理之後,拍攝該面的影像,由所得影像設定矩形的視野範圍,在該矩形的視野範圍畫2條對角線時,對與對角線交叉的所有粒子,求得粒子內側的線段長度,對將此平均的值乘以1.5之值。
直徑0.2~0.6μm的氣孔數,係如下計算。即,將本實施形態的礬土燒結體的任意剖面,以離子研磨機研磨之後,將該研磨的剖面,以掃描式電子顯微鏡,以倍率1000調查,計數氣孔的數量。例如,將該研磨的剖面,以掃描式電子顯微鏡將縱92.5μm×寬124.0μm的視野以倍率1000倍拍攝的照片,以縱4張、寬3張連續12張的照片(縱370.0μm×寬 372.0μm),對該12張,以目視計算氣孔的數量。照片,可為二次電子像,亦可為反射電子像。在反射電子像或二次電子像,礬土是灰色,而氣孔會以黑或較礬土更深的灰色顯現。以離子研磨機研磨,是因為不會從剖面產生脫粒。再者,使用於離子研磨的研磨裝置,可舉例如,日本電子製的截面拋光機。由於氣孔在以倍率1000倍的照片放大的照片會以黑點出現,故可以目視充分辨識。直徑0.2~0.6μm的氣孔數,以250個以下為佳,以50個以下更佳,以40個以下更佳,進一步以15個以下為佳,以3個以下特別佳。該氣孔的數量越少直線穿透率有變高的趨勢。直徑0.2~0.6μm的氣孔對礬土燒結體的體積的體積比例,以130ppm以下為佳,以25ppm以下更佳,進一步以15ppm以下為佳,進一步以10ppm以下更佳,2ppm以下特別佳。該氣孔的體積比例越小直線穿透率有變高的趨勢。為更加提高直線穿透率,需要使氣孔數及體積比例都低,氣孔數與體積比例的組合,以250個以下、130ppm以下為佳,以50個以下、25ppm以下更佳,進一步以40個以下、15ppm以下為佳,進一步以15個以下、10ppm以下更佳,以3個以下、2ppm以下特別佳。
直徑1μm以上的氣孔數,係如下計算。即,將本實施形態的礬土燒結體的任意剖面,以離子研磨機研磨之後,將該研磨的剖面,以掃描式電子顯微鏡,以倍率500倍調查,計數氣孔的數量。例如,將該研磨的剖面,以掃描式電子顯微鏡將縱223.4μm×寬321.4μm的視野放大到500倍的照片,以縱6張、寬5張拍攝30張連續的照片(縱1340.4μm×寬 1607.0μm),對該30張,以目視計算氣孔的數量。以離子研磨機研磨,是因為不會從剖面產生脫粒。再者,使用於離子研磨的研磨裝置,可舉例如,日本電子製的截面拋光機。由於氣孔在以倍率500倍放大的照片會以黑點出現,故可以目視充分辨識。直徑1μm以上的氣孔的數量,以50個以下為佳。該氣孔的數量越少直線穿透率有變高的趨勢。
包含在本實施形態的礬土燒結體中的異物數較少為佳,將縱370.0μm×寬372.0μm的視野,以倍率1000倍拍攝的照片,以目視時直徑0.2~0.6μm的異物,以50個以下為佳,以40個以下更佳。異物數越少直線穿透率有變高的趨勢。再者,所謂異物,係由與礬土不同物質所組成,例如將研磨的剖面以掃描式電子顯微鏡拍攝時,與周圍的礬土對比不同而可容易地辨別。具體而言,在反射電子像或二次電子像,礬土與異物大多對比不同,而以反射電子像觀察可變得更容易辨別。異物數的計數方法,係將本實施形態的礬土燒結體的任意的剖面,以離子研磨機研磨之後,將該研磨的剖面,以掃描式電子顯微鏡的反射電子像,以倍率1000倍調查,將異物數計數。例如,將研磨的剖面,以掃描式電子顯微鏡將縱92.5μm×寬124.0μm的視野放大到1000倍的照片,以縱4張、寬3張拍攝12張連續的照片(縱370.0μm×寬372.0μm),對該12張,以目視計數異物數。關於是否是異物,可藉由組合能源分散型X射線分析儀(EDS),或電子探針微量分析儀(EPMA),更高精度地辨別。
本實施形態的礬土燒結體,係由該礬土燒結體取 出厚度0.5mm的試料在波長450~1000nm的直線穿透率以60%以上為佳。直線穿透率,可使用光譜儀(例如,Perkin Elmer製,Lambda900)測定。再者,將試料厚度換算成別的厚度時,只要利用以下的換算式即可。此式,係由Scripta Materialia,vol.69,pp362~365(2013)引用。式中,T1係直線穿透率的實測值,T2係換算後的直線穿透率,t1係厚度的實測值,t2係換算後的厚度,R係來自材料表面反射(礬土的情形為0.14)。
T2=(1-R)(T1/(1-R))(t2/t1)
本發明者們,發現藉由使礬土燒結體的配向軸(例如c輪)與各礬土粒子的結晶軸的傾斜(傾斜角)變小,可提升透明性。傾斜角,可藉由將透明礬土燒結體的表面,以X射線搖擺曲線法測定的X射線搖擺曲線的半波寬(XRC‧FWHM)評估。由透明性的觀點,傾斜角較小較佳,XRC‧FWHM,以15°以下為佳,以10°以下更佳,進一步以7.5°以下為佳,以5°以下特別佳,進一步以4°以下更佳,以1°以下更佳。
本實施形態的礬土燒結體,可利用於作為形成膜的底層基板,例如可利用於作為用於成膜GaN、ZnO、AlN、SiC、InN等的底層基板。本實施形態的礬土燒結體,在成膜前將表面研磨為佳。如此,可使表面的凹凸消失,而容易成膜且不容易在膜產生缺陷。
