TWI711833B - Magnetic field sensing device - Google Patents

Magnetic field sensing device Download PDF

Info

Publication number
TWI711833B
TWI711833B TW108118911A TW108118911A TWI711833B TW I711833 B TWI711833 B TW I711833B TW 108118911 A TW108118911 A TW 108118911A TW 108118911 A TW108118911 A TW 108118911A TW I711833 B TWI711833 B TW I711833B
Authority
TW
Taiwan
Prior art keywords
magnetic field
vortex
magnetoresistance
spiral
setting element
Prior art date
Application number
TW108118911A
Other languages
Chinese (zh)
Other versions
TW202009512A (en
Inventor
袁輔德
Original Assignee
愛盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛盛科技股份有限公司 filed Critical 愛盛科技股份有限公司
Priority to CN201910670429.4A priority Critical patent/CN110837066B/en
Priority to US16/522,691 priority patent/US11009569B2/en
Publication of TW202009512A publication Critical patent/TW202009512A/en
Application granted granted Critical
Publication of TWI711833B publication Critical patent/TWI711833B/en

Links

Images

Abstract

A magnetic field sensing device including at least one vortex magnetoresistor and at least one magnetization setting element is provided. The vortex magnetoresistor includes a pinning layer, a pinned layer, a spacer layer, and a round free layer. The pinned layer is disposed on the pinning layer, and the spacer layer is disposed on the pinned layer. The round free layer is disposed on the spacer layer, and has a magnetization direction distribution with a vortex shape. The magnetization setting element is alternately applied and not applied an electric current to. When the magnetization setting element is not applied the electric current to, the magnetization direction distribution with the vortex shape of the round free layer is varied with an external magnetic field, so as to achieve sensing the external fiend. When the magnetization setting element is applied the electric current to, a magnetic field generated by the magnetization setting element destroys the magnetization direction distribution with the vortex shape of the round free layer, and makes the round free layer achieve magnetic saturation.

Description

磁場感測裝置Magnetic field sensing device

本發明是有關於一種磁場感測裝置。The present invention relates to a magnetic field sensing device.

磁場感測器是一個能夠為系統提供電子羅盤及運動追跡(motion tracking)的重要元件。近年來,相關的應用快速地發展,特別是對於可攜式裝置而言。在新一世代的應用中,高準確率、快速反應、小體積、低功耗及可靠的品質已成為磁場感測器的重要特徵。The magnetic field sensor is an important component that can provide an electronic compass and motion tracking for the system. In recent years, related applications have developed rapidly, especially for portable devices. In the new generation of applications, high accuracy, fast response, small size, low power consumption and reliable quality have become important features of magnetic field sensors.

在傳統的巨磁電阻或穿隧磁電阻感測器中,具有釘扎層(pinning layer)、受釘扎層(pinned layer)、間隔層(spacer layer)及自由層(free layer)依序堆疊的結構,其中自由層具有一易磁化軸(magnetic easy-axis),其垂直於釘扎層的釘扎方向。若欲建構一個單軸的具有惠斯登電橋的磁感測器,多個具有不同的釘扎方向的磁電阻是重要的。對於3軸的磁感測器而言,則需要多個分別具有6個釘扎方向的磁電阻。然而,就製造的觀點來看,在一個晶圓中於釘扎層中製作第二種釘扎方向會造成可觀的成本增加,且會降低了受釘扎層中的磁化方向配置的穩定性。In traditional giant magnetoresistance or tunneling magnetoresistance sensors, a pinning layer, pinned layer, spacer layer, and free layer are stacked in sequence The free layer has a magnetic easy-axis, which is perpendicular to the pinning direction of the pinned layer. To build a single-axis magnetic sensor with Wheatstone bridge, multiple magnetoresistances with different pinning directions are important. For a 3-axis magnetic sensor, multiple magnetic resistances with 6 pinning directions are required. However, from a manufacturing point of view, the production of the second pinning direction in the pinning layer in one wafer will cause a considerable increase in cost and will reduce the stability of the magnetization direction configuration in the pinned layer.

此外,在一般的磁場感測器所輸出的訊號中存在著閃爍雜訊(flicker noise)(即粉紅雜訊(pink noise)),其會影響磁場感測器所測得的磁場大小的準確性。In addition, there is flicker noise (pink noise) in the signal output by the general magnetic field sensor, which will affect the accuracy of the magnetic field measured by the magnetic field sensor. .

本發明提供一種磁場感測裝置,其能夠有效克服閃爍雜訊的干擾。The invention provides a magnetic field sensing device, which can effectively overcome the interference of flicker noise.

本發明的一實施例提出一種磁場感測裝置,包括至少一漩渦型磁電阻(vortex magnetoresistor)及至少一磁化設定元件(magnetization setting element)。此至少一漩渦型磁電阻包括一釘扎層、一受釘扎層、一間隔層及一圓形自由層。受釘扎層配置於釘扎層上,間隔層配置於受釘扎層上,而圓形自由層配置於間隔層上,且具有漩渦形磁化方向分佈。此至少一磁化設定元件配置於此至少一漩渦型磁電阻的一側,且此至少一磁化設定元件交替地通電與不通電,當此至少一磁化設定元件不通電時,圓形自由層的漩渦形磁化方向分佈隨著外在磁場而變化,以達到對外在磁場的感測。當此至少一磁化設定元件通電時,此至少一磁化設定元件所產生的磁場破壞了圓形自由層的漩渦形磁化方向分佈,並使圓形自由層達到磁飽和。An embodiment of the present invention provides a magnetic field sensing device including at least one vortex magnetoresistor and at least one magnetization setting element. The at least one spiral magnetoresistance includes a pinned layer, a pinned layer, a spacer layer, and a circular free layer. The pinned layer is disposed on the pinned layer, the spacer layer is disposed on the pinned layer, and the circular free layer is disposed on the spacer layer and has a spiral magnetization direction distribution. The at least one magnetization setting element is arranged on one side of the at least one spiral magnetoresistance, and the at least one magnetization setting element is alternately energized and de-energized. When the at least one magnetization setting element is not energized, the vortex of the circular free layer The shape magnetization direction distribution changes with the external magnetic field to achieve the sensing of the external magnetic field. When the at least one magnetization setting element is energized, the magnetic field generated by the at least one magnetization setting element destroys the spiral magnetization direction distribution of the circular free layer, and the circular free layer reaches magnetic saturation.

在本發明的一實施例中,磁場感測裝置更包括一基板、一第一絕緣層及一第二絕緣層。磁化設定元件配置於基板上,第一絕緣層覆蓋在磁化設定元件上,其中漩渦型磁電阻配置於第一絕緣層上。第二絕緣層覆蓋在漩渦型磁電阻上。In an embodiment of the present invention, the magnetic field sensing device further includes a substrate, a first insulating layer, and a second insulating layer. The magnetization setting element is arranged on the substrate, the first insulating layer covers the magnetization setting element, and the vortex magnetoresistance is arranged on the first insulating layer. The second insulating layer covers the spiral magnetic resistance.

在本發明的一實施例中,磁場感測裝置更包括一基板、一第一絕緣層及一第二絕緣層。漩渦型磁電阻配置於基板上,第一絕緣層覆蓋在漩渦型磁電阻上,其中磁化設定元件配置於第一絕緣層上。第二絕緣層覆蓋在磁化設定元件上。In an embodiment of the present invention, the magnetic field sensing device further includes a substrate, a first insulating layer, and a second insulating layer. The spiral magnetoresistance is arranged on the substrate, the first insulating layer covers the spiral magnetoresistance, and the magnetization setting element is arranged on the first insulating layer. The second insulating layer covers the magnetization setting element.

在本發明的一實施例中,此至少一磁化設定元件包括一第一磁化設定元件與一第二磁化設定元件,且磁場感測裝置更包括一基板、一第一絕緣層、一第二絕緣層及一第三絕緣層。第一磁化設定元件配置於基板上,第一絕緣層覆蓋在第一磁化設定元件上,其中漩渦型磁電阻配置於第一絕緣層上。第二絕緣層覆蓋在漩渦型磁電阻上,其中第二磁化設定元件配置於第二絕緣層上。第三絕緣層覆蓋在第二磁化設定元件上。In an embodiment of the present invention, the at least one magnetization setting element includes a first magnetization setting element and a second magnetization setting element, and the magnetic field sensing device further includes a substrate, a first insulation layer, and a second insulation. Layer and a third insulating layer. The first magnetization setting element is disposed on the substrate, the first insulating layer covers the first magnetization setting element, and the vortex magnetoresistance is disposed on the first insulating layer. The second insulating layer covers the spiral magnetoresistance, and the second magnetization setting element is disposed on the second insulating layer. The third insulating layer covers the second magnetization setting element.

