WO2017199787A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2017199787A1
WO2017199787A1 PCT/JP2017/017474 JP2017017474W WO2017199787A1 WO 2017199787 A1 WO2017199787 A1 WO 2017199787A1 JP 2017017474 W JP2017017474 W JP 2017017474W WO 2017199787 A1 WO2017199787 A1 WO 2017199787A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
magnetic
magnetoresistive element
magnetoresistive elements
magnetic field
Prior art date
Application number
PCT/JP2017/017474
Other languages
French (fr)
Japanese (ja)
Inventor
弘晃 難波
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017199787A1 publication Critical patent/WO2017199787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-274598
  • Patent Document 2 Japanese Translation of PCT International Publication No. 2016-502098
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-354182. Gazette
  • magnetic signals in the Z-axis direction are collected by a magnetic guiding unit installed in a groove provided on the substrate and on the substrate surface, and an induction installed on the substrate surface.
  • a magnetic field in the Z-axis direction is detected by guiding a magnetic signal in the Z-axis direction to the unit and guiding it in the horizontal direction.
  • the first thin film magnetic sensor formed on the inclined surface so that the sensitivity axis is not parallel to the surface of the insulating substrate, and the sensitivity axis is the surface of the insulating substrate.
  • a second thin film magnetic sensor formed on the flat portion so as not to be perpendicular to.
  • the first thin film magnetic sensor detects a Z-axis direction component of the external magnetic field.
  • the second thin film magnetic sensor detects an X-axis direction component and a Y-axis direction component of the external magnetic field.
  • a magnetoresistive element that detects a magnetic field of an X-axis direction component a magnetoresistive element that detects a magnetic field of a Y-axis direction component, and a magnetoresistance that detects a magnetic field of a Z-axis direction component
  • An element is required, and a three-dimensional magnetic field is detected by three magnetoresistive elements. Therefore, the configuration of the magnetic sensor described in Patent Document 1 is complicated compared to a conventional magnetic sensor that detects a magnetic field in a two-dimensional direction.
  • the magnetic sensor described in Patent Document 3 requires a magnetoresistive element that detects a magnetic field of a Z-axis direction component, and a magnetoresistive element that detects a magnetic field of an X-axis direction component and a Y-axis direction component. A magnetic field in the dimensional direction is detected by two magnetoresistive elements. Therefore, the configuration of the magnetic sensor described in Patent Document 3 is more complicated than a conventional magnetic sensor that detects a magnetic field in a two-dimensional direction.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a magnetic sensor having a simple configuration by detecting a magnetic field in a three-dimensional direction with a single magnetoresistive element.
  • a magnetic sensor has an upper surface, a substrate provided with a groove having an inner surface connected to the upper surface, a first magnetoresistive element provided on the substrate and connected to each other to form a bridge circuit, and A second magnetoresistive element.
  • the first magnetoresistive element is composed of a magnetic film that continuously covers a part of the upper surface and the inner surface.
  • the second magnetoresistive element is composed of a magnetic film that covers the other part of the upper surface.
  • the inner surface includes a side surface perpendicular to a virtual plane including the upper surface.
  • the inner surface includes a bottom surface parallel to a virtual plane including the upper surface.
  • the said inner surface contains the curved bottom face.
  • the magnetic film constituting the first magnetoresistive element and the magnetic film constituting the second magnetoresistive element are made of the same material.
  • the first magnetoresistive element is provided in an annular shape or a spiral shape when viewed from a direction orthogonal to the upper surface.
  • the second magnetoresistive element is provided in a meander shape when viewed from a direction orthogonal to the upper surface.
  • the magnetic sensor includes two first magnetoresistive elements and two second magnetoresistive elements. Two first magnetoresistive elements and two second magnetoresistive elements are connected to each other to form a full bridge circuit.
  • the configuration of the magnetic sensor for detecting the magnetic field in the three-dimensional direction can be simplified.
  • FIG. 1 is a plan view showing the configuration of the magnetic sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged perspective view showing a II part of the magnetic sensor of FIG.
  • FIG. 3 is an enlarged perspective view showing a part III of the magnetic sensor in FIG. 1 to 3, the width direction of the substrate 110 to be described later is shown as the X-axis direction, the depth direction of the substrate 110 is shown as the Y-axis direction, and the thickness direction of the substrate 110 is shown as the Z-axis direction.
