TWI739107B - Magnetic field sensing apparatus - Google Patents

Magnetic field sensing apparatus Download PDF

Info

Publication number
TWI739107B
TWI739107B TW108117005A TW108117005A TWI739107B TW I739107 B TWI739107 B TW I739107B TW 108117005 A TW108117005 A TW 108117005A TW 108117005 A TW108117005 A TW 108117005A TW I739107 B TWI739107 B TW I739107B
Authority
TW
Taiwan
Prior art keywords
current
magnetic field
magnetization direction
magnetoresistive sensor
direction setting
Prior art date
Application number
TW108117005A
Other languages
Chinese (zh)
Other versions
TW202043796A (en
Inventor
袁輔德
Original Assignee
愛盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛盛科技股份有限公司 filed Critical 愛盛科技股份有限公司
Priority to TW108117005A priority Critical patent/TWI739107B/en
Publication of TW202043796A publication Critical patent/TW202043796A/en
Application granted granted Critical
Publication of TWI739107B publication Critical patent/TWI739107B/en

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一種磁場感測裝置,包括至少一磁阻感測器以磁化方向設定元件。磁化方向設定元件設置於至少一磁阻感測器旁。磁化方向設定元件具有彼此相對的電流入口與電流出口。至少一磁阻感測器位於電流入口與電流出口之間,且至少一磁阻感測器的至少一部分的正投影與磁化方向設定元件的正投影重疊。磁化方向設定元件更包括多個電流路徑調整結構。多個電流路徑調整結構位於電流入口與至少一磁阻感測器之間的區域且用以界定來自電流入口的電流的電流分佈。A magnetic field sensing device includes at least one magnetoresistive sensor to set the element in the magnetization direction. The magnetization direction setting element is arranged beside at least one magnetoresistive sensor. The magnetization direction setting element has a current inlet and a current outlet opposite to each other. At least one magnetoresistive sensor is located between the current inlet and the current outlet, and the orthographic projection of at least a part of the at least one magnetoresistive sensor overlaps with the orthographic projection of the magnetization direction setting element. The magnetization direction setting element further includes a plurality of current path adjustment structures. A plurality of current path adjustment structures are located in the area between the current inlet and the at least one magnetoresistive sensor and used to define the current distribution of the current from the current inlet.

Description

磁場感測裝置Magnetic field sensing device

本發明是有關於一種磁場感測裝置。The invention relates to a magnetic field sensing device.

當偵測外部磁場時,磁場感測裝置會藉由內部的磁化方向設定元件產生一設定磁場以使磁阻感測器沿著其延伸方向磁化,並藉此來設定磁阻感測器的磁化方向。通常的做法是在磁阻感測器旁設置一個施加電流的導體以產生設定磁場來磁化磁阻感測器。When detecting an external magnetic field, the magnetic field sensing device generates a setting magnetic field through the internal magnetization direction setting element to magnetize the magnetoresistive sensor along its extension direction, and thereby set the magnetization of the magnetoresistive sensor direction. The usual practice is to install a current-applying conductor next to the magnetoresistive sensor to generate a set magnetic field to magnetize the magnetoresistive sensor.

一般來說,當電流進入導體後,大部分的電流會由電流入口並以最小阻抗路徑在導體內部行進而前往電流出口,由於上述幾何關係與電流的傳遞方式,導致電流集中經過導體的部分區域而造成導體內部電流密度分佈不均勻。此外,電流的行進方向也會隨著其行進路線而改變。因此,導體不同區域所產生的磁場強度與磁場方向有可能是不同的。上述的現象導致了磁阻感測器無法均勻地磁化,而影響後續磁場感測裝置的量測結果。Generally speaking, when current enters the conductor, most of the current will flow through the current inlet and travel through the conductor with the smallest impedance path to the current outlet. Due to the above geometrical relationship and the current transmission method, the current will concentrate through a part of the conductor. As a result, the current density distribution inside the conductor is uneven. In addition, the current travel direction will also change with its travel route. Therefore, the strength and direction of the magnetic field generated by different areas of the conductor may be different. The above phenomenon causes the magnetoresistive sensor to be unable to be magnetized uniformly, which affects the measurement result of the subsequent magnetic field sensing device.

本發明提供一種磁場感測裝置,其內部的磁阻感測器可均勻地磁化而具有精確的量測結果。The invention provides a magnetic field sensing device, in which the magnetoresistive sensor can be uniformly magnetized and has accurate measurement results.

本發明的一實施例中提供一種磁場感測裝置,包括至少一磁阻感測器以及磁化方向設定元件。磁化方向設定元件設置於至少一磁阻感測器旁。磁化方向設定元件具有彼此相對的電流入口與電流出口。至少一磁阻感測器位於電流入口與電流出口之間,且至少一磁阻感測器的至少一部分的正投影與磁化方向設定元件的正投影重疊。磁化方向設定元件更包括多個電流路徑調整結構,且多個電流路徑調整結構位於電流入口與至少一磁阻感測器之間的區域且用以界定來自所述電流入口的電流的電流分佈。An embodiment of the present invention provides a magnetic field sensing device, which includes at least one magnetoresistive sensor and a magnetization direction setting element. The magnetization direction setting element is arranged beside at least one magnetoresistive sensor. The magnetization direction setting element has a current inlet and a current outlet opposite to each other. At least one magnetoresistive sensor is located between the current inlet and the current outlet, and the orthographic projection of at least a part of the at least one magnetoresistive sensor overlaps with the orthographic projection of the magnetization direction setting element. The magnetization direction setting element further includes a plurality of current path adjustment structures, and the plurality of current path adjustment structures are located in the area between the current inlet and the at least one magnetoresistive sensor and used to define the current distribution of the current from the current inlet.

在本發明的一實施例中,上述的這些電流路徑調整結構包括彼此不同的第一電流路徑調整結構、第二電流路徑調整結構以及第三電流路徑調整結構。In an embodiment of the present invention, the aforementioned current path adjustment structures include a first current path adjustment structure, a second current path adjustment structure, and a third current path adjustment structure that are different from each other.

在本發明的一實施例中,上述的第一電流路徑調整結構包括至少一開口。In an embodiment of the present invention, the aforementioned first current path adjusting structure includes at least one opening.

在本發明的一實施例中,上述的至少一開口的形狀包括圓形、橢圓形、三角形、四邊形或多邊形。In an embodiment of the present invention, the shape of the at least one opening described above includes a circle, an ellipse, a triangle, a quadrilateral, or a polygon.

在本發明的一實施例中,上述的第二電流路徑調整結構為斜面結構,且第二電流路徑調整結構位於電流入口的至少一側。In an embodiment of the present invention, the above-mentioned second current path adjustment structure is a slope structure, and the second current path adjustment structure is located at least on one side of the current inlet.