在本發明的一實施例中,此至少一漩渦型磁電阻為電性連接成一惠斯登電橋的多個漩渦型磁電阻。當這些漩渦型磁電阻處於感測外在磁場的狀態時,惠斯登電橋輸出對應於外在磁場的一差分訊號。In an embodiment of the present invention, the at least one vortex magnetoresistance is a plurality of vortex magnetoresistances electrically connected to form a Wheatstone bridge. When these vortex magnetoresistances are in the state of sensing the external magnetic field, the Wheatstone bridge outputs a differential signal corresponding to the external magnetic field.

在本發明的一實施例中,惠斯登電橋電性連接至一運算器。當這些漩渦型磁電阻處於其圓形自由層處於磁飽和的狀態時,惠斯登電橋輸出一空訊號。運算器用以將對應於外在磁場的差分訊號減去空訊號,以得到一淨輸出訊號。In an embodiment of the invention, the Wheatstone bridge is electrically connected to an arithmetic unit. When these vortex magnetoresistances are in a state where their circular free layer is magnetically saturated, the Wheatstone bridge outputs a null signal. The arithmetic unit is used for subtracting the null signal from the differential signal corresponding to the external magnetic field to obtain a net output signal.

在本發明的一實施例中,這些漩渦型磁電阻包括一第一漩渦型磁電阻、一第二漩渦型磁電阻、一第三漩渦型磁電阻及一第四漩渦型磁電阻。第一漩渦型磁電阻電性連接至第三漩渦型磁電阻及第四漩渦型磁電阻,第二漩渦型磁電阻電性連接至第三漩渦型磁電阻及第四漩渦型磁電阻,第一漩渦型磁電阻的釘扎方向相同於第二漩渦型磁電阻的釘扎方向,第三漩渦型磁電阻的釘扎方向相同於第四漩渦型磁電阻的釘扎方向,且第一漩渦型磁電阻的釘扎方向相反於第三漩渦型磁電阻的釘扎方向。In an embodiment of the present invention, the vortex magnetoresistor includes a first vortex magnetoresistance, a second vortex magnetoresistance, a third vortex magnetoresistance, and a fourth vortex magnetoresistance. The first vortex magnetoresistance is electrically connected to the third vortex magnetoresistance and the fourth vortex magnetoresistance, the second vortex magnetoresistance is electrically connected to the third vortex magnetoresistance and the fourth vortex magnetoresistance, the first The pinning direction of the spiral magnetoresistor is the same as that of the second spiral magnetoresistor, the pinning direction of the third spiral magnetoresistor is the same as the pinning direction of the fourth spiral magnetoresistor, and the first spiral magnetoresistor The pinning direction of the resistor is opposite to the pinning direction of the third spiral magnetoresistor.

在本發明的一實施例中,此至少一磁化設定元件通電時在第一至第四漩渦型磁電阻處所產生的磁場的方向垂直於第一至第四漩渦型磁電阻的釘扎方向。In an embodiment of the present invention, when the at least one magnetization setting element is energized, the direction of the magnetic field generated at the first to fourth spiral magnetoresistor is perpendicular to the pinning direction of the first to fourth spiral magnetoresistor.

在本發明的一實施例中,間隔層為一非磁性金屬層,而漩渦型磁電阻為一巨磁電阻。In an embodiment of the present invention, the spacer layer is a non-magnetic metal layer, and the spiral magnetoresistance is a giant magnetoresistance.

在本發明的一實施例中,間隔層為一絕緣層,而漩渦型磁電阻為一穿隧磁電阻。In an embodiment of the present invention, the spacer layer is an insulating layer, and the spiral magnetoresistance is a tunneling magnetoresistance.

在本發明的一實施例中,此至少一磁化設定元件為導電片、導電線圈、導線或導體。In an embodiment of the present invention, the at least one magnetization setting element is a conductive sheet, a conductive coil, a wire or a conductor.

在本發明的實施例的磁場感測裝置中,由於採用具有漩渦形磁化方向分佈的圓形自由層,因此漩渦型磁電阻所能感測的外在磁場方向較不受限制。此外,在本發明的實施例的磁場感測裝置中,由於採用了能夠破壞圓形自由層的漩渦形磁化方向分佈的磁化設定元件以量測出磁場感測裝置本身存在的閃爍雜訊,因此本發明的實施例的磁場感測裝置能夠有效克服閃爍雜訊的干擾。In the magnetic field sensing device of the embodiment of the present invention, since a circular free layer with a spiral magnetization direction distribution is used, the direction of the external magnetic field that can be sensed by the spiral magnetoresistance is relatively unrestricted. In addition, in the magnetic field sensing device of the embodiment of the present invention, since the magnetization setting element that can destroy the spiral magnetization direction distribution of the circular free layer is used to measure the flicker noise existing in the magnetic field sensing device itself, The magnetic field sensing device of the embodiment of the present invention can effectively overcome the interference of flicker noise.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1是本發明的一實施例的磁場感測裝置的剖面示意圖,圖2是圖1中的漩渦型磁電阻與磁化設定元件的上視示意圖,且圖3為圖1中的漩渦型磁電阻的立體示意圖。請參照圖1至圖3,本實施例的磁場感測裝置100包括至少一漩渦型磁電阻200及至少一磁化設定元件110。此至少一漩渦型磁電阻200包括一釘扎層210、一受釘扎層220、一間隔層230及一圓形自由層240。受釘扎層220配置於釘扎層210上,間隔層230配置於受釘扎層220上,而圓形自由層240配置於間隔層230上。在本實施例中,釘扎層210提供一釘扎方向(pinning direction)P1,其使受釘扎層220的磁化方向固定於釘扎方向P1上。在本實施例中,釘扎層210的材料是反鐵磁性材料(antiferromagnetic material),受釘扎層220與圓形自由層240的材料是鐵磁性材料(ferromagnetic material),其中圓形自由層240的材料是軟磁性材料(soft magnetic material)。1 is a schematic cross-sectional view of a magnetic field sensing device according to an embodiment of the present invention, FIG. 2 is a schematic top view of the vortex magnetoresistance and magnetization setting element in FIG. 1, and FIG. 3 is the vortex magnetoresistance in FIG. 1 The three-dimensional schematic diagram. 1 to 3, the magnetic field sensing device 100 of this embodiment includes at least one vortex magnetoresistance 200 and at least one magnetization setting element 110. The at least one spiral magnetoresistance 200 includes a pinned layer 210, a pinned layer 220, a spacer layer 230, and a circular free layer 240. The pinned layer 220 is disposed on the pinned layer 210, the spacer layer 230 is disposed on the pinned layer 220, and the circular free layer 240 is disposed on the spacer layer 230. In this embodiment, the pinning layer 210 provides a pinning direction P1, which fixes the magnetization direction of the pinned layer 220 to the pinning direction P1. In this embodiment, the material of the pinned layer 210 is an antiferromagnetic material, and the materials of the pinned layer 220 and the circular free layer 240 are ferromagnetic materials, and the circular free layer 240 is a ferromagnetic material. The material is soft magnetic material (soft magnetic material).

在本實施例中,磁場感測裝置100可處於由第一方向D1、第二方向D2及第三方向D3所建構的空間中,其中第一方向D1、第二方向D2及第三方向D3彼此互相垂直。在本實施例中,釘扎方向P1平行於第二方向D2,且釘扎層210、受釘扎層220、間隔層230及圓形自由層240等各膜層皆平行於第一方向D1與第二方向D2所建構的平面。In this embodiment, the magnetic field sensing device 100 can be located in a space constructed by a first direction D1, a second direction D2, and a third direction D3, where the first direction D1, the second direction D2, and the third direction D3 are mutually Perpendicular to each other. In this embodiment, the pinning direction P1 is parallel to the second direction D2, and the pinning layer 210, the pinned layer 220, the spacer layer 230, and the circular free layer 240 are all parallel to the first direction D1 and The plane constructed by the second direction D2.

圓形自由層240具有漩渦形磁化方向分佈。具體而言,當不存在外在磁場時,圓形自由層240的磁化方向ML沿著圓形自由層240的圓形輪廓排列成多個圓形,這些圓形的直徑逐漸縮小而終至收斂於圓形輪廓的中心。磁化方向ML的排列可以是順時針方向的,也可以是逆時針方向的。在圓形自由層240的中心會形成一漩渦中心(vortex core)VC,且在漩渦中心VC處的磁化方向是垂直於圓形自由層240的方向,其可朝上(即朝向圖2與圖3中的第三方向D3)或朝下(即朝向與第三方向D3相反的方向)。此時,整個圓形自由層240的靜磁化量(net magnetization)為零。The circular free layer 240 has a spiral magnetization direction distribution. Specifically, when there is no external magnetic field, the magnetization direction ML of the circular free layer 240 is arranged into a plurality of circles along the circular contour of the circular free layer 240, and the diameters of these circles are gradually reduced to convergence. At the center of the circular outline. The arrangement of the magnetization direction ML may be clockwise or counterclockwise. A vortex core VC is formed in the center of the circular free layer 240, and the magnetization direction at the vortex core VC is perpendicular to the direction of the circular free layer 240, which can face upward (ie, toward FIGS. 2 and The third direction D3 in 3) or downward (that is, facing the direction opposite to the third direction D3). At this time, the net magnetization of the entire circular free layer 240 is zero.