  • a magnetic sensor 100 As shown in FIGS. 1 to 3, a magnetic sensor 100 according to Embodiment 1 of the present invention includes a substrate 110 and a first magnetoresistive element R1, a second magnetoresistive element R2, and a first magnetic sensor provided on the substrate 110. A resistance element R3 and a second magnetoresistance element R4 are provided. In the present embodiment, the magnetic sensor 100 includes two first magnetoresistive elements and two second magnetoresistive elements.
  • the substrate 110 has an upper surface 111.
  • the substrate 110 has a rectangular outer shape when viewed from a direction orthogonal to the upper surface 111.
  • the outer shape of the substrate 110 is not limited to a rectangle, and may be a circle or an ellipse.
  • the substrate 110 is made of Si, for example.
  • the substrate 110 is provided with a groove 112 having an inner surface connected to the upper surface 111.
  • the groove 112 is formed in a shape corresponding to the pattern shape of first magnetoresistive elements R1 and R3 described later.
  • the inner surface of the groove portion 112 includes a side surface 113 perpendicular to a virtual plane including the upper surface 111 and a bottom surface 114 parallel to the virtual plane including the upper surface 111.
  • each of the first magnetoresistive elements R1, R3 and the second magnetoresistive elements R2, R4 is an AMR (Anisotropic Magneto Resistance) element.
  • each of the first magnetoresistive elements R1, R3 and the second magnetoresistive elements R2, R4 includes GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), CMR (Colossal Magneto Resistance). It may be a magnetoresistive element.
  • each of the first magnetoresistive elements R1 and R3 and the second magnetoresistive elements R2 and R4 is magnetically provided in a meander-like pattern shape when viewed from the direction orthogonal to the upper surface 111 of the substrate 110.
  • the body membrane 120 is configured.
  • the magnetic film 120 constituting the first magnetoresistive elements R1 and R3 and the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 are made of the same material.
  • the magnetic film 120 constituting the first magnetoresistive elements R1 and R3 includes a long portion extending in the X-axis direction and a short portion extending in the Y-axis direction, which are connected to each other.
  • the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 includes a long part extending in the Y-axis direction and a short part extending in the X-axis direction, which are connected to each other.
  • the magnetic film 120 constituting the first magnetoresistive elements R1, R3 continuously covers a part of the upper surface 111 of the substrate 110 and the inner surface of the groove 112.
  • the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 covers another part of the upper surface 111 of the substrate 110.
  • the magnetic film 120 is a thin film of a ferromagnetic material such as permalloy.
  • the magnetization direction of the magnetic film 120 is determined by the shape anisotropy of the magnetic film 120.
  • a barber pole electrode or a bias magnet (not shown) is provided in order to bias the current to flow through the magnetic film 120 in a direction that forms a predetermined angle with respect to the magnetization direction of the magnetic film 120.
  • the portions provided on the top surface 111 and the bottom surface 114 are magnetic field components in the Y-axis direction orthogonal to the longitudinal portion extending in the X-axis direction. When is applied, the electric resistance value becomes the smallest.
  • a portion provided on the side surface 113 is applied with a magnetic field component in the Z-axis direction orthogonal to the longitudinal portion extending in the X-axis direction. The electric resistance value is the smallest.
  • the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 has the smallest electric resistance value when a magnetic field component in the X-axis direction orthogonal to the longitudinal portion extending in the Y-axis direction is applied.
  • the magnetic sensor 100 further includes a first midpoint Vout1, a second midpoint Vout2, a power supply terminal Vcc, and a ground terminal Gnd provided on the substrate 110.
  • Each of the first magnetoresistive element R1 and the second magnetoresistive element R2 is connected to the first middle point Vout1.
  • Each of the first magnetoresistive element R3 and the second magnetoresistive element R4 is connected to the second middle point Vout2.
  • Each of the second magnetoresistive element R2 and the first magnetoresistive element R3 is connected to a power supply terminal Vcc to which a current is input.
  • Each of the first magnetoresistive element R1 and the second magnetoresistive element R4 is connected to the ground terminal Gnd.
