TWI703338B - Electric current sensor - Google Patents

Electric current sensor Download PDF

Info

Publication number
TWI703338B
TWI703338B TW108116112A TW108116112A TWI703338B TW I703338 B TWI703338 B TW I703338B TW 108116112 A TW108116112 A TW 108116112A TW 108116112 A TW108116112 A TW 108116112A TW I703338 B TWI703338 B TW I703338B
Authority
TW
Taiwan
Prior art keywords
anisotropic
unit
magnetization
magnetoresistance
anisotropic magnetoresistance
Prior art date
Application number
TW108116112A
Other languages
Chinese (zh)
Other versions
TW202009510A (en
Inventor
袁輔德
Original Assignee
愛盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛盛科技股份有限公司 filed Critical 愛盛科技股份有限公司
Priority to CN201910614939.XA priority Critical patent/CN110857951B/en
Priority to US16/527,075 priority patent/US10866267B2/en
Publication of TW202009510A publication Critical patent/TW202009510A/en
Application granted granted Critical
Publication of TWI703338B publication Critical patent/TWI703338B/en

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

An electric current sensor including a substrate, a conductive wire, a first anisotropic magnetoresistor (AMR) unit, a second AMR unit, a third AMR unit, a fourth AMR unit, a first magnetization direction setting device, and a second magnetization direction setting device is provided. The conductive wire has a first conductive segment and a second conductive segment respectively disposed below a first end and a second end opposite thereto of the substrate. The first AMR unit and the second AMR unit are disposed above the first end of the substrate. The third AMR unit and the fourth AMR unit are disposed above the second end of the substrate. The first magnetization direction setting device and the second magnetization direction setting device are configured to set magnetization directions of the AMR units.

Description

電流感測器Current sensor

本發明是有關於一種感測器,且特別是有關於一種電流感測器。The present invention relates to a sensor, and particularly relates to a current sensor.

電流感測是工業自動化中不可或缺的元素之一。近年來,電流感測的需求從工業用途擴展至智能居家與智慧城市領域的消費者產品與應用。高準確度、快速反應、小體積、低功耗及可靠的品質成為新一代電流感測器所追求的目標。Current sensing is one of the indispensable elements in industrial automation. In recent years, the demand for current sensing has expanded from industrial use to consumer products and applications in the field of smart homes and smart cities. High accuracy, fast response, small size, low power consumption and reliable quality have become the goals pursued by the new generation of current sensors.

目前有多種方法可以量測導體中的電流。舉例而言,可利用分路電阻器(shunt resistor)藉由量測橫跨其之電壓差來推算出電流。然而,此電阻相量小,因此電流消耗高,而不適用於小型或可攜式裝置。此外,高電流會產生熱,而造成其他問題。There are many ways to measure the current in a conductor. For example, a shunt resistor can be used to calculate the current by measuring the voltage difference across it. However, this resistance has a small phasor and therefore high current consumption, which is not suitable for small or portable devices. In addition, high currents can generate heat and cause other problems.

本發明提供一種電流感測器,具有高敏感度、高準確度及低功耗。The invention provides a current sensor with high sensitivity, high accuracy and low power consumption.

本發明的一實施例提出一種電流感測器,包括一基板、一導線、一第一異向性磁電阻(anisotropic magnetoresistor, AMR)單元、一第二異向性磁電阻單元、一第三異向性磁電阻單元、一第四異向性磁電阻單元、一第一磁化方向設定元件及一第二磁化方向設定元件。導線具有一第一導電段與一第二導電段,其中第一導電段與第二導電段排列於一第一方向上,各自沿著一第二方向延伸,且分別配置於基板之相對的一第一端與一第二端下方。第一異向性磁電阻單元與第二異向性磁電阻單元配置於基板的第一端上方,且沿著第一方向排列。第三異向性磁電阻單元與第四異向性磁電阻單元配置於基板的第二端上方,且沿著第一方向的反方向排列。第一磁化方向設定元件用以設定第一異向性磁電阻單元與第二異向性磁電阻單元的磁化方向。第二磁化方向設定元件用以設定第三異向性磁電阻單元與第四異向性磁電阻單元的磁化方向。當一電流流經導線時,因感應於電流所產生的磁場,第一異向性磁電阻單元所產生的電阻值變化相反於第二異向性磁電阻單元所產生的電阻值變化,且第三異向性磁電阻單元所產生的電阻值變化相反於第四異向性磁電阻單元所產生的電阻值變化,且第一、第二、第三及第四異向性磁電阻單元電性連接成一惠斯登電橋,以輸出對應於第一、第二、第三及第四異向性磁電阻單元所產生的電阻值變化的電壓訊號。An embodiment of the present invention provides a current sensor that includes a substrate, a wire, a first anisotropic magnetoresistor (AMR) unit, a second anisotropic magnetoresistor, and a third anisotropic magnetoresistor. The directional magnetic resistance unit, a fourth anisotropic magnetic resistance unit, a first magnetization direction setting element, and a second magnetization direction setting element. The wire has a first conductive segment and a second conductive segment, wherein the first conductive segment and the second conductive segment are arranged in a first direction, each extend along a second direction, and are respectively disposed on an opposite side of the substrate Below the first end and a second end. The first anisotropic magnetic resistance unit and the second anisotropic magnetic resistance unit are disposed above the first end of the substrate and arranged along the first direction. The third anisotropic magnetoresistive unit and the fourth anisotropic magnetoresistive unit are disposed above the second end of the substrate and are arranged along the opposite direction of the first direction. The first magnetization direction setting element is used for setting the magnetization directions of the first anisotropic magnetoresistive unit and the second anisotropic magnetoresistive unit. The second magnetization direction setting element is used for setting the magnetization directions of the third anisotropic magnetic resistance unit and the fourth anisotropic magnetic resistance unit. When a current flows through the wire, due to the magnetic field generated by the current, the resistance change generated by the first anisotropic magnetoresistive unit is opposite to the resistance change generated by the second anisotropic magnetoresistive unit, and the first The resistance change produced by the three anisotropic magnetoresistive unit is opposite to the resistance change produced by the fourth anisotropic magnetoresistive unit, and the first, second, third and fourth anisotropic magnetoresistive units are electrically It is connected as a Wheatstone bridge to output a voltage signal corresponding to the resistance change generated by the first, second, third and fourth anisotropic magnetoresistive units.

在本發明的一實施例中,電流感測器更包括一運算器,電性連接至惠斯登電橋的一輸出端,其中第一磁化方向設定元件與第二磁化方向設定元件將第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為一第一組合,以使惠斯登電橋之後輸出一第一電壓訊號,且第一磁化方向設定元件與第二磁化方向設定元件再將第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為相反於第一組合的一第二組合,以使惠斯登電橋之後輸出一第二電壓訊號。運算器用以將第一電壓訊號與第二電壓訊號相減,以輸出一對應於電流所產生的磁場的大小的輸出電壓訊號。In an embodiment of the present invention, the current sensor further includes an arithmetic unit electrically connected to an output terminal of the Wheatstone bridge, wherein the first magnetization direction setting element and the second magnetization direction setting element connect the first The magnetization direction combination of the second, third, and fourth anisotropic magnetoresistive units is set to a first combination, so that the Wheatstone bridge outputs a first voltage signal, and the first magnetization direction setting element and the first combination The second magnetization direction setting element then sets the magnetization direction combination of the first, second, third and fourth anisotropic magnetoresistive units to a second combination opposite to the first combination, so that the Wheatstone bridge outputs A second voltage signal. The arithmetic unit is used for subtracting the first voltage signal and the second voltage signal to output an output voltage signal corresponding to the magnitude of the magnetic field generated by the current.

在本發明的一實施例中,運算器用以將第一電壓訊號與第二電壓訊號相加,以輸出一偏移電壓訊號。In an embodiment of the present invention, the arithmetic unit is used to add the first voltage signal and the second voltage signal to output an offset voltage signal.

在本發明的一實施例中,當電流流經導線時,電流在第一導電段中的流向相反於在第二導電段中的流向。In an embodiment of the present invention, when current flows through the wire, the direction of current flow in the first conductive section is opposite to the direction of current flow in the second conductive section.

在本發明的一實施例中,第一方向垂直於第二方向。In an embodiment of the present invention, the first direction is perpendicular to the second direction.

在本發明的一實施例中,電流流經第一導電段時在第一異向性磁電阻單元與第二異向性磁電阻單元處所產生的磁場在第一方向上的分量的方向相反於電流流經第二導電段時在第三異向性磁電阻單元與第四異向性磁電阻單元處所產生的磁場在第一方向上的分量的方向。In an embodiment of the present invention, when the current flows through the first conductive section, the direction of the component of the magnetic field generated at the first anisotropic magnetoresistance unit and the second anisotropic magnetoresistance unit in the first direction is opposite to The direction of the component in the first direction of the magnetic field generated at the third anisotropic magnetoresistance unit and the fourth anisotropic magnetoresistance unit when current flows through the second conductive section.

在本發明的一實施例中,惠斯登電橋對應於在第一方向上的外在磁場分量所輸出的電壓訊號為零,對應於在第二方向上的外在磁場分量所輸出的電壓訊號為零,且對應於在一第三方向上的外在磁場分量所輸出的電壓訊號為零,其中第三方向垂直於第一方向與第二方向。In an embodiment of the present invention, the Wheatstone bridge corresponding to the output voltage signal of the external magnetic field component in the first direction is zero, which corresponds to the voltage output of the external magnetic field component in the second direction The signal is zero, and the output voltage signal corresponding to the external magnetic field component in a third direction is zero, wherein the third direction is perpendicular to the first direction and the second direction.