在本發明的一實施例中,上述的第三電流路徑調整結構包括缺口(notch)。In an embodiment of the present invention, the aforementioned third current path adjustment structure includes a notch.

在本發明的一實施例中,定義一參考軸。參考軸通過磁化方向設定元件的中央處。參考軸具有相對的第一側與第二側。電流入口位於第一側。電流出口位於第二側。缺口位於第一側。In an embodiment of the present invention, a reference axis is defined. The reference axis is set at the center of the element through the magnetization direction. The reference shaft has opposite first and second sides. The current inlet is located on the first side. The current outlet is located on the second side. The notch is on the first side.

在本發明的一實施例中,上述的這些電流路徑調整結構包括至少一開口、缺口、斜面結構與其組合。In an embodiment of the present invention, the above-mentioned current path adjusting structures include at least one opening, a gap, an inclined surface structure and a combination thereof.

在本發明的一實施例中,上述的磁場感測裝置更包括一電流產生器。電流產生器用以產生上述電流。電流產生器與磁化方向設定元件耦接。電流由電流入口進入磁化方向設定元件且由電流出口離開磁化方向設定元件。In an embodiment of the present invention, the above-mentioned magnetic field sensing device further includes a current generator. The current generator is used to generate the above-mentioned current. The current generator is coupled with the magnetization direction setting element. The current enters the magnetization direction setting element from the current inlet and leaves the magnetization direction setting element from the current outlet.

在本發明的一實施例中,上述的磁阻感測器的種類為異向性磁阻感測器。In an embodiment of the present invention, the type of the aforementioned magnetoresistive sensor is an anisotropic magnetoresistive sensor.

基於上述,在本發明實施例的磁場感測裝置中,多個電流路徑調整結構位於磁化方向設定元件的電流入口與至少一磁阻感測器之間。在電流流經磁阻感測器之前,這些電流路徑調整結構能夠調整電流的路徑以界定電流的電流分佈而使電流均勻地往同一方向傳遞。因此,磁化方向設定元件能夠使磁阻感測器均勻地磁化,從而磁場感測裝置具有精確的量測結果。Based on the above, in the magnetic field sensing device of the embodiment of the present invention, a plurality of current path adjustment structures are located between the current inlet of the magnetization direction setting element and at least one magnetoresistive sensor. Before the current flows through the magnetoresistive sensor, these current path adjustment structures can adjust the current path to define the current distribution of the current so that the current is uniformly transmitted in the same direction. Therefore, the magnetization direction setting element can uniformly magnetize the magnetoresistive sensor, so that the magnetic field sensing device has an accurate measurement result.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1是依照本發明的一實施例的一種磁場感測裝置的上視示意圖。圖2A與圖2B為圖1中異向性磁阻感測器的不同佈局方法。圖3是一比較實施例的磁場感測裝置的上視示意圖。圖4A是圖1中剖面A-A’的電流強度與距離的關係圖。圖4B是圖3中剖面B-B’的電流強度與位置的關係圖。FIG. 1 is a schematic top view of a magnetic field sensing device according to an embodiment of the invention. 2A and 2B are different layout methods of the anisotropic magnetoresistive sensor in FIG. 1. FIG. 3 is a schematic top view of a magnetic field sensing device of a comparative embodiment. Fig. 4A is a diagram showing the relationship between current intensity and distance of the section A-A' in Fig. 1. Fig. 4B is a diagram showing the relationship between current intensity and position of the section B-B' in Fig. 3.

請參照圖1,在本實施例中,磁場感測裝置100包括至少一磁阻感測器110(例如是兩個)、磁化方向設定元件120、多個磁化方向設定元件12(例如是兩個)以及電流產生器130,其中磁化方向設定元件120包括多個電流路徑調整結構122,而磁化方向設定元件12則不設有電流路徑調整結構122。於以下的段落中會詳細地說明以上元件。1, in this embodiment, the magnetic field sensing device 100 includes at least one magnetoresistive sensor 110 (for example, two), a magnetization direction setting element 120, and a plurality of magnetization direction setting elements 12 (for example, two ) And the current generator 130, wherein the magnetization direction setting element 120 includes a plurality of current path adjustment structures 122, and the magnetization direction setting element 12 does not have a current path adjustment structure 122. The above components will be explained in detail in the following paragraphs.

在本發明實施例中所指的磁阻感測器110係指其電阻可經由外在磁場變化而對應改變的感測器。於本例中,磁阻感測器110可為異向性磁阻感測器(Anisotropic Magneto-Resistive resistor, AMR resistor)。參照圖2A以及圖2B,異向性磁阻感測器110例如是具有理髮店招牌(barber pole)狀結構,亦即其表面設有相對於異向性磁阻感測器110的延伸方向D傾斜45度延伸的多個短路棒(electrical shorting bar)SB,這些短路棒SB彼此相間隔且平行地設置於鐵磁膜(ferromagnetic film)FF上,而鐵磁膜FF為異向性磁阻感測器110的主體,其延伸方向即為異向性磁阻感測器110的延伸方向。異向性磁阻感測器110的感測方向SD垂直於延伸方向D。此外,鐵磁膜FF的相對兩端可製作成尖端狀(tapered)。The magnetoresistive sensor 110 referred to in the embodiment of the present invention refers to a sensor whose resistance can be changed correspondingly through changes in an external magnetic field. In this example, the magnetoresistive sensor 110 may be an Anisotropic Magneto-Resistive resistor (AMR resistor). 2A and 2B, the anisotropic magnetoresistive sensor 110 has, for example, a barber pole-like structure, that is, its surface is provided with an extension direction D relative to the anisotropic magnetoresistive sensor 110 A plurality of electrical shorting bars SB extending at an oblique angle of 45 degrees, these shorting bars SB are spaced apart from each other and arranged in parallel on the ferromagnetic film (ferromagnetic film) FF, and the ferromagnetic film FF is anisotropic magnetoresistive inductance The extension direction of the main body of the sensor 110 is the extension direction of the anisotropic magnetoresistive sensor 110. The sensing direction SD of the anisotropic magnetoresistive sensor 110 is perpendicular to the extending direction D. In addition, the opposite ends of the ferromagnetic film FF can be made tapered.

在本發明實施例中所指的磁化方向設定元件12、120可為藉由通電流而產生磁場的線圈、導線、金屬片、其他適合的電導體或上述元件組合的任一態樣。磁化方向設定元件12、120分別具有相對的電流入口E與電流出口O。The magnetization direction setting elements 12 and 120 referred to in the embodiment of the present invention can be coils, wires, metal sheets, other suitable electrical conductors, or any combination of the foregoing elements that generate a magnetic field by passing current. The magnetization direction setting elements 12 and 120 respectively have a current inlet E and a current outlet O opposite to each other.