  • FIG. 4 is a perspective view showing a state in which an external magnetic field is applied to the first magnetoresistive element of the magnetic sensor according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view showing a state in which an external magnetic field is applied to the second magnetoresistive element of the magnetic sensor according to Embodiment 1 of the present invention.
  • the current I input from the power supply terminal Vcc flows through the magnetic film 120 constituting each of the first magnetoresistive elements R1 and R3 and the second magnetoresistive elements R2 and R4.
  • the external magnetic field includes a magnetic field component Bp in the X-axis direction and the Y-axis direction and a magnetic field component Bz in the Z-axis direction.
  • the magnetic field component Bp travels in a direction substantially perpendicular to the longitudinal portion of the magnetic film 120 constituting the first magnetoresistive elements R1 and R3, and the magnetic field component Bp of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4. It proceeds in a direction substantially parallel to the longitudinal portion.
  • the magnetic film 120 constituting the first magnetoresistive elements R1 and R3 when an external magnetic field is applied, in the magnetic film 120 constituting the first magnetoresistive elements R1 and R3, the electrical resistance values of the portions provided on the top surface 111 and the bottom surface 114 are greatly reduced. On the other hand, the electric resistance value of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 hardly decreases.
  • the magnetic field component Bz travels in a direction substantially perpendicular to the longitudinal portion of the magnetic film 120 constituting the first magnetoresistive elements R1 and R3. Therefore, when an external magnetic field is applied, the electric resistance value of the portion provided on the side surface 113 in the magnetic film 120 constituting the first magnetoresistive elements R1 and R3 is greatly reduced. On the other hand, the second magnetoresistive elements R2 and R4 do not detect the magnetic field component Bz in the Z-axis direction.
  • the first magnetoresistive elements R1 and R3 can detect both the magnetic field component Bp in the X-axis direction and the Y-axis direction and the magnetic field component Bz in the Z-axis direction. That is, a magnetic field in a three-dimensional direction can be detected by one first magnetoresistive element. Note that, regardless of the incident direction of the external magnetic field, the electric resistance values of the first magnetoresistive elements R1 and R3 fluctuate, and the current I is the electric resistance value of the first magnetoresistive elements R1 and R3.
  • the first magnetoresistive elements R1 and R3 have sensitivity in the three-dimensional direction because they flow preferentially through the lowered portion.
  • FIG. 6 is an equivalent circuit diagram of the magnetic sensor according to the first embodiment of the present invention.
  • the first magnetoresistive element R1 includes a variable resistor R1P that detects magnetic field components in the X-axis direction and the Y-axis direction, and a Z-axis. And a variable resistance portion R1V that detects a magnetic field component in the direction.
  • the variable resistor portion R1P and the variable resistor portion R1V are connected in parallel between the first middle point Vout1 and the ground terminal Gnd.
  • the first magnetoresistive element R3 includes a variable resistor R3P that detects magnetic field components in the X-axis direction and the Y-axis direction, and a variable resistor R3V that detects magnetic field components in the Z-axis direction.
  • the variable resistor portion R3P and the variable resistor portion R3V are connected in parallel between the power supply terminal Vcc and the second middle point Vout2.
  • FIG. 7 is a partial cross-sectional view showing a state in which a photoresist is formed on a substrate.
  • a photoresist 10 is formed on the upper surface 111 of the substrate 110.
  • the photoresist 10 is provided with an opening at a portion corresponding to the position where the groove 112 is formed.
  • the photoresist 10 may be either a negative type or a positive type.
  • a hard mask made of, for example, silicon nitride, silicon carbonitride, or metal may be formed on the upper surface 111 of the substrate 110.
  • FIG. 8 is a partial cross-sectional view showing a state in which a groove is formed in the substrate by etching.
  • the photoresist 10 is removed, so that a groove 112 is provided in the substrate 110 as shown in FIG. As a result, the side surface 113 and the bottom surface 114 which are the inner surfaces of the groove 112 are exposed.
  • the etching method may be any method that allows anisotropic etching, and may be either dry etching or wet etching.
  • the method for forming the groove 112 is not limited to etching, and cutting or laser scribing may be used.
  • FIG. 9 is a partial cross-sectional view showing a state where a magnetic film is formed on a substrate.