在本實施例中,漩渦型磁電阻200可以是巨磁電阻(giant magnetoresistor, GMR)或穿隧磁電阻(tunneling magnetoresistor, TMR)。當漩渦型磁電阻200為巨磁電阻時,其間隔層230為一非磁性金屬層;而當漩渦型磁電阻200為穿隧磁電阻時,其間隔層230為一絕緣層。In this embodiment, the vortex magnetoresistor 200 may be a giant magnetoresistor (GMR) or a tunneling magnetoresistor (TMR). When the spiral magnetic resistance 200 is a giant magnetic resistance, the spacer layer 230 is a non-magnetic metal layer; and when the spiral magnetic resistance 200 is a tunneling magnetic resistance, the spacer layer 230 is an insulating layer.

此至少一磁化設定元件110配置於此至少一漩渦型磁電阻200的一側。在本實施例中,磁化設定元件110例如為導電片、導電線圈、導線或導體,其可藉由通電流而產生磁場,以在圓形自由層240處產生用以設定圓形自由層240的磁化方向的磁場。The at least one magnetization setting element 110 is arranged on one side of the at least one spiral magnetoresistance 200. In this embodiment, the magnetization setting element 110 is, for example, a conductive sheet, a conductive coil, a wire, or a conductor, which can generate a magnetic field by passing a current, so as to generate a magnetic field at the circular free layer 240 for setting the circular free layer 240 Magnetic field in the direction of magnetization.

此至少一磁化設定元件110交替地通電與不通電。當此至少一磁化設定元件110不通電時,圓形自由層240的漩渦形磁化方向分佈隨著外在磁場而變化,以達到對外在磁場的感測。當此至少一磁化設定元件110通電時,此至少一磁化設定元件110所產生的磁場破壞了圓形自由層240的漩渦形磁化方向分佈,並使圓形自由層240達到磁飽和。The at least one magnetization setting element 110 is alternately energized and de-energized. When the at least one magnetization setting element 110 is not energized, the spiral magnetization direction distribution of the circular free layer 240 changes with the external magnetic field to achieve the sensing of the external magnetic field. When the at least one magnetization setting element 110 is energized, the magnetic field generated by the at least one magnetization setting element 110 destroys the spiral magnetization direction distribution of the circular free layer 240 and causes the circular free layer 240 to reach magnetic saturation.

具體而言,請參照圖4A,當有一沿著第一方向D1的外在磁場H經過漩渦型磁電阻200時,在漩渦中心VC的朝向第二方向D2的一側的面積會變大,在漩渦中心VC的朝向第二方向D2的反方向的一側的面積會變小,且這兩側面積中的磁化方向相反,導致整個圓形自由層240產生一個朝向第一方向D1的靜磁化量,且漩渦中心VC往第二方向D2的反方向移動。Specifically, referring to FIG. 4A, when an external magnetic field H along the first direction D1 passes through the vortex magnetoresistor 200, the area on the side of the vortex center VC facing the second direction D2 will become larger. The area of the side of the vortex center VC facing the opposite direction of the second direction D2 will become smaller, and the magnetization directions in the areas of the two sides are opposite, resulting in the entire circular free layer 240 generating a magnetostatic amount toward the first direction D1 , And the vortex center VC moves in the opposite direction of the second direction D2.

請參照圖4B,當有一沿著第一方向D1的反方向的外在磁場H經過漩渦型磁電阻200時,在漩渦中心VC的朝向第二方向D2的一側的面積會變小,在漩渦中心VC的朝向第二方向D2的反方向的一側的面積會變大,且這兩側面積中的磁化方向相反,導致整個圓形自由層240產生一個朝向第一方向D1的反方向的靜磁化量,且漩渦中心VC往第二方向D2移動。4B, when an external magnetic field H along the opposite direction of the first direction D1 passes through the vortex magnetoresistance 200, the area at the side of the vortex center VC facing the second direction D2 will become smaller. The area of the side of the center VC facing the opposite direction of the second direction D2 will become larger, and the magnetization directions in the areas on these two sides will be opposite, resulting in the entire circular free layer 240 generating a static direction opposite to the first direction D1. The amount of magnetization, and the vortex center VC moves to the second direction D2.

請參照圖4C,當有一沿著第二方向D2的外在磁場H經過漩渦型磁電阻200時,在漩渦中心VC的朝向第一方向D1的一側的面積會變小,在漩渦中心VC的朝向第一方向D1的反方向的一側的面積會變大,且這兩側面積中的磁化方向相反,導致整個圓形自由層240產生一個朝向第二方向D2的靜磁化量,且漩渦中心VC往第一方向D1移動。4C, when an external magnetic field H along the second direction D2 passes through the vortex magnetoresistance 200, the area at the side of the vortex center VC facing the first direction D1 will become smaller, The area on the side opposite to the first direction D1 will become larger, and the magnetization directions in the areas on both sides will be opposite, resulting in the entire circular free layer 240 generating a magnetostatic amount toward the second direction D2, and the vortex center VC moves in the first direction D1.

請參照圖4D,當有一沿著第二方向D2的反方向的外在磁場H經過漩渦型磁電阻200時,在漩渦中心VC的朝向第一方向D1的一側的面積會變大,在漩渦中心VC的朝向第一方向D1的反方向的一側的面積會變小,且這兩側面積中的磁化方向相反,導致整個圓形自由層240產生一個朝向第二方向D2的反方向的靜磁化量,且漩渦中心VC往第一方向D1的反方向移動。4D, when an external magnetic field H along the opposite direction of the second direction D2 passes through the vortex type magnetoresistor 200, the area at the side of the vortex center VC facing the first direction D1 will become larger. The area of the side of the center VC facing the opposite direction of the first direction D1 will become smaller, and the magnetization directions in the areas on these two sides will be opposite, resulting in the entire circular free layer 240 generating a static direction opposite to the second direction D2. The amount of magnetization, and the vortex center VC moves in the opposite direction of the first direction D1.

圖5繪示圖3中的漩渦型磁電阻於不同方向的外來磁場的作用下及沒有外來磁場的情況下電阻值的變化。請參照圖3、圖4A至圖4D及圖5,圖5中的曲線圖表現了漩渦型磁電阻200的電阻值R相對於外在磁場H的變化。如圖5的左上圖所示,當漩渦型磁電阻200被施加一與釘扎方向P1同向之外在磁場H時,如圖4C所繪示圓形自由層240在釘扎方向P1上會產生一個淨磁化量,而使得電阻值R下降,即曲線圖中黑圓點所對應的電阻值R的數值。如圖5的左下圖所示,當漩渦型磁電阻200被施加一與釘扎方向P1相反方向之外在磁場H時,如圖4D所繪示圓形自由層240在釘扎方向P1的反方向上會產生一個淨磁化量,而使得電阻值R上升,即曲線圖中黑圓點所對應的電阻值R的數值。如圖5的右上圖所示,當漩渦型磁電阻200被施加一與釘扎方向P1垂直之外在磁場H時,如圖4A或圖4B所繪示圓形自由層240在垂直於釘扎方向P1的方向上產生一個淨磁化量,此淨磁化量在釘扎方向P1上的正投影量為零,而使得電阻值R維持不變,即曲線圖中黑圓點所對應的電阻值R的數值。另外,如圖5的右下圖所示,當漩渦型磁電阻200沒有被施加磁場時,其電阻值R維持不變,即曲線圖中黑圓點所對應的電阻值R的數值。FIG. 5 shows the change of the resistance value of the vortex magnetoresistance in FIG. 3 under the action of external magnetic fields in different directions and without external magnetic fields. Please refer to FIG. 3, FIG. 4A to FIG. 4D and FIG. 5. The graph in FIG. 5 shows the change of the resistance value R of the vortex magnetoresistor 200 with respect to the external magnetic field H. As shown in the upper left diagram of FIG. 5, when the vortex magnetoresistance 200 is applied with a magnetic field H outside the same direction as the pinning direction P1, the circular free layer 240 shown in FIG. 4C will move in the pinning direction P1. A net magnetization is generated, and the resistance value R decreases, that is, the value of the resistance value R corresponding to the black dot in the graph. As shown in the lower left diagram of FIG. 5, when the vortex magnetoresistance 200 is applied with a magnetic field H outside the direction opposite to the pinning direction P1, as shown in FIG. 4D, the circular free layer 240 is opposite to the pinning direction P1. Upward will produce a net magnetization, and make the resistance value R rise, that is, the value of the resistance value R corresponding to the black dot in the graph. As shown in the upper right diagram of FIG. 5, when the vortex magnetoresistance 200 is applied with an external magnetic field H perpendicular to the pinning direction P1, the circular free layer 240 is perpendicular to the pinning direction as shown in FIG. 4A or 4B. A net magnetization is produced in the direction of direction P1. The orthographic projection of this net magnetization in the pinning direction P1 is zero, and the resistance value R remains unchanged, that is, the resistance value R corresponding to the black dot in the graph The numerical value. In addition, as shown in the lower right diagram of FIG. 5, when no magnetic field is applied to the spiral magnetoresistor 200, its resistance value R remains unchanged, that is, the value of the resistance value R corresponding to the black circle in the graph.