本實施形態的礬土燒結體,可例如,將板狀礬土粉末與平均粒徑較板狀礬土粉末更小的微細礬土粉末混合的混合粉末,藉由成形、燒製而製造。藉由成形板狀礬土粉末與微細礬土粉末的混合粉末,在成形時(薄帶成形、擠壓成形、 澆鑄成形、射出成形、單軸壓製成形等),板狀粒子容易配向。此外,燒製時,板狀礬土粉末成為結晶種(模板),而微細礬土粉末成為母材,模板邊取入母材邊進行同質磊晶成長。如此的製法被稱為TGG(Templated Grain Growth:模板晶粒成長)法。將以TGG法製作礬土燒結體的步驟的示意圖示於第1圖。在TGG法,可藉由板狀礬土粉末與微細礬土粉末的粒徑或混合比,控制所得礬土燒結體的顯微構造,相較於燒製板狀礬土粉末單體之情形較容易緻密化、容易提升配向度。
本實施形態的礬土燒結體,係將成形體加壓燒製(例如以熱壓燒製或HIP燒製等)者。再者,亦可在加壓燒製之前,進行常壓預備燒製。進行HIP燒製時,可採用封罐法。燒製溫度,以1800~2050℃為佳。以熱壓燒製時的壓力,以50kgf/cm2以上為佳,以200kgf/cm2以上更佳。HIP燒製時的壓力,以1000kgf/cm2以上為佳,以2000kgf/cm2以上更佳。混合粉末中的板狀礬土粉末的含量,以0.1~15質量為佳,以0.5~10質量%更佳。
光學元件用底層基板,係由上述本實施形態的礬土燒結體所組成的基板。光學元件,可舉發光元件或受光元件。例如,藉由在該光學元件用底層基板上成膜GaN層,可使用於作為相較於底層基板使用藍寶石上之情形,大型且廉價的LED等的發光基板。該光學元件用底層基板,由於透明,可做雷射舉的基板剝離。此外,不剝離底層基板時,可由底層基板側取出光。再者,GaN層之外,亦可形成ZnO層、AlN層、InN層等。
將如此的光學元件用底層基板利用於發光元件之 例,表示如下。發光元件10,係如圖2所示,具備:底層基板12;及形成在底層基板12上的發光功能層14。發光功能層14,係藉由施加電壓而基於LED的發光原理發光者,在此係由靠近底層基板12側,依序層積n型層14c、活性層14b、p型層14a。該發光功能層14,係以GaN系材料、ZnO系材料、AlN系材料等製作。
橫型發光元件20,係如圖3所示,發光元件10之中,在發光功能層14的外周部,形成使n型層14c的表面成為段差面,在n型層14c的段差面,設置陰極電極22,在p型層14a的表面,經由透光性陽極電極24,設置陽極電極墊25。根據該橫型發光元件20,不僅是發光功能層14的法線方向,電流亦會在水平方向流動。
縱型發光元件30,係如圖4所示,在發光功能層14的n型層14c的表面設置陰極電極34,在p型層14a的表面經由陽極電極32設置安裝基板16。該縱型發光元件30,係在發光元件10的p型層14a的表面形成陽極電極32,在安裝基板16上接合陽極電極32,將底層基板12以雷射舉離法去除,在露出的n型層14c的表面形成陰極電極34而製作。根據該縱型發光元件30,電流會在發光功能層14的法線方向流動。可如此地利用雷射舉離法,係由於底層基板12的直線穿透率大而透光性高。
[實施例]
[實驗例1]
1.礬土燒結體的製作
(1)板狀礬土粉末的製作
將96質量份高純度γ-礬土粉末(TM-300D,大明化學製)、4質量份高純度AlF3粉末(關東化學製,鹿特級)、及0.17質量份作為種結晶的高純度α-礬土粉末(TM-DAR,大明化學製,D50=1μm),以IPA(異丙醇)作為溶劑,使用
Figure 105114677-A0202-12-0011-13
2mm的礬土球,球磨混合5小時。球磨混合之後,以蒸發器將IPA乾燥,得到混合粉末。將所得混合粉末300g放入純度99.5質量%的高純度礬土製的燒箱(容量750cm3),蓋上純度99.5質量%的高純度礬土製的蓋,在電爐內空氣流中,以900℃熱處理3小時。空氣的流量為25000cc/min。將熱處理後的粉末在大氣中,以1150℃退火處理42.5小時之後,使用
Figure 105114677-A0202-12-0011-14
2mm的礬土球粉碎4小時,得到平均粒徑2μm、厚度0.3μm、寬高比大約7的板狀礬土粉末。粒子的平均粒徑、平均厚度、寬高比,係以掃描式電子顯微鏡(SEM)觀察板狀礬土粉末中的任意100個粒子所決定。平均粒徑係粒子板面的長軸長的平均值,平均厚度係粒子的短軸長(厚度)的平均值,寬高比係平均粒徑/平均厚度。圖5係板狀礬土粒子的示意圖,(a)係平面圖(b)係正面圖。板狀礬土粒子,以平面所視時的形狀係略六角形狀,其粒徑係如圖5(a)所示,厚度係如圖5(b)所示。
(2)薄帶成形
將1.5質量份上述(1)所製作的板狀礬土粉末,與98.5質量份平均粒徑較該板狀礬土粉末厚度小的微細礬土粉末(TM-DAR,平均粒徑0.1μm,大明化學製)混合。對100質量份該混合礬土粉末,加入0.025質量份氧化鎂(500A,宇部材 料製)、7.8質量份作為膠合劑的聚乙烯醇縮丁醛(品號BM-2,積水化學工業製)、3.9質量份作為可塑劑的二(2-乙基己基)磷苯二甲酸酯(黑金化成製)、2質量份作為分散劑的山梨坦三油酸酯(Rheodol SP-O30,花王製)、及作為分散劑的2-乙基己醇混合。分散劑的量,係將漿料黏度調整為20000cP。將如此地調製的漿料,以刮刀法在PET薄膜上,成形為乾燥後的厚度為20μm的板片狀。將所得薄帶裁切成口徑50.8mm(2英寸)的圓形之後,層積150片,載置於厚度10mm的A1板上後,放入袋中藉由將內部抽真空作成真空包裝。將該真空袋在85℃的溫水中,以100kgf/cm2的壓力進行靜水壓壓製,得到圓板狀的成形體。