  • the magnetic film 120 is formed on the substrate 110 provided with the groove 112.
  • a copper wiring technique used in manufacturing LSI (large scale integration) or a TSV (through silicon via) technique is applied.
  • Can do As a film forming method, sputtering, vapor deposition, or the like can be used.
  • FIG. 10 is a partial cross-sectional view showing a state in which a photoresist is formed on a substrate on which a magnetic film is formed.
  • a photoresist 11 is provided so as to correspond to each pattern shape of the first magnetoresistive element and the second magnetoresistive element.
  • the groove portion 112 is covered with the photoresist 11.
  • the photoresist 11 may be either a negative type or a positive type.
  • FIG. 11 is a partial cross-sectional view showing a state where an unnecessary magnetic film is removed by etching. As shown in FIG. 11, by patterning the magnetic film 120 and removing the photoresist 11, the first magnetoresistive elements R1, R3 and the second magnetoresistive elements R2, R4 are formed.
  • the magnetic sensor 100 according to Embodiment 1 of the present invention can detect a magnetic field in a three-dimensional direction by the first magnetoresistive elements R1 and R3, and the first magnetoresistive elements R1 and R3 and the second magnetoresistive elements.
  • the pattern shape of each of the elements R2 and R4 is the same as the pattern shape of a magnetoresistive element that detects a magnetic field in a conventional two-dimensional direction, and has a simple configuration.
  • all the resistors constituting the bridge circuit are magnetoresistive elements. For this reason, all the resistors can be formed of the same material. Furthermore, all resistors can be manufactured in the same manufacturing process.
  • the detection sensitivity of the magnetic field component in the Z-axis direction can be changed by appropriately adjusting the width and depth of the groove 112. Moreover, the detection sensitivity of the magnetic field component in the Z-axis direction can be changed by appropriately adjusting the shape of the inner surface of the groove 112.
  • FIG. 12 is a partial cross-sectional view showing a configuration of a first magnetoresistive element according to a first modification of the magnetic sensor according to the first embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view showing the configuration of the first magnetoresistance element according to the second modification example of the magnetic sensor according to the first embodiment of the present invention.
  • the inner surface of the groove 112 a has a side surface 113 perpendicular to a virtual plane including the upper surface 111 and a virtual surface including the upper surface 111.
  • a bottom surface 114 parallel to the plane and an inclined surface 115 extending in a direction intersecting with a virtual plane including the upper surface 111 and connecting the side surface 113 and the bottom surface 114 are formed.
  • the inner surface of the groove 112b includes a side surface 113 perpendicular to a virtual plane including the upper surface 111, and a curved bottom surface 116. It is composed of
  • the magnetic sensor 100 includes a Wheatstone bridge type full-bridge circuit, but is not limited thereto, and may include a half-bridge circuit.
  • FIG. 14 is an equivalent circuit diagram of a magnetic sensor according to a third modification of the magnetic sensor according to Embodiment 1 of the present invention.
  • the first magnetoresistive element R1 and the first magnetoresistive element R1 are connected between the power supply terminal Vcc and the ground terminal Gnd.
  • Two magnetoresistive elements R2 are connected in series.
  • a first middle point Vout1 is connected between the first magnetoresistive element R1 and the second magnetoresistive element R2.
  • An external magnetic field can be detected based on a change in potential difference between the first middle point Vout1 and the ground terminal Gnd.
  • Embodiment 2 a magnetic sensor according to Embodiment 2 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the second embodiment of the present invention is different from the magnetic sensor 100 according to the first embodiment of the present invention only in the pattern shape of the first magnetoresistive element, and therefore the magnetic sensor 100 according to the first embodiment of the present invention.
  • the description of the same configuration as in FIG. 1 is different from the magnetic sensor 100 according to the first embodiment of the present invention only in the pattern shape of the first magnetoresistive element, and therefore the magnetic sensor 100 according to the first embodiment of the present invention.
  • FIG. 15 is a plan view showing the pattern shape of the first magnetoresistive element of the magnetic sensor according to the second embodiment of the present invention.
  • the first magnetoresistive elements R ⁇ b> 1 and R ⁇ b> 3 are configured by a magnetic film 120 provided in a double spiral pattern when viewed from a direction orthogonal to the upper surface 111 of the substrate 110.