圖6A至圖6D繪示圖1與圖2之漩渦型磁電阻在受到磁化設定元件所施加的磁場後所產生的飽和磁化量的方向。請參照圖1、圖2及圖6A,當如圖1及圖2的磁化設定元件110通有一流向第二方向D2的電流I時,會在圓形自由層240處產生朝向第一方向D1的強磁場,而使得圓形自由層240達到磁飽和,並在第一方向D1上產生飽和磁化量。此時圓形自由層240形成單磁域(single domain),其各位置的磁化方向均朝向第一方向D1。由於此飽和磁化量與釘扎方向P1(即第二方向D2)垂直,因此漩渦型磁電阻200的電阻值R理論上不產生變化。6A to 6D show the directions of the saturation magnetization generated by the vortex magnetoresistance of FIGS. 1 and 2 after receiving the magnetic field applied by the magnetization setting element. Please refer to FIGS. 1, 2 and 6A. When the magnetization setting element 110 shown in FIGS. 1 and 2 is passed through the current I flowing in the second direction D2, the circular free layer 240 will generate a current I in the first direction D1. The strong magnetic field causes the circular free layer 240 to reach magnetic saturation and generate saturation magnetization in the first direction D1. At this time, the circular free layer 240 forms a single domain, and the magnetization direction of each position thereof faces the first direction D1. Since this saturation magnetization is perpendicular to the pinning direction P1 (ie, the second direction D2), the resistance value R of the vortex magnetoresistor 200 does not change in theory.

請再參照圖1、圖2及圖6B,當如圖1及圖2的磁化設定元件110的電流I流向改成流向第二方向D2的反方向時,會在圓形自由層240處產生朝向第一方向D1的反方向的強磁場,而使得圓形自由層240達到磁飽和,並在第一方向D1的反方向上產生飽和磁化量。此時圓形自由層240形成單磁域,其各位置的磁化方向均朝向第一方向D1的反方向。由於此飽和磁化量與釘扎方向P1(即第二方向D2)垂直,因此漩渦型磁電阻200的電阻值R理論上不產生變化。Please refer to FIGS. 1, 2 and 6B again. When the current I of the magnetization setting element 110 shown in FIGS. 1 and 2 is changed to flow in the opposite direction to the second direction D2, a direction will be generated at the circular free layer 240 The strong magnetic field in the opposite direction of the first direction D1 causes the circular free layer 240 to reach magnetic saturation and generate saturation magnetization in the opposite direction of the first direction D1. At this time, the circular free layer 240 forms a single magnetic domain, and the magnetization direction of each position thereof faces the opposite direction of the first direction D1. Since this saturation magnetization is perpendicular to the pinning direction P1 (ie, the second direction D2), the resistance value R of the vortex magnetoresistor 200 does not change in theory.

請再參照圖1、圖2及圖6C,當如圖1及圖2的磁化設定元件110的延伸方向從原本的第二方向D2改為第一方向D1時,且電流I的流向改成流向第一方向D1的反方向時,會在圓形自由層240處產生朝向第二方向D2的強磁場,而使得圓形自由層240達到磁飽和,並在第二方向D2上產生飽和磁化量。此時圓形自由層240形成單磁域,其各位置的磁化方向均朝向第二方向D2。由於此飽和磁化量與釘扎方向P1(即第二方向D2)一致,因此漩渦型磁電阻200的電阻值R會降低至最小值。Please refer to Figure 1, Figure 2 and Figure 6C again, when the extension direction of the magnetization setting element 110 shown in Figures 1 and 2 is changed from the original second direction D2 to the first direction D1, and the flow direction of the current I is changed to the flow direction When the first direction D1 is opposite to the first direction D1, a strong magnetic field is generated at the circular free layer 240 toward the second direction D2, so that the circular free layer 240 reaches magnetic saturation and generates saturation magnetization in the second direction D2. At this time, the circular free layer 240 forms a single magnetic domain, and the magnetization direction of each position thereof faces the second direction D2. Since the saturation magnetization is consistent with the pinning direction P1 (ie, the second direction D2), the resistance value R of the vortex magnetoresistor 200 will be reduced to a minimum.

請再參照圖1、圖2及圖6D,當如圖1及圖2的磁化設定元件110的延伸方向從原本的第二方向D2改為第一方向D1時,且電流I的流向改成流向第一方向D1時,會在圓形自由層240處產生朝向第二方向D2的反方向的強磁場,而使得圓形自由層240達到磁飽和,並在第二方向D2的反方向上產生飽和磁化量。此時圓形自由層240形成單磁域,其各位置的磁化方向均朝向第二方向D2的反方向。由於此飽和磁化量與釘扎方向P1(即第二方向D2)相反,因此漩渦型磁電阻200的電阻值R會上升至最大值。Please refer to FIGS. 1, 2 and 6D again, when the extension direction of the magnetization setting element 110 shown in FIGS. 1 and 2 is changed from the original second direction D2 to the first direction D1, and the flow direction of the current I is changed to the flow direction In the first direction D1, a strong magnetic field is generated at the circular free layer 240 in the opposite direction to the second direction D2, so that the circular free layer 240 reaches magnetic saturation and saturation magnetization is generated in the opposite direction to the second direction D2 the amount. At this time, the circular free layer 240 forms a single magnetic domain, and the magnetization direction of each position thereof faces the opposite direction of the second direction D2. Since this saturation magnetization is opposite to the pinning direction P1 (ie, the second direction D2), the resistance value R of the vortex magnetoresistance 200 will rise to the maximum.

當磁化設定元件110不通電流時,漩渦型磁電阻200是處於可感測外在磁場H的情況下,如圖4A至圖4D所繪示,此時漩渦型磁電阻200的輸出訊號是包含了對應於外在磁場H的部分與對應於系統的閃爍雜訊的部分。而當磁化設定元件110通電流而使漩渦型磁電阻200達到磁飽和時,漩渦型磁電阻的輸出訊號則是對應於系統的閃爍雜訊。因此,當磁化設定元件110交替地通電與不通電,並將此兩種狀態下漩渦型磁電阻200的輸出訊號相減,便能夠扣除系統的閃爍雜訊的影響,而得到較為準確的對應於外在磁場H的訊號。When the magnetization setting element 110 does not pass current, the vortex magnetoresistance 200 is in a situation where it can sense the external magnetic field H, as shown in FIGS. 4A to 4D. At this time, the output signal of the vortex magnetoresistor 200 includes The part corresponding to the external magnetic field H and the part corresponding to the flicker noise of the system. When the magnetization setting element 110 passes current and the vortex magnetoresistance 200 reaches magnetic saturation, the output signal of the vortex magnetoresistance corresponds to the flicker noise of the system. Therefore, when the magnetization setting element 110 is alternately energized and de-energized, and the output signal of the vortex magnetoresistance 200 in these two states is subtracted, the influence of the flicker noise of the system can be deducted, and a more accurate correspondence can be obtained. Signal of external magnetic field H.

在本實施例中,磁場感測裝置100更包括一基板120、一第一絕緣層130及一第二絕緣層140。磁化設定元件110配置於基板120上,第一絕緣層130覆蓋在磁化設定元件110上,漩渦型磁電阻200配置於第一絕緣層130上,且第二絕緣層140覆蓋在漩渦型磁電阻200上。在本實施例中,基板120為線路基板,例如為具有電路的半導體基板。In this embodiment, the magnetic field sensing device 100 further includes a substrate 120, a first insulating layer 130 and a second insulating layer 140. The magnetization setting element 110 is disposed on the substrate 120, the first insulating layer 130 covers the magnetization setting element 110, the spiral magnetoresistor 200 is disposed on the first insulating layer 130, and the second insulating layer 140 covers the spiral magnetoresistor 200. on. In this embodiment, the substrate 120 is a circuit substrate, for example, a semiconductor substrate with a circuit.

