TWI595249B - Magnetic field sensing apparatus - Google Patents

Magnetic field sensing apparatus Download PDF

Info

Publication number
TWI595249B
TWI595249B TW105119513A TW105119513A TWI595249B TW I595249 B TWI595249 B TW I595249B TW 105119513 A TW105119513 A TW 105119513A TW 105119513 A TW105119513 A TW 105119513A TW I595249 B TWI595249 B TW I595249B
Authority
TW
Taiwan
Prior art keywords
magnetic field
magnetoresistive
sensing device
units
directions
Prior art date
Application number
TW105119513A
Other languages
Chinese (zh)
Other versions
TW201715251A (en
Inventor
袁輔德
鄭振宗
賴孟煌
Original Assignee
愛盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛盛科技股份有限公司 filed Critical 愛盛科技股份有限公司
Priority to CN201610711916.7A priority Critical patent/CN106597326B/en
Priority to US15/287,740 priority patent/US10168398B2/en
Publication of TW201715251A publication Critical patent/TW201715251A/en
Application granted granted Critical
Publication of TWI595249B publication Critical patent/TWI595249B/en
Priority to US16/191,447 priority patent/US10551447B2/en

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

磁場感測裝置Magnetic field sensing device

本發明是有關於一種磁場感測裝置。 The invention relates to a magnetic field sensing device.

隨著可攜式電子裝置的普及,能夠感應地磁方向的電子羅盤之技術便受到重視。當電子羅盤應用於體積小的可攜式電子裝置(如智慧型手機)時,電子羅盤除了需符合體積小的需求之外,最好還能夠達到三軸的感測,這是因為使用者以手握持手機時,有可能是傾斜地握持,且各種不同的握持角度也都可能產生。此外,電子羅盤亦可應用於無人機(drone)(例如遙控飛機、遙控直升機等)上,而此時電子羅盤亦最好能夠達到三軸的感測。 With the popularity of portable electronic devices, the technology of an electronic compass capable of sensing the geomagnetic direction has received attention. When an electronic compass is applied to a small portable electronic device (such as a smart phone), in addition to the small volume requirement, the electronic compass is preferably capable of achieving three-axis sensing because the user When holding the phone in your hand, it may be held obliquely, and various holding angles may also occur. In addition, the electronic compass can also be applied to drones (such as remote control aircraft, remote control helicopters, etc.), and the electronic compass is also preferably capable of achieving three-axis sensing.

一種習知技術是採用複合式感測元件的方法來達到三軸的感測,具體而言,其利用兩個彼此垂直配置的巨磁阻(giant magnetoresistance,GMR)多層膜結構(或穿隧磁阻(tunneling magnetoresistance,TMR)多層膜結構)與一個霍爾元件(Hall element)來達到三軸的感測。然而,由於霍爾元件的感測靈敏度不同於巨磁阻多層膜結構(或穿隧磁阻多層膜結構)的感測靈敏度,這會造成其中一軸上的精確度與其他兩軸上的精確度不同。 如此一來,當使用者將可攜式電子裝置旋轉至不同的角度時,將導致對同一磁場的感測靈敏度不同,進而造成使用上的困擾。 One conventional technique is to use a composite sensing element method to achieve three-axis sensing. Specifically, it utilizes two giant magnetoresistance (GMR) multilayer film structures (or tunneling magnetic structures) that are vertically arranged perpendicular to each other. A tunneling magnetoresistance (TMR) multilayer film structure is used with a Hall element to achieve three-axis sensing. However, since the sensing sensitivity of the Hall element is different from the sensing sensitivity of the giant magnetoresistive multilayer film structure (or the tunneling magnetoresistive multilayer film structure), this causes the accuracy on one axis to be different from the accuracy on the other two axes. . As a result, when the user rotates the portable electronic device to different angles, the sensing sensitivity to the same magnetic field is different, which causes troubles in use.

在習知技術中,為了達到磁場的多軸感測,通常採用了二次以上的製程,也就是採用了兩塊以上的晶圓的製程來製作出多軸向磁場感測模組,如此將使製程複雜化,且難以降低製作成本。此外,如此亦使得磁場感測裝置難以進一步縮小。 In the prior art, in order to achieve multi-axis sensing of a magnetic field, a process of two or more processes is generally used, that is, a process using two or more wafers to fabricate a multi-axial magnetic field sensing module, thus The process is complicated and it is difficult to reduce the manufacturing cost. In addition, this also makes it difficult to further reduce the magnetic field sensing device.

本發明提供一種磁場感測裝置,其具有簡化的結構,且可具有較小的體積。 The present invention provides a magnetic field sensing device having a simplified structure and having a small volume.

本發明的一實施例提出一種磁場感測裝置,包括一磁通集中器及多個磁電阻單元。磁通集中器具有一頂面、一相對於頂面的底面及多個連接頂面與底面的側面,而這些磁電阻單元分別配置於這些側面旁。這些磁電阻單元在三個不同時間電性連接成至少一種惠斯登全橋(Wheatstone full bridge),以分別量測三個不同方向的磁場分量,並使此至少一種惠斯登全橋輸出分別對應於三個不同方向的磁場分量的三個訊號。 An embodiment of the invention provides a magnetic field sensing device comprising a magnetic flux concentrator and a plurality of magnetic resistance units. The flux concentrator has a top surface, a bottom surface opposite to the top surface, and a plurality of side surfaces connecting the top surface and the bottom surface, and the magnetoresistive units are respectively disposed beside the side surfaces. The magnetoresistive units are electrically connected to at least one Wheatstone full bridge at three different times to separately measure magnetic field components in three different directions, and to output the at least one Wheatstone full bridge output respectively. Three signals corresponding to the magnetic field components in three different directions.

在本發明的一實施例中,在三個不同時間的任一個時,此至少一種惠斯登全橋所輸出的訊號為對應於三個不同方向中的一個方向的磁場分量的差分訊號,此時此至少一種惠斯登全橋所產生的對應於三個不同方向中的其餘兩個方向的磁場分量的差分訊號皆為零。 In an embodiment of the invention, at any one of three different times, the signal output by the at least one Wheatstone bridge is a differential signal corresponding to a magnetic field component of one of three different directions. The differential signals generated by the at least one Wheatstone full bridge corresponding to the magnetic field components of the remaining two of the three different directions are all zero.

在本發明的一實施例中,磁場感測裝置更包括一切換電路,電性連接這些磁電阻單元,其中此至少一種惠斯登全橋為三種惠斯登全橋,切換電路在三個不同時間分別將這些磁電阻單元電性連接成此三種惠斯登全橋,此三種惠斯登全橋分別量測三個不同方向的磁場分量,並分別輸出對應於三個不同方向的磁場分量的三個訊號。 In an embodiment of the invention, the magnetic field sensing device further includes a switching circuit electrically connected to the magnetoresistance units, wherein the at least one Wheatstone full bridge is three types of Wheatstone full bridges, and the switching circuit is different in three The magnetoresistance units are electrically connected to the three Wheatstone full bridges respectively. The three Wheatstone bridges respectively measure the magnetic field components in three different directions and respectively output the magnetic field components corresponding to the three different directions. Three signals.

在本發明的一實施例中,磁場感測裝置更包括一基板,其中磁通集中器與這些磁電阻單元配置於基板上,且切換電路設於基板中。 In an embodiment of the invention, the magnetic field sensing device further includes a substrate, wherein the magnetic flux concentrator and the magnetoresistance units are disposed on the substrate, and the switching circuit is disposed in the substrate.

在本發明的一實施例中,磁場感測裝置更包括多個磁化方向設定元件,分別配置於這些磁電阻單元旁,以分別設定這些磁電阻單元的磁化方向,其中此至少一種惠斯登全橋為一個固定不變的惠斯登全橋的連接方式,這些磁化方向設定元件在三個不同時間分別將這些磁電阻單元的磁化方向設定成三種不同的組合,以使此種惠斯登全橋在三個不同時間分別量測三個不同方向的磁場分量,並分別輸出對應於三個不同方向的磁場分量的三個訊號。 In an embodiment of the invention, the magnetic field sensing device further includes a plurality of magnetization direction setting elements respectively disposed adjacent to the magnetoresistance units to respectively set the magnetization directions of the magnetoresistance units, wherein the at least one Wheatstone The bridge is a fixed connection of the Wheatstone full bridge, and the magnetization direction setting components respectively set the magnetization directions of the magnetoresistance units into three different combinations at three different times, so that the Wheatstone is fully The bridge measures the magnetic field components of three different directions at three different times, and outputs three signals corresponding to the magnetic field components of three different directions.

在本發明的一實施例中,每一磁電阻單元包括至少一異向性磁電阻。 In an embodiment of the invention, each of the magnetoresistive units includes at least one anisotropic magnetoresistance.

在本發明的一實施例中,每一磁電阻單元中的異向性磁電阻的延伸方向平行於對應的側面,且平行於頂面與底面。 In an embodiment of the invention, the anisotropic magnetoresistance in each of the magnetoresistive elements extends in a direction parallel to the corresponding side surface and parallel to the top surface and the bottom surface.

在本發明的一實施例中,這些側面為四個側面,相鄰的二個側面的法線彼此垂直,此三個不同方向為一第一方向、一第 二方向及一第三方向,第一方向與第二方向落在與四個側面的多個法線平行的平面上,且與這些法線夾45度角,第一方向與第二方向彼此垂直,且第三方向垂直於第一方向與第二方向。 In an embodiment of the invention, the sides are four sides, and the normal lines of the two adjacent sides are perpendicular to each other, and the three different directions are a first direction, a first a second direction and a third direction, the first direction and the second direction are on a plane parallel to the plurality of normals of the four sides, and are at an angle of 45 degrees with the normal lines, and the first direction and the second direction are perpendicular to each other And the third direction is perpendicular to the first direction and the second direction.

在本發明的一實施例中,磁通集中器的材料包括導磁率大於10的鐵磁材料。 In an embodiment of the invention, the material of the flux concentrator comprises a ferromagnetic material having a magnetic permeability greater than 10.

在本發明的一實施例中,磁通集中器的殘磁小於其飽和磁化量的10%。 In an embodiment of the invention, the residual flux of the flux concentrator is less than 10% of its saturation magnetization.

在本發明的一實施例中,底面的二個對角線分別平行於三個不同方向的其中二個,且三個不同方向的剩餘一個垂直於底面。 In an embodiment of the invention, the two diagonal lines of the bottom surface are respectively parallel to two of the three different directions, and the remaining one of the three different directions is perpendicular to the bottom surface.

在本發明的一實施例中,磁場感測裝置更包括一基板,其中磁通集中器與這些磁電阻單元配置於基板上,且基板為半導體基板、玻璃基板或電路基板。 In an embodiment of the invention, the magnetic field sensing device further includes a substrate, wherein the magnetic flux concentrator and the magnetoresistive units are disposed on the substrate, and the substrate is a semiconductor substrate, a glass substrate or a circuit substrate.

在本發明的一實施例中,在三個不同時間的任一個中,這些磁電阻單元電性連接成的惠斯登全橋的數量為一個。 In an embodiment of the invention, the number of Wheatstone full bridges electrically connected to each of the three magnetoresistance units is one at three different times.

在本發明的實施例的磁場感測裝置中,採用了磁通集中器來使三個不同方向的磁場分量彎曲至這些磁電阻單元可感測的方向,且這三個不同方向的磁場分量在彎曲後通過這些磁電阻單元的方向有三種不同的組合。如此一來,透過這些磁電阻單元在三個不同時間電性連接成至少一種惠斯登全橋,便能夠分別量測三個不同方向的磁場分量,並使此至少一種惠斯登全橋輸出分別對應於三個不同方向的磁場分量的三個訊號。因此,本發明的實 施例的磁場感測裝置便能夠具有簡化的結構且同時能實現三軸的磁場量測,進而可以具有較小的體積。 In the magnetic field sensing device of the embodiment of the present invention, a magnetic flux concentrator is employed to bend magnetic field components of three different directions to a direction senseable by the magnetoresistance units, and the magnetic field components of the three different directions are There are three different combinations of directions through these magnetoresistive units after bending. In this way, by electrically connecting the magnetoresistance units to at least one Wheatstone bridge at three different times, the magnetic field components in three different directions can be separately measured, and the at least one Wheatstone full bridge output can be measured. Three signals corresponding to the magnetic field components of three different directions, respectively. Therefore, the present invention The magnetic field sensing device of the embodiment can have a simplified structure and at the same time can realize three-axis magnetic field measurement, and thus can have a small volume.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧磁場感測裝置 100‧‧‧ Magnetic field sensing device

110‧‧‧磁通集中器 110‧‧‧Magnetic concentrator

120‧‧‧切換電路 120‧‧‧Switching circuit

130‧‧‧基板 130‧‧‧Substrate

112‧‧‧頂面 112‧‧‧ top surface

114‧‧‧底面 114‧‧‧ bottom

116、116a、116b、116c、116d‧‧‧側面 116, 116a, 116b, 116c, 116d‧‧‧ side

200、200a、200a’、200b、200c、200d‧‧‧磁電阻單元 200, 200a, 200a', 200b, 200c, 200d‧‧‧ magnetic resistance unit

300、301、302‧‧‧異向性磁電阻 300, 301, 302‧‧‧ anisotropic magnetoresistance

310‧‧‧短路棒 310‧‧‧ Shorting bar

320‧‧‧鐵磁膜 320‧‧‧ Ferromagnetic film

400、400a、400a’、400b、400c、400d‧‧‧磁化方向設定元件 400, 400a, 400a', 400b, 400c, 400d‧‧‧ magnetization direction setting components

401、402‧‧‧子磁化方向設定元件 401, 402‧‧‧Sub magnetization direction setting component

D‧‧‧延伸方向 D‧‧‧ Extension direction

H‧‧‧外在磁場 H‧‧‧External magnetic field

Hx、Hy、Hz、f1x、f2x、f3x、f4x、f1y、f2y、f3y、f4y、f1z、f2z、f3z、f4z‧‧‧磁場分量 Hx, Hy, Hz, f1x, f2x, f3x, f4x, f1y, f2y, f3y, f4y, f1z, f2z, f3z, f4z‧‧‧ magnetic field components

I‧‧‧電流 I‧‧‧current

I1、I1’、I2、I3、I4‧‧‧電流方向 I1, I1', I2, I3, I4‧‧‧ current direction

M、M1、M1’、M1x、M2、M2x、M3、M3y、M4‧‧‧磁化方向 M, M1, M1', M1x, M2, M2x, M3, M3y, M4‧‧‧ magnetization direction

V1、V2、V3、V4‧‧‧接點 V1, V2, V3, V4‧‧‧ contacts

Vx、Vy、Vz‧‧‧輸出電壓 Vx, Vy, Vz‧‧‧ output voltage

x、y、z‧‧‧方向 x, y, z‧‧ direction

+△R、-△R‧‧‧電阻值變化 +△R, -△R‧‧‧Change in resistance value

圖1A為本發明的一實施例的磁場感測裝置的上視示意圖。 1A is a top plan view of a magnetic field sensing device according to an embodiment of the present invention.