(3)燒製
將所得成形體配置在脫脂爐中,以600℃、10小時的條件進行脫脂。將所得脫脂體使用石墨製模具,以熱壓機在氮中以1975℃,4小時,面壓200kgf/cm2的條件燒製,之後降溫,在1200℃時,放開面壓,得到直徑50.8mm的礬土燒結體。將所得礬土燒結體的樣品的外觀照片(以2μm的鑽石磨粒鏡面研磨後)示於圖6。描繪於圖6的NGK的標識標記係日本特殊陶業(株式會社)的註冊商標。
(4)表面研磨
對所得礬土燒結體的板面,使用鑽石磨粒將正反兩面鏡面研磨成厚度0.5mm,將研磨的燒結體(試料),以丙酮、乙醇、去離子水的順序分別清洗10分鐘,得到c面配向度、直線穿透率、D-SIMS分析用試料。
2.礬土燒結體的特性
(1)c面配向度的計算
為確認所得礬土燒結體的配向度,以XRD測定c面配向度。對鏡面研磨後的礬土燒結體,對該研磨面使用XRD裝置(理學製,RINT-TTR III)照射X射線時,測定在2θ=20°~70°的範圍的XRD輪廓。具體而言,使用CuKα線,以電壓50kV、電流300mA的條件測定。c面配向度,係以勞特格法計算。具體而言,以前述式計算。實驗例1的礬土燒結體的c面配向度為96.1%。
(2)傾斜角
傾斜角,係結晶軸的傾向分佈,係評估礬土的結晶方位由c軸以何種程度的頻率傾斜的參數。圖7係表示傾斜角的示意說明圖。在此,將傾斜角,以X射線搖擺曲線(XRC)的半高寬(FWHM)表示。XRC‧FWHM,係對礬土燒結體的板面(與c面配向度測定相同的面),如圖8所示,使X射線源與檢測器連動掃描,測定所得曲線的半高寬。如此將29(檢測器與入射X射線所形成的角度)值固定在該繞射波峰的位置,僅掃描ω(試料基板面與入射X射線所形成的角度)的測定方法稱為搖擺曲線測定。裝置,係使用理學製,RINT-TTR III,使用CuKα線,以電壓50kV、電流300mA的條件,使ω的掃描範圍為3.8°~38.8°。實驗例1的礬土燒結體的XRC‧FWHM為4.5°。
(3)純度
(3-1)關於Al、O、F以外的元素
將礬土燒結體,以純度99.9%的礬土研缽粉碎之後,對 Al、O、F以外的元素,以如下方法定量分析。實驗例1的礬土燒結體的Al、O、F以外的元素,檢測到Mg112ppm、C40ppm,沒有檢測到該等以外的元素。
C、S:使用碳硫分析裝置(LECO製CS844),以燃燒(高周波加熱)-紅外線吸收法分析。檢測下限是10ppm。
N:使用氧氮分析裝置(堀場製造所製EMGA-650W),以惰性氣體融解-熱傳導度法分析。檢測下限是10ppm。
H:使用氫分析裝置(堀場製造所製EMGA-921),惰性氣體融解-非分散型紅外線吸收法分析。檢測下限是10ppm。
上述以外的元素(主要是Si、Fe、Ti、Na、Ca、Mg、K、P、V、Cr、Mn、Co、Ni、Cu、Zn、Y、Zr、Pb、Bi、Li、Be、B、Cl、Sc、Ga、Ge、As、Se、Br、Rb、Sr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Cs、Ba、Hf、Ta、W、Ir、Pt、Au、Hg、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu):以遵照JISR1649的加壓硫酸分解法溶解礬土粉末,以ICP(感應耦合電漿)放光分析裝置(HITACHI HITECH SCIENCE製PS3520UV-DD)分析。檢測下限是10ppm。
再者,關於Ba、Sr、Pb係另外以如下方法分析,但並沒有檢測到。
Ba、Sr、Pb:以碳酸鈉溶液溶解礬土粉末,以ICP(感應耦合電漿)質量分析裝置(THERMO FISHIER SCIECE製iCAPQC)分析。
(3-2)關於F
對鏡面研磨後的礬土燒結體,做動態二次離子質量分析 (D-SIMS)。測定裝置係使用PHI公司製ADEPT1010。測定條件係如下所述。
‧一次離子種:Cs+
‧一次離子加速能:3keV
‧二次離子極性:Negative
‧電荷補償:E-gun
‧濺射循環:100~500循環
使用200-300濺射循環間的平均值作為F量。定量分析時,以與分析試料同條件測定與分析試料同組成(AlO)的已知濃度的標準試料,求得相對靈敏度係數進行定量。結果,燒結體中的F量為59ppm。
(3-3)關於Mg/F
將以上述(3-1)求得的Mg量(質量ppm),以上述(3-2)所求的F量(質量ppm)商除,求Mg/F值。實驗例1的Mg/F值是1.9。
(4)氣孔與異物