在本發明的一實施例中,第一異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第一異向性磁電阻與一第二異向性磁電阻,第二異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第三異向性磁電阻與一第四異向性磁電阻,第三異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第五異向性磁電阻與一第六異向性磁電阻,且第四異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第七異向性磁電阻與一第八異向性磁電阻。In an embodiment of the present invention, the first anisotropic magnetoresistive unit includes a first anisotropic magnetoresistance and a second anisotropic magnetoresistance arranged in sequence along the opposite direction of the second direction, and the second The anisotropic magnetoresistive unit includes a third anisotropic magnetoresistance and a fourth anisotropic magnetoresistance that are arranged in sequence along the direction opposite to the second direction. The third anisotropic magnetoresistance unit includes A fifth anisotropic magnetoresistance and a sixth anisotropic magnetoresistance are arranged in sequence in a direction opposite to the direction, and the fourth anisotropic magnetoresistance unit includes a first Seven anisotropic magnetoresistance and an eighth anisotropic magnetoresistance.

在本發明的一實施例中,在一第一時間,第一磁化方向設定元件將第一異向性磁電阻與第三異向性磁電阻的磁化方向設定為第二方向的反方向,且將第二異向性磁電阻與第四異向性磁電阻的磁化方向設定為第二方向。在第一時間,第二磁化方向設定元件將第五異向性磁電阻與第七異向性磁電阻的磁化方向設定為第二方向的反方向,且將第六異向性磁電阻與第八異向性磁電阻的磁化方向設定為第二方向。在一第二時間,第一磁化方向設定元件將第一異向性磁電阻與第三異向性磁電阻的磁化方向設定為第二方向,且將第二異向性磁電阻與第四異向性磁電阻的磁化方向設定為第二方向的反方向。在第二時間,第二磁化方向設定元件將第五異向性磁電阻與第七異向性磁電阻的磁化方向設定為第二方向,且將第六異向性磁電阻與第八異向性磁電阻的磁化方向設定為第二方向的反方向。In an embodiment of the present invention, at a first time, the first magnetization direction setting element sets the magnetization directions of the first anisotropic magnetic resistance and the third anisotropic magnetic resistance to the opposite direction of the second direction, and The magnetization directions of the second anisotropic magnetic resistance and the fourth anisotropic magnetic resistance are set to the second direction. At the first time, the second magnetization direction setting element sets the magnetization directions of the fifth anisotropic magnetic resistance and the seventh anisotropic magnetic resistance to the opposite direction of the second direction, and sets the sixth anisotropic magnetic resistance and the first The magnetization direction of the eight-anisotropic magnetoresistance is set to the second direction. At a second time, the first magnetization direction setting element sets the magnetization directions of the first anisotropic magnetoresistance and the third anisotropic magnetoresistance to the second direction, and sets the second anisotropic magnetoresistance to the fourth anisotropy The magnetization direction of the directional magnetoresistance is set to the opposite direction of the second direction. At the second time, the second magnetization direction setting element sets the magnetization directions of the fifth anisotropic magnetoresistance and the seventh anisotropic magnetoresistor to the second direction, and sets the sixth anisotropic magnetoresistance to the eighth anisotropy The magnetization direction of the magnetic resistance is set to the opposite direction of the second direction.

在本發明的一實施例中,第一磁化方向設定元件與第二磁化方向設定元件為導電片、導電線圈、導線或導體。In an embodiment of the present invention, the first magnetization direction setting element and the second magnetization direction setting element are conductive sheets, conductive coils, wires or conductors.

在本發明的實施例的電流感測器中,由於採用了異向性磁電阻單元連接成惠斯登電橋來感測導線中的電流所產生的磁場,因此對電流的感測具有高敏感度與高準確度。此外,由於本發明的實施例的電流感測器是利用感測電流所產生的磁場的方式來反推電流的大小,而異向性磁電阻單元不會直接接觸到電流,因此可以具有較低的功耗。In the current sensor of the embodiment of the present invention, since the anisotropic magnetoresistance unit is connected to form a Wheatstone bridge to sense the magnetic field generated by the current in the wire, it is highly sensitive to current sensing Degree and high accuracy. In addition, because the current sensor of the embodiment of the present invention uses the magnetic field generated by the sensing current to reverse the magnitude of the current, the anisotropic magnetoresistive unit does not directly contact the current, so it can have a lower Power consumption.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1是本發明的一實施例的一種電流感測器的上視示意圖,而圖2是圖1的電流感測器沿著A-A線的剖面示意圖。請參照圖1與圖2,本實施例的電流感測器100包括一基板210、一導線110、一第一異向性磁電阻單元222、一第二異向性磁電阻單元224、一第三異向性磁電阻單元226、一第四異向性磁電阻單元228、一第一磁化方向設定元件M1及一第二磁化方向設定元件M2。導線110具有一第一導電段C1與一第二導電段C2,其中第一導電段C1與第二導電段C2排列於一第一方向D1上,各自沿著一第二方向D2延伸,且分別配置於基板210之相對的一第一端212與一第二端214下方。電流感測器100所存在的空間可以由彼此不同的第一方向D1、第二方向D2及第三方向D3所建構,在本實施例中,第一方向D1、第二方向D2及第三方向D3可以彼此互相垂直。然而,在其他實施例中,第一方向D1、第二方向D2及第三方向D3也可以是彼此不垂直且不相同。1 is a schematic top view of a current sensor according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the current sensor of FIG. 1 along the line A-A. 1 and 2, the current sensor 100 of this embodiment includes a substrate 210, a wire 110, a first anisotropic magnetic resistance unit 222, a second anisotropic magnetic resistance unit 224, and a first Three anisotropic magnetic resistance unit 226, a fourth anisotropic magnetic resistance unit 228, a first magnetization direction setting element M1, and a second magnetization direction setting element M2. The wire 110 has a first conductive segment C1 and a second conductive segment C2, wherein the first conductive segment C1 and the second conductive segment C2 are arranged in a first direction D1, each extend along a second direction D2, and respectively It is disposed under a first end 212 and a second end 214 opposite to the substrate 210. The space in which the current sensor 100 exists can be constructed by a first direction D1, a second direction D2, and a third direction D3 that are different from each other. In this embodiment, the first direction D1, the second direction D2, and the third direction D3 can be perpendicular to each other. However, in other embodiments, the first direction D1, the second direction D2, and the third direction D3 may also be non-perpendicular and different from each other.

第一異向性磁電阻單元222與第二異向性磁電阻單元224配置於基板210的第一端212上方,且沿著第一方向D1排列。第三異向性磁電阻單元226與第四異向性磁電阻單元228配置於基板210的第二端214上方,且沿著第一方向D1的反方向排列。上述基板210的第一端212下方至基板210的第一端212上方的方向即為第三方向D3。The first anisotropic magnetic resistance unit 222 and the second anisotropic magnetic resistance unit 224 are disposed above the first end 212 of the substrate 210 and are arranged along the first direction D1. The third anisotropic magnetoresistive unit 226 and the fourth anisotropic magnetoresistance unit 228 are disposed above the second end 214 of the substrate 210 and are arranged along the opposite direction of the first direction D1. The direction from below the first end 212 of the substrate 210 to above the first end 212 of the substrate 210 is the third direction D3.

第一磁化方向設定元件M1用以設定第一異向性磁電阻單元222與第二異向性磁電阻單元224的磁化方向。第二磁化方向設定元件M2用以設定第三異向性磁電阻單元226與第四異向性磁電阻單元228的磁化方向。The first magnetization direction setting element M1 is used to set the magnetization directions of the first anisotropic magnetoresistive unit 222 and the second anisotropic magnetoresistive unit 224. The second magnetization direction setting element M2 is used to set the magnetization directions of the third anisotropic magnetic resistance unit 226 and the fourth anisotropic magnetic resistance unit 228.

當一電流I流經導線110時,因感應於電流I所產生的磁場,第一異向性磁電阻單元222所產生的電阻值變化相反於第二異向性磁電阻單元224所產生的電阻值變化,且第三異向性磁電阻單元226所產生的電阻值變化相反於第四異向性磁電阻單元228所產生的電阻值變化,且第一、第二、第三及第四異向性磁電阻單元222、224、226及228電性連接成一惠斯登電橋,以輸出對應於第一、第二、第三及第四異向性磁電阻單元222、224、226及228所產生的電阻值變化的電壓訊號。When a current I flows through the wire 110, due to the magnetic field generated by the current I, the resistance change generated by the first anisotropic magnetoresistive unit 222 is opposite to the resistance generated by the second anisotropic magnetoresistive unit 224 Value changes, and the resistance value change generated by the third anisotropic magnetoresistive unit 226 is opposite to the resistance value change generated by the fourth anisotropic magnetoresistive unit 228, and the first, second, third, and fourth different The directional magnetoresistance units 222, 224, 226 and 228 are electrically connected to form a Wheatstone bridge to output corresponding to the first, second, third and fourth anisotropic magnetoresistance units 222, 224, 226 and 228 The resulting voltage signal of the change in resistance value.