圖1B為圖1A之磁場感測裝置沿著A-A線的剖面示意圖。 1B is a schematic cross-sectional view of the magnetic field sensing device of FIG. 1A taken along line A-A.

圖2A與圖2B是用以說明圖1A中的異向性磁電阻的運作原理。 2A and 2B are diagrams for explaining the operation of the anisotropic magnetoresistance of Fig. 1A.

圖3A至圖3C分別繪示當x、y及z方向磁場分量通過圖1A之磁通集中器時的磁力線(magnetic flux line)的偏轉狀況。 3A to 3C respectively show deflection states of magnetic flux lines when the magnetic field components in the x, y, and z directions pass through the magnetic flux concentrator of FIG. 1A.

圖4A至圖4C分別繪示當x、y及z方向磁場分量通過圖1A之磁通集中器時,在磁通集中器的側面附近的磁場分量。 4A to 4C respectively illustrate magnetic field components near the side of the magnetic flux concentrator when the magnetic field components in the x, y, and z directions pass through the magnetic flux concentrator of FIG. 1A.

圖5A、圖5B與圖5C為本發明的第一實施例的磁場感測裝置在量測x方向的磁場分量時的等效電路圖。 5A, 5B, and 5C are equivalent circuit diagrams of the magnetic field sensing device according to the first embodiment of the present invention when measuring a magnetic field component in the x direction.

圖6A、圖6B與圖6C為本發明的第一實施例的磁場感測裝置在量測y方向的磁場分量時的等效電路圖。 6A, 6B, and 6C are equivalent circuit diagrams of the magnetic field sensing device according to the first embodiment of the present invention when measuring a magnetic field component in the y direction.

圖7A、圖7B與圖7C為本發明的第一實施例的磁場感測裝置在量測z方向的磁場分量時的等效電路圖。 7A, 7B and 7C are equivalent circuit diagrams of the magnetic field sensing device according to the first embodiment of the present invention when measuring a magnetic field component in the z direction.

圖8繪示圖5A至圖7C的三種惠斯登全橋所適用的磁電阻單 元的短路棒設置方向與磁化方向的設置方向的一實例。 8 is a diagram showing the magnetoresistance of the three types of Wheatstone bridges of FIGS. 5A to 7C. An example of the direction in which the shorting bar of the element is set and the direction in which the magnetization direction is set.

圖9為本發明的另一實施例的磁電阻單元與磁化方向設定元件的上視示意圖。 Fig. 9 is a top plan view showing a magnetoresistive unit and a magnetization direction setting member according to another embodiment of the present invention.

圖10繪示圖1A的磁化方向設定元件的另一實施例。 FIG. 10 illustrates another embodiment of the magnetization direction setting member of FIG. 1A.

圖11繪示圖1A的磁化方向設定元件的又一實施例。 FIG. 11 illustrates still another embodiment of the magnetization direction setting member of FIG. 1A.

圖12A、圖12B與圖12C為本發明的第二實施例的磁場感測裝置在量測x方向的磁場分量時的等效電路圖。 12A, 12B and 12C are equivalent circuit diagrams of the magnetic field sensing device according to the second embodiment of the present invention when measuring a magnetic field component in the x direction.

圖13A、圖13B與圖13C為本發明的第二實施例的磁場感測裝置在量測y方向的磁場分量時的等效電路圖。 13A, 13B and 13C are equivalent circuit diagrams of the magnetic field sensing device according to the second embodiment of the present invention when measuring a magnetic field component in the y direction.

圖14A、圖14B與圖14C為本發明的第二實施例的磁場感測裝置在量測z方向的磁場分量時的等效電路圖。 14A, 14B and 14C are equivalent circuit diagrams of the magnetic field sensing device according to the second embodiment of the present invention when measuring a magnetic field component in the z direction.

圖1A為本發明的一實施例的磁場感測裝置的上視示意圖,而圖1B為圖1A之磁場感測裝置沿著A-A線的剖面示意圖。請參照圖1A與圖1B,本實施例的磁場感測裝置100包括一磁通集中器110及多個磁電阻單元200。磁通集中器110具有一頂面112、一相對於頂面112的底面114(如圖1B所繪示)及多個連接頂面112與底面114的側面116,而這些磁電阻單元200分別配置於這些側面116旁。 1A is a top view of a magnetic field sensing device according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view of the magnetic field sensing device of FIG. 1A taken along line A-A. Referring to FIG. 1A and FIG. 1B , the magnetic field sensing device 100 of the present embodiment includes a magnetic flux concentrator 110 and a plurality of magnetic resistance units 200 . The magnetic flux concentrator 110 has a top surface 112, a bottom surface 114 opposite to the top surface 112 (as shown in FIG. 1B), and a plurality of side surfaces 116 connecting the top surface 112 and the bottom surface 114. Beside these sides 116.

在本實施例中,磁通集中器110的材料包括導磁率大於10的鐵磁材料。此外,磁通集中器110的殘磁例如小於其飽和磁 化量的10%。舉例而言,磁通集中器110為軟磁材料,例如為鎳鐵合金、鈷鐵或鈷鐵硼合金、鐵氧磁體或其他高導磁率材料。 In the present embodiment, the material of the flux concentrator 110 includes a ferromagnetic material having a magnetic permeability greater than 10. In addition, the residual magnetism of the magnetic flux concentrator 110 is, for example, smaller than its saturation magnetic 10% of the amount. For example, magnetic flux concentrator 110 is a soft magnetic material such as a nickel-iron alloy, a cobalt iron or cobalt iron boron alloy, a ferrite magnet, or other high permeability material.

此外,在本實施例中,每一磁電阻單元200包括至少一異向性磁電阻(anisotropic magnetoresistance)。圖2A與圖2B是用以說明圖1A中的異向性磁電阻的運作原理。請先參照圖2A,異向性磁電阻300具有理髮店招牌(barber pole)狀結構,亦即其表面設有相對於異向性磁電阻300的延伸方向D傾斜45度延伸的多個短路棒(electrical shorting bar)310,這些短路棒310彼此相間隔且平行地設置於鐵磁膜(ferromagnetic film)320上,而鐵磁膜320為異向性磁電阻300的主體,其延伸方向即為異向性磁電阻300的延伸方向。此外,鐵磁膜320的相對兩端可製作成尖端狀。 Further, in the present embodiment, each of the magnetoresistive units 200 includes at least one anisotropic magnetoresistance. 2A and 2B are diagrams for explaining the operation of the anisotropic magnetoresistance of Fig. 1A. Referring first to FIG. 2A, the anisotropic magnetoresistor 300 has a barber pole-like structure, that is, a plurality of shorting bars extending on the surface thereof with an inclination of 45 degrees with respect to the extending direction D of the anisotropic magnetoresistive resistor 300. (electrical shorting bar) 310, these shorting bars 310 are disposed on the ferromagnetic film 320 spaced apart from each other and in parallel, and the ferromagnetic film 320 is the main body of the anisotropic magnetoresistance 300, and the extending direction thereof is different. The direction in which the directional magnetoresistor 300 extends. Further, the opposite ends of the ferromagnetic film 320 may be formed in a tip shape.

異向性磁電阻300在開始量測外在磁場之前,可先藉由磁化方向設定元件來設定其磁化方向,其中磁化方向設定元件例如是可以藉由通電產生磁場的線圈、導線、金屬片或導體。在圖2A中,磁化方向設定元件可藉由通電產生沿著延伸方向D的磁場,以使異向性磁電阻300具有磁化方向M。 The anisotropic magnetoresistor 300 can first set its magnetization direction by the magnetization direction setting component before starting to measure the external magnetic field, wherein the magnetization direction setting component is, for example, a coil, a wire, a metal piece or a metal piece that can generate a magnetic field by energization. conductor. In FIG. 2A, the magnetization direction setting element can generate a magnetic field along the extending direction D by energization so that the anisotropic magnetoresistor 300 has the magnetization direction M.

接著,磁化方向設定元件不通電,以使異向性磁電阻300開始量測外在磁場。當沒有外在磁場時,異向性磁電阻300的磁化方向M維持在延伸方向D上,此時施加一電流I,使電流I從異向性磁電阻300的左端流往右端,則短路棒310附近的電流I的流向會與短路棒310的延伸方向垂直,而使得短路棒310附近 的電流I流向與磁化方向M夾45度,此時異向性磁電阻300的電阻值為R Next, the magnetization direction setting element is not energized, so that the anisotropic magnetoresistor 300 begins to measure the external magnetic field. When there is no external magnetic field, the magnetization direction M of the anisotropic magnetoresistor 300 is maintained in the extending direction D. At this time, a current I is applied to cause the current I to flow from the left end of the anisotropic magnetoresistor 300 to the right end, and the shorting bar The flow direction of the current I near 310 is perpendicular to the extending direction of the shorting bar 310, so that the shorting bar 310 is nearby. The current I flows in a direction of 45 degrees with the magnetization direction M, and the resistance value of the anisotropic magnetoresistor 300 is R.

當有一外在磁場H朝向垂直於延伸方向D的方向時,異向性磁電阻300的磁化方向M會往外在磁場H的方向偏轉,而使得磁化方向與短路棒附近的電流I流向的夾角大於45度,此時異向性磁電阻300的電阻值有-△R的變化,即成為R-△R,也就是電阻值變小,其中△R大於0。 When there is an external magnetic field H directed in a direction perpendicular to the extending direction D, the magnetization direction M of the anisotropic magnetoresistance 300 is deflected outward in the direction of the magnetic field H, so that the angle between the magnetization direction and the current I flowing near the shorting bar is larger than At 45 degrees, the resistance value of the anisotropic magnetoresistor 300 has a change of -ΔR, that is, becomes R-ΔR, that is, the resistance value becomes small, wherein ΔR is greater than zero.

然而,若如圖2B所示,當圖2B的短路棒310的延伸方向設於與圖2A的短路棒310的延伸方向夾90度的方向時(此時圖2B的短路棒310的延伸方向仍與異向性磁電阻300的延伸方向D夾45度),且當有一外在磁場H時,此外在磁場H仍會使磁化方向M往外在磁場H的方向偏轉,此時磁化方向M與短路棒310附近的電流I流向的夾角會小於45度,如此異向性磁電阻300的電阻值會變成R+△R,亦即異向性磁電阻300的電阻值變大。 However, as shown in FIG. 2B, when the extending direction of the shorting bar 310 of FIG. 2B is set at a direction 90 degrees from the extending direction of the shorting bar 310 of FIG. 2A (the extending direction of the shorting bar 310 of FIG. 2B is still And the extension direction D of the anisotropic magnetoresistor 300 is 45 degrees), and when there is an external magnetic field H, in addition, the magnetic field H still deflects the magnetization direction M outward in the direction of the magnetic field H, and the magnetization direction M and the short circuit The angle of the current I flowing in the vicinity of the rod 310 is less than 45 degrees, and the resistance value of the anisotropic magnetoresistor 300 becomes R + ΔR, that is, the resistance value of the anisotropic magnetoresistor 300 becomes large.

此外,藉由磁化方向設定元件將異向性磁電阻的磁化方向M設定為圖2A所示的反向時,之後在外在磁場H下的圖2A的異向性磁電阻300的電阻值會變成R+△R。再者,藉由磁化方向設定元件將異向性磁電阻的磁化方向M設定為圖2B所示的反向時,之後在外在磁場H下的圖2B的異向性磁電阻300的電阻值會變成R-△R。 Further, when the magnetization direction M of the anisotropic magnetoresistance is set to the reverse direction shown in FIG. 2A by the magnetization direction setting element, the resistance value of the anisotropic magnetoresistor 300 of FIG. 2A after the external magnetic field H becomes R + ΔR. Further, when the magnetization direction M of the anisotropic magnetoresistance is set to the reverse direction shown in FIG. 2B by the magnetization direction setting element, the resistance value of the anisotropic magnetoresistor 300 of FIG. 2B after the external magnetic field H is It becomes R-△R.

綜合上述可知,當短路棒310的設置方向改變時,異向性磁電阻300的電阻值對應於外在磁場H的變化會從+△R變為-△R 或反之,且當磁化方向設定元件所設定的磁化方向M改變成反向時,異向性磁電阻300的電阻值對應於外在磁場H的變化會從+△R變為-△R或反之。當外在磁場H的方向變為反向時,異向性磁電阻300的電阻值對應於外在磁場H的變化會從+△R變為-△R或反之。然而,當通過異向性磁電阻300的電流變成反向時,異向性磁電阻300的電阻值對應於外在磁場H的變化則維持與原來相同正負號,即原本若為+△R,改變電流方向後仍為+△R,若原本為-△R,改變電流方向後仍為-△R。 In summary, when the direction in which the shorting bar 310 is set changes, the resistance value of the anisotropic magnetoresistor 300 changes from +ΔR to -ΔR in response to the change in the external magnetic field H. Or vice versa, and when the magnetization direction M set by the magnetization direction setting element is changed to the reverse direction, the resistance value of the anisotropic magnetoresistor 300 corresponding to the change of the external magnetic field H may change from +ΔR to -ΔR or vice versa. . When the direction of the external magnetic field H becomes reversed, the resistance value of the anisotropic magnetoresistor 300 corresponds to a change in the external magnetic field H from +ΔR to -ΔR or vice versa. However, when the current passing through the anisotropic magnetoresistor 300 becomes reversed, the resistance value of the anisotropic magnetoresistive resistor 300 maintains the same sign as the original external magnetic field H, that is, if it is originally +ΔR, After changing the current direction, it is still +ΔR. If it is originally -ΔR, it is still -ΔR after changing the current direction.