在本發明實施例中所指的電流路徑調整結構122(或稱電流路徑限制結構)係泛指在功能上用以調整/限制電流路徑的結構。電流路徑調整結構122可為磁化方向設定元件120內的開口、斜面結構、缺口(notch)或其組合,本發明並不以此為限。舉例來說,磁化方向設定元件120包括彼此不同態樣的第一、第二與第三電流路徑調整結構122a、122b、122c。於本發明實施例中,第一電流路徑調整結構122a例如是可使磁化方向設定元件120部分區域的電阻值提高,其具體架構例如是開口,但不以此為限。開口的形狀例如是圓形、橢圓形、三角形、四邊形或多邊形,但不以此為限。第二電流路徑調整結構122b例如是可調整/限制電流路徑的結構,其具體架構例如是斜面結構,但不以此為限。第三電流路徑調整結構122c例如是可補償電流入口E與電流出口O之間的幾何配置關係的結構,其具體架構例如是一與外界連通的缺口,但不以此為限。The current path adjusting structure 122 (or current path limiting structure) referred to in the embodiment of the present invention generally refers to a structure that is functionally used to adjust/limit a current path. The current path adjusting structure 122 may be an opening in the magnetization direction setting element 120, a slope structure, a notch, or a combination thereof, and the present invention is not limited thereto. For example, the magnetization direction setting element 120 includes first, second, and third current path adjustment structures 122a, 122b, and 122c that are different from each other. In the embodiment of the present invention, the first current path adjusting structure 122a can, for example, increase the resistance value of a partial area of the magnetization direction setting element 120, and the specific structure thereof is, for example, an opening, but it is not limited thereto. The shape of the opening is, for example, a circle, an ellipse, a triangle, a quadrilateral, or a polygon, but it is not limited thereto. The second current path adjusting structure 122b is, for example, a structure that can adjust/limit the current path, and its specific structure is, for example, a slope structure, but it is not limited thereto. The third current path adjustment structure 122c is, for example, a structure that can compensate for the geometric configuration relationship between the current inlet E and the current outlet O. The specific structure thereof is, for example, a gap connected to the outside, but is not limited to this.

在本發明實施例所指的電流產生器130係指用以提供電流I的電子元件。The current generator 130 referred to in the embodiment of the present invention refers to an electronic component used to provide a current I.

於以下的段落中會詳細地說明磁場感測裝置100的元件配置方式。The component arrangement of the magnetic field sensing device 100 will be described in detail in the following paragraphs.

請參照圖1,磁化方向設定元件12、120設置於至少一磁阻感測器110旁,且磁阻感測器110的至少一部分的正投影與磁化方向設定元件120的正投影重疊。詳細來說,兩個磁化方向設定元件12分別設置於磁阻感測器110的邊緣部分EP的下方,磁化方向設定元件120則設置於磁阻感測器110的中央部分MP的下方(即磁阻感測器110的中央部分MP的正投影與磁化方向設定元件120的正投影重疊)。於其他的實施例中,磁化方向設定元件12、120亦可以設置於至少一磁阻感測器110的上方,本發明並不以此為限。也就是說,磁化方向設定元件12、120分別用以設定磁阻感測器110邊緣部分EP與中央部分MP的磁化方向。Please refer to FIG. 1, the magnetization direction setting elements 12 and 120 are disposed beside at least one magnetoresistive sensor 110, and the orthographic projection of at least a part of the magnetoresistive sensor 110 overlaps with the orthographic projection of the magnetization direction setting element 120. In detail, the two magnetization direction setting elements 12 are respectively arranged under the edge part EP of the magnetoresistive sensor 110, and the magnetization direction setting element 120 is arranged under the central part MP of the magnetoresistive sensor 110 (that is, the magnetic The orthographic projection of the central part MP of the resistance sensor 110 overlaps with the orthographic projection of the magnetization direction setting element 120). In other embodiments, the magnetization direction setting elements 12 and 120 may also be disposed above the at least one magnetoresistive sensor 110, and the invention is not limited to this. In other words, the magnetization direction setting elements 12 and 120 are respectively used to set the magnetization directions of the edge portion EP and the central portion MP of the magnetoresistive sensor 110.

請再參照圖1,磁化方向設定元件120可被分為第一部分P1(上部分)與第二部分P2(下部分)。第一部分P1鄰近於電流入口E,第二部分P2鄰近於電流出口O。這些電流路徑調整結構120位於電流入口E與至少一磁阻感測器110之間的區域。換言之,這些電流路徑調整結構120設置於第一部分P1。1 again, the magnetization direction setting element 120 can be divided into a first part P1 (upper part) and a second part P2 (lower part). The first part P1 is adjacent to the current inlet E, and the second part P2 is adjacent to the current outlet O. These current path adjusting structures 120 are located in the area between the current inlet E and the at least one magnetoresistive sensor 110. In other words, these current path adjusting structures 120 are provided in the first part P1.

詳細來說,在第一部分P1中,第一電流路徑調整結構122a(開口)設置於電流入口E與第二部分P2之間。第二電流路徑調整結構122b(斜面結構)位於電流入口E的相對兩側,而形成一寬度往方向D1漸變的區域,而使第一部分P1的形狀看起來為一類梯形的形狀,其中類梯形的底角θ的範圍可在20度至70度的範圍內,本發明並不以此為限。而第三電流路徑調整結構122c的位置則是依據電流入口E與電流出口O之間的位置不對稱性來設置。定義一通過磁化方向設定元件120的中央處的參考軸R。參考軸R具有相對的第一、第二側S1、S2。電流入口E位於第一側S1(右側),電流出口O位於第二側S2(左側),而第三電流路徑調整結構122c的位置則是設置於電流入口E同側的第一側S1。In detail, in the first part P1, the first current path adjusting structure 122a (opening) is provided between the current inlet E and the second part P2. The second current path adjusting structure 122b (inclined structure) is located on opposite sides of the current inlet E, and forms an area with a width gradual to the direction D1, so that the shape of the first part P1 looks like a trapezoid shape, wherein the trapezoid-like shape The range of the base angle θ can be in the range of 20 degrees to 70 degrees, and the present invention is not limited thereto. The position of the third current path adjustment structure 122c is set according to the position asymmetry between the current inlet E and the current outlet O. A reference axis R passing through the center of the magnetization direction setting element 120 is defined. The reference axis R has opposite first and second sides S1, S2. The current inlet E is located on the first side S1 (right side), the current outlet O is located on the second side S2 (left side), and the third current path adjusting structure 122c is located on the first side S1 on the same side of the current inlet E.