在本實施例中,第一異向性磁電阻單元222包括沿著第二方向D2的反方向依序排列的一第一異向性磁電阻(anisotropic magnetoresistor, AMR)R1與一第二異向性磁電阻R2,第二異向性磁電阻單元224包括沿著第二方向D2的反方向依序排列的一第三異向性磁電阻R3與一第四異向性磁電阻R4,第三異向性磁電阻單元226包括沿著第二方向D2的反方向依序排列的一第五異向性磁電阻R5與一第六異向性磁電阻R6,且第四異向性磁電阻單元228包括沿著第二方向D2的反方向依序排列的一第七異向性磁電阻R7與一第八異向性磁電阻R8。上述的第一至第八異向性磁電阻R1~R8的數量都是各自以一個為例,然而,在其他實施例中,每一個異向性磁電阻亦可以用串聯的多個異向性磁電阻來取代。舉例而言,第一異向性磁電阻R1可以用多個串聯的第一異向性磁電阻R1來取代。In this embodiment, the first anisotropic magnetoresistive unit 222 includes a first anisotropic magnetoresistor (AMR) R1 and a second anisotropic magnetoresistor (AMR) R1 and a second anisotropic magnetoresistor (AMR) arranged in sequence along the direction opposite to the second direction D2. The second anisotropic magnetoresistance unit 224 includes a third anisotropic magnetoresistance R3 and a fourth anisotropic magnetoresistance R4 arranged in sequence along the direction opposite to the second direction D2. The anisotropic magnetoresistive unit 226 includes a fifth anisotropic magnetoresistance R5 and a sixth anisotropic magnetoresistance R6 arranged in sequence along the direction opposite to the second direction D2, and a fourth anisotropic magnetoresistance unit 228 includes a seventh anisotropic magnetoresistance R7 and an eighth anisotropic magnetoresistance R8 arranged in sequence along the opposite direction of the second direction D2. The numbers of the first to eighth anisotropic magnetoresistor R1 to R8 mentioned above are each taken as an example. However, in other embodiments, each anisotropic magnetoresistance can also be connected in series with multiple anisotropic magnetoresistor Magnetoresistance to replace. For example, the first anisotropic magnetic resistance R1 can be replaced by a plurality of first anisotropic magnetic resistances R1 connected in series.

在本實施例中,第一磁化方向設定元件M1與第二磁化方向設定元件M2及第一至第四異向性磁電阻單元222、224、226及228可設置於基板210上,而磁化方向設定元件與異向性磁電阻單元之間可藉由絕緣層來隔開。在本實施例中,第一磁化方向設定元件M1配置於第一及第二異向性磁電阻單元222、224與第一導電段C1之間,且第二磁化方向設定元件M2配置於第三及第四異向性磁電阻單元226、228與第二導電段C2之間。然而,在其他實施例中,亦可以是第一及第二異向性磁電阻單元222、224配置於第一磁化方向設定元件M1與第一導電段C1之間,且第三及第四異向性磁電阻單元226、228配置於第二磁化方向設定元件M2與第二導電段C2之間。或者,在其他實施例中,第一磁化方向設定元件M1亦可以是在第一及第二異向性磁電阻單元222、224的上下兩方都有分佈,且第二磁化方向設定元件M2亦可以是在第三及第四異向性磁電阻單元226、228的上下兩方都有分佈。In this embodiment, the first magnetization direction setting element M1 and the second magnetization direction setting element M2, and the first to fourth anisotropic magnetoresistance units 222, 224, 226, and 228 may be disposed on the substrate 210, and the magnetization direction The setting element and the anisotropic magnetic resistance unit can be separated by an insulating layer. In this embodiment, the first magnetization direction setting element M1 is disposed between the first and second anisotropic magnetoresistance units 222, 224 and the first conductive segment C1, and the second magnetization direction setting element M2 is disposed on the third And between the fourth anisotropic magnetoresistive unit 226, 228 and the second conductive segment C2. However, in other embodiments, the first and second anisotropic magnetoresistive units 222, 224 may also be disposed between the first magnetization direction setting element M1 and the first conductive segment C1, and the third and fourth different The directional magnetoresistance units 226 and 228 are arranged between the second magnetization direction setting element M2 and the second conductive segment C2. Alternatively, in other embodiments, the first magnetization direction setting element M1 may also be distributed on the upper and lower sides of the first and second anisotropic magnetoresistive units 222, 224, and the second magnetization direction setting element M2 may also It may be distributed on the upper and lower sides of the third and fourth anisotropic magnetoresistive units 226 and 228.

另外,導線110可被一封裝體120包覆,而導線110的兩端則暴露於封裝體120外,其中封裝體120例如是絕緣材質。基板210可配置於封裝體120上。In addition, the wire 110 may be covered by a package body 120, and both ends of the wire 110 are exposed outside the package body 120, where the package body 120 is, for example, an insulating material. The substrate 210 may be disposed on the package body 120.

圖3A與圖3B是用以說明圖1中的異向性磁電阻的運作原理。請先參照圖3A,異向性磁電阻300具有理髮店招牌(barber pole)狀結構,亦即其表面設有相對於異向性磁電阻300的延伸方向D傾斜45度延伸的多個短路棒(electrical shorting bar)310,這些短路棒310彼此相間隔且平行地設置於鐵磁膜(ferromagnetic film)320上,而鐵磁膜320為異向性磁電阻300的主體,其延伸方向即為異向性磁電阻300的延伸方向D。此外,鐵磁膜320的相對兩端可製作成尖端狀。3A and 3B are used to illustrate the operation principle of the anisotropic magnetoresistance in FIG. 1. Please refer to FIG. 3A first, the anisotropic magnetoresistor 300 has a barber pole-like structure, that is, its surface is provided with a plurality of shorting bars extending at an angle of 45 degrees with respect to the extending direction D of the anisotropic magnetoresistor 300 (Electrical shorting bar) 310, these shorting bars 310 are spaced apart from each other and arranged in parallel on the ferromagnetic film (ferromagnetic film) 320, and the ferromagnetic film 320 is the main body of the anisotropic magnetoresistance 300, and its extension direction is different The extension direction D of the directional magnetic resistance 300. In addition, the opposite ends of the ferromagnetic film 320 can be made into a pointed shape.

異向性磁電阻300在開始量測外在磁場H之前,可先藉由磁化方向設定元件(例如圖1的第一磁化方向設定元件M1或第二磁化方向設定元件M2)來設定其磁化方向,其中磁化方向設定元件例如是可以藉由通電產生磁場的線圈、導線、金屬片或導體。在圖3A中,磁化方向設定元件可藉由通電產生沿著延伸方向D的磁場,以使異向性磁電阻300具有磁化方向M。Before measuring the external magnetic field H of the anisotropic magnetoresistance 300, the magnetization direction can be set by the magnetization direction setting element (for example, the first magnetization direction setting element M1 or the second magnetization direction setting element M2 in FIG. 1). , Where the magnetization direction setting element is, for example, a coil, wire, metal sheet or conductor that can generate a magnetic field by energization. In FIG. 3A, the magnetization direction setting element can generate a magnetic field along the extension direction D by energization, so that the anisotropic magnetoresistance 300 has a magnetization direction M.

接著,磁化方向設定元件不通電,以使異向性磁電阻300開始量測外在磁場H。當沒有外在磁場H時,異向性磁電阻300的磁化方向M維持在延伸方向D上,此時施加一電流i,使電流i從異向性磁電阻300的左端流往右端,則短路棒310附近的電流i的流向會與短路棒310的延伸方向垂直,而使得短路棒310附近的電流i流向與磁化方向M夾45度,此時異向性磁電阻300的電阻值為R。Next, the magnetization direction setting element is not energized, so that the anisotropic magnetoresistance 300 starts to measure the external magnetic field H. When there is no external magnetic field H, the magnetization direction M of the anisotropic magnetoresistor 300 is maintained in the extension direction D. At this time, a current i is applied to cause the current i to flow from the left end to the right end of the anisotropic magnetoresistor 300, which is a short circuit. The direction of the current i near the bar 310 will be perpendicular to the extension direction of the shorting bar 310, so that the current i near the shorting bar 310 flows 45 degrees with the magnetization direction M. At this time, the resistance value of the anisotropic magnetoresistance 300 is R.

當有一外在磁場H朝向垂直於延伸方向D的方向時,異向性磁電阻300的磁化方向M會往外在磁場H的方向偏轉,而使得磁化方向與短路棒附近的電流i流向的夾角大於45度,此時異向性磁電阻300的電阻值有-ΔR的變化,即成為R-ΔR,也就是電阻值變小,其中ΔR大於0。When an external magnetic field H faces a direction perpendicular to the extension direction D, the magnetization direction M of the anisotropic magnetoresistance 300 will be deflected to the direction of the external magnetic field H, so that the angle between the magnetization direction and the direction of current i near the shorting bar is greater than At 45 degrees, at this time, the resistance value of the anisotropic magnetoresistance 300 changes by -ΔR, that is, it becomes R-ΔR, that is, the resistance value becomes smaller, where ΔR is greater than zero.

然而,若如圖3B所示,當圖3B的短路棒310的延伸方向設於與圖3A的短路棒310的延伸方向夾90度的方向時(此時圖3B的短路棒310的延伸方向仍與異向性磁電阻300的延伸方向D夾45度),且當有一外在磁場H時,此外在磁場H仍會使磁化方向M往外在磁場H的方向偏轉,此時磁化方向M與短路棒310附近的電流i流向的夾角會小於45度,如此異向性磁電阻300的電阻值會變成R+ΔR,亦即異向性磁電阻300的電阻值變大。However, as shown in FIG. 3B, when the extension direction of the shorting bar 310 in FIG. 3B is set at 90 degrees to the extension direction of the shorting bar 310 in FIG. 3A (at this time, the extension direction of the shorting bar 310 in FIG. 3B is still It is 45 degrees with the extension direction D of the anisotropic magnetoresistance 300), and when there is an external magnetic field H, in addition, the magnetic field H will still deflect the magnetization direction M to the direction of the external magnetic field H. At this time, the magnetization direction M is short-circuited The angle of the current i flowing near the rod 310 will be less than 45 degrees, so the resistance value of the anisotropic magnetoresistor 300 will become R+ΔR, that is, the resistance value of the anisotropic magnetoresistor 300 will become larger.