依照上述的原則,便可藉由設計短路棒310的延伸方向或磁化方向設定元件所設定的磁化方向M來決定當異向性磁電阻300受到外在磁場的某一分量時,異向性磁電阻300的電阻值的變化方向,即電阻值變大或變小,例如變化量是+△R或-△R。 According to the above principle, it is possible to determine the anisotropic magnetic when the anisotropic magnetoresistor 300 receives a certain component of the external magnetic field by designing the magnetization direction M set by the extending direction or the magnetization direction setting element of the shorting bar 310. The direction in which the resistance value of the resistor 300 changes, that is, the resistance value becomes larger or smaller, for example, the amount of change is +ΔR or -ΔR.

請再參照圖1A與圖1B,在本實施例中,每一磁電阻單元200中的異向性磁電阻的延伸方向平行於對應的側面116,且平行於頂面112與底面114。具體而言,磁電阻單元200a中的異向性磁電阻的延伸方向平行於側面116a,磁電阻單元200b中的異向性磁電阻的延伸方向平行於側面116b,磁電阻單元200c中的異向性磁電阻的延伸方向平行於側面116c,且磁電阻單元200d中的異向性磁電阻的延伸方向平行於側面116d。 Referring to FIG. 1A and FIG. 1B again, in the embodiment, the anisotropic magnetoresistance in each of the magnetoresistive units 200 extends in parallel with the corresponding side surface 116 and is parallel to the top surface 112 and the bottom surface 114. Specifically, the direction of extension of the anisotropic magnetoresistance in the magnetoresistive unit 200a is parallel to the side surface 116a, and the direction of extension of the anisotropic magnetoresistance in the magnetoresistive unit 200b is parallel to the side surface 116b, and the anisotropy in the magnetoresistive unit 200c The extending direction of the magnetic resistance is parallel to the side surface 116c, and the direction of extension of the anisotropic magnetoresistance in the magnetoresistive unit 200d is parallel to the side surface 116d.

圖3A至圖3C分別繪示當x、y及z方向磁場分量通過圖1A之磁通集中器110時的磁力線(magnetic flux line)的偏轉狀況。請先參照圖1A、圖1B與圖3A,本實施例的磁場感測裝置100 所處的空間可用一直角座標系來定義,其中x方向與y方向分別平行於頂面112的兩條對角線,而z方向垂直於頂面112。此外,x方向、y方向與z方向彼此互相垂直。在本實施例中,頂面112例如呈正方形,4個側面116均垂直於頂面112,且任兩相鄰的側面116彼此互相垂直,亦即相鄰的二個側面116的法線彼此垂直。換言之,x方向與y方向落在與四個側面116的多個法線平行的平面上,且與這些法線夾45度角。 3A to 3C respectively illustrate deflection states of magnetic flux lines when the magnetic field components in the x, y, and z directions pass through the magnetic flux concentrator 110 of FIG. 1A. Referring first to FIG. 1A, FIG. 1B and FIG. 3A, the magnetic field sensing device 100 of the present embodiment. The space in which it is located may be defined by a slanted coordinate system in which the x and y directions are respectively parallel to the two diagonals of the top surface 112 and the z direction is perpendicular to the top surface 112. Further, the x direction, the y direction, and the z direction are perpendicular to each other. In the present embodiment, the top surface 112 is, for example, square, and the four side surfaces 116 are perpendicular to the top surface 112, and any two adjacent side surfaces 116 are perpendicular to each other, that is, the normal lines of the adjacent two side surfaces 116 are perpendicular to each other. . In other words, the x and y directions fall on a plane parallel to the plurality of normals of the four sides 116 and are at an angle of 45 degrees to the normals.

如圖3A所繪示,當一沿著+x方向的磁場分量Hx經過磁通集中器110時,磁場分量Hx的磁力線在經過磁通集中器110附近時,其方向會傾向於轉變成垂直於磁通集中器110的表面(例如是側面116a、116b、116c及116d)的方向。如此一來,當沿著+x方向有一外在磁場的磁場分量Hx時,便會如圖4A那樣分別在側面116a、116b、116c及116d旁的磁電阻單元200a、200b、200c及200d產生磁場分量f1x、f2x、f3x及f4x。 As shown in FIG. 3A, when a magnetic field component Hx along the +x direction passes through the magnetic flux concentrator 110, the magnetic field lines of the magnetic field component Hx tend to be converted to be perpendicular to the magnetic flux line near the magnetic flux concentrator 110. The direction of the surface of the flux concentrator 110 (e.g., the sides 116a, 116b, 116c, and 116d). As a result, when there is an external magnetic field component Hx along the +x direction, a magnetic field is generated in the magnetoresistive units 200a, 200b, 200c, and 200d adjacent to the side faces 116a, 116b, 116c, and 116d, respectively, as shown in Fig. 4A. Components f1x, f2x, f3x, and f4x.

請再參照圖3B與圖4B,當一沿著+y方向的磁場分量Hy經過磁通集中器110時,磁場分量Hy的磁力線在經過磁通集中器110附近時,其方向會傾向於轉變成垂直於磁通集中器110的側面116a、116b、116c及116d的方向。如此一來,當沿著+y方向有一外在磁場的磁場分量Hy時,便會如圖4B那樣分別在側面116a、116b、116c及116d旁的磁電阻單元200a、200b、200c及200d產生磁場分量f1y、f2y、f3y及f4y。 Referring to FIG. 3B and FIG. 4B, when a magnetic field component Hy along the +y direction passes through the magnetic flux concentrator 110, the magnetic field lines of the magnetic field component Hy tend to be converted into directions when passing through the vicinity of the magnetic flux concentrator 110. The direction perpendicular to the sides 116a, 116b, 116c, and 116d of the flux concentrator 110 is perpendicular. As a result, when there is an external magnetic field component Hy in the +y direction, a magnetic field is generated in the magnetoresistive units 200a, 200b, 200c, and 200d adjacent to the side faces 116a, 116b, 116c, and 116d, respectively, as shown in Fig. 4B. Components f1y, f2y, f3y, and f4y.

請再參照圖1B及圖4C,當一沿著-z方向的磁場分量Hz 經過磁通集中器110時,磁場分量Hz的磁力線在經過磁通集中器110的側面116附近時,其方向會傾向於轉變成垂直於磁通集中器110的側面116a、116b、116c及116d的方向。如此一來,當沿著-z方向有一外在磁場的磁場分量Hz時,便會如圖4C那樣分別在側面116a、116b、116c及116d旁的磁電阻單元200a、200b、200c及200d產生磁場分量f1z、f2z、f3z及f4z。 Referring again to FIG. 1B and FIG. 4C, when a magnetic field component Hz along the -z direction When passing through the flux concentrator 110, the magnetic field lines of the magnetic field component Hz tend to transition perpendicular to the sides 116a, 116b, 116c, and 116d of the flux concentrator 110 as they pass near the side 116 of the flux concentrator 110. direction. As a result, when there is a magnetic field component Hz of the external magnetic field along the -z direction, a magnetic field is generated in the magnetoresistive units 200a, 200b, 200c, and 200d beside the side faces 116a, 116b, 116c, and 116d, respectively, as shown in Fig. 4C. Components f1z, f2z, f3z, and f4z.

圖5A、圖5B與圖5C為本發明的第一實施例的磁場感測裝置在量測x方向的磁場分量時的等效電路圖,圖6A、圖6B與圖6C為本發明的第一實施例的磁場感測裝置在量測y方向的磁場分量時的等效電路圖,而圖7A、圖7B與圖7C為本發明的第一實施例的磁場感測裝置在量測z方向的磁場分量時的等效電路圖。請參照圖1A、圖5A至圖5C、圖6A至圖6C及圖7A至圖7C,第一實施例的磁場感測裝置100的元件配置如圖1A及圖1B所繪示,而其在量測x方向的磁場分量Hx時的等效電路如圖5A至圖5C所繪示,其在量測y方向的磁場分量Hy時的等效電路如圖6A至圖6C所繪示,而其在量測z方向的磁場分量Hz時的等效電路如圖7A至圖7C所繪示。 5A, FIG. 5B and FIG. 5C are equivalent circuit diagrams of the magnetic field sensing device according to the first embodiment of the present invention when measuring a magnetic field component in the x direction, and FIGS. 6A, 6B and 6C are first embodiments of the present invention. The equivalent circuit diagram of the magnetic field sensing device of the example when measuring the magnetic field component in the y direction, and FIGS. 7A, 7B and 7C are magnetic field components of the magnetic field sensing device according to the first embodiment of the present invention. Equivalent circuit diagram at the time. 1A, 5A to 5C, 6A to 6C, and 7A to 7C, the component configuration of the magnetic field sensing device 100 of the first embodiment is as shown in FIG. 1A and FIG. 1B, and the amount thereof is The equivalent circuit when measuring the magnetic field component Hx in the x direction is as shown in FIG. 5A to FIG. 5C, and the equivalent circuit when measuring the magnetic field component Hy in the y direction is as shown in FIG. 6A to FIG. 6C, and An equivalent circuit for measuring the magnetic field component Hz in the z direction is illustrated in FIGS. 7A to 7C.

在本實施例中,這些磁電阻單元200(包括磁電阻單元200a、200b、200c及200d)在三個不同時間電性連接成至少一種惠斯登全橋(在本實施例中例如是圖5A至圖5C的第一種惠斯登全橋、圖6A至圖6C的第二種惠斯登全橋及圖7A至圖7C的第三種惠斯登全橋等三種惠斯登全橋),以分別量測三個不同方向(即 第一方向(例如x方向)、第二方向(例如y方向)及第三方向(例如z方向)的磁場分量(例如磁場分量Hx、Hy及Hz),並使此至少一種惠斯登全橋(例如是前述三種惠斯登全橋)輸出分別對應於三個不同方向(如x方向、y方向及z方向)的磁場分量(例如磁場分量Hx、Hy及Hz)的三個訊號。在其他實施例中,上述三個不同方向並不一定要彼此互相垂直,也可以有至少兩個方向彼此不垂直。 In this embodiment, the magnetoresistive units 200 (including the magnetoresistive units 200a, 200b, 200c, and 200d) are electrically connected to at least one Wheatstone full bridge at three different times (in this embodiment, for example, FIG. 5A) To the first Wheatstone bridge in Fig. 5C, the second Wheatstone bridge in Figs. 6A to 6C, and the third Wheatstone bridge in Fig. 7A to 7C. To measure three different directions separately (ie Magnetic field components (eg, magnetic field components Hx, Hy, and Hz) in a first direction (eg, x-direction), a second direction (eg, y-direction), and a third direction (eg, z-direction), and such at least one Wheatstone bridge (For example, the aforementioned three Wheatstone full bridges) output three signals corresponding to magnetic field components (for example, magnetic field components Hx, Hy, and Hz) in three different directions (such as the x direction, the y direction, and the z direction). In other embodiments, the three different directions are not necessarily perpendicular to each other, and at least two directions may not be perpendicular to each other.

在本實施例中,底面114平行於頂面112,且例如亦為正方形,底面114的二個對角線分別平行於三個不同方向的其中二個(例如x方向與y方向),且三個不同方向的剩餘一個(例如z方向)垂直於底面114。 In the present embodiment, the bottom surface 114 is parallel to the top surface 112 and is, for example, also square. The two diagonal lines of the bottom surface 114 are respectively parallel to two of the three different directions (for example, the x direction and the y direction), and three The remaining one of the different directions (eg, the z direction) is perpendicular to the bottom surface 114.

在本實施例中,磁場感測裝置100更包括一切換電路120電性連接這些磁電阻單元200a、200b、200c及200d,切換電路120在三個不同時間分別將這些磁電阻單元200a、200b、200c及200d電性連接成如圖5A至圖5C的第一種惠斯登全橋、如圖6A至圖6C的第二種惠斯登全橋及如圖7A至圖7C的第三種惠斯登全橋等三種惠斯登全橋,此三種惠斯登全橋分別量測三個不同方向(如x方向、y方向及z方向)的磁場分量(例如磁場分量Hx、Hy及Hz),並分別輸出對應於三個不同方向的磁場分量(例如磁場分量Hx、Hy及Hz)的三個訊號。 In the present embodiment, the magnetic field sensing device 100 further includes a switching circuit 120 electrically connected to the magnetoresistive units 200a, 200b, 200c, and 200d. The switching circuit 120 respectively connects the magnetoresistive units 200a, 200b at three different times. 200c and 200d are electrically connected to the first Wheatstone full bridge as shown in Figures 5A to 5C, the second Wheatstone full bridge as shown in Figures 6A to 6C, and the third benefit of Figures 7A to 7C. Three types of Wheatstone bridges, such as the Stern Full Bridge, which measure the magnetic field components (such as the magnetic field components Hx, Hy, and Hz) in three different directions (such as the x-direction, y-direction, and z-direction). And output three signals corresponding to magnetic field components of three different directions (for example, magnetic field components Hx, Hy, and Hz).

在本實施例中,磁場感測裝置100更包括一基板130,其中磁通集中器110與這些磁電阻單元200配置於基板130上,且 切換電路120設於基板130中。基板130例如為半導體基板(如矽基板)、玻璃基板或電路基板,其中電路基板例如為設有導電線路且表面覆蓋有絕緣層的矽基板。 In the present embodiment, the magnetic field sensing device 100 further includes a substrate 130, wherein the magnetic flux concentrator 110 and the magnetoresistive unit 200 are disposed on the substrate 130, and The switching circuit 120 is provided in the substrate 130. The substrate 130 is, for example, a semiconductor substrate (such as a germanium substrate), a glass substrate, or a circuit substrate, wherein the circuit substrate is, for example, a germanium substrate provided with a conductive line and having a surface covered with an insulating layer.