此外,電流產生器130藉由導線與磁化方向設定元件12、120耦接,並用以提供電流I於磁化方向設定元件12、120以使其產生磁場方向為方向D2的一設定磁場,其中導線以螺旋式的方式與磁化方向設定元件12、120耦接。應注意的是,於本實施例中,由於磁化方向設定元件12、120設置於磁阻感測器110的下方,因此可提供磁阻感測器110磁場方向為方向D2的一設定磁場。於其他的實施例中,可將磁化方向設定元件12、120設置於磁阻感測器110的上方,以使磁化方向設定元件12、120提供磁阻感測器110磁場方向為方向D2的反方向的一設定磁場,本發明並不以此為限。In addition, the current generator 130 is coupled to the magnetization direction setting elements 12, 120 through wires, and is used to provide a current I to the magnetization direction setting elements 12, 120 to generate a set magnetic field with the direction of the magnetic field as the direction D2. The spiral manner is coupled to the magnetization direction setting elements 12 and 120. It should be noted that in this embodiment, since the magnetization direction setting elements 12 and 120 are disposed under the magnetoresistive sensor 110, a set magnetic field with the magnetic field direction of the magnetoresistive sensor 110 in the direction D2 can be provided. In other embodiments, the magnetization direction setting elements 12, 120 may be arranged above the magnetoresistive sensor 110, so that the magnetization direction setting elements 12, 120 provide the magnetic field direction of the magnetoresistive sensor 110 as the opposite of the direction D2. The direction of a set magnetic field, the present invention is not limited to this.

為了要說明本發明的磁場方向設定元件120與電流路徑調整結構122的用途,於以下的段落先簡介本發明實施例的磁場感測裝置100量測磁場的基本原理。In order to explain the use of the magnetic field direction setting element 120 and the current path adjusting structure 122 of the present invention, the basic principle of the magnetic field sensing device 100 of the embodiment of the present invention for measuring the magnetic field will be introduced in the following paragraphs.

異向性磁阻感測器110在開始量測外在磁場H之前,可先藉由磁化方向設定元件120來設定其磁化方向。在圖2A中,磁化方向設定元件120可藉由通電產生沿著延伸方向D(或稱長軸方向)的磁場,以使異向性磁阻感測器110具有磁化方向M。Before the anisotropic magnetoresistive sensor 110 starts to measure the external magnetic field H, its magnetization direction can be set by the magnetization direction setting element 120 first. In FIG. 2A, the magnetization direction setting element 120 can generate a magnetic field along the extension direction D (or the long axis direction) by energization, so that the anisotropic magnetoresistive sensor 110 has a magnetization direction M.

接著,磁化方向設定元件120不通電,以使異向性磁阻感測器110開始量測外在磁場H。當沒有外在磁場H時,異向性磁阻感測器110的磁化方向M維持在延伸方向D上,此時電流產生器130可施加一電流I,使電流I從異向性磁阻感測器110的左端流往右端,則短路棒SB附近的電流I的流向會與短路棒SB的延伸方向垂直,而使得短路棒SB附近的電流I流向與磁化方向M夾45度,此時異向性磁阻感測器110的電阻值為R。Then, the magnetization direction setting element 120 is not energized, so that the anisotropic magnetoresistive sensor 110 starts to measure the external magnetic field H. When there is no external magnetic field H, the magnetization direction M of the anisotropic magnetoresistive sensor 110 is maintained in the extension direction D. At this time, the current generator 130 can apply a current I to change the current I from the anisotropic magnetoresistive sensor. If the left end of the detector 110 flows to the right end, the current I near the shorting bar SB will flow perpendicular to the extension direction of the shorting bar SB, and the current I near the shorting bar SB will flow 45 degrees with the magnetization direction M. The resistance value of the directional magnetoresistive sensor 110 is R.

當有一外在磁場H朝向垂直於延伸方向D的方向時,異向性磁阻感測器110的磁化方向M會往外在磁場H的方向偏轉,而使得磁化方向與短路棒附近的電流I流向的夾角大於45度,此時異向性磁阻感測器110的電阻值有-ΔR的變化,即成為R-ΔR,也就是電阻值變小,其中ΔR大於0。When an external magnetic field H faces a direction perpendicular to the extension direction D, the magnetization direction M of the anisotropic magnetoresistive sensor 110 will be deflected to the direction of the external magnetic field H, so that the magnetization direction and the current I near the shorting bar flow The included angle of is greater than 45 degrees. At this time, the resistance value of the anisotropic magnetoresistive sensor 110 changes by -ΔR, that is, R-ΔR, that is, the resistance value becomes smaller, where ΔR is greater than zero.

然而,若如圖2B所示,當圖2B的短路棒SB的延伸方向設於與圖2A的短路棒SB的延伸方向夾90度的方向時(此時圖2B的短路棒SB的延伸方向仍與異向性磁阻感測器110的延伸方向D夾45度),且當有一外在磁場H時,此外在磁場H仍會使磁化方向M往外在磁場H的方向偏轉,此時磁化方向M與短路棒SB附近的電流I流向的夾角會小於45度,如此異向性磁阻感測器110的電阻值會變成R+ΔR,亦即異向性磁阻感測器110的電阻值變大。However, as shown in FIG. 2B, when the extension direction of the shorting bar SB in FIG. 2B is set at 90 degrees to the extension direction of the shorting bar SB in FIG. 2A (at this time, the extension direction of the shorting bar SB in FIG. 2B is still It is 45 degrees between the extension direction D of the anisotropic magnetoresistive sensor 110), and when there is an external magnetic field H, in addition, the magnetic field H will still deflect the magnetization direction M to the direction of the external magnetic field H. At this time, the magnetization direction The angle between M and the current I near the shorting bar SB will be less than 45 degrees, so the resistance value of the anisotropic magnetoresistive sensor 110 will become R+ΔR, which is the resistance value of the anisotropic magnetoresistive sensor 110 Get bigger.