將所得礬土燒結體的任意的剖面,使用鑽石研磨粒預備研磨之後,以截面拋光機(CP)(日本電子製,IB-09010CP)研磨。CP係屬於離子研磨的範疇。使用CP,是因為研磨面不會產生脫粒。將所得剖面以掃描式電子顯微鏡(日本電子製,JSM-6390)拍攝。觀察的倍率,具體係將縱92.5μm×寬124.0μm的視野以倍率1000倍拍攝的照片,如圖9所示,縱4張、寬3張連續排列的二次電子像及反射電子像的照片(縱370.0μm×寬372.0μm),以目視計數直徑0.2~0.6μm的氣孔數及直徑0.2~0.6μm的異物數。此時,將觀察的氣孔的最長邊作為直徑。 在二次電子像及反射電子像的照片,礬土為灰色,氣孔為黑,異物會以與礬土及氣孔不同的對比色調顯現,故可容易地以目視辨別礬土、氣孔以及異物。關於判別較難的地方,使用EDS(日本電子製,JSM-6390)辨別。再者,以觀察的氣孔、異物的最長邊的平均值作為直徑。此外,使用以下的式算出直徑0.2~0.6μm的氣孔對礬土燒結體的體積的體積比例。
氣孔體積比例={π×(R/2)2/137640}×N
R:氣孔直徑(μm)
N:氣孔數
以實驗例1的礬土燒結體所確認的直徑0.2~0.6μm的氣孔的平均直徑為0.32μm,氣孔數9個,異物數6個,直徑0.2~0.6μm的氣孔對礬土燒結體的體積的體積比例為5.3體積ppm。
再者,別於直徑0.2~0.6μm的氣孔,將直徑1μm以上的氣孔的數量如下計算。即,將所得礬土燒結體的任意的剖面,使用鑽石研磨粒預備研磨之後,以前述CP研磨,將所得剖面以前述掃描式電子顯微鏡拍攝。觀察的倍率,具體係將縱223.4μm×寬321.4μm的視野以倍率500倍拍攝的照片,如圖10所示,縱6張、寬5張連續排列的照片(縱1340.4μm×寬1607.0μm),以目視計數直徑1μm以上的氣孔的數量。此時,將觀察的氣孔的最長邊作為直徑。由於氣孔與不是氣孔的部分,明暗清楚故可容易地以目視區別。以實驗例1的礬土燒結體確認的氣孔數為0個。
(5)結晶粒徑
將鏡面研磨後的礬土燒結體,放入純度99.5質量%的高純 度礬土製的燒箱(容量750cm3),在大氣中以1550℃進行熱腐處理45分鐘。藉由進行本熱腐處理,由於晶粒內部與晶界部的蝕刻速率不同而變得可以鮮明地觀察晶界。以掃描式電子顯微鏡(日本電子製、JSM-6390)拍攝,進行該熱腐處理的面的影像。視野範圍,係如下設定。即,在所得影像上配置長方形拉其對角線時,任一對角線均會與10個到30個粒子交叉地設定長方形的尺寸,將該長方形設定為視野範圍。然後,對與該長方形的2條對角線交叉的所有粒子,求得粒子內側的線段長度,對將此平均的值乘以1.5之值作為板面的平均粒徑。實驗例1的平均位徑(結晶粒徑)為63μm。
(6)直線穿透率
將鏡面研磨後的礬土燒結體使用分光光譜儀(Perkin Elmer製,Lambda900)測定在波長450~1000nm的直線穿透率。實驗例1的直線穿透率為80.6%以上。
(7)四點抗彎強度
由鏡面研磨後的礬土燒結體切出4×0.5×20mm的棒,測定四點抗彎強度。外部支點間距離為15mm,內部支點間距離為5mm,使用試驗片破斷時的負載,以JIS1601:2008所記載的四點抗彎強度的計算式計算。
[實驗例2]
在製作礬土燒結體時,在上述1.(3)的燒製,使燒製溫度為1900℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例3]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合0.75質量份板狀礬土粉末與99.25質量份微細礬土粉末,及在上述1.(3)的燒製,使燒製溫度為1900℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例4]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,使氧化鎂的添加量為0.05質量份,及在上述1.(3)的燒製,使燒製溫度為1900℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例5]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合2.0質量份板狀礬土粉末及98.0質量份微細礬土粉末,使氧化鎂的添加量為0.035質量份,及在上述1.(3)的燒製,使燒製溫度為1900℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例6]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合2.5質量份板狀礬土粉末與97.5質量份微細礬土粉末,使氧化鎂的添加量為0.035質量份,及在上述1.(3)的燒製,使燒製溫度為1950℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例7]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合2.0 質量份板狀礬土粉末與98.0質量份微細礬土粉末,使氧化鎂的添加量為0.035質量份,及在上述1.