在本實施例中,在三個不同時間的任一個時,此至少一種惠斯登全橋所輸出的訊號為對應於三個不同方向中的一個方向的磁場分量的差分訊號,此時此至少一種惠斯登全橋所產生的對應於三個不同方向中的其餘兩個方向的磁場分量的差分訊號皆為零。舉例而言,在三個不同時間中的第一個時間時,如圖5A至圖5C所繪示,第一種惠斯登全橋所輸出的訊號為對應於三個不同方向(即x、y及z方向)中的一個方向(如x方向)的磁場分量Hx的差分訊號,此時第一種惠斯登全橋所產生的對應於三個不同方向中的其餘兩個方向(即y與z方向)的磁場分量Hy及Hz的差分訊號皆為0。此外,在三個不同時間中的第二個時間時,如圖6A至圖6C所繪示,第二種惠斯登全橋所輸出的訊號為對應於三個不同方向(即x、y及z方向)中的一個方向(如y方向)的磁場分量Hy的差分訊號,此時第二種惠斯登全橋所產生的對應於三個不同方向中的其餘兩個方向(即x與z方向)的磁場分量Hx及Hz的差分訊號皆為0。再者,在三個不同時間中的第三個時間時,如圖7A至圖7C所繪示,第三種惠斯登全橋所輸出的訊號為對應於三個不同方向(即x、y及z方向)中的一個方向(如z方向)的磁場分量Hz的差分訊號,此時第三種惠斯登全橋所產生的對應於三個不同方向中的其餘兩個方向(即x與y方向)的磁場分量 Hx及Hy的差分訊號皆為0。 In this embodiment, at any one of three different times, the signal output by the at least one Wheatstone full bridge is a differential signal corresponding to a magnetic field component of one of three different directions, and at least A differential signal generated by a Wheatstone full bridge corresponding to the magnetic field components of the remaining two directions in three different directions is zero. For example, at the first time of three different times, as shown in FIG. 5A to FIG. 5C, the signals output by the first type of Wheatstone bridge correspond to three different directions (ie, x, a differential signal of the magnetic field component Hx in one of the y and z directions), such as the x direction, at which point the first type of Wheatstone bridge produces the remaining two directions in three different directions (ie, y The difference signals of the magnetic field components Hy and Hz in the z direction are both zero. In addition, at the second time of three different times, as shown in FIG. 6A to FIG. 6C, the signals output by the second Wheatstone bridge correspond to three different directions (ie, x, y, and a differential signal of the magnetic field component Hy in one direction (such as the y direction) in the z direction), at which time the second Wheatstone full bridge produces the remaining two directions in three different directions (ie, x and z) The differential signal of the magnetic field component Hx and Hz of the direction is 0. Furthermore, at the third time of three different times, as shown in FIG. 7A to FIG. 7C, the signals output by the third Wheatstone bridge correspond to three different directions (ie, x, y). And the differential signal of the magnetic field component Hz in one direction (such as the z direction) in the z direction), at which time the third Wheatstone bridge produces the remaining two directions in the three different directions (ie, x and Magnetic field component in the y direction) The difference signals of Hx and Hy are both zero.

此外,在本實施例中,在上述三個不同時間的任一個中,這些磁電阻單元200電性連接成的惠斯登全橋的數量為一個。 Further, in the present embodiment, in any of the above three different times, the number of the Wheatstone full bridges electrically connected to the magnetoresistive units 200 is one.

具體而言,在三個不同時間中的第一個時間時,請先參照圖5A,當外在磁場有磁場分量Hx時,會分別在磁電阻單元200a、200b、200c及200d產生磁場分量f1x、f2x、f3x及f4x。在本實施例中,磁場感測裝置100(請參照圖1A)更包括多個磁化方向設定元件400,分別配置於這些磁電阻單元200旁。舉例而言,磁化方向設定元件400a、400b、400c及400d分別配置於這些磁電阻單元200a、200b、200c及200d旁。磁化方向設定元件400可設於對應的磁電阻單元200的上方、下方或上下兩方,以設定磁電阻單元200的磁化方向。藉由圖2A與圖2B的相關段落所描述的設置方式(包括短路棒310的設置方向及磁電阻單元200的初始磁化方向的設定方向),可使磁電阻單元200a、200b、200c及200d對應於磁場分量f1x、f2x、f3x及f4x分別產生-△R、+△R、-△R及+△R的電阻值變化。如此一來,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間便存在一電壓差,即輸出電壓Vx,此輸出電壓Vx即為一差分訊號,其大小會對應於磁場分量Hx的大小。因此,藉由得知輸出電壓Vx的大小,便能夠推知磁場分量Hx的大小。 Specifically, in the first time of three different times, referring to FIG. 5A first, when the external magnetic field has the magnetic field component Hx, the magnetic field component f1x is generated in the magnetoresistive units 200a, 200b, 200c, and 200d, respectively. , f2x, f3x, and f4x. In the present embodiment, the magnetic field sensing device 100 (please refer to FIG. 1A ) further includes a plurality of magnetization direction setting elements 400 disposed adjacent to the magnetoresistive units 200 . For example, the magnetization direction setting elements 400a, 400b, 400c, and 400d are disposed beside the magnetoresistive units 200a, 200b, 200c, and 200d, respectively. The magnetization direction setting element 400 may be disposed above, below or above and below the corresponding magnetoresistive unit 200 to set the magnetization direction of the magnetoresistive unit 200. The magnetic resistance units 200a, 200b, 200c, and 200d can be correspondingly provided by the arrangement described in the relevant paragraphs of FIGS. 2A and 2B (including the setting direction of the shorting bars 310 and the setting direction of the initial magnetization direction of the magnetoresistive unit 200). The resistance values of -ΔR, +ΔR, -ΔR, and +ΔR are varied in the magnetic field components f1x, f2x, f3x, and f4x, respectively. In this way, when a voltage difference is applied between the contact V2 and the contact V4, there is a voltage difference between the contact V1 and the contact V3, that is, the output voltage Vx, and the output voltage Vx is a differential signal. Its size will correspond to the magnitude of the magnetic field component Hx. Therefore, by knowing the magnitude of the output voltage Vx, the magnitude of the magnetic field component Hx can be inferred.

另一方面,請參照圖5B,當外在磁場有磁場分量Hy時,會分別在磁電阻單元200a、200b、200c及200d產生磁場分量f1y、 f2y、f3y及f4y。由於磁場分量f1y的方向為圖5A之磁場分量f1x的反向,因此磁電阻單元200a的電阻變化變為+△R。此外,由於磁場分量f3y的方向為圖5A之磁場分量f3x的反向,因此磁電阻單元200c的電阻變化變為-△R。如此一來,磁電阻單元200a、200b、200c及200d對應於磁場分量f1y、f2y、f3y及f4y便會分別產生+△R、+△R、-△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差為0,也就是此時輸出的差分訊號為零。 On the other hand, referring to FIG. 5B, when the external magnetic field has the magnetic field component Hy, the magnetic field component f1y is generated in the magnetoresistive units 200a, 200b, 200c, and 200d, respectively. F2y, f3y, and f4y. Since the direction of the magnetic field component f1y is the reverse of the magnetic field component f1x of FIG. 5A, the resistance change of the magnetoresistive element 200a becomes +ΔR. Further, since the direction of the magnetic field component f3y is the reverse of the magnetic field component f3x of Fig. 5A, the resistance change of the magnetoresistive element 200c becomes -ΔR. As a result, the magnetoresistive units 200a, 200b, 200c, and 200d generate resistance values of +ΔR, +ΔR, -ΔR, and -ΔR, respectively, corresponding to the magnetic field components f1y, f2y, f3y, and f4y. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 is 0, that is, the differential signal outputted at this time is zero.

再者,請參照圖5C,當外在磁場有磁場分量Hz時,會分別在磁電阻單元200a、200b、200c及200d產生磁場分量f1z、f2z、f3z及f4z。此時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1z、f2z、f3z及f4z便會分別產生+△R、-△R、+△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差為0,也就是此時輸出的差分訊號為零。 Furthermore, referring to FIG. 5C, when the external magnetic field has a magnetic field component Hz, magnetic field components f1z, f2z, f3z, and f4z are generated in the magnetoresistive units 200a, 200b, 200c, and 200d, respectively. At this time, the magnetoresistive units 200a, 200b, 200c, and 200d generate resistance values of +ΔR, -ΔR, +ΔR, and -ΔR, respectively, corresponding to the magnetic field components f1z, f2z, f3z, and f4z. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 is 0, that is, the differential signal outputted at this time is zero.

因此,當磁電阻單元200a、200b、200c及200d電性連接成如圖5A至圖5C之第一種惠斯登全橋時,磁場分量Hy與Hz對於接點V1與V3所輸出的電壓是不會有貢獻的,此時的輸出電壓Vx只與磁場分量Hx有關,所以第一種惠斯登全橋可以用來量測x方向的磁場分量Hx、第一種惠斯登全橋即為:磁電阻單元200a與磁電阻單元200c串接,磁電阻單元200b與磁電阻單元200d串接,前述串接的這兩串再並接,接點V2電性連接於磁電阻單元 200a與磁電阻單元200b之間,接點V4電性連接於磁電阻單元200c與磁電阻單元200d之間,接點V1電性連接於磁電阻單元200a與磁電阻單元200c之間,且接點V3電性連接於磁電阻單元200b與磁電阻單元200d之間。 Therefore, when the magnetoresistive units 200a, 200b, 200c, and 200d are electrically connected to the first Wheatstone bridge of the first type as shown in FIGS. 5A to 5C, the voltages of the magnetic field components Hy and Hz for the contacts V1 and V3 are If there is no contribution, the output voltage Vx at this time is only related to the magnetic field component Hx, so the first type of Wheatstone bridge can be used to measure the magnetic field component Hx in the x direction, and the first type of Wheatstone bridge is The magnetoresistive unit 200a is connected in series with the magnetoresistive unit 200c, the magnetoresistive unit 200b is connected in series with the magnetoresistive unit 200d, and the two series of the series are connected in parallel, and the contact V2 is electrically connected to the magnetoresistive unit. Between 200a and the magnetoresistive unit 200b, the contact V4 is electrically connected between the magnetoresistive unit 200c and the magnetoresistive unit 200d, and the contact V1 is electrically connected between the magnetoresistive unit 200a and the magnetoresistive unit 200c, and the contact is V3 is electrically connected between the magnetoresistive unit 200b and the magnetoresistive unit 200d.

在三個不同時間中的第二個時間時,請再參照圖6A,切換電路120將這些磁電阻單元200a、200b、200c及200d電性連接成第二種惠斯登全橋,第二種惠斯登全橋即為:磁電阻單元200a與磁電阻單元200c串接,磁電阻單元200d與磁電阻單元200b串接,前述串接的這兩串再並接,接點V1電性連接於磁電阻單元200a與磁電阻單元200d之間,接點V3電性連接於磁電阻單元200b與磁電阻單元200c之間,接點V2電性連接於磁電阻單元200a與磁電阻單元200c之間,且接點V4電性連接於磁電阻單元200d與磁電阻單元200b之間。磁電阻單元200a、200b、200c及200d的初始磁化方向的設定方向皆與圖5A至圖5C一致,因此當外在磁場有磁場分量Hx時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1x、f2x、f3x及f4x同樣會分別產生-△R、+△R、-△R及+△R的電阻值變化。如此一來,當接點V1與接點V3之間施加一電壓差時,接點V2與接點V4之間的電壓差便會為0,也就是輸出的差分訊號為0。 In the second time of three different times, referring to FIG. 6A again, the switching circuit 120 electrically connects the magnetoresistive units 200a, 200b, 200c, and 200d into a second Wheatstone full bridge, and the second The whole bridge of Wheatstone is: the magnetoresistive unit 200a is connected in series with the magnetoresistive unit 200c, the magnetoresistive unit 200d is connected in series with the magnetoresistive unit 200b, and the two strings of the series are connected in parallel, and the contact V1 is electrically connected to Between the magnetoresistive unit 200a and the magnetoresistive unit 200d, the contact V3 is electrically connected between the magnetoresistive unit 200b and the magnetoresistive unit 200c, and the contact V2 is electrically connected between the magnetoresistive unit 200a and the magnetoresistive unit 200c. The contact V4 is electrically connected between the magnetoresistive unit 200d and the magnetoresistive unit 200b. The setting directions of the initial magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d are all the same as those of FIGS. 5A to 5C, so when the external magnetic field has the magnetic field component Hx, the magnetoresistive units 200a, 200b, 200c, and 200d correspond to the magnetic field. The components f1x, f2x, f3x, and f4x also produce resistance values of -ΔR, +ΔR, -ΔR, and +ΔR, respectively. In this way, when a voltage difference is applied between the contact V1 and the contact V3, the voltage difference between the contact V2 and the contact V4 will be 0, that is, the output differential signal is 0.

另一方面,請參照圖6B,當外在磁場有磁場分量Hy時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1y、f2y、f3y及f4y分別產生+△R、+△R、-△R及-△R的電阻值變化。因此, 當接點V1與接點V3之間施加一電壓差時,接點V2與接點V4之間會存在一電壓差,即為輸出電壓Vy,此輸出電壓Vy即為一差分訊號,其大小會對應於磁場分量Hy的大小。因此,藉由得知輸出電壓Vy的大小,便能夠推知磁場分量Hy的大小。 On the other hand, referring to FIG. 6B, when the external magnetic field has the magnetic field component Hy, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, +ΔR corresponding to the magnetic field components f1y, f2y, f3y, and f4y, respectively. - ΔR and - ΔR change in resistance value. therefore, When a voltage difference is applied between the contact V1 and the contact V3, there is a voltage difference between the contact V2 and the contact V4, that is, the output voltage Vy, and the output voltage Vy is a differential signal, and the size thereof will be Corresponds to the magnitude of the magnetic field component Hy. Therefore, by knowing the magnitude of the output voltage Vy, the magnitude of the magnetic field component Hy can be inferred.

再者,請參照圖6C,當外在磁場有磁場分量Hz時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1z、f2z、f3z及f4z便會分別產生+△R、-△R、+△R及-△R的電阻值變化。因此,當接點V1與接點V3之間施加一電壓差時,接點V2與接點V4之間的電壓差為0,也就是此時輸出的差分訊號為零。 Furthermore, referring to FIG. 6C, when the external magnetic field has a magnetic field component Hz, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, -ΔR corresponding to the magnetic field components f1z, f2z, f3z, and f4z, respectively. The resistance values of +ΔR and -ΔR change. Therefore, when a voltage difference is applied between the contact V1 and the contact V3, the voltage difference between the contact V2 and the contact V4 is 0, that is, the differential signal outputted at this time is zero.

因此,當磁電阻單元200a、200b、200c及200d電性連接成如圖6A至圖6C之第二種惠斯登全橋時,磁場分量Hx與Hz對於接點V2與V4所輸出的電壓是不會有貢獻的,此時的輸出電壓Vy只與磁場分量Hy有關,所以第二種惠斯登全橋可以用來量測y方向的磁場分量Hy。 Therefore, when the magnetoresistive units 200a, 200b, 200c, and 200d are electrically connected to the second Wheatstone full bridge as shown in FIGS. 6A to 6C, the voltages output by the magnetic field components Hx and Hz for the contacts V2 and V4 are If there is no contribution, the output voltage Vy at this time is only related to the magnetic field component Hy, so the second Wheatstone full bridge can be used to measure the magnetic field component Hy in the y direction.