此外,藉由磁化方向設定元件120將異向性磁阻感測器110的磁化方向M設定為圖2A所示的反向時,之後在外在磁場H下的圖2A的異向性磁阻感測器110的電阻值會變成R+ΔR。再者,藉由磁化方向設定元件120將異向性磁阻感測器110的磁化方向M設定為圖2B所示的反向時,之後在外在磁場H下的圖2B的異向性磁阻感測器110的電阻值會變成R-ΔRIn addition, when the magnetization direction M of the anisotropic magnetoresistive sensor 110 is set to the reverse direction shown in FIG. 2A by the magnetization direction setting element 120, the anisotropic magnetoresistive sensor of FIG. The resistance value of the detector 110 becomes R+ΔR. Furthermore, when the magnetization direction M of the anisotropic magnetoresistive sensor 110 is set to the reverse direction as shown in FIG. 2B by the magnetization direction setting element 120, the anisotropic magnetoresistance of FIG. 2B under the external magnetic field H is thereafter The resistance value of the sensor 110 will become R-ΔR

因此,本發明實施例的磁場感測裝置100可藉由四個以上的磁阻感測器110來構成一至多個惠斯同電橋,所屬技術領域中具有通常知識者可依據這些磁阻感測器110並搭配不同的電路設計以及上述電阻值的變化情形,以對應量測到外在磁場H在不同方向上的磁場分量的訊號。或者是,於本實施例中,磁場感測裝置100亦可以只具有一至三個磁阻感測器110。磁場感測裝置100可單就各別的磁阻感測器110對外在磁場H的變化而產生的一響應訊號,而得知磁場的變化。於本實施例中,示出兩個磁阻感測器110為例,本發明並不以磁阻感測器110的數量為限制。Therefore, the magnetic field sensing device 100 of the embodiment of the present invention can form one or more Wheatstone bridges by using more than four magnetoresistive sensors 110. Those skilled in the art can use these magnetoresistive sensors. The detector 110 is matched with different circuit designs and the above-mentioned resistance value changes to correspondingly measure the signals of the magnetic field components of the external magnetic field H in different directions. Alternatively, in this embodiment, the magnetic field sensing device 100 may also have only one to three magnetoresistive sensors 110. The magnetic field sensing device 100 can learn the change of the magnetic field only by a response signal generated by the respective magnetoresistive sensor 110 to the change of the external magnetic field H. In this embodiment, two magnetoresistive sensors 110 are shown as an example, and the number of magnetoresistive sensors 110 is not limited in the present invention.

由上述可知,要測量外在磁場H之前,需要藉由磁化方向設定元件120對磁阻感測器110設定磁化方向。於以下的段落中會詳細地說明磁化方向設定元件120中各電流路徑調整結構122的效果。It can be seen from the above that before measuring the external magnetic field H, it is necessary to set the magnetization direction of the magnetoresistive sensor 110 through the magnetization direction setting element 120. The effect of each current path adjusting structure 122 in the magnetization direction setting element 120 will be described in detail in the following paragraphs.

為了要說明本實施例的電流路徑調整結構122的效果,於圖3示出了一比較實施例的磁場感測裝置10的上視示意圖,磁場感測裝置10與圖1的磁場感測裝置100大致上相同,其差異在於:磁化方向設定元件120’亦包括鄰近於電流入口E的第一部分P1’與鄰近於電流出口O的第二部分P2’,其中第一部分P1’不設有任何的電流路徑調整結構,且第一部分P1’的形態為一矩形。此外,於以下的段落中,所謂的磁場方向設定元件12、120的磁場設定部分係指:磁化方向設定元件12、120中與磁阻感測器110重疊的部分,即斜線部分的部分。In order to illustrate the effect of the current path adjustment structure 122 of this embodiment, FIG. 3 shows a schematic top view of a magnetic field sensing device 10 of a comparative embodiment. The magnetic field sensing device 10 is similar to the magnetic field sensing device 100 of FIG. The difference is that the magnetization direction setting element 120' also includes a first part P1' adjacent to the current inlet E and a second part P2' adjacent to the current outlet O, wherein the first part P1' does not have any current The path adjustment structure, and the shape of the first part P1' is a rectangle. In addition, in the following paragraphs, the so-called magnetic field setting parts of the magnetic field direction setting elements 12 and 120 refer to the part of the magnetization direction setting elements 12 and 120 that overlaps the magnetoresistive sensor 110, that is, the oblique lined part.

請先參照圖3,當電流產生器130發出一電流I後,電流I會以一類螺旋狀路徑依序經過兩個磁化方向設定元件12以及磁化方向設定元件120’。在磁化方向設定元件120’內,大部分的電流I會由右上角的電流入口E並依據最小阻抗路徑在其內部行進,而由左下角的電流出口O離開。因此,第一部分P1’的右半部分電流密度高且電流流向較為一致,而左半部分則電流密度低且電流流向較不一致。也就是說,電流入口E、電流出口O的位置不對稱性造成了電流密度、流向的不對稱性。由圖3可明顯看出,在磁場設定部分中,大部分的電流I會以最小阻抗路徑集中流往中間的區域C而具有最高的電流密度,而兩側的區域A、B的電流密度較小,最外側的區域則因為仍有少許的電流會沿著矩形的邊緣處流至於此而具有最低的電流密度。對照圖4A可看出:在磁場方向設定元件120’的中央處與磁場方向設定元件12的邊緣處所測得電流差值ΔI較大,導致磁阻感測器110的不同區域的磁化程度不一致。此外,在圖3的區域C中,由於電流入口E、電流出口O位置的不對稱性,亦導致在第一部分P1’中的電流密度集中於右側,而此現象導致以不同區域A、B、C進入第二部分P2’的電流流向不同。舉例來說,在區域C中,可看出電流I的流向大致為方向D3,而在區域A、B中,可看出電流I的流向不同於方向D3,不同的電流流向會造成磁化方向設定元件120’在不同的區域A、B、C所產生的磁場方向是不同的。上述兩種狀況無法使磁阻感測器120每一部分的磁場方向與磁場強度設定為一致。換言之,於圖3的比較實施例中,電流I無法均勻地流至磁場設定部分。Please refer to FIG. 3 first. After the current generator 130 emits a current I, the current I will pass through the two magnetization direction setting elements 12 and the magnetization direction setting element 120' in a spiral path in sequence. In the magnetization direction setting element 120', most of the current I will travel through the current inlet E in the upper right corner and follow the minimum impedance path inside it, while leaving the current outlet O in the lower left corner. Therefore, the right half of the first part P1' has a high current density and a more consistent current flow direction, while the left half has a low current density and a less consistent current flow direction. In other words, the asymmetry of the position of the current inlet E and the current outlet O causes the asymmetry of the current density and flow direction. It can be clearly seen from Fig. 3 that in the magnetic field setting part, most of the current I will flow to the middle region C with the smallest impedance path and have the highest current density, while the current density of the regions A and B on both sides is higher. Small, the outermost area has the lowest current density because there is still a small amount of current flowing along the edge of the rectangle. 4A, it can be seen that the current difference ΔI measured at the center of the magnetic field direction setting element 120' and the edge of the magnetic field direction setting element 12 is relatively large, resulting in inconsistent magnetization in different regions of the magnetoresistive sensor 110. In addition, in the area C of FIG. 3, due to the asymmetry of the positions of the current inlet E and the current outlet O, the current density in the first part P1' is concentrated on the right side, and this phenomenon results in different areas A, B, C flows into the second part P2' in a different direction. For example, in area C, it can be seen that the direction of current I is roughly the direction D3, while in areas A and B, it can be seen that the direction of current I is different from the direction D3, and different current flows will cause the magnetization direction to be set. The direction of the magnetic field generated by the element 120' in different regions A, B, and C is different. The above two conditions cannot make the direction of the magnetic field and the intensity of the magnetic field of each part of the magnetoresistive sensor 120 consistent. In other words, in the comparative embodiment of FIG. 3, the current I cannot uniformly flow to the magnetic field setting part.