  • the double spiral pattern includes one spiral pattern, the other spiral pattern, and an S-shape that connects one spiral pattern and the other spiral pattern at the center of the double spiral pattern. Includes patterns.
  • the double spiral pattern may be wound in the opposite direction, and in this case, the central portion of the double spiral pattern is constituted by an inverted S-shaped pattern.
  • the double spiral pattern is mainly configured by winding a substantially arc-shaped curved portion. Since the arc is an approximate shape when the number of corners of the polygon becomes infinitely large, the direction of the current flowing through the double spiral pattern extends over almost all directions (360 °) in the horizontal direction. . Therefore, the first magnetoresistive elements R1 and R3 can detect the external magnetic field over substantially the entire horizontal direction (360 °). In addition, since each of the first magnetoresistive elements R1 and R3 does not include a linear extending portion, anisotropy of magnetic field detection is reduced.
  • the first magnetoresistive elements R1 and R3 may be configured by the magnetic film 120 provided in an annular pattern shape when viewed from the direction orthogonal to the upper surface 111 of the substrate 110.
  • the magnetic film 120 is provided over the entire circumference in the annular circumferential direction.
  • the annular shape is not limited to a circle but may be an ellipse.
  • the groove 112 may not be formed over the entire pattern shape of the first magnetoresistive elements R1 and R3. However, the groove 112 may be provided over the entire circumference in the circumferential direction of the pattern shape. This is preferable from the viewpoint of reducing detection anisotropy.
  • Embodiment 3 a magnetic sensor according to Embodiment 3 of the present invention will be described with reference to the drawings.
  • the magnetic sensor according to the third embodiment of the present invention differs from the magnetic sensor 100 according to the first embodiment of the present invention only in the pattern shape of the first magnetoresistive element and the second magnetoresistive element. The description of the same configuration as that of the magnetic sensor 100 according to 1 will not be repeated.
  • FIG. 16 is a plan view showing the configuration of the magnetic sensor according to the third embodiment of the present invention.
  • the first magnetoresistive elements R ⁇ b> 1 and R ⁇ b> 3 are double spiral patterns when viewed from the direction orthogonal to the upper surface 111 of the substrate 110.
  • the magnetic film 120 is provided in a shape.
  • the second magnetoresistive elements R2 and R4 are configured by a magnetic film 120 provided in a meandering pattern shape when viewed from a direction orthogonal to the upper surface 111 of the substrate 110.
  • the longitudinal portion of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 is formed in a zigzag manner.
  • the length of the linearly extending portion of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 is 10 ⁇ m or less.
  • the resistance change rate of the magnetoresistive element decreases as the length of the linearly extending portion of the magnetic film 120 becomes shorter.
  • the resistance change rate of the second magnetoresistive elements R2 and R4 in which the length of the linearly extending portion of the magnetic film 120 is 10 ⁇ m is less than 0.5%. Therefore, the second magnetoresistive elements R2 and R4 hardly change in electric resistance value even when an external magnetic field is applied.
  • the resistance change rates of the second magnetoresistive elements R2 and R4 are smaller than the resistance change rates of the first magnetoresistive elements R1 and R3. That is, the first magnetoresistive elements R1 and R3 are so-called magnetosensitive resistors whose electric resistance values change when an external magnetic field is applied.
  • the second magnetoresistive elements R2 and R4 are fixed resistors whose electric resistance values hardly change even when an external magnetic field is applied.
  • the degree of freedom of arrangement of the magnetic sensor 300 with respect to an external magnetic field can be increased.

Abstract

This magnetic sensor is equipped with: a substrate (110), which has an upper surface (111), and which is provided with a trench section (112) having an inner surface connected to the upper surface (111); and a first magnetoresistive element and a second magnetoresistive element, which are provided on the substrate (110), and which constitute a bridge circuit by being connected to each other. The first magnetoresistive element is configured from a magnetic film (120) continuously covering a part of the upper surface (111) and the inner surface. The second magnetoresistive element is configured from the magnetic film (120) covering another part of the upper surface (111).

Description

磁気センサMagnetic sensor
 本発明は、磁気センサに関する。 The present invention relates to a magnetic sensor.