在三個不同時間中的第三個時間時,請再參照圖7A,切換電路120將這些磁電阻單元200a、200b、200c及200d電性連接成第三種惠斯登全橋,第三種惠斯登全橋即為:磁電阻單元200a與磁電阻單元200d串接,磁電阻單元200b與磁電阻單元200c串接,前述串接的這兩串再並接,接點V2電性連接於磁電阻單元200a與磁電阻單元200b之間,接點V4電性連接於磁電阻單元200c與磁電阻單元200d之間,接點V1電性連接於磁電阻單元200a與磁電阻單元200d之間,且接點V3電性連接於磁電阻單元 200b與磁電阻單元200c之間。磁電阻單元200a、200b、200c及200d的初始磁化方向的設定方向皆與圖5A至圖5C一致,因此當外在磁場有磁場分量Hx時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1x、f2x、f3x及f4x同樣會分別產生-△R、+△R、-△R及+△R的電阻值變化。如此一來,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差便會為0,也就是輸出的差分訊號為0。 In the third time of three different times, referring to FIG. 7A again, the switching circuit 120 electrically connects the magnetoresistive units 200a, 200b, 200c, and 200d into a third Wheatstone full bridge, and a third type. The whole bridge of Wheatstone is: the magnetoresistive unit 200a is connected in series with the magnetoresistive unit 200d, the magnetoresistive unit 200b is connected in series with the magnetoresistive unit 200c, the two strings of the series are connected in parallel, and the contact V2 is electrically connected to Between the magnetoresistive unit 200a and the magnetoresistive unit 200b, the contact V4 is electrically connected between the magnetoresistive unit 200c and the magnetoresistive unit 200d, and the contact V1 is electrically connected between the magnetoresistive unit 200a and the magnetoresistive unit 200d. And the contact V3 is electrically connected to the magnetoresistive unit Between 200b and the magnetoresistive unit 200c. The setting directions of the initial magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d are all the same as those of FIGS. 5A to 5C, so when the external magnetic field has the magnetic field component Hx, the magnetoresistive units 200a, 200b, 200c, and 200d correspond to the magnetic field. The components f1x, f2x, f3x, and f4x also produce resistance values of -ΔR, +ΔR, -ΔR, and +ΔR, respectively. In this way, when a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 will be 0, that is, the output differential signal is 0.

另一方面,請參照圖7B,當外在磁場有磁場分量Hy時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1y、f2y、f3y及f4y分別產生+△R、+△R、-△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差會為0,亦即輸出的差分訊號為0。 On the other hand, referring to FIG. 7B, when the external magnetic field has the magnetic field component Hy, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, +ΔR corresponding to the magnetic field components f1y, f2y, f3y, and f4y, respectively. - ΔR and - ΔR change in resistance value. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 will be 0, that is, the output differential signal is 0.

再者,請參照圖7C,當外在磁場有磁場分量Hz時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1z、f2z、f3z及f4z便會分別產生+△R、-△R、+△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間會存在一電壓差,即為輸出電壓Vz,此輸出電壓Vz即為一差分訊號,其大小會對應於磁場分量Hy的大小。因此,藉由得知輸出電壓Vz的大小,便能夠推知磁場分量Hz的大小。 Furthermore, referring to FIG. 7C, when the external magnetic field has a magnetic field component Hz, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, -ΔR corresponding to the magnetic field components f1z, f2z, f3z, and f4z, respectively. The resistance values of +ΔR and -ΔR change. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, there is a voltage difference between the contact V1 and the contact V3, that is, the output voltage Vz, and the output voltage Vz is a differential signal. The size will correspond to the magnitude of the magnetic field component Hy. Therefore, by knowing the magnitude of the output voltage Vz, the magnitude of the magnetic field component Hz can be inferred.

因此,當磁電阻單元200a、200b、200c及200d電性連接成如圖7A至圖7C之第三種惠斯登全橋時,磁場分量Hx與Hy對於接點V1與V3所輸出的電壓是不會有貢獻的,此時的輸出電 壓Vz只與磁場分量Hz有關,所以第三種惠斯登全橋可以用來量測z方向的磁場分量Hz。 Therefore, when the magnetoresistive units 200a, 200b, 200c, and 200d are electrically connected to the third Wheatstone full bridge as shown in FIGS. 7A to 7C, the voltages output by the magnetic field components Hx and Hy for the contacts V1 and V3 are Will not contribute, the output power at this time The pressure Vz is only related to the magnetic field component Hz, so the third Wheatstone full bridge can be used to measure the magnetic field component Hz in the z direction.

如此一來,當經過了第一時間、第二時間及第三時間之後,磁場感測裝置100便能依序測得外在磁場的磁場分量Hx、磁場分量Hy及磁場分量Hz,藉此可得知外在磁場的大小與方向。當磁場感測裝置100不斷地重複依序形成第一時間、第二時間及第三時間的第一種、第二種及第三種惠斯登全橋時,便能持續且即時地監控外在磁場相對於磁場感測裝置100的變化,亦即例如可監控磁場感測裝置100相對於地磁的方向變化。 In this way, after the first time, the second time, and the third time, the magnetic field sensing device 100 can sequentially measure the magnetic field component Hx, the magnetic field component Hy, and the magnetic field component Hz of the external magnetic field. Know the magnitude and direction of the external magnetic field. When the magnetic field sensing device 100 continuously repeats the first, second, and third types of Wheatstone bridges in the first time, the second time, and the third time, the external and continuous monitoring can be performed continuously. The change in the magnetic field relative to the magnetic field sensing device 100, that is, for example, the direction of the magnetic field sensing device 100 relative to the geomagnetic field can be monitored.

圖8繪示圖5A至圖7C的三種惠斯登全橋所適用的磁電阻單元的短路棒設置方向與磁化方向的設置方向的一實例。請參照圖5A與圖8,在本實施例中,磁電阻單元200a、200b、200c及200d的短路棒310均朝向x方向延伸,磁化方向設定元件400a、400b、400c及400d分別配置於磁電阻單元200a、200b、200c及200d,且磁化方向設定元件400a、400b、400c及400d在分別設定磁電阻單元200a、200b、200c及200d的磁化方向時所通的電流方向分別為電流方向I1、I2、I3及I4,而使得磁電阻單元200a、200b、200c及200d的初始磁化方向分別被設定為磁化方向M1、M2、M3及M4。其中,電流方向I1朝向x-y方向,電流方向I2朝向x+y方向,電流方向I3朝向-x+y方向,電流方向I4朝向-x-y方向,磁化方向M1朝向x+y方向,磁化方向M2朝向-x+y方向,磁化方向M3朝向-x-y方向,而磁化方向M4朝向x-y方向。經由 上述設定,當外在磁場有磁場分量Hx,便能夠使磁電阻單元200a、200b、200c及200d分別產生-△R、+△R、-△R及+△R的電阻值變化(如圖5A、圖6A及圖7A所繪示的狀況),且亦適用於圖5B、圖5C、圖6B、圖6C、圖7B及圖7C所繪示的狀況。然而,上述磁化方向M1~M4、電流方向I1~I4及磁電阻單元200a、200b、200c及200d的短路棒310的延伸方向並不以圖8的實例為限,圖8僅僅是舉出多種變化中的一種實例。舉例而言,圖8中的磁電阻單元200a的短路棒310可以改成往y方向延伸,且同時將電流方向I1改成反向,即變成朝向-x+y方向,這樣可使磁化方向M1反向,即變成朝向-x-y方向,在此設定下,當如圖5A那樣有一磁場分量Hx時,磁電阻單元200a的電阻值變化量仍維持為-△R。因此,在此設置下,磁場感測裝置100的量測結果仍與圖5A至圖7C的量測結果一致。其他關於磁電阻單元200b、200c及200d的設置方向同理亦可作改變。 8 is a diagram showing an example of a direction in which a shorting bar is disposed and a direction in which a magnetization direction is applied to the three types of Wheatstone full bridges of FIGS. 5A to 7C. Referring to FIG. 5A and FIG. 8, in the present embodiment, the shorting bars 310 of the magnetic resistance units 200a, 200b, 200c, and 200d all extend in the x direction, and the magnetization direction setting elements 400a, 400b, 400c, and 400d are respectively disposed on the magnetic resistance. The current directions of the units 200a, 200b, 200c, and 200d, and the magnetization direction setting elements 400a, 400b, 400c, and 400d, respectively, when setting the magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d are current directions I1, I2, respectively I3 and I4, and the initial magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d are set to the magnetization directions M1, M2, M3, and M4, respectively. Wherein, the current direction I1 faces the xy direction, the current direction I2 faces the x+y direction, the current direction I3 faces the -x+y direction, the current direction I4 faces the -xy direction, the magnetization direction M1 faces the x+y direction, and the magnetization direction M2 faces the - In the x+y direction, the magnetization direction M3 faces the -xy direction, and the magnetization direction M4 faces the xy direction. via In the above setting, when the external magnetic field has the magnetic field component Hx, the magnetoresistance units 200a, 200b, 200c, and 200d can respectively generate resistance values of -ΔR, +ΔR, -ΔR, and +ΔR (Fig. 5A). The conditions illustrated in FIGS. 6A and 7A are also applicable to the conditions illustrated in FIGS. 5B, 5C, 6B, 6C, 7B, and 7C. However, the directions of extension of the magnetization directions M1 to M4, the current directions I1 to I4, and the short-circuit bars 310 of the magnetoresistive units 200a, 200b, 200c, and 200d are not limited to the example of FIG. 8, and FIG. 8 merely cites various changes. An example of this. For example, the shorting bar 310 of the magnetoresistive unit 200a in FIG. 8 can be changed to extend in the y direction, and at the same time, the current direction I1 is changed to the reverse direction, that is, to the direction of -x+y, so that the magnetization direction M1 can be made. In the reverse direction, it becomes the direction toward -xy. Under this setting, when there is a magnetic field component Hx as shown in Fig. 5A, the amount of change in the resistance value of the magnetoresistive element 200a is maintained at -ΔR. Therefore, under this setting, the measurement results of the magnetic field sensing device 100 are still consistent with the measurement results of FIGS. 5A to 7C. Other directions regarding the arrangement direction of the magnetoresistive units 200b, 200c, and 200d may be changed.

此外,圖5A至圖7C所繪示的電阻值變化的組合也只是其中一種例子,這些電阻值變化的組合亦可作等效的改變,只要在三個不同時間的任一個時,此三種惠斯登全橋所輸出的訊號為對應於三個不同方向中的一個方向的磁場分量的差分訊號,此時此三種惠斯登全橋所產生的對應於三個不同方向中的其餘兩個方向的磁場分量的差分訊號皆為零即可。 In addition, the combination of the resistance value changes illustrated in FIGS. 5A to 7C is only one example, and the combination of these resistance value changes can also be equivalently changed, as long as any of the three different times, the three benefits The signal output by the Stern Full Bridge is a differential signal corresponding to the magnetic field component of one of the three different directions. At this time, the three types of Wheatstone bridges correspond to the other two directions in three different directions. The differential signal of the magnetic field component is zero.

另外,上述第一時間、第二時間與第三時間的出現順序亦不作限定,其可以是任何適當的排列方向。舉例而言,亦可以 是依序出現第二惠斯登全橋、第一惠斯登全橋及第三惠斯登全橋,以依序量測磁場分量Hy、磁場分量Hx及磁場分量Hz。 In addition, the order of appearance of the first time, the second time, and the third time is not limited, and may be any suitable arrangement direction. For example, it can also The second Wheatstone bridge, the first Wheatstone bridge and the third Wheatstone bridge are sequentially arranged to measure the magnetic field component Hy, the magnetic field component Hx and the magnetic field component Hz in sequence.

在本實施例的磁場感測裝置100中,由於在一個時間中採用一個惠斯登全橋,就可以在三個不同時間分別感測三個不同方向的磁場分量,因此磁場感測裝置100的結構較為簡單,而可以具有較小的體積。相較於採用三個惠斯登全橋分別量測三個不同方向的磁場分量的磁場感測裝置,本實施例的磁場感測裝置100的體積可以減少至三分之一,因此可大幅縮減磁場感測裝置100的體積,進而降低磁場感測裝置100的製作成本。 In the magnetic field sensing device 100 of the present embodiment, since a Wheatstone full bridge is used in one time, magnetic field components of three different directions can be respectively sensed at three different times, and thus the magnetic field sensing device 100 The structure is relatively simple and can have a small volume. Compared with the magnetic field sensing device that measures the magnetic field components of three different directions by using three Wheatstone full bridges, the volume of the magnetic field sensing device 100 of the present embodiment can be reduced to one third, so the size can be greatly reduced. The volume of the magnetic field sensing device 100 further reduces the manufacturing cost of the magnetic field sensing device 100.

此外,藉由磁化方向設定元件400a~400d可以初始化磁電阻單元200a~200d的磁化方向配置,使得磁電阻單元200a~200d在強外在磁場的衝擊之後,仍然能夠被正常使用。另外,藉由改變磁化方向設定元件400a~400d的電流方向,以形成磁電阻單元200a~200d的不同的磁化方向配置,可量測出磁電阻單元200a~200d的動態系統偏移量(dynamic system offset)。藉由將量測值扣除動態系統偏移量,將可更快速地獲得正確的磁場分量數值。同理,也可扣除低頻雜訊(low frequency noise),以使得所測得的磁場分量數值更為準確。 Further, the magnetization direction setting elements 400a to 400d can initialize the magnetization direction arrangement of the magnetoresistive elements 200a to 200d so that the magnetoresistive elements 200a to 200d can be normally used after the impact of the strong external magnetic field. Further, by changing the current directions of the magnetization direction setting elements 400a to 400d to form different magnetization directions of the magnetoresistive units 200a to 200d, the dynamic system offset of the magnetoresistive units 200a to 200d can be measured (dynamic system) Offset). By subtracting the dynamic system offset from the measured value, the correct magnetic field component value can be obtained more quickly. Similarly, low frequency noise can be subtracted to make the measured magnetic field component values more accurate.