請對照圖1,類似地,電流I亦會以類螺旋狀路徑依序經過兩個磁化方向設定元件12以及磁化方向設定元件120。於以下的段落會分段說明第一至第三電流路徑調整結構122a~122c之間的功效。Please refer to FIG. 1, similarly, the current I will also sequentially pass through the two magnetization direction setting elements 12 and the magnetization direction setting element 120 in a spiral-like path. In the following paragraphs, the functions of the first to third current path adjustment structures 122a to 122c will be described in sections.

請再參照圖1,由於第一電流路徑調整結構122a(開孔)可使得其附近區域的阻抗提高,當電流I會由電流入口E進入磁化方向設定元件120後,電流I會往不同方向並以較長的路徑繞過這些第一電流路徑調整結構122a而往電流出口O行進,換言之,這些第一電流路徑調整結構122a用以將大部分的電流分散,而不再沿著如同圖3所示的最小阻抗路徑行進,而有助於電流I以均勻地方式流入磁場設定部分。1 again, since the first current path adjustment structure 122a (opening) can increase the impedance in its vicinity, when the current I enters the magnetization direction setting element 120 from the current inlet E, the current I will go in different directions Take a longer path to bypass these first current path adjustment structures 122a and travel toward the current outlet O. In other words, these first current path adjustment structures 122a are used to disperse most of the current, instead of following the path as shown in FIG. 3 The minimum impedance path shown travels and helps the current I to flow into the magnetic field setting part in a uniform manner.

請參照圖1與圖3,相較於圖3的第一部分P1’(矩形區域)來說,圖1的第二電流路徑調整結構122b(斜面結構)的設置省去了電流入口E兩側的三角形部分的體積,因此少部分的電流就不會再經過省略的三角形部分,而是沿著斜面結構流往最外側的區域,這樣的設計有助於提升最外側的區域的電流密度。1 and 3, compared with the first part P1' (rectangular area) of FIG. 3, the arrangement of the second current path adjustment structure 122b (inclined structure) of FIG. The volume of the triangular part, so a small part of the current will no longer pass through the omitted triangular part, but will flow to the outermost area along the slope structure. This design helps to increase the current density in the outermost area.

請參照圖1,在本實施例中,由於電流入口、電流出口E、O兩者之間的配置關係而具有不對稱性,由於第三電流路徑調整結構122c(缺口)設置於與電流入口E的同一側,因此當電流I從右上角的電流入口E流入時,大部分的電流I會往第三電流路徑調整結構122c的左方傳遞以繞過第三電流路徑調整結構122c,而往左下角的電流出口O的方向移動。這樣的配置有助於電流I在第一部分P1的右半部分的電流密度降低,而增加第一部分P1的左半部分的電流密度,同時亦可使進入磁場設定部分的電流I流向較為一致。Please refer to FIG. 1, in this embodiment, due to the configuration relationship between the current inlet, the current outlet E, O are asymmetry, because the third current path adjustment structure 122c (notch) is provided with the current inlet E Therefore, when the current I flows in from the current inlet E in the upper right corner, most of the current I will pass to the left of the third current path adjustment structure 122c to bypass the third current path adjustment structure 122c, and go to the lower left The corner of the current outlet moves in the direction of O. This configuration helps to reduce the current density of the current I in the right half of the first part P1 and increase the current density of the left half of the first part P1. At the same time, the current I entering the magnetic field setting part can flow in a more consistent direction.

承上述,在本實施例的磁場感測裝置100中,由於磁化方向設定元件120具有多個電流路徑調整結構122,且這些電流路徑調整結構122設置於電流入口E與至少一磁阻感測器110之間的區域。因此,當電流I由電流入口E流入時,電流I的路徑可以被這些電流路徑調整結構122調整以界定電流的電流分佈而使其均勻地進入磁場設定部分,因此磁阻感測器110可以均勻地被磁化方向設定元件120磁化,從而磁場感測裝置100具有精確的量測結果。In view of the above, in the magnetic field sensing device 100 of this embodiment, since the magnetization direction setting element 120 has a plurality of current path adjustment structures 122, and these current path adjustment structures 122 are disposed at the current inlet E and at least one magnetoresistive sensor The area between 110. Therefore, when the current I flows in from the current inlet E, the path of the current I can be adjusted by the current path adjustment structures 122 to define the current distribution of the current and make it uniformly enter the magnetic field setting part, so the magnetoresistive sensor 110 can be uniform. The ground is magnetized by the magnetization direction setting element 120, so that the magnetic field sensing device 100 has an accurate measurement result.

於上述的實施例中,磁阻感測器110的中央部分MP對應重疊於具有電流路徑調整結構122的磁化方向設定元件120,而兩個邊緣部分EP對應重疊於不具有電流路徑調整結構122的磁化方向設定元件12。於其他的實施例中,亦可以將磁阻感測器110的中央部分MP、兩個邊緣部分EP的任一者、任兩者或全部對應重疊於磁化方向設定元件120,本發明並不以此為限。In the above-mentioned embodiment, the central part MP of the magnetoresistive sensor 110 overlaps with the magnetization direction setting element 120 with the current path adjustment structure 122, and the two edge parts EP overlap with the magnetization direction setting element 120 without the current path adjustment structure 122. Magnetization direction setting element 12. In other embodiments, any one, two, or all of the central part MP and the two edge parts EP of the magnetoresistive sensor 110 can also be overlapped with the magnetization direction setting element 120. The present invention does not use This is limited.

於上述的實施例中,第一部分P1的形狀例如是往方向D1的反方向凸出的梯形。於其他的實施例中,第一部分的形狀例如是往方向D1的方向凹陷的梯形,而其底角的範圍例如亦為20度至70度,但不以此為限。In the above-mentioned embodiment, the shape of the first portion P1 is, for example, a trapezoid projecting in a direction opposite to the direction D1. In other embodiments, the shape of the first part is, for example, a trapezoid recessed in the direction D1, and the range of its bottom angle is, for example, 20 degrees to 70 degrees, but it is not limited thereto.