此外,藉由磁化方向設定元件將異向性磁電阻300的磁化方向M設定為圖3A所示的反向時,之後在外在磁場H下的圖3A的異向性磁電阻300的電阻值會變成R+ΔR。再者,藉由磁化方向設定元件將異向性磁電阻300的磁化方向M設定為圖3B所示的反向時,之後在外在磁場H下的圖3B的異向性磁電阻300的電阻值會變成R-ΔR。In addition, when the magnetization direction M of the anisotropic magnetoresistor 300 is set to the reverse direction shown in FIG. 3A by the magnetization direction setting element, the resistance value of the anisotropic magnetoresistor 300 in FIG. 3A under the external magnetic field H will change Becomes R+ΔR. Furthermore, when the magnetization direction M of the anisotropic magnetoresistor 300 is set to the reverse direction as shown in FIG. 3B by the magnetization direction setting element, the resistance value of the anisotropic magnetoresistor 300 in FIG. 3B under the external magnetic field H is thereafter Will become R-ΔR.

綜合上述可知,當短路棒310的設置方向改變時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之,且當磁化方向設定元件所設定的磁化方向M改變成反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之。當外在磁場H的方向變為反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之。然而,當通過異向性磁電阻300的電流i變成反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化則維持與原來相同正負號,即原本若為+ΔR,改變電流方向後仍為+ΔR,若原本為-ΔR,改變電流方向後仍為-ΔR。Based on the above, when the setting direction of the shorting bar 310 changes, the resistance value R of the anisotropic magnetoresistance 300 corresponding to the change of the external magnetic field H will change from +ΔR to -ΔR or vice versa, and when the magnetization direction setting element is set When the set magnetization direction M is changed to the reverse direction, the resistance value R of the anisotropic magnetoresistance 300 corresponding to the change of the external magnetic field H will change from +ΔR to -ΔR or vice versa. When the direction of the external magnetic field H is reversed, the resistance value R of the anisotropic magnetoresistance 300 corresponding to the change of the external magnetic field H will change from +ΔR to -ΔR or vice versa. However, when the current i passing through the anisotropic magnetoresistance 300 becomes reversed, the resistance value R of the anisotropic magnetoresistance 300 maintains the same sign as before in response to the change in the external magnetic field H, that is, if it was originally +ΔR , It is still +ΔR after changing the direction of current, if it was originally -ΔR, it is still -ΔR after changing the direction of current.

依照上述的原則,便可藉由設計短路棒310的延伸方向或磁化方向設定元件所設定的磁化方向M來決定當異向性磁電阻300受到外在磁場H的某一分量時,異向性磁電阻300的電阻值R的變化方向,即電阻值R變大或變小,例如變化量是+ΔR或-ΔR。According to the above principles, the anisotropic magnetization direction M can be determined by designing the extension direction of the shorting bar 310 or the magnetization direction M set by the magnetization direction setting element when the anisotropic magnetoresistance 300 receives a certain component of the external magnetic field H The direction of change of the resistance value R of the magnetic resistance 300, that is, the resistance value R becomes larger or smaller, for example, the amount of change is +ΔR or -ΔR.

圖4A與圖4B分別繪示圖1之電流感測器於第一時間與第二時間之異向性磁電阻的磁化方向及其後的電阻值變化,並繪示了第一至第八異向性磁電阻R1~R8中的短路棒的延伸方向。請參照圖4A與圖4B,在本實施例中,第一至第八異向性磁電阻R1~R8的延伸方向皆為第二方向D2,而其短路棒310的延伸方向則如圖4A所繪示,其分別在兩個不同的方向上與第二方向D2夾45度,且這兩個不同的方向是平行於第一方向D1與第二方向D2所建構的平面。4A and 4B illustrate the magnetization direction of the anisotropic magnetoresistance at the first time and the second time of the current sensor of FIG. 1 and the resistance value changes thereafter, respectively, and illustrate the first to eighth anomalies The extension direction of the shorting bar in the directional magnetoresistance R1 to R8. 4A and 4B, in this embodiment, the extension direction of the first to eighth anisotropic magnetoresistor R1 to R8 is the second direction D2, and the extension direction of the shorting bar 310 is as shown in FIG. 4A It is shown that it is sandwiched by 45 degrees with the second direction D2 in two different directions, and the two different directions are parallel to the plane constructed by the first direction D1 and the second direction D2.

當導線110被通以電流I(如圖1所繪示)時,在第一導電段C1中的電流I1與在第二導電段C2中的電流I2的方向例如分別為第二方向D2與第二方向D2的反方向。此時,電流I1在第一至第四異向性磁電阻R1~R4上產生沿著第一方向D1的磁場分量HC,且電流I2在第五至第八異向性磁電阻R5~R8上產生沿著第一方向D1的反方向的磁場分量HC。在本實施例中,電流I1的大小等於電流I2的大小。此外,在本實施例中,當電流I流經導線110時,電流I在第一導電段C1中的流向(即電流I1的流向)相反於在第二導電段C2中的流向(即電流I2的流向)。此外,在本實施例中,電流I1流經第一導電段C1時在第一異向性磁電阻單元222與第二異向性磁電阻單元224處所產生的磁場在第一方向D1上的分量(即圖4A與圖4B左方的磁場分量HC,其朝向第一方向D1)的方向相反於電流I2流經第二導電段C2時在第三異向性磁電阻單元226與第四異向性磁電阻單元228處所產生的磁場在第一方向D1上的分量(即圖4A與圖4B右方的磁場分量HC,其朝向第一方向D1的反方向)的方向。When the wire 110 is supplied with a current I (as shown in FIG. 1), the directions of the current I1 in the first conductive section C1 and the current I2 in the second conductive section C2 are, for example, the second direction D2 and the first direction, respectively. The two directions are the opposite of D2. At this time, the current I1 generates a magnetic field component HC along the first direction D1 on the first to fourth anisotropic magnetic resistors R1 to R4, and the current I2 is on the fifth to eighth anisotropic magnetic resistors R5 to R8. A magnetic field component HC in a direction opposite to the first direction D1 is generated. In this embodiment, the magnitude of the current I1 is equal to the magnitude of the current I2. In addition, in this embodiment, when the current I flows through the wire 110, the flow direction of the current I in the first conductive section C1 (that is, the flow direction of the current I1) is opposite to the flow direction in the second conductive section C2 (that is, the current I2).的流向). In addition, in this embodiment, the component of the magnetic field generated at the first anisotropic magnetoresistance unit 222 and the second anisotropic magnetoresistance unit 224 in the first direction D1 when the current I1 flows through the first conductive segment C1 (That is, the magnetic field component HC on the left side of FIGS. 4A and 4B, which faces the first direction D1) is opposite to that when the current I2 flows through the second conductive section C2, the third anisotropic magnetoresistive unit 226 and the fourth anisotropic The direction of the component of the magnetic field generated at the magnetic resistance unit 228 in the first direction D1 (that is, the magnetic field component HC on the right in FIGS. 4A and 4B, which faces the opposite direction of the first direction D1).

在一第一時間,第一磁化方向設定元件M1將第一異向性磁電阻R1與第三異向性磁電阻R3的磁化方向M13設定為第二方向D2的反方向,且將第二異向性磁電阻R2與第四異向性磁電阻R4的磁化方向M24設定為第二方向D2。此外,在第一時間,第二磁化方向設定元件M2將第五異向性磁電阻R5與第七異向性磁電阻R7的磁化方向M57設定為第二方向D2的反方向,且將第六異向性磁電阻R6與第八異向性磁電阻R8的磁化方向M68設定為第二方向D2。在本實施例中,第一磁化方向設定元件M1與第二磁化方向設定元件M2例如為可以藉由通電產生磁場的導電線圈、導線、導電片(例如金屬片)或導體,只要是能夠產生沿著磁化方向M13、M24、M57、M68的磁場之導電結構皆可作為第一磁化方向設定元件M1與第二磁化方向設定元件M2。At a first time, the first magnetization direction setting element M1 sets the magnetization direction M13 of the first anisotropic magnetic resistance R1 and the third anisotropic magnetic resistance R3 to the opposite direction of the second direction D2, and sets the second different The magnetization direction M24 of the directional magnetic resistance R2 and the fourth anisotropic magnetic resistance R4 is set to the second direction D2. In addition, at the first time, the second magnetization direction setting element M2 sets the magnetization direction M57 of the fifth anisotropic magnetic resistance R5 and the seventh anisotropic magnetic resistance R7 to the opposite direction of the second direction D2, and sets the sixth The magnetization direction M68 of the anisotropic magnetic resistance R6 and the eighth anisotropic magnetic resistance R8 is set to the second direction D2. In this embodiment, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 are, for example, conductive coils, wires, conductive sheets (for example, metal sheets), or conductors that can generate a magnetic field by energization, as long as they can generate along The conductive structure of the magnetic field in the magnetization directions M13, M24, M57, and M68 can be used as the first magnetization direction setting element M1 and the second magnetization direction setting element M2.

在第一時間之後,第一磁化方向設定元件M1與第二磁化方向設定元件M2會停止產生磁場,例如第一磁化方向設定元件M1與第二磁化方向設定元件M2不再被通以電流而產生磁場,此時,第一至第四異向性磁電阻R1~R4便能夠感應於電流I1所產生的磁場分量HC而分別產生-ΔR、-ΔR、+ΔR及+ΔR的電阻值變化,且第五至第八異向性磁電阻R5~R8便能夠感應於電流I2所產生的磁場分量HC而分別產生+ΔR、+ΔR、-ΔR及-ΔR的電阻值變化。After the first time, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 will stop generating magnetic fields. For example, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 will no longer be energized. Magnetic field. At this time, the first to fourth anisotropic magnetoresistances R1 to R4 can induce the magnetic field component HC generated by the current I1 to generate -ΔR, -ΔR, +ΔR, and +ΔR resistance changes, respectively, and The fifth to eighth anisotropic magnetic resistors R5 to R8 can induce the magnetic field component HC generated by the current I2 to generate resistance changes of +ΔR, +ΔR, -ΔR, and -ΔR, respectively.