圖7繪示圖1之漩渦型磁電阻的轉換曲線(transfer curve)。請參照圖圖1、圖2、圖3與圖7,當沿著釘扎方向P1的反方向的一正的外在磁場H或一負的外在磁場H被施加在漩渦型磁電阻200上時,漩渦型磁電阻200的電阻值R先隨著外在磁場H的絕對值的增加而增加或減少。當外在磁場H的強度增加或減少至Han 或-Han 時,漩渦型磁電阻200的電阻值R達到一個飽和值R+ΔRs 或R-ΔRs ,此時漩渦中心VC消失了,且圓形自由層240具有單磁域且其淨磁化量達到飽和磁化量。FIG. 7 shows the transfer curve of the vortex magnetoresistance of FIG. 1. Referring to FIGS. 1, 2, 3, and 7, when a positive external magnetic field H or a negative external magnetic field H in the opposite direction of the pinning direction P1 is applied to the vortex magnetoresistance 200 At this time, the resistance value R of the vortex magnetoresistor 200 first increases or decreases as the absolute value of the external magnetic field H increases. When the AN increases or decreases to H or -H an intensity of the external magnetic field H, the magnetic resistance value whorl R 200 reaches a saturation value R + ΔR s or R-ΔR s, VC center of the vortex disappeared at this time, And the circular free layer 240 has a single magnetic domain and its net magnetization reaches the saturation magnetization.

當外在磁場H的絕對值從上述飽和點開始減少時(即從Han 開始減少或從-Han 開始增加時),漩渦型磁電阻200繼續維持在飽和值(即R+ΔRs 或R-ΔRs ),直到外在磁場H的絕對值小於Hre 時(即外在磁場小於Hre 或大於-Hre 時),漩渦中心VC才重新出現。When the absolute value of the external magnetic field H begins to decrease from the saturation point (i.e., at the beginning or is reduced from H AN increases from -H an), vortex-type magnetoresistance 200 remain at the saturation value (i.e., R or R + ΔR s -ΔR s ), until the absolute value of the external magnetic field H is less than H re (that is, when the external magnetic field is less than H re or greater than -H re ), the vortex center VC does not reappear.

如此一來,漩渦型磁電阻200的一第一工作範圍Hdy '可定義為從-Hre 至+Hre ,而一第二工作範圍可為Hdy 以外的範圍,也就是小於-Han 或大於+Han 的範圍。在第一工作範圍內,圓形自由層240的漩渦形磁化方向分佈穩定地存在。在第二工作範圍內,磁化設定元件110所設定的磁場的絕對值超過了+Han 或-Han 的絕對值,此時圓形自由層240變成具有飽和淨磁化量的單磁域。In this way, a first working range H dy 'of the vortex magnetoresistance 200 can be defined as from -H re to +H re , and a second working range can be a range other than H dy , that is, less than -H an Or greater than the range of +H an . In the first working range, the spiral magnetization direction distribution of the circular free layer 240 exists stably. In the second working range, the absolute value of the magnetic field set by the magnetization setting element 110 exceeds the absolute value of +H an or -H an , and the circular free layer 240 becomes a single magnetic domain with a saturated net magnetization.

圖8為本發明的一實施例的磁場感測裝置的上視示意圖。請參照圖1、圖2、圖3及圖8,在圖1、圖2及圖3中是以一個漩渦型磁電阻200與一個磁化設定元件110為例進行說明,而在一實施例中,如圖8所繪示,磁場感測裝置100可包括多個漩渦型磁電阻200(例如第一漩渦型磁電阻R1、第二漩渦型磁電阻R2、第三漩渦型磁電阻R3及第四漩渦型磁電阻R4等4個漩渦型磁電阻)及多個磁化設定元件110(例如兩個磁化設定元件110,這兩個磁化設定元件110其中之一與漩渦型磁電阻R1與R3重疊,而另一個與漩渦型磁電阻R2與R4重疊)。也就是說,這些漩渦型磁電阻200為電性連接成一惠斯登電橋的多個漩渦型磁電阻200,而當這些漩渦型磁電阻200處於感測外在磁場的狀態時(也就是磁化設定元件110不通電時),惠斯登電橋輸出對應於外在磁場的一差分訊號。FIG. 8 is a schematic top view of a magnetic field sensing device according to an embodiment of the invention. Please refer to FIG. 1, FIG. 2, FIG. 3 and FIG. 8. In FIG. 1, FIG. 2 and FIG. 3, a vortex magnetoresistance 200 and a magnetization setting element 110 are taken as examples for description. In one embodiment, As shown in FIG. 8, the magnetic field sensing device 100 may include a plurality of vortex magnetoresistor 200 (for example, a first vortex magnetoresistor R1, a second vortex magnetoresistor R2, a third vortex magnetoresistor R3, and a fourth vortex Four vortex type magnetoresistor R4, etc.) and a plurality of magnetization setting elements 110 (for example, two magnetization setting elements 110, one of the two magnetization setting elements 110 overlaps the vortex type magnetoresistor R1 and R3, and the other One overlaps with vortex magnetoresistance R2 and R4). In other words, the vortex magnetoresistor 200 is a plurality of vortex magnetoresistor 200 electrically connected to form a Wheatstone bridge, and when the vortex magnetoresistor 200 is in a state of sensing an external magnetic field (that is, magnetized When the setting element 110 is not energized), the Wheatstone bridge outputs a differential signal corresponding to the external magnetic field.

具體而言,第一漩渦型磁電阻R1電性連接至第三漩渦型磁電阻R3及第四漩渦型磁電阻R4,第二漩渦型磁電阻R2電性連接至第三漩渦型磁電阻R3及第四漩渦型磁電阻R4。此外,第一漩渦型磁電阻R1的釘扎方向P1相同於第二漩渦型磁電阻R2的釘扎方向P1,其皆為朝向第二方向D2。第三漩渦型磁電阻R3的釘扎方向P1相同於第四漩渦型磁電阻R4的釘扎方向P1,其皆為朝向第二方向D2的反方向。此外,第一漩渦型磁電阻R1的釘扎方向P1相反於第三漩渦型磁電阻R3的釘扎方向P1。Specifically, the first spiral magnetic resistance R1 is electrically connected to the third spiral magnetic resistance R3 and the fourth spiral magnetic resistance R4, and the second spiral magnetic resistance R2 is electrically connected to the third spiral magnetic resistance R3 and The fourth vortex type magnetic resistance R4. In addition, the pinning direction P1 of the first spiral magnetoresistor R1 is the same as the pinning direction P1 of the second spiral magnetoresistor R2, both of which face the second direction D2. The pinning direction P1 of the third spiral magnetoresistor R3 is the same as the pinning direction P1 of the fourth spiral magnetoresistor R4, which are all opposite to the second direction D2. In addition, the pinning direction P1 of the first spiral magnetoresistor R1 is opposite to the pinning direction P1 of the third spiral magnetoresistor R3.

當外在磁場在第二方向D2上有一磁場分量時,第一漩渦型磁電阻R1的電阻值產生了-ΔR的變化,且第二漩渦型磁電阻R2的電阻值產生了-ΔR的變化。此外,由於第三漩渦型磁電阻R3與第四漩渦型磁電阻R4的釘扎方向P1是朝向第二方向D2的反方向,因此第三漩渦型磁電阻R3的電阻值產生了+ΔR的變化,且第四漩渦型磁電阻R4的電阻值產生了+ΔR的變化。如此一來,當接點Q1接收一參考電壓VDD,而接點Q2耦接至地(ground)時,接點Q3與接點Q4之間的電壓差會是(VDD)×(ΔR/R),其可以為一輸出訊號,而此輸出訊號為一差分訊號,其中小會對應外在磁場在第二方向D2上的磁場分量的大小。其中,接點Q1耦接至第一漩渦型磁電阻R1與第四漩渦型磁電阻R4之間的導電路徑,接點Q2耦接至第二漩渦型磁電阻R2與第三漩渦型磁電阻R3之間的導電路徑,接點Q3耦接至第一漩渦型磁電阻R1與第三漩渦型磁電阻R3之間的導電路徑,而接點Q4耦接至第二漩渦型磁電阻R2與第四漩渦型磁電阻R4之間的導電路徑。When the external magnetic field has a magnetic field component in the second direction D2, the resistance value of the first spiral magnetoresistor R1 changes -ΔR, and the resistance value of the second spiral magnetoresistor R2 changes -ΔR. In addition, since the pinning direction P1 of the third spiral magnetoresistor R3 and the fourth spiral magnetoresistor R4 is opposite to the second direction D2, the resistance value of the third spiral magnetoresistor R3 changes by +ΔR , And the resistance value of the fourth spiral magnetoresistor R4 has a +ΔR change. In this way, when the contact Q1 receives a reference voltage VDD and the contact Q2 is coupled to ground, the voltage difference between the contact Q3 and the contact Q4 will be (VDD)×(ΔR/R) , It can be an output signal, and the output signal is a differential signal, where small corresponds to the magnitude of the magnetic field component of the external magnetic field in the second direction D2. Wherein, the contact point Q1 is coupled to the conductive path between the first spiral type magnetic resistance R1 and the fourth spiral type magnetic resistance R4, and the contact point Q2 is coupled to the second spiral type magnetic resistance R2 and the third spiral type magnetic resistance R3 The contact Q3 is coupled to the conductive path between the first spiral magnetoresistor R1 and the third spiral magnetoresistor R3, and the contact Q4 is coupled to the second spiral magnetoresistor R2 and the fourth The conductive path between the vortex magnetoresistor R4.