於上述的實施例中,磁化方向設定元件120例如是同時具有不同架構的第一、第二與第三電流路徑調整結構122a~122c,即磁化方向設定元件120同時具有開口、斜面結構與缺口。於其他的實施例中,磁化方向設定元件120亦可以是只具有同一類型的電流路徑調整結構,舉例來說,磁化方向設定元件120亦可只具有上述不同架構的單一種(例如是只具有開口、斜面結構或缺口中的任一種),本發明並不以此為限。In the above-mentioned embodiment, the magnetization direction setting element 120 is, for example, the first, second, and third current path adjustment structures 122a to 122c with different structures at the same time, that is, the magnetization direction setting element 120 has an opening, a slope structure, and a notch at the same time. In other embodiments, the magnetization direction setting element 120 may also have only the same type of current path adjustment structure. For example, the magnetization direction setting element 120 may also have only a single type of the above-mentioned different structures (for example, only have openings). , Inclined structure or notch), the present invention is not limited to this.

綜上所述,在本發明實施例的磁場感測裝置中,多個電流路徑調整結構位於磁化方向設定元件的電流入口與至少一磁阻感測器之間。在電流流經磁阻感測器之前,這些電流路徑調整結構能夠調整電流的路徑以界定電流的電流分佈而使電流均勻地往同一方向傳遞。詳細來說,這些電流路徑調整結構可包括開口、斜面結構、缺口或其組合,其能夠調整磁場方向設定元件的第一部分中不同區域的阻抗、調整/限制電流路徑、或補償電流密度與電流流向的不對稱性,以界定電流的電流分佈而使電流均勻地且往同一方向傳遞至磁場設定部分。因此,磁化方向設定元件能夠使磁阻感測器均勻地磁化,從而磁場感測裝置具有精確的量測結果。In summary, in the magnetic field sensing device of the embodiment of the present invention, a plurality of current path adjustment structures are located between the current inlet of the magnetization direction setting element and at least one magnetoresistive sensor. Before the current flows through the magnetoresistive sensor, these current path adjustment structures can adjust the current path to define the current distribution of the current so that the current is uniformly transmitted in the same direction. In detail, these current path adjustment structures may include openings, inclined structures, notches, or combinations thereof, which can adjust the impedance of different regions in the first part of the magnetic field direction setting element, adjust/limit the current path, or compensate for current density and current flow. The asymmetry of, to define the current distribution of the current so that the current is uniformly and in the same direction to the magnetic field setting part. Therefore, the magnetization direction setting element can uniformly magnetize the magnetoresistive sensor, so that the magnetic field sensing device has an accurate measurement result.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.

10、100:磁場感測裝置 110:磁阻感測器 12、120、120’:磁化方向設定元件 122:電流路徑調整結構 122a:第一電流路徑調整結構 122b:第二電流路徑調整結構 122c:第三電流路徑調整結構 130:電流產生器 A、B、C:區域 A-A’、 B-B’:剖線 D:延伸方向 D1、D2:方向 E:電流入口 EP:邊緣部分 FF:鐵磁膜 H:外在磁場 I:電流 ΔI:電流差值 M:磁化方向 MP:中央部分 O:電流出口 P1、P1’:第一部分 P2、P2’:第二部分 S1:第一側 S2:第二側 SB:短路棒 SD:感測方向 θ:底角10.100: Magnetic field sensing device 110: Magnetoresistive Sensor 12. 120, 120’: Magnetization direction setting element 122: Current path adjustment structure 122a: The first current path adjustment structure 122b: Second current path adjustment structure 122c: Third current path adjustment structure 130: current generator A, B, C: area A-A’, B-B’: Sectional line D: Extension direction D1, D2: direction E: Current inlet EP: Edge part FF: Ferromagnetic film H: External magnetic field I: current ΔI: current difference M: Magnetization direction MP: central part O: Current outlet P1, P1’: Part One P2, P2’: Part Two S1: First side S2: second side SB: Shorting bar SD: sensing direction θ: bottom angle

圖1是依照本發明的一實施例的一種磁場感測裝置的上視意圖。 圖2A與圖2B為圖1中異向性磁阻感測器的不同佈局方法。 圖3是一比較實施例的磁場感測裝置的上視示意圖。 圖4A是圖1中剖面A-A’的電流強度與位置的關係圖。 圖4B是圖3中剖面B-B’的電流強度與位置的關係圖。FIG. 1 is a top view of a magnetic field sensing device according to an embodiment of the invention. 2A and 2B are different layout methods of the anisotropic magnetoresistive sensor in FIG. 1. FIG. 3 is a schematic top view of a magnetic field sensing device of a comparative embodiment. Fig. 4A is a diagram showing the relationship between current intensity and position of the section A-A' in Fig. 1. Fig. 4B is a diagram showing the relationship between current intensity and position of the section B-B' in Fig. 3.

100:磁場感測裝置 100: Magnetic field sensing device

110:磁阻感測器 110: Magnetoresistive Sensor

12、120:磁化方向設定元件 12.120: Magnetization direction setting element

122:電流路徑調整結構 122: Current path adjustment structure

122a:第一電流路徑調整結構 122a: The first current path adjustment structure

122b:第二電流路徑調整結構 122b: Second current path adjustment structure

122c:第三電流路徑調整結構 122c: Third current path adjustment structure

130:電流產生器 130: current generator

A-A’:剖線 A-A’: Cut line

D1、D2:方向 D1, D2: direction

E:電流入口 E: Current inlet

EP:邊緣部分 EP: Edge part

I:電流 I: current

M:磁化方向 M: Magnetization direction

MP:中央部分 MP: central part

O:電流出口 O: Current outlet

P1:第一部分 P1: Part One

P2:第二部分 P2: Part Two

S1:第一側 S1: First side

S2:第二側 S2: second side

SB:短路棒 SB: Shorting bar

SD:感測方向 SD: sensing direction

θ:底角 θ: bottom angle

Claims (9)