(3)的燒製,使燒製溫度為1850℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例8]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合2.5質量份板狀礬土粉末與97.5質量份微細礬土粉末,及在上述1.(3)的燒製,使燒製溫度為1850℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例9]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時沒有實施退火處理,在上述1.(2)的薄帶成形,混合5.0質量份板狀礬土粉末與95.0質量份微細礬土粉末,使氧化鎂的添加量為0.25質量份,及在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例10]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時沒有實施退火處理,在上述1.(2)的薄帶成形,混合5.0質量份板狀礬土粉末與95.0質量份微細礬土粉末,使氧化鎂的添加量為0.1質量份,及在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例11]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時沒有實施退火處理,在上述1.(2)的薄帶成形,混合5.0質量份板狀礬土粉末與95.0質量份微細礬土粉末,及在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例12]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時沒有實施退火處理,在上述1.(2)的薄帶成形,混合10.0質量份板狀礬土粉末與90.0質量份微細礬土粉末,使氧化鎂的添加量為0.25質量份,及在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。再者,XRC‧FWHM由於沒有出現搖擺曲線的波峰而不能測定。
[實驗例13]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時,以900℃實施退火處理3小時,在上述1.(2)的薄帶成形,混合2.5質量份板狀礬土粉末與97.5質量份微細礬土粉末,及在上述1.(3)的燒製,使燒製溫度為1950℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例14]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時, 以900℃實施退火處理3小時,在上述1.(2)的薄帶成形,混合2.5質量份板狀礬土粉末與97.5質量份微細礬土粉末,及在上述1.(3)的燒製,使燒製溫度為1900℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例15]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合2.0質量份板狀礬土粉末與98.0質量份微細礬土粉末,使氧化鎂的添加量為0.035質量份以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例16]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時沒有實施退火處理,在上述1.(2)的薄帶成形,混合2.5質量份板狀礬土粉末與97.5質量份微細礬土粉末,使氧化鎂的添加量為0.05質量份,及在上述1.(3)的燒製,使燒製溫度為1850℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例17]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,微細礬土粉末以AKP-20(平均粒徑0.5μm,住友化學製),混合2.0質量份板狀礬土粉末與98.0質量份微細礬土粉末,使氧化鎂的添加量為0.035質量份以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果 示於表1。
[實驗例18]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時,以1150℃實施退火處理42.5小時,使用
Figure 105114677-A0202-12-0022-15
2mm的礬土球粉碎50小時,作成平均粉徑1μm,厚度0.3μm,寬高比約3的板狀礬土粉末,在上述1.(2)的薄帶成形,混合2.0質量份板狀礬土粉末與98.0質量份微細礬土粉末,使氧化鎂的添加量為0.035質量份,及在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例19]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時沒有實施退火處理,在上述1.(2)的薄帶成形,混合2.5質量份板狀礬土粉末與97.5質量份微細礬土粉末,使氧化鎂的添加量為0.05質量份,及在上述1.(3)的燒製,使燒製溫度為1990℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例20]