在本實施例中,上述惠斯登電橋電性連接至一運算器160。當這些漩渦型磁電阻200處於其圓形自由層240處於磁飽和的狀態時,惠斯登電橋輸出一空訊號,運算器160用以將對應於外在磁場的差分訊號減去空訊號,以得到一淨輸出訊號,而此淨輸出訊號已扣除了閃爍雜訊的影響,而能夠較為準確地反應出外在磁場的大小。在本實施例中,磁化設定元件110通電時,電流I流向第二方向D2,因此其在第一至第四漩渦型磁電阻R1、R2、R3及R4處所產生的磁場的方向垂直於第一至第四漩渦型磁電阻R1、R2、R3及R4的釘扎方向P1。此時,空訊號只包含了閃爍雜訊的部分,因此將對應於外在磁場的差分訊號減去空訊號,即可以得到能夠反應外在磁場的淨輸出訊號。然而,當磁化設定元件110的擺設方式是使在第一至第四漩渦型磁電阻R1、R2、R3及R4處所產生的磁場的方向平行或反平行於第一至第四漩渦型磁電阻R1、R2、R3及R4的釘扎方向P1時,則空訊號除了包含閃爍雜訊的部分之外,還包括了飽和訊號(可以是正值或負值),即第一至第四漩渦型磁電阻R1、R2、R3及R4的一部分的電阻值增加至最大值,而另一部分的電阻值增加至最小值。此時運算器將對應於外在磁場的差分訊號減去空訊號,可再加回或扣除飽和訊號,以得到能夠準確對應外在磁場的淨輸出訊號。在本實施例中,運算器160例如是一算術運算器,其可設置於基板120上或基板120中。In this embodiment, the aforementioned Wheatstone bridge is electrically connected to an arithmetic unit 160. When the vortex magnetoresistor 200 is in a state where the circular free layer 240 is in magnetic saturation, the Wheatstone bridge outputs a null signal, and the arithmetic unit 160 is used to subtract the null signal from the differential signal corresponding to the external magnetic field to Obtain a net output signal, and the net output signal has deducted the influence of flicker noise, and can more accurately reflect the size of the external magnetic field. In this embodiment, when the magnetization setting element 110 is energized, the current I flows in the second direction D2, so the direction of the magnetic field generated at the first to fourth spiral magnetoresistor R1, R2, R3, and R4 is perpendicular to the first direction. The pinning direction P1 to the fourth spiral magnetoresistor R1, R2, R3, and R4. At this time, the null signal only contains the part of the flicker noise. Therefore, subtracting the null signal from the differential signal corresponding to the external magnetic field can obtain a net output signal that can reflect the external magnetic field. However, when the magnetization setting element 110 is arranged such that the direction of the magnetic field generated at the first to fourth spiral magnetoresistor R1, R2, R3, and R4 is parallel or antiparallel to the first to fourth spiral magnetoresistor R1 When the pinning direction of R2, R3, and R4 is P1, the empty signal includes the saturation signal (which can be positive or negative) in addition to the part of the flicker noise, that is, the first to fourth spiral magnetic The resistance value of a part of the resistors R1, R2, R3, and R4 increases to the maximum value, and the resistance value of the other part increases to the minimum value. At this time, the arithmetic unit subtracts the null signal from the differential signal corresponding to the external magnetic field, and can add back or subtract the saturation signal to obtain a net output signal that can accurately correspond to the external magnetic field. In this embodiment, the arithmetic unit 160 is, for example, an arithmetic unit, which can be disposed on or in the substrate 120.

圖9為圖8之惠斯登電橋的輸出訊號的示意波形圖。請參照圖8與圖9,當惠斯登電橋交替地在感測狀態(即磁化設定元件110不通電時)及空狀態(null state)(即磁化設定元件110通有電流I時)之間切換時,在感測狀態時惠斯登電橋所輸出的電壓訊號為Vs ,而在空狀態時惠斯登電橋所輸出的電壓訊號為Vn 。運算器則計算Vs -Vn ,以得到淨輸出訊號並將其輸出。FIG. 9 is a schematic waveform diagram of the output signal of the Wheatstone bridge of FIG. 8. 8 and 9, when the Wheatstone bridge is alternately in the sensing state (that is, when the magnetization setting element 110 is not energized) and the null state (that is, when the magnetization setting element 110 has a current I). When switching between, the voltage signal output by the Wheatstone bridge in the sensing state is V s , and the voltage signal output by the Wheatstone bridge in the empty state is V n . The arithmetic unit calculates V s -V n to obtain the net output signal and output it.

圖10為本發明之另一實施例的磁場感測裝置的剖面示意圖。請參照圖10,本實施例之磁場感測裝置100a類似於圖1之磁場感測裝置100,而兩者的差異如下所述。在本實施例之磁場感測裝置100a中,漩渦型磁電阻200配置於基板120上,且第一絕緣層130覆蓋在漩渦型磁電阻200上。此外,磁化設定元件110配置於第一絕緣層130上,且第二絕緣層140覆蓋在磁化設定元件110上。如此一來,當磁化設定元件110通有電流I時,仍能在漩渦型磁電阻200處產生強磁場。10 is a schematic cross-sectional view of a magnetic field sensing device according to another embodiment of the invention. Please refer to FIG. 10, the magnetic field sensing device 100a of this embodiment is similar to the magnetic field sensing device 100 of FIG. 1, and the difference between the two is as follows. In the magnetic field sensing device 100a of this embodiment, the spiral magnetoresistor 200 is disposed on the substrate 120, and the first insulating layer 130 covers the spiral magnetoresistor 200. In addition, the magnetization setting element 110 is disposed on the first insulating layer 130, and the second insulating layer 140 covers the magnetization setting element 110. In this way, when the current I is passed through the magnetization setting element 110, a strong magnetic field can still be generated at the vortex magnetoresistance 200.

圖11為本發明之又一實施例的磁場感測裝置的剖面示意圖。請參照圖10,本實施例之磁場感測裝置100b類似於圖1之磁場感測裝置100,而兩者的差異如下所述。本實施例之磁場感測裝置100b的至少一磁化設定元件110包括一第一磁化設定元件1101與一第二磁化設定元件1102,且磁場感測裝置100b更包括一第三絕緣層150。此外,第一磁化設定元件1101配置於基板120上,第一絕緣層130覆蓋在第一磁化設定元件1101上,漩渦型磁電阻200配置於第一絕緣層130上,第二絕緣層140覆蓋在漩渦型磁電阻200上。另外,第二磁化設定元件1102配置於第二絕緣層140上,且第三絕緣層150覆蓋在第二磁化設定元件1102上。如此一來,當第一磁化設定元件1101與第二磁化設定元件1102通有電流I時,仍能在漩渦型磁電阻200處產生強磁場。11 is a schematic cross-sectional view of a magnetic field sensing device according to another embodiment of the invention. Please refer to FIG. 10, the magnetic field sensing device 100b of this embodiment is similar to the magnetic field sensing device 100 of FIG. 1, and the difference between the two is as follows. The at least one magnetization setting element 110 of the magnetic field sensing device 100b of this embodiment includes a first magnetization setting element 1101 and a second magnetization setting element 1102, and the magnetic field sensing device 100b further includes a third insulating layer 150. In addition, the first magnetization setting element 1101 is disposed on the substrate 120, the first insulating layer 130 covers the first magnetization setting element 1101, the spiral magnetoresistance 200 is disposed on the first insulating layer 130, and the second insulating layer 140 covers The vortex type magnetoresistance 200 is on. In addition, the second magnetization setting element 1102 is disposed on the second insulating layer 140, and the third insulating layer 150 covers the second magnetization setting element 1102. In this way, when the first magnetization setting element 1101 and the second magnetization setting element 1102 have a current I, a strong magnetic field can still be generated at the vortex magnetoresistance 200.