圖9為本發明的另一實施例的磁電阻單元與磁化方向設定元件的上視示意圖。請參照圖8與圖9,圖8中的磁電阻單元200a是以具有一個異向性磁電阻300為例,但其實本發明不以此為限,每一個磁電阻單元200都可具有多個異向性磁電阻300,例 如是多個彼此串聯的異向性磁電阻300,以增加輸出訊號的強度。舉例而言,在圖9中,磁電阻單元200a’具有異向性磁電阻301與異向性磁電阻302,其中異向性磁電阻301的相關設置方式可與圖8之磁電阻單元200a一樣,而異向性磁電阻302的相關設置方式可與異向性磁電阻301相同或不同,在圖9中是以不同為例。在圖9中,異向性磁電阻302的短路棒310沿著y方向延伸,而磁化方向設定元件400a’可包括兩個分別設置於異向性磁電阻301與302上方的子磁化方向設定元件401與402。通過子磁化方向設定元件402的電流方向I1’朝向-x+y方向,而使得異向性磁電阻302的初始磁化方向被設定為磁化方向M1’。如此一來,當有外在磁場有一如圖5A的磁場分量Hx時,異向性磁電阻301與異向性磁電阻302皆各自產生-△R的電阻值變化,而異向性磁電阻301與異向性磁電阻302串聯起來後的電阻值變化會變成-2△R,如此便能夠放大輸出訊號。 Fig. 9 is a top plan view showing a magnetoresistive unit and a magnetization direction setting member according to another embodiment of the present invention. Referring to FIG. 8 and FIG. 9 , the magnetoresistive unit 200 a in FIG. 8 is exemplified by an anisotropic magnetoresistance 300. However, the present invention is not limited thereto, and each of the magnetoresistive units 200 may have multiple Anisotropic magnetoresistor 300, for example For example, a plurality of anisotropic magnetoresistances 300 connected in series to increase the intensity of the output signal. For example, in FIG. 9, the magnetoresistive unit 200a' has an anisotropic magnetoresistor 301 and an anisotropic magnetoresistor 302, wherein the anisotropic magnetoresistor 301 is disposed in the same manner as the magnetoresistive unit 200a of FIG. The related arrangement of the anisotropic magnetoresistance 302 may be the same as or different from that of the anisotropic magnetoresistance 301, and is different in FIG. 9 as an example. In FIG. 9, the shorting bar 310 of the anisotropic magnetoresistor 302 extends in the y direction, and the magnetization direction setting element 400a' may include two sub magnetization direction setting elements respectively disposed above the anisotropic magnetoresistors 301 and 302. 401 and 402. The current direction I1' of the sub-magnetization direction setting element 402 is oriented in the -x+y direction, so that the initial magnetization direction of the anisotropic magnetoresistor 302 is set to the magnetization direction M1'. As a result, when there is an external magnetic field having a magnetic field component Hx as shown in FIG. 5A, the anisotropic magnetoresistance 301 and the anisotropic magnetoresistance 302 each generate a resistance value change of -ΔR, and the anisotropic magnetoresistance 301 The resistance value change in series with the anisotropic magnetoresistor 302 becomes -2ΔR, so that the output signal can be amplified.

圖10繪示圖1A的磁化方向設定元件的另一實施例。請參照圖1A與圖10,在圖10的實施例中,這些磁化方向設定元件400b、400a、400d及400c可以串聯的方示電性連接,如此讓電流依序流經磁化方向設定元件400b、400a、400d及400c時,可分別在磁電阻單元200a、200b、200c及200d產生如圖8之磁化方向M1、M2、M3及M4。 FIG. 10 illustrates another embodiment of the magnetization direction setting member of FIG. 1A. Referring to FIG. 1A and FIG. 10, in the embodiment of FIG. 10, the magnetization direction setting elements 400b, 400a, 400d, and 400c may be electrically connected in series, so that current flows sequentially through the magnetization direction setting component 400b, At 400a, 400d, and 400c, magnetization directions M1, M2, M3, and M4 as shown in Fig. 8 can be generated in the magnetoresistive units 200a, 200b, 200c, and 200d, respectively.

圖11繪示圖1A的磁化方向設定元件的又一實施例。請參照圖1A與圖11,在圖11的實施例中,這些磁化方向設定元件 400a、400b、400c及400d可被各自獨立地控制,例如是藉由基板130中的電路來控制。如此一來,這些磁電阻單元200a、200b、200c及200d可僅以一種惠斯登全橋來連接,而不同的磁場分量Hx、Hy及Hz對這些磁電阻單元200a、200b、200c及200d在第一時間至第三時間是產生+△R的電阻值變化或-△R的電阻值變化,則可透過各自控制磁化方向設定元件400a、400b、400c及400d的電流方向來決定,且可藉由使電流方向反向變化來使電阻值變化從+△R變成-△R或反之。 FIG. 11 illustrates still another embodiment of the magnetization direction setting member of FIG. 1A. Please refer to FIG. 1A and FIG. 11. In the embodiment of FIG. 11, these magnetization direction setting elements The 400a, 400b, 400c, and 400d can be independently controlled, for example, by circuitry in the substrate 130. In this way, the magnetoresistive units 200a, 200b, 200c, and 200d can be connected by only one Wheatstone bridge, and the different magnetic field components Hx, Hy, and Hz are applied to the magnetoresistive units 200a, 200b, 200c, and 200d. The first time to the third time is a resistance value change of +ΔR or a resistance value change of -ΔR, which can be determined by controlling the current directions of the magnetization direction setting elements 400a, 400b, 400c, and 400d, respectively, and can be borrowed. The change in resistance value is changed from +?R to -?R or vice versa by changing the direction of the current in the opposite direction.

圖12A、圖12B與圖12C為本發明的第二實施例的磁場感測裝置在量測x方向的磁場分量時的等效電路圖,圖13A、圖13B與圖13C為本發明的第二實施例的磁場感測裝置在量測y方向的磁場分量時的等效電路圖,而圖14A、圖14B與圖14C為本發明的第二實施例的磁場感測裝置在量測z方向的磁場分量時的等效電路圖。第二實施例的磁場感測裝置100是採用圖11之磁化方向設定元件400a、400b、400c及400d獨立控制的架構,且磁電阻單元200a、200b、200c及200d所連接而成的惠斯登全橋只有一種,且不會變化。 12A, FIG. 12B and FIG. 12C are equivalent circuit diagrams of the magnetic field sensing device according to the second embodiment of the present invention when measuring the magnetic field component in the x direction, and FIGS. 13A, 13B and 13C are second embodiments of the present invention. The equivalent circuit diagram of the magnetic field sensing device of the example when measuring the magnetic field component in the y direction, and FIGS. 14A, 14B and 14C are magnetic field components of the magnetic field sensing device according to the second embodiment of the present invention. Equivalent circuit diagram at the time. The magnetic field sensing device 100 of the second embodiment is a structure in which the magnetization direction setting elements 400a, 400b, 400c, and 400d of FIG. 11 are independently controlled, and the magneto resistance units 200a, 200b, 200c, and 200d are connected to Wheatstone. There is only one type of full bridge and it will not change.

在本實施例中,這些磁化方向設定元件400a、400b、400c及400d在三個不同時間分別將這些磁電阻單元200a、200b、200c及200d的磁化方向設定成三種不同的組合,以使此一種惠斯登全橋在三個不同時間分別量測三個不同方向的磁場分量Hx、Hy及Hz,並分別輸出對應於三個不同方向的磁場分量Hx、Hy及Hz的 三個訊號。 In the present embodiment, the magnetization direction setting members 400a, 400b, 400c, and 400d respectively set the magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d into three different combinations at three different times to make the one. The Wheatstone bridge measures the magnetic field components Hx, Hy and Hz in three different directions at three different times, and outputs the magnetic field components Hx, Hy and Hz corresponding to three different directions. Three signals.

具體而言,在三個不同時間中的第一個時間時,請先參照圖12A,當外在磁場有磁場分量Hx時,透過磁化方向設定元件400a、400b、400c及400d各自獨立地分別將這些磁電阻單元200a、200b、200c及200d的初始磁化方向設定至適當的方向的組合(下稱第一種組合),可使這些磁電阻單元200a、200b、200c及200d對應於磁場分量f1x、f2x、f3x及f4x分別產生+△R、-△R、+△R及-△R的電阻值變化。舉例而言,當圖12A至圖14C中的這些磁電阻單元200a、200b、200c及200d的短路棒都是如同圖8所繪示的往x方向延伸時,第一種組合是指磁化方向設定元件400a、400b、400c及400d分別對磁電阻單元200a、200b、200c及200d設定出磁化方向M1x、M2x、M3及M4,其中磁化方向M1x為圖8之磁化方向M1的反向,磁化方向M2x為圖8之磁化方向M2的反向。也就是說,圖12A至圖12C中的磁化方向設定元件400a的電流方向與圖8中的磁化方向設定元件400a的電流方向相反,且圖12A至圖12C中的磁化方向設定元件400b的電流方向與圖8中的磁化方向設定元件400b的電流方向相反。 Specifically, in the first time of three different times, referring to FIG. 12A first, when the external magnetic field has the magnetic field component Hx, the permeation direction setting elements 400a, 400b, 400c, and 400d are respectively independently The combination of the initial magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d to an appropriate direction (hereinafter referred to as the first combination) allows the magnetoresistive units 200a, 200b, 200c, and 200d to correspond to the magnetic field component f1x, F2x, f3x, and f4x produce resistance values of +ΔR, -ΔR, +ΔR, and -ΔR, respectively. For example, when the shorting bars of the magnetoresistive units 200a, 200b, 200c, and 200d in FIGS. 12A to 14C are all extended in the x direction as illustrated in FIG. 8, the first combination refers to the magnetization direction setting. The elements 400a, 400b, 400c, and 400d respectively set the magnetization directions M1x, M2x, M3, and M4 to the magnetoresistive elements 200a, 200b, 200c, and 200d, wherein the magnetization direction M1x is the reverse of the magnetization direction M1 of FIG. 8, and the magnetization direction M2x It is the reverse of the magnetization direction M2 of FIG. That is, the current direction of the magnetization direction setting member 400a in FIGS. 12A to 12C is opposite to the current direction of the magnetization direction setting member 400a in FIG. 8, and the current direction of the magnetization direction setting member 400b in FIGS. 12A to 12C The current direction is opposite to that of the magnetization direction setting element 400b in FIG.

此外,不同於第一實施例,本第二實施例的惠斯登全橋只有一種且不會改變,此種惠斯登全橋例如為:磁電阻單元200a與磁電阻單元200d串接,磁電阻單元200b與磁電阻單元200c串接,前述串接的這兩串再並接,接點V2電性連接於磁電阻單元200a與磁電阻單元200b之間,接點V4電性連接於磁電阻單元 200c與磁電阻單元200d之間,接點V1電性連接於磁電阻單元200a與磁電阻單元200d之間,且接點V3電性連接於磁電阻單元200b與磁電阻單元200c之間。然而,在其他實施例中,此一種不會變化的惠斯登全橋亦可以是如圖5A至圖5C的那種惠斯登全橋、如圖6A至圖6C的那種惠斯登全橋或其他適當形式的惠斯登全橋。 In addition, unlike the first embodiment, the Wheatstone full bridge of the second embodiment has only one type and does not change. Such a Wheatstone full bridge is, for example, a magnetic resistance unit 200a and a magnetoresistive unit 200d connected in series, and magnetic The resistor unit 200b is connected in series with the magnetoresistive unit 200c, and the two series of the series are connected in parallel. The contact V2 is electrically connected between the magnetoresistive unit 200a and the magnetoresistive unit 200b, and the contact V4 is electrically connected to the magnetoresistive resistor. unit Between 200c and the magnetoresistive unit 200d, the contact V1 is electrically connected between the magnetoresistive unit 200a and the magnetoresistive unit 200d, and the contact V3 is electrically connected between the magnetoresistive unit 200b and the magnetoresistive unit 200c. However, in other embodiments, this kind of Wheatstone full bridge that does not change may also be a Wheatstone full bridge as shown in FIGS. 5A to 5C, such as Wheatstone as shown in FIGS. 6A to 6C. Bridge or other appropriate form of Wheatstone Bridge.

在圖12A這種惠斯登全橋的架構下,且這些磁電阻單元200a、200b、200c及200d如上述分別產生+△R、-△R、+△R及-△R的電阻值變化,且當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間便存在一電壓差,即輸出電壓Vx,此輸出電壓Vx即為一差分訊號,其大小會對應於磁場分量Hx的大小。因此,藉由得知輸出電壓Vx的大小,便能夠推知磁場分量Hx的大小。 In the structure of the Wheatstone full bridge of FIG. 12A, and the magnetoresistive units 200a, 200b, 200c, and 200d respectively generate resistance values of +ΔR, -ΔR, +ΔR, and -ΔR, When a voltage difference is applied between the contact V2 and the contact V4, there is a voltage difference between the contact V1 and the contact V3, that is, the output voltage Vx, and the output voltage Vx is a differential signal, and the size thereof will be Corresponds to the magnitude of the magnetic field component Hx. Therefore, by knowing the magnitude of the output voltage Vx, the magnitude of the magnetic field component Hx can be inferred.

請再參照圖12B,當外在磁場有磁場分量Hy時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1y、f2y、f3y及f4y會分別產生-△R、-△R、-△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差為0,也就是此時輸出的差分訊號為零。 Referring again to FIG. 12B, when the external magnetic field has the magnetic field component Hy, the magnetoresistive elements 200a, 200b, 200c, and 200d generate -ΔR, -ΔR, -Δ corresponding to the magnetic field components f1y, f2y, f3y, and f4y, respectively. The resistance values of R and -ΔR vary. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 is 0, that is, the differential signal outputted at this time is zero.

請參照圖12C,當外在磁場有磁場分量Hz時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1z、f2z、f3z及f4z會分別產生-△R、+△R、+△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電 壓差為0,也就是此時輸出的差分訊號為零。 Referring to FIG. 12C, when the external magnetic field has a magnetic field component Hz, the magnetoresistive elements 200a, 200b, 200c, and 200d generate -ΔR, +ΔR, and +ΔR corresponding to the magnetic field components f1z, f2z, f3z, and f4z, respectively. And the resistance value of -ΔR changes. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, the electric power between the contact V1 and the contact V3 The differential voltage is 0, that is, the differential signal output at this time is zero.