 3次元方向の磁界の検出を図った磁気センサを開示した先行文献として、特開平11-274598号公報(特許文献1)、特表2016-502098号公報(特許文献2)および特開2004-354182号公報(特許文献3)がある。 As prior documents disclosing magnetic sensors that detect a magnetic field in a three-dimensional direction, Japanese Patent Laid-Open No. 11-274598 (Patent Document 1), Japanese Translation of PCT International Publication No. 2016-502098 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2004-354182. Gazette (Patent Document 3).
 特許文献1に記載された磁気センサにおいては、平面状の3つの磁気抵抗素子が互いに直交する3面に立体配置されていることにより、3次元方向において等方的に磁界を検出することを図っている。 In the magnetic sensor described in Patent Document 1, three planar magnetoresistive elements are arranged in three planes orthogonal to each other to detect a magnetic field isotropically in a three-dimensional direction. ing.
 特許文献2に記載された磁気センサにおいては、基板に設けられた溝内および基板表面に設置されている導磁ユニットによって、Z軸方向の磁気信号を収集し、基板表面に設置されている誘導ユニットに、Z軸方向の磁気信号を水平方向にガイドして伝えることにより、Z軸方向の磁界を検出している。 In the magnetic sensor described in Patent Document 2, magnetic signals in the Z-axis direction are collected by a magnetic guiding unit installed in a groove provided on the substrate and on the substrate surface, and an induction installed on the substrate surface. A magnetic field in the Z-axis direction is detected by guiding a magnetic signal in the Z-axis direction to the unit and guiding it in the horizontal direction.
 特許文献3に記載された磁気センサチップにおいては、感度軸が絶縁基板の表面に対して平行にならないように、傾斜面上に形成された第1薄膜磁気センサと、感度軸が絶縁基板の表面に対して垂直にならないように、平坦部上に形成された第2薄膜磁気センサとを備えている。第1薄膜磁気センサは、外部磁界のうちのZ軸方向成分を検出する。第2薄膜磁気センサは、外部磁界のうちのX軸方向成分およびY軸方向成分を検出する。 In the magnetic sensor chip described in Patent Document 3, the first thin film magnetic sensor formed on the inclined surface so that the sensitivity axis is not parallel to the surface of the insulating substrate, and the sensitivity axis is the surface of the insulating substrate. And a second thin film magnetic sensor formed on the flat portion so as not to be perpendicular to. The first thin film magnetic sensor detects a Z-axis direction component of the external magnetic field. The second thin film magnetic sensor detects an X-axis direction component and a Y-axis direction component of the external magnetic field.
特開平11-274598号公報JP 11-274598 A 特表2016-502098号公報Special table 2016-502098 gazette 特開2004-354182号公報JP 2004-354182 A
 特許文献1に記載の磁気センサにおいては、X軸方向成分の磁界を検出する磁気抵抗素子、Y軸方向成分の磁界を検出する磁気抵抗素子、および、Z軸方向成分の磁界を検出する磁気抵抗素子が必要であり、3次元方向の磁界を3つの磁気抵抗素子によって検出している。そのため、特許文献1に記載の磁気センサは、従来の2次元方向の磁界を検出する磁気センサに比べて、構成が複雑である。 In the magnetic sensor described in Patent Document 1, a magnetoresistive element that detects a magnetic field of an X-axis direction component, a magnetoresistive element that detects a magnetic field of a Y-axis direction component, and a magnetoresistance that detects a magnetic field of a Z-axis direction component An element is required, and a three-dimensional magnetic field is detected by three magnetoresistive elements. Therefore, the configuration of the magnetic sensor described in Patent Document 1 is complicated compared to a conventional magnetic sensor that detects a magnetic field in a two-dimensional direction.
 特許文献2に記載された磁気センサにおいては、Z軸方向の磁気信号を水平方向に伝送するための誘導ユニットを設置しなければならない。そのため、特許文献2に記載の磁気センサは、従来の2次元方向の磁界を検出する磁気センサに比べて、構成が複雑である。 In the magnetic sensor described in Patent Document 2, an induction unit for transmitting a magnetic signal in the Z-axis direction in the horizontal direction must be installed. Therefore, the configuration of the magnetic sensor described in Patent Document 2 is more complicated than a conventional magnetic sensor that detects a magnetic field in a two-dimensional direction.