在本實施例中,第一異向性磁電阻R1、第二異向性磁電阻R2、第六異向性磁電阻R6及第五異向性磁電阻R5可從接點P1依序串聯至接點P2,接點P3可電性連接至第二異向性磁電阻R2與第六異向性磁電阻R6之間的導電路徑,第三異向性磁電阻R3與第四異向性磁電阻R4可從接點P1依序串聯至接點P4,而第七異向性磁電阻R7與第八異向性磁電阻R8可從接點P2依序串聯至接點P5。接點P3可接收參考電壓VDD,而接點P4與接點P5可耦接至地(ground),此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會是(VDD)×(ΔR/R),其可以為輸出訊號,此輸出訊號為一差分訊號,其大小會對應於磁場分量HC的大小,進而對應於流經導線110的電流I的大小,此後將此輸出訊號稱為第一電壓訊號V1 。在另一實施例中,亦可以是接點P3耦接至地,而接點P4與接點P5接收參考電壓VDD。In this embodiment, the first anisotropic magnetic resistance R1, the second anisotropic magnetic resistance R2, the sixth anisotropic magnetic resistance R6, and the fifth anisotropic magnetic resistance R5 can be connected in series from the contact point P1 to Contact point P2, contact point P3 can be electrically connected to the conductive path between the second anisotropic magnetic resistance R2 and the sixth anisotropic magnetic resistance R6, the third anisotropic magnetic resistance R3 and the fourth anisotropic magnetic resistance The resistor R4 can be connected in series from the connection point P1 to the connection point P4, and the seventh anisotropic magnetic resistance R7 and the eighth anisotropic magnetic resistance R8 can be connected in series from the connection point P2 to the connection point P5. The contact P3 can receive the reference voltage VDD, and the contact P4 and the contact P5 can be coupled to ground. At this time, the voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed will be (VDD)×(ΔR/R), it can be an output signal, this output signal is a differential signal, and its magnitude will correspond to the magnitude of the magnetic field component HC, which in turn corresponds to the magnitude of the current I flowing through the wire 110. This output signal is called the first voltage signal V 1 . In another embodiment, the contact point P3 can also be coupled to the ground, and the contact point P4 and the contact point P5 receive the reference voltage VDD.

在此之後的一第二時間,第一磁化方向設定元件M1將第一異向性磁電阻R1與第三異向性磁電阻R3的磁化方向M13’設定為第二方向D2,且將第二異向性磁電阻R2與第四異向性磁電阻R4的磁化方向M24’設定為第二方向D2的反方向。此外,在第二時間,第二磁化方向設定元件M2將第五異向性磁電阻R5與第七異向性磁電阻R7的磁化方向M57’設定為第二方向D2,且將第六異向性磁電阻R6與第八異向性磁電阻R8的磁化方向M68’設定為第二方向D2的反方向。At a second time after this, the first magnetization direction setting element M1 sets the magnetization direction M13' of the first anisotropic magnetic resistance R1 and the third anisotropic magnetic resistance R3 to the second direction D2, and sets the second The magnetization direction M24' of the anisotropic magnetic resistance R2 and the fourth anisotropic magnetic resistance R4 is set to the opposite direction of the second direction D2. In addition, at the second time, the second magnetization direction setting element M2 sets the magnetization direction M57' of the fifth anisotropic magnetic resistance R5 and the seventh anisotropic magnetic resistance R7 to the second direction D2, and sets the sixth anisotropy The magnetization direction M68' of the linear magnetic resistance R6 and the eighth anisotropic magnetic resistance R8 is set to the opposite direction of the second direction D2.

在第二時間之後,第一磁化方向設定元件M1與第二磁化方向設定元件M2會停止產生磁場,此時,第一至第四異向性磁電阻R1~R4便能夠感應於電流I1所產生的磁場分量HC而分別產生+ΔR、+ΔR、-ΔR及-ΔR的電阻值變化,且第五至第八異向性磁電阻R5~R8便能夠感應於電流I2所產生的磁場分量HC而分別產生-ΔR、-ΔR、+ΔR及+ΔR的電阻值變化。此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會是(VDD)×(-ΔR/R),其可以為輸出訊號,此輸出訊號為一差分訊號,其大小會對應於磁場分量HC的大小,進而對應於流經導線110的電流I的大小,此後將此輸出訊號稱為第二電壓訊號V2After the second time, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 will stop generating a magnetic field. At this time, the first to fourth anisotropic magnetoresistances R1 to R4 can be induced by the current I1. The magnetic field component HC generated by the resistance value changes of +ΔR, +ΔR, -ΔR, and -ΔR, and the fifth to eighth anisotropic magnetoresistance R5 to R8 can induce the magnetic field component HC generated by the current I2. Respectively produce -ΔR, -ΔR, +ΔR and +ΔR resistance value changes. The voltage difference between the contact point P1 and the contact point P2 in the Wheatstone bridge formed at this time will be (VDD)×(-ΔR/R), which can be an output signal, and this output signal is a differential signal. The magnitude will correspond to the magnitude of the magnetic field component HC, and in turn correspond to the magnitude of the current I flowing through the wire 110, and this output signal will be referred to as the second voltage signal V 2 hereinafter.

圖5為圖4A與圖4B的惠斯登電橋的輸出電壓-電流曲線圖,而圖6繪示圖4A與圖4B的惠斯登電橋耦接至一運算器。請參照圖4A、圖4B、圖5與圖6,在本實施例中,電流感測器100更包括一運算器400,電性連接至惠斯登電橋的一輸出端(即接收第一電壓訊號V1 與第二電壓訊號V2 ),其中第一磁化方向設定元件M1與第二磁化方向設定元件M2將第一、第二、第三及第四異向性磁電阻單元222、224、226及228的磁化方向組合設定為一第一組合(即如圖4A之磁化方向M13、磁化方向M24、磁化方向M57及磁化方向M68的組合),以使惠斯登電橋之後輸出第一電壓訊號V1 ,且第一磁化方向設定元件M1與第二磁化方向設定元件M2再將第一、第二、第三及第四異向性磁電阻單元222、224、226及228的磁化方向組合設定為相反於第一組合的一第二組合(即如圖4B之磁化方向M13’、磁化方向M24’、磁化方向M57’及磁化方向M68’的組合),以使惠斯登電橋之後輸出第二電壓訊號V2 。運算器400用以將第一電壓訊號V1 與第二電壓訊號V2 相減,以輸出一對應於電流I所產生的磁場的大小的輸出電壓訊號Vout 。此外,在本實施例中,運算器400亦可用以將第一電壓訊號V1 與第二電壓訊號V2 相加,以輸出一偏移電壓訊號Voff5 is a graph showing the output voltage-current curve of the Wheatstone bridge in FIGS. 4A and 4B, and FIG. 6 shows the Wheatstone bridge in FIGS. 4A and 4B coupled to an arithmetic unit. 4A, 4B, 5 and 6, in this embodiment, the current sensor 100 further includes an arithmetic unit 400, which is electrically connected to an output terminal of the Wheatstone bridge (that is, receives the first Voltage signal V 1 and second voltage signal V 2 ), wherein the first magnetization direction setting element M1 and the second magnetization direction setting element M2 connect the first, second, third, and fourth anisotropic magnetoresistive units 222, 224 The magnetization direction combination of, 226 and 228 is set as a first combination (ie the combination of magnetization direction M13, magnetization direction M24, magnetization direction M57, and magnetization direction M68 as shown in Figure 4A), so that the Wheatstone bridge outputs the first The voltage signal V 1 , and the first magnetization direction setting element M1 and the second magnetization direction setting element M2 further change the magnetization directions of the first, second, third, and fourth anisotropic magnetoresistive units 222, 224, 226, and 228 The combination is set to a second combination opposite to the first combination (ie the combination of the magnetization direction M13', the magnetization direction M24', the magnetization direction M57' and the magnetization direction M68' as shown in Fig. 4B), so that the Wheatstone bridge The second voltage signal V 2 is output. The arithmetic unit 400 is used to subtract the first voltage signal V 1 and the second voltage signal V 2 to output an output voltage signal V out corresponding to the magnitude of the magnetic field generated by the current I. In addition, in this embodiment, the arithmetic unit 400 can also be used to add the first voltage signal V 1 and the second voltage signal V 2 to output an offset voltage signal V off .

具體而言,運算器400可包括一算術運算器410與一算術運算器420,其中算術運算器410例如為一加法器,其用以將第一電壓訊號V1 與第二電壓訊號V2 相加,以輸出偏移電壓訊號Voff 。此外,算術運算器420例如為一減法器,其用以將第一電壓訊號V1 與第二電壓訊號V2 相減,以輸出對應於電流I所產生的磁場的大小的輸出電壓訊號VoutSpecifically, the arithmetic unit 400 may include an arithmetic unit 410 and an arithmetic unit 420, where the arithmetic unit 410 is, for example, an adder, which is used to phase the first voltage signal V 1 with the second voltage signal V 2 To output the offset voltage signal V off . In addition, the arithmetic operator 420 is, for example, a subtractor, which is used to subtract the first voltage signal V 1 and the second voltage signal V 2 to output an output voltage signal V out corresponding to the magnitude of the magnetic field generated by the current I .