因此,在圖12A至圖12C之磁電阻單元200a、200b、200c及200d的初始磁化方向的設定的組合(即上述第一種組合)下,磁場分量Hy與Hz對於接點V1與V3所輸出的電壓是不會有貢獻的,此時的輸出電壓Vx只與磁場分量Hx有關,因此此種磁化方向的設定組合可以用來量測x方向的磁場分量Hx。 Therefore, in the combination of the initial magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d of FIGS. 12A to 12C (i.e., the first combination described above), the magnetic field components Hy and Hz are output for the contacts V1 and V3. The voltage does not contribute, and the output voltage Vx at this time is only related to the magnetic field component Hx, so the combination of the magnetization directions can be used to measure the magnetic field component Hx in the x direction.

在三個不同時間中的第二個時間時,請先參照圖13A,當外在磁場有磁場分量Hx時,透過磁化方向設定元件400a、400b、400c及400d各自獨立地分別將這些磁電阻單元200a、200b、200c及200d的初始磁化方向設定至另一適當的方向的組合(下稱第二種組合),可使這些磁電阻單元200a、200b、200c及200d對應於磁場分量f1x、f2x、f3x及f4x分別產生-△R、-△R、-△R及-△R的電阻值變化。相較於圖12A,圖13A的磁化方向設定元件400a的電流方向與圖12A的磁化方向設定元件400a的電流方向相反,因此圖13A的磁電阻單元200a的初始磁化方向M1會與圖12A的磁電阻單元200a的初始磁化方向M1x相反,所以圖12A的磁電阻單元200a會有+△R的電阻值變化,但圖13A的磁電阻單元200a則是產生-△R的電阻值變化,同理,相較於圖12A,圖13A的磁化方向設定元件400c的電流方向與圖12A的磁化方向設定元件400c的電流方向相反,因此圖13A的磁電阻單元200c的初始磁化方向M3y會與圖12A的磁電阻單元200c的初始磁化方向M3相反,所以圖12A的磁電阻單元200c會有+△R的電阻值 變化,但圖13A的磁電阻單元200c則是產生-△R的電阻值變化。另外,圖13A的磁化方向設定元件400b的電流方向則保持與圖12A的磁化方向設定元件400b的電流方向相同,且圖13A的磁化方向設定元件400d的電流方向保持與圖12A的磁化方向設定元件400d的電流方向相同。 In the second time of three different times, referring to FIG. 13A first, when the external magnetic field has the magnetic field component Hx, the magnetization direction setting elements 400a, 400b, 400c, and 400d respectively independently apply the magnetoresistance units. The combination of the initial magnetization directions of 200a, 200b, 200c, and 200d to another suitable direction (hereinafter referred to as the second combination) allows the magnetoresistive units 200a, 200b, 200c, and 200d to correspond to the magnetic field components f1x, f2x, F3x and f4x respectively produce changes in the resistance values of -ΔR, -ΔR, -ΔR, and -ΔR. Compared with FIG. 12A, the current direction of the magnetization direction setting member 400a of FIG. 13A is opposite to the current direction of the magnetization direction setting member 400a of FIG. 12A, and thus the initial magnetization direction M1 of the magnetoresistive unit 200a of FIG. 13A is the same as that of FIG. 12A. The initial magnetization direction M1x of the resistor unit 200a is reversed, so the magnetoresistive unit 200a of FIG. 12A has a resistance value change of +ΔR, but the magnetoresistive element 200a of FIG. 13A is a resistance value change of -ΔR. Similarly, Compared with FIG. 12A, the current direction of the magnetization direction setting member 400c of FIG. 13A is opposite to the current direction of the magnetization direction setting member 400c of FIG. 12A, and thus the initial magnetization direction M3y of the magnetoresistive unit 200c of FIG. 13A is the same as that of FIG. 12A. The initial magnetization direction M3 of the resistance unit 200c is opposite, so the magnetoresistive unit 200c of FIG. 12A has a resistance value of +ΔR. The change is made, but the magnetoresistive unit 200c of Fig. 13A is a resistance value change that produces -ΔR. In addition, the current direction of the magnetization direction setting element 400b of FIG. 13A is maintained the same as the current direction of the magnetization direction setting element 400b of FIG. 12A, and the current direction of the magnetization direction setting element 400d of FIG. 13A is maintained and the magnetization direction setting element of FIG. 12A. The current direction of 400d is the same.

此外,圖13A的惠斯登全橋與圖12A的惠斯登全橋一樣,並沒有改變。在圖13A這種惠斯登全橋的架構下,且這些磁電阻單元200a、200b、200c及200d如上述分別產生-△R、-△R、-△R及-△R的電阻值變化,且當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差為0,也就是此時輸出的差分訊號為零。 In addition, the Wheatstone Full Bridge of Figure 13A is the same as the Wheatstone Full Bridge of Figure 12A and has not changed. In the structure of the Wheatstone full bridge of FIG. 13A, and the magnetoresistive units 200a, 200b, 200c, and 200d respectively generate resistance values of -ΔR, -ΔR, -ΔR, and -ΔR, When a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 is 0, that is, the differential signal outputted at this time is zero.

請再參照圖13B,當外在磁場有磁場分量Hy時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1y、f2y、f3y及f4y會分別產生+△R、-△R、+△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間便存在一電壓差,即輸出電壓Vy,此輸出電壓Vy即為一差分訊號,其大小會對應於磁場分量Hy的大小。因此,藉由得知輸出電壓Vy的大小,便能夠推知磁場分量Hy的大小。 Referring again to FIG. 13B, when the external magnetic field has the magnetic field component Hy, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, -ΔR, and +Δ corresponding to the magnetic field components f1y, f2y, f3y, and f4y, respectively. The resistance values of R and -ΔR vary. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, there is a voltage difference between the contact V1 and the contact V3, that is, the output voltage Vy, and the output voltage Vy is a differential signal, and its magnitude It will correspond to the magnitude of the magnetic field component Hy. Therefore, by knowing the magnitude of the output voltage Vy, the magnitude of the magnetic field component Hy can be inferred.

請參照圖13C,當外在磁場有磁場分量Hz時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1z、f2z、f3z及f4z會分別產生+△R、+△R、-△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電 壓差為0,也就是此時輸出的差分訊號為零。 Referring to FIG. 13C, when the external magnetic field has a magnetic field component Hz, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, +ΔR, and -ΔR corresponding to the magnetic field components f1z, f2z, f3z, and f4z, respectively. And the resistance value of -ΔR changes. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, the electric power between the contact V1 and the contact V3 The differential voltage is 0, that is, the differential signal output at this time is zero.

因此,在圖13A至圖13C之磁電阻單元200a、200b、200c及200d的初始磁化方向的設定的組合(即上述第二種組合)下,磁場分量Hx與Hz對於接點V1與V3所輸出的電壓是不會有貢獻的,此時的輸出電壓Vy只與磁場分量Hy有關,因此此種磁化方向的設定組合可以用來量測y方向的磁場分量Hy。 Therefore, in the combination of the initial magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d of FIGS. 13A to 13C (ie, the second combination described above), the magnetic field components Hx and Hz are output for the contacts V1 and V3. The voltage does not contribute, and the output voltage Vy at this time is only related to the magnetic field component Hy, so the combination of the magnetization directions can be used to measure the magnetic field component Hy in the y direction.

在三個不同時間中的第三個時間時,請先參照圖14A,當外在磁場有磁場分量Hx時,透過磁化方向設定元件400a、400b、400c及400d各自獨立地分別將這些磁電阻單元200a、200b、200c及200d的初始磁化方向設定至又一適當的方向的組合(下稱第三種組合,即磁化方向M1、M2、M3及M4之組合),可使這些磁電阻單元200a、200b、200c及200d對應於磁場分量f1x、f2x、f3x及f4x分別產生-△R、+△R、+△R及-△R的電阻值變化。相較於圖12A,圖14A的磁化方向設定元件400a的電流方向與圖12A的磁化方向設定元件400a的電流方向相反,因此圖14A的磁電阻單元200a的初始磁化方向M1會與圖12A的磁電阻單元200a的初始磁化方向M1x相反,所以圖12A的磁電阻單元200a會有+△R的電阻值變化,但圖14A的磁電阻單元200a則是產生-△R的電阻值變化,同理,相較於圖12A,圖14A的磁化方向設定元件400b的電流方向與圖12A的磁化方向設定元件400b的電流方向相反,因此圖14A的磁電阻單元200b的初始磁化方向M2會與圖12A的磁電阻單元200b的初始磁化方向M2x相反,所以 圖12A的磁電阻單元200b會有-△R的電阻值變化,但圖14A的磁電阻單元200b則是產生+△R的電阻值變化。另外,圖14A的磁化方向設定元件400c的電流方向則保持與圖12A的磁化方向設定元件400c的電流方向相同,且圖14A的磁化方向設定元件400d的電流方向保持與圖12A的磁化方向設定元件400d的電流方向相同。 In the third time of three different times, referring to FIG. 14A first, when the external magnetic field has the magnetic field component Hx, the magnetization direction setting elements 400a, 400b, 400c, and 400d respectively independently apply the magnetoresistance units. The combination of the initial magnetization directions of 200a, 200b, 200c, and 200d to another suitable direction (hereinafter referred to as the third combination, that is, the combination of magnetization directions M1, M2, M3, and M4) allows these magnetoresistive units 200a, 200b, 200c, and 200d generate resistance values of -ΔR, +ΔR, +ΔR, and -ΔR, respectively, corresponding to the magnetic field components f1x, f2x, f3x, and f4x. Compared with FIG. 12A, the current direction of the magnetization direction setting member 400a of FIG. 14A is opposite to the current direction of the magnetization direction setting member 400a of FIG. 12A, and thus the initial magnetization direction M1 of the magnetoresistive unit 200a of FIG. 14A is the same as that of FIG. 12A. The initial magnetization direction M1x of the resistor unit 200a is reversed, so the magnetoresistive unit 200a of FIG. 12A has a resistance value change of +ΔR, but the magnetoresistive unit 200a of FIG. 14A is a resistance value change of -ΔR. Similarly, Compared with FIG. 12A, the current direction of the magnetization direction setting member 400b of FIG. 14A is opposite to the current direction of the magnetization direction setting member 400b of FIG. 12A, and thus the initial magnetization direction M2 of the magnetoresistive unit 200b of FIG. 14A is the same as that of FIG. 12A. The initial magnetization direction M2x of the resistance unit 200b is opposite, so The magnetoresistive unit 200b of Fig. 12A has a resistance value change of -ΔR, but the magnetoresistive element 200b of Fig. 14A is a resistance value change of +ΔR. Further, the current direction of the magnetization direction setting element 400c of FIG. 14A is maintained the same as the current direction of the magnetization direction setting element 400c of FIG. 12A, and the current direction of the magnetization direction setting element 400d of FIG. 14A is maintained and the magnetization direction setting element of FIG. 12A. The current direction of 400d is the same.

此外,圖14A的惠斯登全橋與圖12A的惠斯登全橋一樣,並沒有改變。在圖14A這種惠斯登全橋的架構下,且這些磁電阻單元200a、200b、200c及200d如上述分別產生-△R、+△R、+△R及-△R的電阻值變化,且當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差為0,也就是此時輸出的差分訊號為零。 In addition, the Wheatstone Full Bridge of Figure 14A is the same as the Wheatstone Full Bridge of Figure 12A and has not changed. In the structure of the Wheatstone full bridge of FIG. 14A, and the magnetoresistive units 200a, 200b, 200c, and 200d respectively generate resistance values of -ΔR, +ΔR, +ΔR, and -ΔR, When a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 is 0, that is, the differential signal outputted at this time is zero.

請再參照圖14B,當外在磁場有磁場分量Hy時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1y、f2y、f3y及f4y會分別產生+△R、+△R、-△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間的電壓差為0,也就是此時輸出的差分訊號為零。 Referring again to FIG. 14B, when the external magnetic field has the magnetic field component Hy, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, +ΔR, and -Δ corresponding to the magnetic field components f1y, f2y, f3y, and f4y, respectively. The resistance values of R and -ΔR vary. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, the voltage difference between the contact V1 and the contact V3 is 0, that is, the differential signal outputted at this time is zero.

請參照圖14C,當外在磁場有磁場分量Hz時,磁電阻單元200a、200b、200c及200d對應於磁場分量f1z、f2z、f3z及f4z會分別產生+△R、-△R、+△R及-△R的電阻值變化。因此,當接點V2與接點V4之間施加一電壓差時,接點V1與接點V3之間便存在一電壓差,即輸出電壓Vz,此輸出電壓Vz即為一差分訊號, 其大小會對應於磁場分量Hz的大小。因此,藉由得知輸出電壓Vz的大小,便能夠推知磁場分量Hz的大小。 Referring to FIG. 14C, when the external magnetic field has a magnetic field component Hz, the magnetoresistive elements 200a, 200b, 200c, and 200d generate +ΔR, -ΔR, and +ΔR corresponding to the magnetic field components f1z, f2z, f3z, and f4z, respectively. And the resistance value of -ΔR changes. Therefore, when a voltage difference is applied between the contact V2 and the contact V4, there is a voltage difference between the contact V1 and the contact V3, that is, the output voltage Vz, which is a differential signal. Its size will correspond to the magnitude of the magnetic field component Hz. Therefore, by knowing the magnitude of the output voltage Vz, the magnitude of the magnetic field component Hz can be inferred.

因此,在圖14A至圖14C之磁電阻單元200a、200b、200c及200d的初始磁化方向的設定的組合(即上述第三種組合)下,磁場分量Hx與Hy對於接點V1與V3所輸出的電壓是不會有貢獻的,此時的輸出電壓Vz只與磁場分量Hz有關,因此此種磁化方向的設定組合可以用來量測z方向的磁場分量Hz。 Therefore, in the combination of the initial magnetization directions of the magnetoresistive units 200a, 200b, 200c, and 200d of FIGS. 14A to 14C (i.e., the above-described third combination), the magnetic field components Hx and Hy are outputted for the contacts V1 and V3. The voltage does not contribute, and the output voltage Vz at this time is only related to the magnetic field component Hz, so the combination of the magnetization directions can be used to measure the magnetic field component Hz in the z direction.