 特許文献3に記載された磁気センサにおいては、Z軸方向成分の磁界を検出する磁気抵抗素子、並びに、X軸方向成分およびY軸方向成分の磁界を検出する磁気抵抗素子が必要であり、3次元方向の磁界を2つの磁気抵抗素子によって検出している。そのため、特許文献3に記載の磁気センサは、従来の2次元方向の磁界を検出する磁気センサに比べて、構成が複雑である。 The magnetic sensor described in Patent Document 3 requires a magnetoresistive element that detects a magnetic field of a Z-axis direction component, and a magnetoresistive element that detects a magnetic field of an X-axis direction component and a Y-axis direction component. A magnetic field in the dimensional direction is detected by two magnetoresistive elements. Therefore, the configuration of the magnetic sensor described in Patent Document 3 is more complicated than a conventional magnetic sensor that detects a magnetic field in a two-dimensional direction.
 本発明は上記の問題点に鑑みてなされたものであって、3次元方向の磁界を1つの磁気抵抗素子で検出して、簡易な構成を有する、磁気センサを提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a magnetic sensor having a simple configuration by detecting a magnetic field in a three-dimensional direction with a single magnetoresistive element.
 本発明に基づく磁気センサは、上面を有し、この上面に繋がった内表面を有する溝部が設けられた基板と、基板に設けられ、互いに接続されてブリッジ回路を構成する第1磁気抵抗素子および第2磁気抵抗素子とを備える。第1磁気抵抗素子は、上記上面の一部および上記内表面を連続して覆う磁性体膜で構成されている。第2磁気抵抗素子は、上記上面の他の一部を覆う磁性体膜で構成されている。 A magnetic sensor according to the present invention has an upper surface, a substrate provided with a groove having an inner surface connected to the upper surface, a first magnetoresistive element provided on the substrate and connected to each other to form a bridge circuit, and A second magnetoresistive element. The first magnetoresistive element is composed of a magnetic film that continuously covers a part of the upper surface and the inner surface. The second magnetoresistive element is composed of a magnetic film that covers the other part of the upper surface.
 本発明の一形態においては、上記内表面が、上記上面を含む仮想平面に垂直な側面を含む。 In one embodiment of the present invention, the inner surface includes a side surface perpendicular to a virtual plane including the upper surface.
 本発明の一形態においては、上記内表面が、上記上面を含む仮想平面に平行な底面を含む。 In one embodiment of the present invention, the inner surface includes a bottom surface parallel to a virtual plane including the upper surface.
 本発明の一形態においては、上記内表面が、湾曲した底面を含む。
 本発明の一形態においては、第1磁気抵抗素子を構成する磁性体膜と、第2磁気抵抗素子を構成する磁性体膜とが、同一の材料で構成されている。
In one form of this invention, the said inner surface contains the curved bottom face.
In one embodiment of the present invention, the magnetic film constituting the first magnetoresistive element and the magnetic film constituting the second magnetoresistive element are made of the same material.
 本発明の一形態においては、第1磁気抵抗素子が、上記上面に直交する方向から見て、円環状または渦巻状に設けられている。 In one embodiment of the present invention, the first magnetoresistive element is provided in an annular shape or a spiral shape when viewed from a direction orthogonal to the upper surface.
 本発明の一形態においては、第2磁気抵抗素子が、上記上面に直交する方向から見て、ミアンダ状に設けられている。 In one embodiment of the present invention, the second magnetoresistive element is provided in a meander shape when viewed from a direction orthogonal to the upper surface.
 本発明の一形態においては、磁気センサは、第1磁気抵抗素子を2つ含み、第2磁気抵抗素子を2つ含む。2つの第1磁気抵抗素子と2つの第2磁気抵抗素子とが、互いに接続されてフルブリッジ回路を構成している。 In one embodiment of the present invention, the magnetic sensor includes two first magnetoresistive elements and two second magnetoresistive elements. Two first magnetoresistive elements and two second magnetoresistive elements are connected to each other to form a full bridge circuit.