綜上所述,在本發明的實施例的磁場感測裝置中,由於採用具有漩渦形磁化方向分佈的圓形自由層,因此漩渦型磁電阻所能感測的外在磁場方向較不受限制。此外,在本發明的實施例的磁場感測裝置中,由於採用了能夠破壞圓形自由層的漩渦形磁化方向分佈的磁化設定元件以量測出磁場感測裝置本身存在的閃爍雜訊,因此本發明的實施例的磁場感測裝置能夠有效克服閃爍雜訊的干擾。In summary, in the magnetic field sensing device of the embodiment of the present invention, since a circular free layer with a spiral magnetization direction distribution is used, the direction of the external magnetic field that can be sensed by the spiral magnetoresistance is relatively unrestricted. . In addition, in the magnetic field sensing device of the embodiment of the present invention, since the magnetization setting element that can destroy the spiral magnetization direction distribution of the circular free layer is used to measure the flicker noise existing in the magnetic field sensing device itself, The magnetic field sensing device of the embodiment of the present invention can effectively overcome the interference of flicker noise.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100、100a、100b‧‧‧磁場感測裝置 110‧‧‧磁化設定元件 1101‧‧‧第一磁化設定元件 1102‧‧‧第二磁化設定元件 120‧‧‧基板 130‧‧‧第一絕緣層 140‧‧‧第二絕緣層 150‧‧‧第三絕緣層 160‧‧‧運算器 200‧‧‧漩渦型磁電阻 210‧‧‧釘扎層 220‧‧‧受釘扎層 230‧‧‧間隔層 240‧‧‧圓形自由層 D1‧‧‧第一方向 D2‧‧‧第二方向 D3‧‧‧第三方向 H‧‧‧外在磁場 I‧‧‧電流 ML‧‧‧磁化方向 P1‧‧‧釘扎方向 Q1、Q2、Q3、Q4‧‧‧接點 R‧‧‧電阻值 R1‧‧‧第一漩渦型磁電阻 R2‧‧‧第二漩渦型磁電阻 R3‧‧‧第三漩渦型磁電阻 R4‧‧‧第四漩渦型磁電阻 VC‧‧‧漩渦中心100, 100a, 100b‧‧‧Magnetic field sensing device 110‧‧‧Magnetization setting element 1101‧‧‧The first magnetization setting element 1102‧‧‧Second magnetization setting element 120‧‧‧Substrate 130‧‧‧First insulation layer 140‧‧‧Second insulating layer 150‧‧‧Third insulation layer 160‧‧‧Computer 200‧‧‧Vortex type magnetoresistance 210‧‧‧Pinning layer 220‧‧‧Pinned layer 230‧‧‧Interval layer 240‧‧‧Circular free layer D1‧‧‧First direction D2‧‧‧Second direction D3‧‧‧ Third party H‧‧‧External magnetic field I‧‧‧Current ML‧‧‧Magnetic direction P1‧‧‧Pinning direction Q1, Q2, Q3, Q4‧‧‧Contact R‧‧‧Resistance value R1‧‧‧First vortex magnetoresistance R2‧‧‧Second vortex magnetoresistance R3‧‧‧The third vortex magnetoresistance R4‧‧‧Fourth spiral magnetoresistance VC‧‧‧Vortex Center

圖1是本發明的一實施例的磁場感測裝置的剖面示意圖。 圖2是圖1中的漩渦型磁電阻與磁化設定元件的上視示意圖。 圖3為圖1中的漩渦型磁電阻的立體示意圖。 圖4A至圖4D分別繪示圖3中的圓形自由層受到四個不同方向的外在磁場所產生的四種磁化方向分佈的變化。 圖5繪示圖3中的漩渦型磁電阻於不同方向的外來磁場的作用下及沒有外來磁場的情況下電阻值的變化。 圖6A至圖6D繪示圖1與圖2之漩渦型磁電阻在受到磁化設定元件所施加的磁場後所產生的飽和磁化量的方向。 圖7繪示圖1之漩渦型磁電阻的轉換曲線。 圖8為本發明的一實施例的磁場感測裝置的上視示意圖。 圖9為圖8之惠斯登電橋的輸出訊號的示意波形圖。 圖10為本發明之另一實施例的磁場感測裝置的剖面示意圖。 圖11為本發明之又一實施例的磁場感測裝置的剖面示意圖。FIG. 1 is a schematic cross-sectional view of a magnetic field sensing device according to an embodiment of the invention. Fig. 2 is a schematic top view of the spiral magnetoresistance and magnetization setting element in Fig. 1. FIG. 3 is a three-dimensional schematic diagram of the vortex magnetoresistance in FIG. 1. 4A to 4D respectively illustrate the changes in the distribution of the four magnetization directions of the circular free layer in FIG. 3 caused by external magnetic fields in four different directions. FIG. 5 shows the change of the resistance value of the vortex magnetoresistance in FIG. 3 under the action of external magnetic fields in different directions and without external magnetic fields. 6A to 6D show the directions of the saturation magnetization generated by the vortex magnetoresistance of FIGS. 1 and 2 after receiving the magnetic field applied by the magnetization setting element. FIG. 7 shows the conversion curve of the vortex magnetoresistance of FIG. 1. FIG. 8 is a schematic top view of a magnetic field sensing device according to an embodiment of the invention. FIG. 9 is a schematic waveform diagram of the output signal of the Wheatstone bridge of FIG. 8. 10 is a schematic cross-sectional view of a magnetic field sensing device according to another embodiment of the invention. 11 is a schematic cross-sectional view of a magnetic field sensing device according to another embodiment of the invention.

100‧‧‧磁場感測裝置 100‧‧‧Magnetic field sensing device

110‧‧‧磁化設定元件 110‧‧‧Magnetization setting element

120‧‧‧基板 120‧‧‧Substrate

130‧‧‧第一絕緣層 130‧‧‧First insulation layer

140‧‧‧第二絕緣層 140‧‧‧Second insulating layer

200‧‧‧漩渦型磁電阻 200‧‧‧Vortex type magnetoresistance

240‧‧‧圓形自由層 240‧‧‧Circular free layer

D1‧‧‧第一方向 D1‧‧‧First direction

D2‧‧‧第二方向 D2‧‧‧Second direction

D3‧‧‧第三方向 D3‧‧‧ Third party

I‧‧‧電流 I‧‧‧Current

Claims (11)