在製作礬土燒結體時,在上述1.(3)的燒製,使燒製溫度為1750℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例21]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時沒有實施退火處理,在上述1.(2)的薄帶成形,混合2.5質量份板 狀礬土粉末與97.5質量份微細礬土粉末,使氧化鎂的添加量為0.02質量份,及在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例22]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,沒有使用板狀礬土粉末而僅使用微細礬土粉末以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例23]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時,以900℃實施退火處理1小時,在上述1.(2)的薄帶成形,混合30.0質量份板狀礬土粉末與70.0質量份微細礬土粉末,及上在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例24]
在製作礬土燒結體時,在上述1.(1)的製作板狀礬土時,以1250℃實施退火處理12小時,在上述1.(2)的薄帶成形,混合0.5質量份板狀礬土粉末與99.5質量份微細礬土粉末,使氧化鎂的添加量為0.7質量份以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例25]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合0.5質量份板狀礬土粉末與99.5質量份微細礬土粉末,使氧化鎂的添加量為0.007質量份,及在上述1.(3)的燒製,使燒製溫度為2000℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。在該實驗例,確認多數異常晶粒成長,在異常晶粒的外周發生裂紋。
[實驗例26]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合2.0質量份板狀礬土粉末與98.0質量份微細礬土粉末,使氧化鎂的添加量為0.035質量份,及在上述1.(3)的燒製,使燒製溫度為1600℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例27]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合0.5質量份板狀礬土粉末與99.5質量份微細礬土粉末,使氧化鎂的添加量為1.0質量份,及在上述1.(3)的燒製,使燒製溫度為1800℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
[實驗例28]
在製作礬土燒結體時,在上述1.(2)的薄帶成形,混合0.5質量份板狀礬土粉末與99.5質量份微細礬土粉末,使氧化鎂的添加量為0.003質量份,及在上述1.(3)的燒製,使燒製溫度為1700℃以外,以與實驗例1同樣地製作礬土燒結體。對所得礬土燒結體,求上述2.(1)~(7)的特性。將該結果示於表1。
Figure 105114677-A0202-12-0025-2
[評估]
實驗例1~21的礬土燒結體,均具有c面配向度為5%以上的面,含有Mg、F作為雜質,Mg/F的質量比或Mg的含量適量,結晶粒徑與直徑0.2~0.6μm的氣孔數目及其氣孔體積比例亦在適當的範圍。在該等實驗例所得礬土燒結體,厚度為0.5mm時,在波長450nm~1000nm的直線穿透率為60%以上。總之,即使c面配向度低,直線穿透率高而透明性優良。此外,在實驗例1~11、13~18,XRF‧FWHM為15°以下。再者,在實驗例1~8、13~15、17、18、20,F的含量為200ppm以下,四點抗彎強度為350MPa以上而相對較高,在高強度的觀點良好。實驗例9-12、16,19、21在直線穿透率的觀點良好,而在四點抗彎強度為300MPa以下而為稍微較低之值。
另一方面,實驗例22的礬土燒結體,c面配向度為零,實驗例23的礬土燒結體,Mg/F偏離適當的範圍,實驗例24的礬土燒結體,Mg/F氣孔數偏離適當的範圍,實驗例25的礬土燒結體,結晶粒徑偏離適當的範圍,實驗例26的礬土燒結體,氣孔的體積比例偏離適當的範圍,實驗例27、28的礬土燒結體,Mg量偏離適當的範圍。因此任一礬土燒結體,使厚度為0.5mm時,在波長450nm-1000nm的直線穿透率為60%以下,而透明性並不能說優良。