由圖5可知,惠斯登電橋的輸出電壓-電流曲線可能存在一偏移電壓訊號Voff ,而第一電壓訊號V1 與第二電壓訊號V2 相加之後則可剩下偏移電壓訊號Voff ,且第一電壓訊號V1 與第二電壓訊號V2 相減後,其輸出電壓-電流曲線會通過電壓與電流皆為零的點,而使得在某一段範圍內電壓與電流幾乎成正比,而使得電阻值變化ΔR可以準確地經由輸出電壓訊號Vout 來估算。It can be seen from Figure 5 that there may be an offset voltage signal V off in the output voltage-current curve of the Wheatstone bridge, and the offset voltage can be left after the first voltage signal V 1 and the second voltage signal V 2 are added. After the signal V off and the first voltage signal V 1 and the second voltage signal V 2 are subtracted, the output voltage-current curve will pass through the point where both voltage and current are zero, so that the voltage and current are almost It is proportional to, so that the resistance change ΔR can be accurately estimated through the output voltage signal V out .

在本實施例中,接點P1~P5及運算器400例如是存在於基板210中,而基板210為一線路基板,例如是半導體基板。In this embodiment, the contacts P1 to P5 and the arithmetic unit 400 exist in the substrate 210, for example, and the substrate 210 is a circuit substrate, such as a semiconductor substrate.

圖7、圖8及圖9分別繪示圖1之電流感測器於第二時間之異向性磁電阻的磁化方向及其後受到三個不同方向的外在磁場分量時的電阻值變化。請先參照圖7,第一磁化方向設定元件M1與第二磁化方向設定元件M2在第二時間完成磁化方向M13’、M24’、M57’、M68’的設定之後,當有一沿著第一方向D1的外在磁場分量HE1存在時,第一至第八異向性磁電阻R1~R8所產生的電阻值變化分別為+ΔR、+ΔR、-ΔR、-ΔR、+ΔR、+ΔR、-ΔR及-ΔR,如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。7, 8 and 9 respectively show the magnetization direction of the anisotropic magnetoresistance of the current sensor of FIG. 1 at the second time and the resistance value changes when it receives external magnetic field components in three different directions thereafter. Please refer to FIG. 7 first, after the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the setting of the magnetization directions M13', M24', M57', and M68' at the second time, when there is one along the first direction When the external magnetic field component HE1 of D1 exists, the resistance value changes produced by the first to eighth anisotropic magnetoresistance R1~R8 are respectively +ΔR, +ΔR, -ΔR, -ΔR, +ΔR, +ΔR,- ΔR and -ΔR, in this way, when the contact P3 receives the reference voltage VDD, and the contact P4 and the contact P5 are coupled to the ground, the Wheatstone bridge formed at this time between the contact P1 and the contact P2 The voltage difference between will be zero.

請再參照圖8,第一磁化方向設定元件M1與第二磁化方向設定元件M2在第二時間完成磁化方向M13’、M24’、M57’、M68’的設定之後,當有一沿著第二方向D2的外在磁場分量HE2存在時,第一至第八異向性磁電阻R1~R8所產生的電阻值變化皆為零,這是因為第二方向D2不是第一至第八異向性磁電阻R1~R8所能感測的方向。如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。Please refer to FIG. 8 again. After the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the setting of the magnetization directions M13', M24', M57', and M68' at the second time, when there is one along the second direction When the external magnetic field component HE2 of D2 exists, the resistance value changes produced by the first to eighth anisotropic magnetoresistor R1 to R8 are all zero, because the second direction D2 is not the first to eighth anisotropic magnetism The direction that the resistors R1 to R8 can sense. In this way, when the contact P3 receives the reference voltage VDD and the contact P4 and the contact P5 are coupled to the ground, the voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed at this time will be Is zero.

請再參照圖9,第一磁化方向設定元件M1與第二磁化方向設定元件M2在第二時間完成磁化方向M13’、M24’、M57’、M68’的設定之後,當有一沿著第三方向D3的外在磁場分量HE3存在時,第一至第八異向性磁電阻R1~R8所產生的電阻值變化皆為零,這是因為第三方向D3不是第一至第八異向性磁電阻R1~R8所能感測的方向。如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。Please refer to FIG. 9 again. After the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the setting of the magnetization directions M13', M24', M57', and M68' at the second time, when there is one along the third direction When the external magnetic field component HE3 of D3 exists, the resistance value changes produced by the first to eighth anisotropic magnetoresistor R1 to R8 are all zero, because the third direction D3 is not the first to eighth anisotropic magnetism The direction that the resistors R1 to R8 can sense. In this way, when the contact P3 receives the reference voltage VDD and the contact P4 and the contact P5 are coupled to the ground, the voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed at this time will be Is zero.

也就是說,在本實施例中,惠斯登電橋對應於在第一方向D1上的外在磁場分量HE1所輸出的電壓訊號為零,對應於在第二方向D2上的外在磁場分量HE2所輸出的電壓訊號為零,且對應於在第三方向D3上的外在磁場分量HE3所輸出的電壓訊號為零。因此,無論外在磁場是在哪個方向上,都不會影響本實施例的電流感測器100的感測結果,也就是不會對電流感測器100的輸出電壓產生干擾。That is, in this embodiment, the Wheatstone bridge corresponds to the external magnetic field component HE1 in the first direction D1 and the output voltage signal is zero, which corresponds to the external magnetic field component in the second direction D2. The voltage signal output by HE2 is zero, and the voltage signal output by HE3 corresponding to the external magnetic field component in the third direction D3 is zero. Therefore, no matter which direction the external magnetic field is in, it will not affect the sensing result of the current sensor 100 of this embodiment, that is, it will not interfere with the output voltage of the current sensor 100.

以上惠斯登電橋對於外在磁場分量HE1、HE2及HE3的反應是以第二時間之後的反應為例,至於在第一時間之後,即在第一磁化方向設定元件M1與第二磁化方向設定元件M2在第一時間完成如圖4A的磁化方向M13、M24、M57、M68的設定之後,第一至第八異向性磁電阻R1~R8反應於外在磁場分量HE1所產生的電阻值變化分別為-ΔR、-ΔR、+ΔR、+ΔR、-ΔR、-ΔR、+ΔR及+ΔR,如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。而對於外在磁場分量HE2與HE3,第一至第八異向性磁電阻R1~R8不會受到它們的影響,因此不會產生電阻值變化,因此惠斯登電橋中接點P1與接點P2之間的電壓差仍會為零。所以,無論是在第一時間或第二時間之後,本實施例的電流感測器100皆不會受到任何方向的外在磁場的干擾。The above response of the Wheatstone bridge to the external magnetic field components HE1, HE2, and HE3 is based on the response after the second time as an example. After the first time, the element M1 and the second magnetization direction are set in the first magnetization direction. After the setting element M2 completes the setting of the magnetization directions M13, M24, M57, and M68 as shown in Fig. 4A at the first time, the first to eighth anisotropic magnetoresistance R1 to R8 react to the resistance value generated by the external magnetic field component HE1 The changes are -ΔR, -ΔR, +ΔR, +ΔR, -ΔR, -ΔR, +ΔR, and +ΔR. In this way, when the contact P3 receives the reference voltage VDD, and the contact P4 is coupled to the contact P5 When reaching the ground, the voltage difference between the contact point P1 and the contact point P2 in the Wheatstone bridge formed at this time will be zero. For the external magnetic field components HE2 and HE3, the first to eighth anisotropic magnetoresistance R1 to R8 will not be affected by them, so there will be no resistance change. Therefore, the contact point P1 in the Wheatstone bridge is connected to the The voltage difference between points P2 will still be zero. Therefore, no matter after the first time or the second time, the current sensor 100 of this embodiment will not be interfered by external magnetic fields in any direction.

此外,基板210中或基板210上也可設有一反饋線圈(feedback coil),其與第一至第八異向性磁電阻R1~R8至少部分重疊,以作為閉迴路控制(close-loop control)的用途。In addition, the substrate 210 may also be provided with a feedback coil (feedback coil), which at least partially overlaps the first to eighth anisotropic magnetoresistor R1 to R8, as a closed-loop control (close-loop control) the use of.