一種磁場感測裝置,包括:至少一磁阻感測器;以及磁化方向設定元件,設置於所述至少一磁阻感測器旁,所述磁化方向設定元件具有彼此相對的電流入口與電流出口,所述至少一磁阻感測器位於所述電流入口與所述電流出口之間,所述電流入口與所述電流出口不對稱地配置於所述至少一磁阻感測器的兩側,且所述至少一磁阻感測器的至少一部分的正投影與所述磁化方向設定元件的正投影重疊,其中,所述磁化方向設定元件更包括多個電流路徑調整結構,且所述多個電流路徑調整結構僅位於所述電流入口與所述至少一磁阻感測器之間的區域,所述多個電流路徑調整結構用以界定來自所述電流入口且進入所述至少一磁阻感測器前的一電流的電流分佈,該些電流路徑調整結構包括彼此不同且分離地配置的第一電流路徑調整結構、第二電流路徑調整結構以及第三電流路徑調整結構。 A magnetic field sensing device, comprising: at least one magnetoresistive sensor; and a magnetization direction setting element arranged beside the at least one magnetoresistance sensor, the magnetization direction setting element having a current inlet and a current outlet opposite to each other , The at least one magnetoresistive sensor is located between the current inlet and the current outlet, and the current inlet and the current outlet are asymmetrically arranged on both sides of the at least one magnetoresistive sensor, And the orthographic projection of at least a part of the at least one magnetoresistive sensor overlaps the orthographic projection of the magnetization direction setting element, wherein the magnetization direction setting element further includes a plurality of current path adjustment structures, and the plurality of The current path adjustment structure is only located in the area between the current inlet and the at least one magnetoresistive sensor, and the plurality of current path adjustment structures are used to define the current inlet from the current inlet and enter the at least one magnetoresistive sensor For the current distribution of a current in front of the detector, the current path adjustment structures include a first current path adjustment structure, a second current path adjustment structure, and a third current path adjustment structure that are different and separately arranged from each other. 如申請專利範圍第1項所述的磁場感測裝置,其特徵在於,其中所述第一電流路徑調整結構包括至少一開口。 The magnetic field sensing device according to claim 1 is characterized in that, the first current path adjusting structure includes at least one opening. 如申請專利範圍第2項所述的磁場感測裝置,其特徵在於,其中所述至少一開口的形狀包括圓形、橢圓形、三角形、四邊形或多邊形。 The magnetic field sensing device according to item 2 of the scope of patent application, wherein the shape of the at least one opening includes a circle, an ellipse, a triangle, a quadrilateral or a polygon. 如申請專利範圍第1項所述的磁場感測裝置,其特徵在於,其中所述第二電流路徑調整結構為斜面結構,且所述第二電流路徑調整結構位於所述電流入口的至少一側。 The magnetic field sensing device according to claim 1, wherein the second current path adjusting structure is a slope structure, and the second current path adjusting structure is located on at least one side of the current inlet . 如申請專利範圍第1項所述的磁場感測裝置,其特徵在於,其中所述第三電流路徑調整結構包括缺口(notch)。 The magnetic field sensing device according to item 1 of the scope of patent application, wherein the third current path adjustment structure includes a notch. 如申請專利範圍第5項所述的磁場感測裝置,其特徵在於,定義一參考軸,其中所述參考軸通過所述磁化方向設定元件的中央處,所述參考軸具有相對的第一側與第二側,所述電流入口位於所述第一側,所述電流出口位於所述第二側,其中所述缺口位於所述第一側。 The magnetic field sensing device according to item 5 of the scope of patent application is characterized in that a reference axis is defined, wherein the reference axis passes through the center of the magnetization direction setting element, and the reference axis has a first side opposite to With the second side, the current inlet is located on the first side, the current outlet is located on the second side, and the gap is located on the first side. 如申請專利範圍第1項所述的磁場感測裝置,其中該些電流路徑調整結構包括至少一開口、缺口、斜面結構與其組合。 According to the magnetic field sensing device described in claim 1, wherein the current path adjustment structures include at least one opening, a notch, an inclined surface structure and a combination thereof. 如申請專利範圍第1項所述的磁場感測裝置,其特徵在於,更包括一電流產生器,用以產生所述電流,所述電流產生器與所述磁化方向設定元件耦接,其中所述電流由所述電流入口進入所述磁化方向設定元件且由所述電流出口離開所述磁化方向設定元件。 The magnetic field sensing device according to claim 1 is characterized in that it further includes a current generator for generating the current, and the current generator is coupled to the magnetization direction setting element, wherein The current enters the magnetization direction setting element from the current inlet and leaves the magnetization direction setting element from the current outlet. 如申請專利範圍第1項所述的磁場感測裝置,其中該磁阻感測器的種類為異向性磁阻感測器。 The magnetic field sensing device described in item 1 of the scope of patent application, wherein the type of the magnetoresistive sensor is an anisotropic magnetoresistive sensor.
TW108117005A 2019-05-17 2019-05-17 Magnetic field sensing apparatus TWI739107B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108117005A TWI739107B (en) 2019-05-17 2019-05-17 Magnetic field sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108117005A TWI739107B (en) 2019-05-17 2019-05-17 Magnetic field sensing apparatus

Publications (2)

Publication Number Publication Date
TW202043796A TW202043796A (en) 2020-12-01
TWI739107B true TWI739107B (en) 2021-09-11

Family

ID=74668250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108117005A TWI739107B (en) 2019-05-17 2019-05-17 Magnetic field sensing apparatus

Country Status (1)

Country Link
TW (1) TWI739107B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201318237A (en) * 2011-10-28 2013-05-01 Isentek Inc Magnetic sensor apparatus
TW201715251A (en) * 2015-10-16 2017-05-01 愛盛科技股份有限公司 Magnetic field sensing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201318237A (en) * 2011-10-28 2013-05-01 Isentek Inc Magnetic sensor apparatus
TW201715251A (en) * 2015-10-16 2017-05-01 愛盛科技股份有限公司 Magnetic field sensing apparatus

Also Published As

Publication number Publication date
TW202043796A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
JP4411319B2 (en) Magnetoresistive sensor for angle or position determination
US6169396B1 (en) Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration
US7463016B2 (en) Current sensor
EP2700968B1 (en) Single-chip referenced full-bridge magnetic field sensor
US6107793A (en) Magnetic sensing device unaffected by positioning error of magnetic field sensing elements
US10060941B2 (en) Magnetoresistive gear tooth sensor
JP5012939B2 (en) Current sensor
US9594130B2 (en) Magnetic sensor device
US9891293B2 (en) Magnetic sensor device preventing concentration of magnetic fluxes to a magnetic sensing element
JP4105142B2 (en) Current sensor
US9964601B2 (en) Magnetic sensor
CN102317804A (en) Assembly for measuring at least one component of a magnetic field
JP6377882B1 (en) Magnetoresistive element device and magnetoresistive element device
TWI685667B (en) Magnetic field sensing apparatus
CN109655767B (en) Integrated magnetic structure
TWI739107B (en) Magnetic field sensing apparatus
JP6877958B2 (en) Magnetic sensor
CN110837066B (en) Magnetic field sensing device
US11686787B2 (en) Magnetic sensor
CN111948583A (en) Magnetic field sensing device
WO2017199787A1 (en) Magnetic sensor
TWI705262B (en) Magnetic field sensing apparatus
JP5432082B2 (en) Semiconductor device with current detector
TWI723412B (en) Magnetic field sensing apparatus
KR100323906B1 (en) Magnetic Detection Device_