再者,實驗例1~21相當於本發明的實施例,實驗例22~28相當於比較例。本發明並無任何限定於上述實驗例,只要在屬於本發明的技術性範圍,可實施各種態樣,不言而喻 的。
本發明係主張以日本專利申請編號第2015-98525號,其申請日為西元2015年5月13日,及日本專利申請編號第2016-11190號,其申請日為西元2016年1月25日為優先權且其全部內容以參考資料包含於此。
【產業上的可利用性】
本發明,可利用於例如光學元件用底層基板。光學元件,可舉例如LED、LD、太陽能電池、傳感器、光電二極體、光學構件、窗材等。

Claims (11)

  1. 一種礬土燒結體,具有以照射X射線時在2θ=20°~70°的範圍的X射線繞射輪廓以勞特格法求得的c面配向度為5%以上的面,含有Mg、F,Mg/F質量比為0.05~3500,Mg的含量為30~3500質量ppm,結晶粒徑係燒結粒徑的平均值,其為15~200μm,縱370.0μm×寬372.0μm的視野,以倍率1000倍拍攝的照片,目視時直徑0.2~0.6μm的氣孔為250個以下,直徑0.2~0.6μm的氣孔的體積對上述礬土燒結體的體積比為130體積ppm以下。
  2. 如申請專利範圍第1項所述的礬土燒結體,其中將縱370.0μm×寬372.0μm的視野,以掃描式電子顯微鏡以倍率1000倍拍攝的照片,目視時直徑0.2~0.6μm的異物為50個以下。
  3. 如申請專利範圍第1或2項所述的礬土燒結體,其中將縱1340.4μm×寬1607.0μm的視野,以倍率500倍拍攝的照片,目視時直徑1μm以上的氣孔為50個以下。
  4. 如申請專利範圍第1或2項所述的礬土燒結體,其中0.5mm厚的上述礬土燒結體,在波長450nm~1000nm的直線穿透率為60%以上。
  5. 如申請專利範圍第4項所述的礬土燒結體,其中上述直線穿透率為80%以上。
  6. 如申請專利範圍第1或2項所述的礬土燒結體,其中F含 量為200ppm以下。
  7. 如申請專利範圍第1或2項所述的礬土燒結體,其中Mg、C,F以外的雜質元素的含量為50ppm以下。
  8. 如申請專利範圍第1或2項所述的礬土燒結體,其中Mg/F質量比為0.2~3.5,Mg的含量為100~1500質量ppm。
  9. 如申請專利範圍第1或2項所述的礬土燒結體,其中結晶粒徑為20~100μm。
  10. 如申請專利範圍第1或2項所述的礬土燒結體,其中在搖擺曲線測定的XRC半高寬為15°以下。
  11. 一種光學元件用底層基板,由申請專利範圍第1至10項中任一項所述的礬土燒結體組成。
TW105114677A 2015-05-13 2016-05-12 礬土燒結體以及光學元件用底層基板 TWI705935B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015098525 2015-05-13
JP2015-098525 2015-05-13
JP2016-011190 2016-01-25
JP2016011190 2016-01-25

Publications (2)

Publication Number Publication Date
TW201708112A TW201708112A (zh) 2017-03-01
TWI705935B true TWI705935B (zh) 2020-10-01

Family

ID=57248832

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105114676A TWI705950B (zh) 2015-05-13 2016-05-12 礬土燒結體以及光學元件用底層基板
TW105114677A TWI705935B (zh) 2015-05-13 2016-05-12 礬土燒結體以及光學元件用底層基板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105114676A TWI705950B (zh) 2015-05-13 2016-05-12 礬土燒結體以及光學元件用底層基板

Country Status (6)

Country Link
US (1) US10336625B2 (zh)
JP (2) JP6646658B2 (zh)
KR (1) KR102560837B1 (zh)
CN (1) CN107531576B (zh)
TW (2) TWI705950B (zh)
WO (2) WO2016182012A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560837B1 (ko) * 2015-05-13 2023-07-27 엔지케이 인슐레이터 엘티디 알루미나 소결체 및 광학 소자용 하지 기판
WO2018179240A1 (ja) * 2017-03-30 2018-10-04 日本碍子株式会社 アルミナ結晶及びその製法