綜上所述,在本發明的實施例的電流感測器中,由於採用了異向性磁電阻單元連接成惠斯登電橋來感測導線中的電流所產生的磁場,因此對電流的感測具有高敏感度與高準確度。此外,由於本發明的實施例的電流感測器是利用感測電流所產生的磁場的方式來反推電流的大小,而異向性磁電阻單元不會直接接觸到電流,因此可以具有較低的功耗。To sum up, in the current sensor of the embodiment of the present invention, because the anisotropic magnetoresistance unit is connected to form a Wheatstone bridge to sense the magnetic field generated by the current in the wire, the current The sensing has high sensitivity and high accuracy. In addition, because the current sensor of the embodiment of the present invention uses the magnetic field generated by the sensing current to reverse the magnitude of the current, the anisotropic magnetoresistive unit does not directly contact the current, so it can have a lower Power consumption.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make slight changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100‧‧‧電流感測器 110‧‧‧導線 120‧‧‧封裝體 210‧‧‧基板 212‧‧‧第一端 214‧‧‧第二端 222‧‧‧第一異向性磁電阻單元 224‧‧‧第二異向性磁電阻單元 226‧‧‧第三異向性磁電阻單元 228‧‧‧第四異向性磁電阻單元 300‧‧‧異向性磁電阻 310‧‧‧短路棒 320‧‧‧鐵磁膜 400‧‧‧運算器 410、420‧‧‧算術運算器 C1‧‧‧第一導電段 C2‧‧‧第二導電段 D‧‧‧延伸方向 D1‧‧‧第一方向 D2‧‧‧第二方向 D3‧‧‧第三方向 H‧‧‧外在磁場 HC‧‧‧磁場分量 HE1、HE2、HE3‧‧‧外在磁場分量 I、i、I1、I2‧‧‧電流 M、M13、M13’、M24、M24’、M57、M57’、M68、M68’‧‧‧磁化方向 M1‧‧‧第一磁化方向設定元件 M2‧‧‧第二磁化方向設定元件 P1、P2、P3、P4、P5‧‧‧接點 R1‧‧‧第一異向性磁電阻 R2‧‧‧第二異向性磁電阻 R3‧‧‧第三異向性磁電阻 R4‧‧‧第四異向性磁電阻 R5‧‧‧第五異向性磁電阻 R6‧‧‧第六異向性磁電阻 R7‧‧‧第七異向性磁電阻 R8‧‧‧第八異向性磁電阻 ΔR‧‧‧電阻值變化 V1‧‧‧第一電壓訊號 V2‧‧‧第二電壓訊號 Voff‧‧‧偏移電壓訊號 Vout‧‧‧輸出電壓訊號100‧‧‧Current sensor 110‧‧‧Wire 120‧‧‧Package body 210‧‧‧Substrate 212‧‧‧First end 214‧‧‧Second end 222‧‧‧First anisotropic magnetoresistive unit 224‧‧‧The second anisotropic magnetoresistance unit 226‧‧‧The third anisotropic magnetoresistance unit 228‧‧‧The fourth anisotropic magnetoresistance unit 300‧‧‧Anisotropic magnetoresistance 310‧‧Short Rod 320‧‧‧Ferromagnetic film 400‧‧‧Calculator 410, 420‧‧‧Arithmetic operator C1‧‧‧First conductive segment C2‧‧‧Second conductive segment D‧‧‧Extending direction D1‧‧‧ One direction D2‧‧‧The second direction D3‧‧‧The third direction H‧‧‧External magnetic field HC‧‧‧Magnetic field components HE1, HE2, HE3‧‧‧External magnetic field components I, i, I1, I2‧‧ ‧Current M, M13, M13', M24, M24', M57, M57', M68, M68'‧‧‧Magnetic direction M1‧‧‧First magnetization direction setting element M2 P2, P3, P4, P5‧‧‧Contact R1‧‧‧First anisotropic magnetoresistance R2‧‧‧Second anisotropic magnetoresistance R3‧‧‧Third anisotropic magnetoresistance R4‧‧‧Second Four anisotropic magnetoresistance R5‧‧‧Fifth anisotropic magnetoresistance R6‧‧‧Sixth anisotropic magnetoresistance R7‧‧‧Seventh anisotropic magnetoresistance R8‧‧‧Eighth anisotropic magnetoresistance ΔR‧‧‧Resistance value change V 1 ‧‧‧First voltage signal V 2 ‧‧‧Second voltage signal V off ‧‧‧Offset voltage signal V out ‧‧‧Output voltage signal

圖1是本發明的一實施例的一種電流感測器的上視示意圖。 圖2是圖1的電流感測器沿著A-A線的剖面示意圖。 圖3A與圖3B是用以說明圖1中的異向性磁電阻的運作原理。 圖4A與圖4B分別繪示圖1之電流感測器於第一時間與第二時間之異向性磁電阻的磁化方向及其後的電阻值變化。 圖5為圖4A與圖4B的惠斯登電橋的輸出電壓-電流曲線圖。 圖6繪示圖4A與圖4B的惠斯登電橋耦接至一運算器。 圖7、圖8及圖9分別繪示圖1之電流感測器於第二時間之異向性磁電阻的磁化方向及其後受到三個不同方向的外在磁場分量時的電阻值變化。FIG. 1 is a schematic top view of a current sensor according to an embodiment of the invention. Fig. 2 is a schematic cross-sectional view of the current sensor of Fig. 1 along the line A-A. 3A and 3B are used to illustrate the operation principle of the anisotropic magnetoresistance in FIG. 1. 4A and 4B respectively show the magnetization direction of the anisotropic magnetoresistance at the first time and the second time of the current sensor of FIG. 1 and the resistance change thereafter. Fig. 5 is a graph showing output voltage-current curves of the Wheatstone bridge in Figs. 4A and 4B. FIG. 6 shows the Wheatstone bridge of FIGS. 4A and 4B coupled to an arithmetic unit. 7, 8 and 9 respectively show the magnetization direction of the anisotropic magnetoresistance of the current sensor of FIG. 1 at the second time and the resistance value changes when it receives external magnetic field components in three different directions thereafter.

100‧‧‧電流感測器 100‧‧‧Current Sensor

110‧‧‧導線 110‧‧‧Wire

120‧‧‧封裝體 120‧‧‧Package

210‧‧‧基板 210‧‧‧Substrate

212‧‧‧第一端 212‧‧‧First end

214‧‧‧第二端 214‧‧‧Second end

222‧‧‧第一異向性磁電阻單元 222‧‧‧The first anisotropic magnetoresistance unit

224‧‧‧第二異向性磁電阻單元 224‧‧‧Second Anisotropic Magnetoresistance Unit

226‧‧‧第三異向性磁電阻單元 226‧‧‧The third anisotropic magnetoresistance unit

228‧‧‧第四異向性磁電阻單元 228‧‧‧Fourth anisotropic magnetoresistance unit

C1‧‧‧第一導電段 C1‧‧‧First conductive section

C2‧‧‧第二導電段 C2‧‧‧Second conductive section

D1‧‧‧第一方向 D1‧‧‧First direction

D2‧‧‧第二方向 D2‧‧‧Second direction

D3‧‧‧第三方向 D3‧‧‧ Third party

I‧‧‧電流 I‧‧‧Current

M1‧‧‧第一磁化方向設定元件 M1‧‧‧First magnetization direction setting element

M2‧‧‧第二磁化方向設定元件 M2‧‧‧Second magnetization direction setting element

R1‧‧‧第一異向性磁電阻 R1‧‧‧First anisotropic magnetoresistance

R2‧‧‧第二異向性磁電阻 R2‧‧‧Second Anisotropic Magnetoresistance

R3‧‧‧第三異向性磁電阻 R3‧‧‧The third anisotropic magnetoresistance

R4‧‧‧第四異向性磁電阻 R4‧‧‧Fourth anisotropic magnetoresistance

R5‧‧‧第五異向性磁電阻 R5‧‧‧Fifth anisotropic magnetoresistance

R6‧‧‧第六異向性磁電阻 R6‧‧‧The sixth anisotropic magnetoresistance

R7‧‧‧第七異向性磁電阻 R7‧‧‧The seventh anisotropic magnetoresistance

R8‧‧‧第八異向性磁電阻 R8‧‧‧Eighth Anisotropic Magnetoresistance

Claims (9)