一種磁場感測裝置,包括: 至少一漩渦型磁電阻,包括: 一釘扎層; 一受釘扎層,配置於該釘扎層上; 一間隔層,配置於該受釘扎層上;以及 一圓形自由層,配置於該間隔層上,且具有漩渦形磁化方向分佈;以及 至少一磁化設定元件,配置於該至少一漩渦型磁電阻的一側,其中該至少一磁化設定元件交替地通電與不通電,當該至少一磁化設定元件不通電時,該圓形自由層的漩渦形磁化方向分佈隨著外在磁場而變化,以達到對該外在磁場的感測;當該至少一磁化設定元件通電時,該至少一磁化設定元件所產生的磁場破壞了該圓形自由層的漩渦形磁化方向分佈,並使該圓形自由層達到磁飽和。A magnetic field sensing device, including: At least one spiral magnetoresistance, including: A pinned layer A pinned layer, disposed on the pinned layer; A spacer layer disposed on the pinned layer; and A circular free layer disposed on the spacer layer and having a spiral magnetization direction distribution; and At least one magnetization setting element is arranged on one side of the at least one spiral magnetoresistance, wherein the at least one magnetization setting element is alternately energized and not energized. When the at least one magnetization setting element is not energized, the circular free layer The distribution of the spiral magnetization direction changes with the external magnetic field to achieve the sensing of the external magnetic field; when the at least one magnetization setting element is energized, the magnetic field generated by the at least one magnetization setting element destroys the free circle The spiral magnetization direction of the layer is distributed and the circular free layer reaches magnetic saturation. 如申請專利範圍第1項所述的磁場感測裝置,更包括: 一基板,其中該磁化設定元件配置於該基板上; 一第一絕緣層,覆蓋在該磁化設定元件上,其中該漩渦型磁電阻配置於該第一絕緣層上;以及 一第二絕緣層,覆蓋在該漩渦型磁電阻上。The magnetic field sensing device described in item 1 of the scope of patent application further includes: A substrate, wherein the magnetization setting element is disposed on the substrate; A first insulating layer covering the magnetization setting element, wherein the vortex magnetoresistance is disposed on the first insulating layer; and A second insulating layer covers the spiral magnetic resistance. 如申請專利範圍第1項所述的磁場感測裝置,更包括: 一基板,其中該漩渦型磁電阻配置於該基板上; 一第一絕緣層,覆蓋在該漩渦型磁電阻上,其中該磁化設定元件配置於該第一絕緣層上;以及 一第二絕緣層,覆蓋在該磁化設定元件上。The magnetic field sensing device described in item 1 of the scope of patent application further includes: A substrate, wherein the vortex magnetoresistance is disposed on the substrate; A first insulating layer covering the spiral magnetoresistance, wherein the magnetization setting element is disposed on the first insulating layer; and A second insulating layer covers the magnetization setting element. 如申請專利範圍第1項所述的磁場感測裝置,其中該至少一磁化設定元件包括一第一磁化設定元件與一第二磁化設定元件,該磁場感測裝置更包括: 一基板,其中該第一磁化設定元件配置於該基板上; 一第一絕緣層,覆蓋在該第一磁化設定元件上,其中該漩渦型磁電阻配置於該第一絕緣層上; 一第二絕緣層,覆蓋在該漩渦型磁電阻上,其中該第二磁化設定元件配置於該第二絕緣層上;以及 一第三絕緣層,覆蓋在該第二磁化設定元件上。The magnetic field sensing device according to claim 1, wherein the at least one magnetization setting element includes a first magnetization setting element and a second magnetization setting element, and the magnetic field sensing device further includes: A substrate, wherein the first magnetization setting element is disposed on the substrate; A first insulating layer covering the first magnetization setting element, wherein the spiral magnetoresistance is disposed on the first insulating layer; A second insulating layer covering the spiral magnetoresistance, wherein the second magnetization setting element is disposed on the second insulating layer; and A third insulating layer covers the second magnetization setting element. 如申請專利範圍第1項所述的磁場感測裝置,其中該至少一漩渦型磁電阻為電性連接成一惠斯登電橋的多個漩渦型磁電阻,當該些漩渦型磁電阻處於感測該外在磁場的狀態時,該惠斯登電橋輸出對應於該外在磁場的一差分訊號。The magnetic field sensing device according to the first item of the scope of patent application, wherein the at least one vortex type magnetoresistor is a plurality of vortex type magnetoresistors electrically connected to form a Wheatstone bridge, and when the vortex type magnetoresistor When measuring the state of the external magnetic field, the Wheatstone bridge outputs a differential signal corresponding to the external magnetic field. 如申請專利範圍第5項所述的磁場感測裝置,其中該惠斯登電橋電性連接至一運算器,當該些漩渦型磁電阻處於其圓形自由層處於磁飽和的狀態時,該惠斯登電橋輸出一空訊號,該運算器用以將對應於該外在磁場的該差分訊號減去該空訊號,以得到一淨輸出訊號。The magnetic field sensing device according to item 5 of the scope of patent application, wherein the Wheatstone bridge is electrically connected to an arithmetic unit, and when the vortex magnetoresistance is in a state of magnetic saturation of its circular free layer, The Wheatstone bridge outputs a null signal, and the arithmetic unit is used for subtracting the null signal from the differential signal corresponding to the external magnetic field to obtain a net output signal. 如申請專利範圍第5項所述的磁場感測裝置,其中該些漩渦型磁電阻包括一第一漩渦型磁電阻、一第二漩渦型磁電阻、一第三漩渦型磁電阻及一第四漩渦型磁電阻,該第一漩渦型磁電阻電性連接至該第三漩渦型磁電阻及該第四漩渦型磁電阻,該第二漩渦型磁電阻電性連接至該第三漩渦型磁電阻及該第四漩渦型磁電阻,該第一漩渦型磁電阻的釘扎方向相同於該第二漩渦型磁電阻的釘扎方向,該第三漩渦型磁電阻的釘扎方向相同於該第四漩渦型磁電阻的釘扎方向,且該第一漩渦型磁電阻的釘扎方向相反於該第三漩渦型磁電阻的釘扎方向。The magnetic field sensing device according to item 5 of the scope of patent application, wherein the vortex magnetoresistor includes a first vortex magnetoresistance, a second vortex magnetoresistance, a third vortex magnetoresistance, and a fourth A vortex magnetoresistance, the first vortex magnetoresistance is electrically connected to the third vortex magnetoresistance and the fourth vortex magnetoresistance, and the second vortex magnetoresistance is electrically connected to the third vortex magnetoresistance And the fourth spiral magnetoresistor, the pinning direction of the first spiral magnetoresistor is the same as the pinning direction of the second spiral magnetoresistor, and the pinning direction of the third spiral magnetoresistor is the same as the fourth spiral magnetoresistor. The pinning direction of the spiral magnetoresistor, and the pinning direction of the first spiral magnetoresistor is opposite to the pinning direction of the third spiral magnetoresistor. 如申請專利範圍第7項所述的磁場感測裝置,其中該至少一磁化設定元件通電時在該第一至第四漩渦型磁電阻處所產生的磁場的方向垂直於該第一至第四漩渦型磁電阻的釘扎方向。The magnetic field sensing device according to item 7 of the scope of patent application, wherein the direction of the magnetic field generated at the first to fourth vortex magnetoresistor when the at least one magnetization setting element is energized is perpendicular to the first to fourth vortex Pinning direction of type magnetoresistance. 如申請專利範圍第1項所述的磁場感測裝置,其中該間隔層為一非磁性金屬層,而該漩渦型磁電阻為一巨磁電阻。According to the magnetic field sensing device described in claim 1, wherein the spacer layer is a non-magnetic metal layer, and the spiral magnetoresistance is a giant magnetoresistance. 如申請專利範圍第1項所述的磁場感測裝置,其中該間隔層為一絕緣層,而該漩渦型磁電阻為一穿隧磁電阻。According to the magnetic field sensing device described in claim 1, wherein the spacer layer is an insulating layer, and the spiral magnetoresistance is a tunneling magnetoresistance. 如申請專利範圍第1項所述的磁場感測裝置,其中該至少一磁化設定元件為導電片、導電線圈、導線或導體。The magnetic field sensing device according to the first item of the scope of patent application, wherein the at least one magnetization setting element is a conductive sheet, a conductive coil, a wire or a conductor.
TW108118911A 2018-08-17 2019-05-31 Magnetic field sensing device TWI711833B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910670429.4A CN110837066B (en) 2018-08-17 2019-07-24 Magnetic field sensing device
US16/522,691 US11009569B2 (en) 2018-08-17 2019-07-26 Magnetic field sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862719147P 2018-08-17 2018-08-17
US62/719,147 2018-08-17

Publications (2)

Publication Number Publication Date
TW202009512A TW202009512A (en) 2020-03-01
TWI711833B true TWI711833B (en) 2020-12-01

Family

ID=70766706

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108118911A TWI711833B (en) 2018-08-17 2019-05-31 Magnetic field sensing device

Country Status (1)

Country Link
TW (1) TWI711833B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103109322A (en) * 2010-07-16 2013-05-15 格兰迪斯股份有限公司 Method and system for providing magnetic tunneling junction elements having laminated free layers and memories using such magnetic elements
TW201329478A (en) * 2011-11-04 2013-07-16 Honeywell Int Inc Apparatus and method for determining in-plane magnetic field components of a magnetic field using a single magnetoresistive sensor
TW201424069A (en) * 2012-12-03 2014-06-16 Taiwan Semiconductor Mfg Magnetic tunnel junction device and method of writing to the same
WO2017048493A1 (en) * 2015-09-16 2017-03-23 Qualcomm Incorporated Magnetic tunnel junction (mtj) devices particularly suited for efficient spin-torque-transfer (stt) magnetic random access memory (mram) (stt mram)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103109322A (en) * 2010-07-16 2013-05-15 格兰迪斯股份有限公司 Method and system for providing magnetic tunneling junction elements having laminated free layers and memories using such magnetic elements
TW201329478A (en) * 2011-11-04 2013-07-16 Honeywell Int Inc Apparatus and method for determining in-plane magnetic field components of a magnetic field using a single magnetoresistive sensor
TW201424069A (en) * 2012-12-03 2014-06-16 Taiwan Semiconductor Mfg Magnetic tunnel junction device and method of writing to the same
US20160099036A1 (en) * 2012-12-03 2016-04-07 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic Tunnel Junction Memory Device
WO2017048493A1 (en) * 2015-09-16 2017-03-23 Qualcomm Incorporated Magnetic tunnel junction (mtj) devices particularly suited for efficient spin-torque-transfer (stt) magnetic random access memory (mram) (stt mram)

Also Published As

Publication number Publication date
TW202009512A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
US10989769B2 (en) Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern
JP6403326B2 (en) Current sensor
US7795862B2 (en) Matching of GMR sensors in a bridge
JP5639212B2 (en) Resistor having a predetermined temperature coefficient
JP6474822B2 (en) High sensitivity push-pull bridge magnetic sensor
JP6461946B2 (en) Push-pull bridge type magnetic sensor for high intensity magnetic field
JP6202282B2 (en) Magnetic sensor
US11037715B2 (en) Magnetic sensor including a plurality of magnetic detection elements and a plurality of magnetic field generators
US10036785B2 (en) Temperature-compensated magneto-resistive sensor
JP2017502298A5 (en)
JP2017502298A (en) Single-chip reference bridge magnetic sensor for strong magnetic fields
JP2016176911A (en) Magnetic sensor
WO2017173992A1 (en) Anisotropic magnetoresistance (amr) sensor not requiring set/reset device
CN110837067B (en) Magnetic field sensing device
CN110837066B (en) Magnetic field sensing device
TWI711833B (en) Magnetic field sensing device
CN212008887U (en) Single-chip full-bridge TMR magnetic field sensor
CN114839418A (en) Sensor, electronic device, and detection device
TWI703336B (en) Magnetic field sensing device
TWI714107B (en) Electric current sensor
TWI703338B (en) Electric current sensor
JP5432082B2 (en) Semiconductor device with current detector
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus
JP6350841B2 (en) Magnetic field generator and magnetic sensor