CN111201208B (zh) 2017-10-05 2023-05-23 阔斯泰公司 氧化铝质烧结体及其制造方法
JP7311286B2 (ja) * 2019-03-26 2023-07-19 住友化学株式会社 アルミナ焼結体の製造方法およびアルミナ焼結体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616023A (ja) * 1984-06-21 1986-01-11 Yamaha Motor Co Ltd 不整地走行用車両

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1595518A (en) * 1977-03-11 1981-08-12 Gen Electric Polycrystalline alumina material
JP2001064075A (ja) 1999-08-30 2001-03-13 Sumitomo Chem Co Ltd 透光性アルミナ焼結体およびその製造方法
US20060211568A1 (en) * 2005-03-16 2006-09-21 Osram Sylvania Inc. High Total Transmittance Alumina Discharge Vessels Having Submicron Grain Size
CN101468915A (zh) * 2007-12-26 2009-07-01 中国科学院上海硅酸盐研究所 一种具有择优取向的多晶氧化铝透明陶瓷及其制备方法
JP2010165927A (ja) * 2009-01-16 2010-07-29 Sumitomo Electric Ind Ltd 発光素子用基板
CN101844916B (zh) 2009-03-26 2013-06-26 日本碍子株式会社 氧化铝烧结体、其制法和半导体制造装置部件
US8178455B2 (en) * 2009-03-26 2012-05-15 Ngk Insulatores, Ltd. Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
JP2014125355A (ja) * 2012-12-25 2014-07-07 Tosoh Corp 表面強化された透光性アルミナ焼結体及びその製造方法
KR102560837B1 (ko) * 2015-05-13 2023-07-27 엔지케이 인슐레이터 엘티디 알루미나 소결체 및 광학 소자용 하지 기판

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616023A (ja) * 1984-06-21 1986-01-11 Yamaha Motor Co Ltd 不整地走行用車両

Also Published As

Publication number Publication date
TW201710212A (zh) 2017-03-16
KR102560837B1 (ko) 2023-07-27
WO2016182011A1 (ja) 2016-11-17
JP6646658B2 (ja) 2020-02-14
TWI705950B (zh) 2020-10-01
CN107531576A (zh) 2018-01-02
TW201708112A (zh) 2017-03-01
JP6626500B2 (ja) 2019-12-25
WO2016182012A1 (ja) 2016-11-17
US20180044195A1 (en) 2018-02-15
JPWO2016182011A1 (ja) 2018-03-01
KR20180008455A (ko) 2018-01-24
JPWO2016182012A1 (ja) 2018-04-26
CN107531576B (zh) 2021-04-27
US10336625B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
US10138166B2 (en) Alumina sintered body and base substrate for optical device
US10427949B2 (en) Alumina sintered body and base substrate for optical device
TWI705935B (zh) 礬土燒結體以及光學元件用底層基板
TWI705951B (zh) 透明氧化鋁燒結體的製法
US10315957B2 (en) Method for producing transparent alumina sintered body
US10435816B2 (en) Oriented alumina substrate for epitaxial growth
WO2018179240A1 (ja) アルミナ結晶及びその製法