如此一來,當經過了第一時間、第二時間及第三時間之後,磁場感測裝置100便能依序測得外在磁場的磁場分量Hx、磁場分量Hy及磁場分量Hz,藉此可得知外在磁場的大小與方向。當磁場感測裝置100不斷地重複第一時間、第二時間及第三時間的磁化方向的設定方向的第一種、第二種及第三種組合時,便能持續且即時地監控外在磁場相對於磁場感測裝置100的變化,亦即例如可監控磁場感測裝置100相對於地磁的方向變化。另外,上述第一時間、第二時間與第三時間的出現順序亦不作限定,其可以是任何適當的排列方向。 In this way, after the first time, the second time, and the third time, the magnetic field sensing device 100 can sequentially measure the magnetic field component Hx, the magnetic field component Hy, and the magnetic field component Hz of the external magnetic field. Know the magnitude and direction of the external magnetic field. When the magnetic field sensing device 100 continuously repeats the first, second, and third combinations of the setting directions of the magnetization directions of the first time, the second time, and the third time, the external and external monitoring can be continuously and instantaneously The change in the magnetic field relative to the magnetic field sensing device 100, that is, for example, the direction of the magnetic field sensing device 100 relative to the geomagnetic field can be monitored. In addition, the order of appearance of the first time, the second time, and the third time is not limited, and may be any suitable arrangement direction.

綜上所述,在本發明的實施例的磁場感測裝置中,採用了磁通集中器來使三個不同方向的磁場分量彎曲至這些磁電阻單元可感測的方向,且這三個不同方向的磁場分量在彎曲後通過這些磁電阻單元的方向有三種不同的組合。如此一來,透過這些磁電阻單元在三個不同時間電性連接成至少一種惠斯登全橋,便能夠分別量測三個不同方向的磁場分量,並使此至少一種惠斯登全 橋輸出分別對應於三個不同方向的磁場分量的三個訊號。因此,本發明的實施例的磁場感測裝置便能夠具有簡化的結構且同時能實現三軸的磁場量測,進而可以具有較小的體積。 In summary, in the magnetic field sensing device of the embodiment of the present invention, a magnetic flux concentrator is employed to bend the magnetic field components of three different directions to the direction that the magnetoresistance units can sense, and the three different The direction of the magnetic field component is three different combinations of directions through the magnetoresistance elements after bending. In this way, by electrically connecting the magnetoresistive units to at least one Wheatstone bridge at three different times, the magnetic field components in three different directions can be separately measured, and the at least one Wheatstone is fully The bridge outputs three signals corresponding to the magnetic field components of the three different directions, respectively. Therefore, the magnetic field sensing device of the embodiment of the present invention can have a simplified structure and at the same time can realize three-axis magnetic field measurement, and thus can have a small volume.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100:磁場感測裝置 110:磁通集中器 130:基板 112:頂面 116、116a、116b、116c、116d:側面 200、200a、200b、200c、200d:磁電阻單元 400、400a、400b、400c、400d:磁化方向設定元件 x、y、z:方向100: magnetic field sensing device 110: magnetic flux concentrator 130: substrate 112: top surface 116, 116a, 116b, 116c, 116d: side surfaces 200, 200a, 200b, 200c, 200d: magnetoresistive units 400, 400a, 400b, 400c , 400d: magnetization direction setting component x, y, z: direction

Claims (12)

一種磁場感測裝置,包括:一磁通集中器,具有一頂面、一相對於該頂面的底面及多個連接該頂面與該底面的側面;以及多個磁電阻單元,分別配置於該些側面旁,其中該些磁電阻單元在三個不同時間電性連接成至少一種惠斯登全橋,以分別量測三個不同方向的磁場分量,並使該至少一種惠斯登全橋輸出分別對應於該三個不同方向的磁場分量的三個訊號,其中,在該三個不同時間的任一個中,該些磁電阻單元電性連接成的惠斯登全橋的數量為一個。 A magnetic field sensing device includes: a magnetic flux concentrator having a top surface, a bottom surface opposite to the top surface, and a plurality of sides connecting the top surface and the bottom surface; and a plurality of magnetoresistive units respectively disposed on Next to the sides, wherein the magnetoresistive units are electrically connected to at least one Wheatstone full bridge at three different times to respectively measure magnetic field components in three different directions, and to make the at least one Wheatstone full bridge Three signals respectively corresponding to the magnetic field components of the three different directions are output, wherein, in any of the three different times, the number of the Wheatstone full bridges electrically connected to the magnetoresistive units is one. 如申請專利範圍第1項所述的磁場感測裝置,其中在該三個不同時間的任一個時,該至少一種惠斯登全橋所輸出的訊號為對應於該三個不同方向中的一個方向的磁場分量的差分訊號,此時該至少一種惠斯登全橋所產生的對應於該三個不同方向中的其餘兩個方向的磁場分量的差分訊號皆為零。 The magnetic field sensing device of claim 1, wherein at any one of the three different times, the signal output by the at least one Wheatstone bridge corresponds to one of the three different directions. A differential signal of the magnetic field component of the direction, wherein the differential signals generated by the at least one Wheatstone full bridge corresponding to the magnetic field components of the remaining two of the three different directions are all zero. 如申請專利範圍第1項所述的磁場感測裝置,更包括一切換電路,電性連接該些磁電阻單元,其中該至少一種惠斯登全橋為三種惠斯登全橋,該切換電路在該三個不同時間分別將該些磁電阻單元電性連接成該三種惠斯登全橋,該三種惠斯登全橋分別量測該三個不同方向的磁場分量,並分別輸出對應於該三個不同方向的磁場分量的該三個訊號。 The magnetic field sensing device of claim 1, further comprising a switching circuit electrically connected to the magnetoresistive units, wherein the at least one Wheatstone full bridge is three types of Wheatstone full bridges, the switching circuit The three magneto-resistive units are electrically connected to the three Wheatstone full bridges at the three different times, and the three Wheatstone full bridges respectively measure the magnetic field components of the three different directions, and respectively output corresponding to the The three signals of the magnetic field components in three different directions. 如申請專利範圍第3項所述的磁場感測裝置,更包括一基板,其中該磁通集中器與該些磁電阻單元配置於該基板上,且該切換電路設於該基板中。 The magnetic field sensing device of claim 3, further comprising a substrate, wherein the magnetic flux concentrator and the magnetoresistive units are disposed on the substrate, and the switching circuit is disposed in the substrate. 如申請專利範圍第1項所述的磁場感測裝置,更包括多個磁化方向設定元件,分別配置於該些磁電阻單元旁,以分別設定該些磁電阻單元的磁化方向,其中該至少一種惠斯登全橋為一個固定不變的惠斯登全橋的連接方式,該些磁化方向設定元件在該三個不同時間分別將該些磁電阻單元的磁化方向設定成三種不同的組合,以使該種惠斯登全橋在該三個不同時間分別量測該三個不同方向的磁場分量,並分別輸出對應於該三個不同方向的磁場分量的該三個訊號。 The magnetic field sensing device of claim 1, further comprising a plurality of magnetization direction setting elements respectively disposed adjacent to the magnetoresistance units to respectively set magnetization directions of the magnetoresistive units, wherein the at least one The Wheatstone full bridge is a fixed connection of the whole Wheatstone bridge, and the magnetization direction setting components respectively set the magnetization directions of the magnetoresistance units into three different combinations at the three different times. The Wheatstone full bridge is configured to measure the magnetic field components of the three different directions at the three different times, and respectively output the three signals corresponding to the magnetic field components of the three different directions. 如申請專利範圍第1項所述的磁場感測裝置,其中每一該磁電阻單元包括至少一異向性磁電阻。 The magnetic field sensing device of claim 1, wherein each of the magnetoresistive units comprises at least one anisotropic magnetoresistance. 如申請專利範圍第6項所述的磁場感測裝置,其中每一磁電阻單元中的異向性磁電阻的延伸方向平行於對應的側面,且平行於該頂面與該底面。 The magnetic field sensing device of claim 6, wherein the anisotropic magnetoresistance in each of the magnetoresistive elements extends in a direction parallel to the corresponding side surface and parallel to the top surface and the bottom surface. 如申請專利範圍第1項所述的磁場感測裝置,其中該些側面為四個側面,相鄰的二個側面的法線彼此垂直,該三個不同方向為一第一方向、一第二方向及一第三方向,該第一方向與該第二方向落在與該四個側面的多個法線平行的平面上,且與該些法線夾45度角,該第一方向與該第二方向彼此垂直,且該第三方向垂直於該第一方向與該第二方向。 The magnetic field sensing device of claim 1, wherein the sides are four sides, and the normal lines of the two adjacent sides are perpendicular to each other, and the three different directions are a first direction and a second a direction and a third direction, the first direction and the second direction are on a plane parallel to the plurality of normal lines of the four sides, and are at a 45 degree angle with the normal lines, the first direction and the The second directions are perpendicular to each other, and the third direction is perpendicular to the first direction and the second direction. 如申請專利範圍第1項所述的磁場感測裝置,其中該磁通集中器的材料包括導磁率大於10的鐵磁材料。 The magnetic field sensing device of claim 1, wherein the material of the magnetic flux concentrator comprises a ferromagnetic material having a magnetic permeability greater than 10. 如申請專利範圍第1項所述的磁場感測裝置,其中該磁通集中器的殘磁小於其飽和磁化量的10%。 The magnetic field sensing device of claim 1, wherein the magnetic flux concentrator has a residual magnetization less than 10% of its saturation magnetization. 如申請專利範圍第1項所述的磁場感測裝置,其中該底面的二個對角線分別平行於該三個不同方向的其中二個,且該三個不同方向的剩餘一個垂直於該底面。 The magnetic field sensing device of claim 1, wherein the two diagonal lines of the bottom surface are respectively parallel to two of the three different directions, and the remaining one of the three different directions is perpendicular to the bottom surface. . 如申請專利範圍第1項所述的磁場感測裝置,更包括一基板,其中該磁通集中器與該些磁電阻單元配置於該基板上,且該基板為半導體基板、玻璃基板或電路基板。The magnetic field sensing device of claim 1, further comprising a substrate, wherein the magnetic flux concentrator and the magnetoresistive units are disposed on the substrate, and the substrate is a semiconductor substrate, a glass substrate or a circuit substrate .
TW105119513A 2015-10-16 2016-06-22 Magnetic field sensing apparatus TWI595249B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610711916.7A CN106597326B (en) 2015-10-16 2016-08-24 Magnetic field sensing device
US15/287,740 US10168398B2 (en) 2015-10-16 2016-10-07 Magnetic field sensing apparatus
US16/191,447 US10551447B2 (en) 2015-10-16 2018-11-15 Magnetic field sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562242306P 2015-10-16 2015-10-16

Publications (2)

Publication Number Publication Date
TW201715251A TW201715251A (en) 2017-05-01
TWI595249B true TWI595249B (en) 2017-08-11

Family

ID=59366910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119513A TWI595249B (en) 2015-10-16 2016-06-22 Magnetic field sensing apparatus

Country Status (1)

Country Link
TW (1) TWI595249B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703336B (en) * 2018-08-15 2020-09-01 愛盛科技股份有限公司 Magnetic field sensing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270474B (en) 2017-07-17 2021-12-14 爱盛科技股份有限公司 Magnetic field sensing element and magnetic field sensing device
CN111707977B (en) 2019-03-18 2022-10-04 爱盛科技股份有限公司 Magnetic field sensing device
CN111948583A (en) * 2019-05-17 2020-11-17 爱盛科技股份有限公司 Magnetic field sensing device
TWI739107B (en) * 2019-05-17 2021-09-11 愛盛科技股份有限公司 Magnetic field sensing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242805A1 (en) * 2003-07-18 2005-11-03 Aichi Steel Corporation Three-dimensional magnetic direction sensor, and magneto-impedance sensor element
JP2006508544A (en) * 2002-11-27 2006-03-09 フリースケール セミコンダクター インコーポレイテッド Magnetoelectronic device and method for forming the same
TW201430365A (en) * 2013-01-28 2014-08-01 Meng-Huang Lai Planarized 3 dimensional magnetic sensor chip
TW201520574A (en) * 2013-11-17 2015-06-01 Isentek Inc Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
TW201520575A (en) * 2013-11-28 2015-06-01 Univ Nat Taiwan Magnetic field sensing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508544A (en) * 2002-11-27 2006-03-09 フリースケール セミコンダクター インコーポレイテッド Magnetoelectronic device and method for forming the same
US20050242805A1 (en) * 2003-07-18 2005-11-03 Aichi Steel Corporation Three-dimensional magnetic direction sensor, and magneto-impedance sensor element
TW201430365A (en) * 2013-01-28 2014-08-01 Meng-Huang Lai Planarized 3 dimensional magnetic sensor chip
TW201520574A (en) * 2013-11-17 2015-06-01 Isentek Inc Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
TW201520575A (en) * 2013-11-28 2015-06-01 Univ Nat Taiwan Magnetic field sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703336B (en) * 2018-08-15 2020-09-01 愛盛科技股份有限公司 Magnetic field sensing device

Also Published As

Publication number Publication date
TW201715251A (en) 2017-05-01

Similar Documents

Publication Publication Date Title
CN106597326B (en) Magnetic field sensing device
TWI595249B (en) Magnetic field sensing apparatus
US9606144B2 (en) Probe card and method for testing magnetic sensors
US9069033B2 (en) 3-axis magnetic field sensor, method for fabricating magnetic field sensing structure and magnetic field sensing circuit
CN108072850B (en) Magnetic field sensing device
JP6526319B2 (en) Balanced magnetic field detector
US10877107B2 (en) Magnetic field sensing device and magnetic field sensing apparatus
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
TWI638140B (en) Magnetic field sensing apparatus
US20170115360A1 (en) Magnetic Field Sensor With Integrated Self-Test Reset Wire
US11009562B2 (en) Magnetic field sensing apparatus
JP2016176911A (en) Magnetic sensor
US11035913B2 (en) Magnetic field sensing device
JP4023476B2 (en) A compass with a spin-valve giant magnetoresistive element
US9835692B2 (en) Magnetic detection device
WO2011074488A1 (en) Magnetic sensor
US11243275B2 (en) Magnetic field sensing device
JP4482866B2 (en) A compass with a giant magnetoresistive element
CN110837066B (en) Magnetic field sensing device
JP5453198B2 (en) Magnetic sensor
JP2009281784A (en) Magnetometric sensor
JP6699638B2 (en) Magnetic sensor
JP6222897B2 (en) Multi-axis magnetic sensor and manufacturing method thereof
JP2014142297A (en) Proximity sensor, and game machine