一種電流感測器,包括:一基板;一導線,具有一第一導電段與一第二導電段,其中該第一導電段與該第二導電段排列於一第一方向上,各自沿著一第二方向延伸,且分別配置於該基板之相對的一第一端與一第二端下方;一第一異向性磁電阻單元與一第二異向性磁電阻單元,配置於該基板的該第一端上方,且沿著該第一方向排列;一第三異向性磁電阻單元與一第四異向性磁電阻單元,配置於該基板的該第二端上方,且沿著該第一方向的反方向排列;一第一磁化方向設定元件,用以設定該第一異向性磁電阻單元與該第二異向性磁電阻單元的磁化方向;以及一第二磁化方向設定元件,用以設定該第三異向性磁電阻單元與該第四異向性磁電阻單元的磁化方向,其中,當一電流流經該導線時,因感應於該電流所產生的磁場,該第一異向性磁電阻單元所產生的電阻值變化相反於該第二異向性磁電阻單元所產生的電阻值變化,且該第三異向性磁電阻單元所產生的電阻值變化相反於該第四異向性磁電阻單元所產生的電阻值變化,且該第一、第二、第三及第四異向性磁電阻單元電性連接成一惠斯登電橋,以輸出對應於該第一、第二、第三及第四異向性磁電阻單元所產生的電阻值變化的電壓訊號,其中該電流流經該第一導電段時在該第一異向性磁電阻單元 與該第二異向性磁電阻單元處所產生的磁場在該第一方向上的分量的方向相反於該電流流經該第二導電段時在該第三異向性磁電阻單元與該第四異向性磁電阻單元處所產生的磁場在該第一方向上的分量的方向。 A current sensor, comprising: a substrate; a wire, having a first conductive section and a second conductive section, wherein the first conductive section and the second conductive section are arranged in a first direction, each along A second direction extends and is respectively disposed under a first end and a second end opposite to the substrate; a first anisotropic magnetoresistance unit and a second anisotropic magnetoresistance unit are disposed on the substrate Above the first end of the substrate and arranged along the first direction; a third anisotropic magnetoresistance unit and a fourth anisotropic magnetoresistance unit are arranged above the second end of the substrate and along the Arranged in the opposite direction of the first direction; a first magnetization direction setting element for setting the magnetization directions of the first anisotropic magnetoresistance unit and the second anisotropic magnetoresistance unit; and a second magnetization direction setting Element for setting the magnetization directions of the third anisotropic magnetoresistive unit and the fourth anisotropic magnetoresistive unit, wherein when a current flows through the wire, the magnetic field generated by the current is induced The change in resistance value generated by the first anisotropic magnetoresistive unit is opposite to the change in resistance value generated by the second anisotropic magnetoresistance unit, and the change in resistance value generated by the third anisotropic magnetoresistance unit is opposite to The resistance value generated by the fourth anisotropic magnetoresistive unit changes, and the first, second, third, and fourth anisotropic magnetoresistive units are electrically connected to form a Wheatstone bridge to output corresponding to the The first, second, third, and fourth anisotropic magnetoresistive unit generates a voltage signal that changes the resistance value, wherein when the current flows through the first conductive section, the first anisotropic magnetoresistance unit The direction of the component in the first direction of the magnetic field generated at the second anisotropic magnetoresistive unit is opposite to that when the current flows through the second conductive section when the third anisotropic magnetoresistive unit and the fourth The direction of the component in the first direction of the magnetic field generated at the anisotropic magnetoresistive unit. 如申請專利範圍第1項所述的電流感測器,更包括一運算器,電性連接至該惠斯登電橋的一輸出端,其中該第一磁化方向設定元件與該第二磁化方向設定元件將該第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為一第一組合,以使該惠斯登電橋之後輸出一第一電壓訊號,且該第一磁化方向設定元件與該第二磁化方向設定元件再將該第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為相反於該第一組合的一第二組合,以使該惠斯登電橋之後輸出一第二電壓訊號,該運算器用以將該第一電壓訊號與該第二電壓訊號相減,以輸出一對應於該電流所產生的該磁場的大小的輸出電壓訊號。 The current sensor described in item 1 of the scope of the patent application further includes an arithmetic unit electrically connected to an output terminal of the Wheatstone bridge, wherein the first magnetization direction setting element and the second magnetization direction The setting element sets the magnetization direction combination of the first, second, third, and fourth anisotropic magnetoresistive units to a first combination, so that the Wheatstone bridge then outputs a first voltage signal, and the The first magnetization direction setting element and the second magnetization direction setting element then set the magnetization direction combination of the first, second, third and fourth anisotropic magnetoresistive units to a second combination opposite to the first combination Combined to make the Wheatstone bridge output a second voltage signal, and the arithmetic unit is used to subtract the first voltage signal from the second voltage signal to output a signal corresponding to the magnetic field generated by the current The size of the output voltage signal. 如申請專利範圍第2項所述的電流感測器,其中該運算器用以將該第一電壓訊號與該第二電壓訊號相加,以輸出一偏移電壓訊號。 According to the current sensor described in claim 2, wherein the arithmetic unit is used to add the first voltage signal and the second voltage signal to output an offset voltage signal. 如申請專利範圍第1項所述的電流感測器,其中當該電流流經該導線時,該電流在該第一導電段中的流向相反於在該第二導電段中的流向。 The current sensor according to claim 1, wherein when the current flows through the wire, the direction of the current in the first conductive section is opposite to the direction of the current in the second conductive section. 如申請專利範圍第1項所述的電流感測器,其中該第一方向垂直於該第二方向。 The current sensor according to the first item of the scope of patent application, wherein the first direction is perpendicular to the second direction. 如申請專利範圍第1項所述的電流感測器,其中該惠斯登電橋對應於在該第一方向上的外在磁場分量所輸出的電壓訊號為零,對應於在該第二方向上的外在磁場分量所輸出的電壓訊號為零,且對應於在一第三方向上的外在磁場分量所輸出的電壓訊號為零,其中該第三方向垂直於該第一方向與該第二方向。 The current sensor according to item 1 of the scope of the patent application, wherein the Wheatstone bridge corresponds to the output voltage signal of the external magnetic field component in the first direction being zero, which corresponds to the voltage signal in the second direction The voltage signal output by the external magnetic field component is zero, and the voltage signal output by the external magnetic field component corresponding to a third direction is zero, wherein the third direction is perpendicular to the first direction and the second direction. direction. 如申請專利範圍第1項所述的電流感測器,其中該第一異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第一異向性磁電阻與一第二異向性磁電阻,該第二異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第三異向性磁電阻與一第四異向性磁電阻,該第三異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第五異向性磁電阻與一第六異向性磁電阻,且該第四異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第七異向性磁電阻與一第八異向性磁電阻。 According to the current sensor described in claim 1, wherein the first anisotropic magnetoresistive unit includes a first anisotropic magnetoresistance and a first anisotropic magnetoresistance arranged in sequence along the opposite direction of the second direction. Two anisotropic magnetoresistances, the second anisotropic magnetoresistance unit includes a third anisotropic magnetoresistance and a fourth anisotropic magnetoresistance arranged in sequence along a direction opposite to the second direction, the first The three-anisotropic magnetoresistive unit includes a fifth anisotropic magnetoresistance and a sixth anisotropic magnetoresistance that are sequentially arranged along the opposite direction of the second direction, and the fourth anisotropic magnetoresistance unit includes A seventh anisotropic magnetoresistance and an eighth anisotropic magnetoresistance are sequentially arranged along the opposite direction of the second direction. 如申請專利範圍第7項所述的電流感測器,其中在一第一時間,該第一磁化方向設定元件將該第一異向性磁電阻與該第三異向性磁電阻的磁化方向設定為該第二方向的反方向,且將該第二異向性磁電阻與該第四異向性磁電阻的磁化方向設定為該第二方向;在該第一時間,該第二磁化方向設定元件將該第五異向性磁電阻與該第七異向性磁電阻的磁化方向設定為該第二方向的反方向,且將該第六異向性磁電阻與該第八異向性磁電阻的磁化方向設定為該第二方向;在一第二時間,該第一磁化方向設定元件將該第一異向性磁電阻與該第三異向性磁電阻的磁化方向設定 為該第二方向,且將該第二異向性磁電阻與該第四異向性磁電阻的磁化方向設定為該第二方向的反方向;在該第二時間,該第二磁化方向設定元件將該第五異向性磁電阻與該第七異向性磁電阻的磁化方向設定為該第二方向,且將該第六異向性磁電阻與該第八異向性磁電阻的磁化方向設定為該第二方向的反方向。 The current sensor according to item 7 of the scope of patent application, wherein at a first time, the first magnetization direction setting element has the magnetization directions of the first anisotropic magnetoresistance and the third anisotropic magnetoresistance Set to the opposite direction of the second direction, and set the magnetization directions of the second anisotropic magnetoresistance and the fourth anisotropic magnetoresistance to the second direction; at the first time, the second magnetization direction The setting element sets the magnetization directions of the fifth anisotropic magnetic resistance and the seventh anisotropic magnetic resistance to the opposite direction of the second direction, and the sixth anisotropic magnetic resistance and the eighth anisotropy The magnetization direction of the magnetoresistance is set to the second direction; at a second time, the first magnetization direction setting element sets the magnetization directions of the first anisotropic magnetoresistance and the third anisotropic magnetoresistance Is the second direction, and the magnetization directions of the second anisotropic magnetic resistance and the fourth anisotropic magnetic resistance are set to the opposite direction of the second direction; at the second time, the second magnetization direction is set The element sets the magnetization direction of the fifth anisotropic magnetoresistance and the seventh anisotropic magnetoresistance to the second direction, and the magnetization of the sixth anisotropic magnetoresistance and the eighth anisotropic magnetoresistance The direction is set to the opposite direction of this second direction. 如申請專利範圍第1項所述的電流感測器,其中該第一磁化方向設定元件與該第二磁化方向設定元件為導電片、導電線圈、導線或導體。 The current sensor according to the first item of the scope of patent application, wherein the first magnetization direction setting element and the second magnetization direction setting element are conductive sheets, conductive coils, wires or conductors.
TW108116112A 2018-08-23 2019-05-09 Electric current sensor TWI703338B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910614939.XA CN110857951B (en) 2018-08-23 2019-07-09 Current sensor
US16/527,075 US10866267B2 (en) 2018-08-23 2019-07-31 Electric current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862721624P 2018-08-23 2018-08-23
US62/721,624 2018-08-23

Publications (2)

Publication Number Publication Date
TW202009510A TW202009510A (en) 2020-03-01
TWI703338B true TWI703338B (en) 2020-09-01

Family

ID=70766507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116112A TWI703338B (en) 2018-08-23 2019-05-09 Electric current sensor

Country Status (1)

Country Link
TW (1) TWI703338B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170059360A1 (en) * 2015-08-31 2017-03-02 Infineon Technologies Ag Diversity in magnetic sensors
TW201818050A (en) * 2016-11-09 2018-05-16 愛盛科技股份有限公司 Magnetic field sensing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170059360A1 (en) * 2015-08-31 2017-03-02 Infineon Technologies Ag Diversity in magnetic sensors
TW201818050A (en) * 2016-11-09 2018-05-16 愛盛科技股份有限公司 Magnetic field sensing apparatus

Also Published As

Publication number Publication date
TW202009510A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
JP6255902B2 (en) Magnetic field detector
JP4807535B2 (en) Magnetic sensor
US9140766B2 (en) Temperature compensating magneto-resistive sensor for measuring magnetic fields
CN108072850B (en) Magnetic field sensing device
JP5888402B2 (en) Magnetic sensor element
CN110857952B (en) Current sensor
JP2006208278A (en) Current sensor
WO2014181382A1 (en) Magnetic current sensor and current measurement method
JP6299069B2 (en) Magnetic sensor device
JP2017072375A (en) Magnetic sensor
JP2015219227A (en) Magnetic sensor
TWI595249B (en) Magnetic field sensing apparatus
CN110007255B (en) Magnetic field sensing device
JP6394740B2 (en) Magnetic field detector
US11243275B2 (en) Magnetic field sensing device
CN110837066B (en) Magnetic field sensing device
TWI703338B (en) Electric current sensor
TWI714107B (en) Electric current sensor
CN110857951B (en) Current sensor
WO2015125699A1 (en) Magnetic sensor
TWI705262B (en) Magnetic field sensing apparatus
CN104535087A (en) Hall element and hall element structure
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus
TWI711833B (en) Magnetic field sensing device
WO2015146640A1 (en) Current sensor