 本発明によれば、3次元方向の磁界を1つの磁気抵抗素子で検出することができるため、3次元方向の磁界を検出する磁気センサの構成を簡易にできる。 According to the present invention, since the magnetic field in the three-dimensional direction can be detected by one magnetoresistive element, the configuration of the magnetic sensor for detecting the magnetic field in the three-dimensional direction can be simplified.
本発明の実施形態1に係る磁気センサの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor which concerns on Embodiment 1 of this invention. 図1の磁気センサのII部を拡大して示す斜視図である。It is a perspective view which expands and shows the II section of the magnetic sensor of FIG. 図1の磁気センサのIII部を拡大して示す斜視図である。It is a perspective view which expands and shows the III part of the magnetic sensor of FIG. 本発明の実施形態1に係る磁気センサの第1磁気抵抗素子に外部磁界が印加されている状態を示す斜視図である。It is a perspective view which shows the state in which the external magnetic field is applied to the 1st magnetoresistive element of the magnetic sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る磁気センサの第2磁気抵抗素子に外部磁界が印加されている状態を示す斜視図である。It is a perspective view which shows the state in which the external magnetic field is applied to the 2nd magnetoresistive element of the magnetic sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る磁気センサの等価回路図である。It is an equivalent circuit schematic of the magnetic sensor which concerns on Embodiment 1 of this invention. 基板上にフォトレジストを形成した状態を示す部分断面図である。It is a fragmentary sectional view showing the state where a photoresist was formed on a substrate. エッチングにより基板に溝部を形成した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which formed the groove part in the board | substrate by the etching. 基板上に磁性体膜を形成した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state in which the magnetic body film was formed on the board | substrate. 磁性体膜が成膜された基板上にフォトレジストを形成した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which formed the photoresist on the board | substrate with which the magnetic body film was formed. エッチングにより不要な磁性体膜を除去した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which removed the unnecessary magnetic body film by the etching. 本発明の実施形態1に係る磁気センサの第1変形例に係る第1磁気抵抗素子の構成を示す部分断面図である。It is a fragmentary sectional view showing the composition of the 1st magnetoresistive element concerning the 1st modification of the magnetic sensor concerning Embodiment 1 of the present invention. 本発明の実施形態1に係る磁気センサの第2変形例に係る第1磁気抵抗素子の構成を示す部分断面図である。It is a fragmentary sectional view showing the composition of the 1st magnetoresistive element concerning the 2nd modification of the magnetic sensor concerning Embodiment 1 of the present invention. 本発明の実施形態1に係る磁気センサの第3変形例に係る磁気センサの等価回路図である。It is an equivalent circuit schematic of the magnetic sensor which concerns on the 3rd modification of the magnetic sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る磁気センサの第1磁気抵抗素子のパターン形状を示す平面図である。It is a top view which shows the pattern shape of the 1st magnetoresistive element of the magnetic sensor which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る磁気センサの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor which concerns on Embodiment 3 of this invention.
 以下、本発明の各実施形態に係る磁気センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, the magnetic sensor according to each embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 (実施形態1)
 図1は、本発明の実施形態1に係る磁気センサの構成を示す平面図である。図2は、図1の磁気センサのII部を拡大して示す斜視図である。図3は、図1の磁気センサのIII部を拡大して示す斜視図である。図1~3においては、後述する基板110の幅方向をX軸方向、基板110の奥行方向をY軸方向、基板110の厚さ方向をZ軸方向として示している。
(Embodiment 1)
FIG. 1 is a plan view showing the configuration of the magnetic sensor according to Embodiment 1 of the present invention. FIG. 2 is an enlarged perspective view showing a II part of the magnetic sensor of FIG. FIG. 3 is an enlarged perspective view showing a part III of the magnetic sensor in FIG. 1 to 3, the width direction of the substrate 110 to be described later is shown as the X-axis direction, the depth direction of the substrate 110 is shown as the Y-axis direction, and the thickness direction of the substrate 110 is shown as the Z-axis direction.
 図1~3に示すように、本発明の実施形態1に係る磁気センサ100は、基板110と、基板110に設けられた、第1磁気抵抗素子R1、第2磁気抵抗素子R2、第1磁気抵抗素子R3および第2磁気抵抗素子R4とを備える。本実施形態においては、磁気センサ100は、2つの第1磁気抵抗素子と、2つの第2磁気抵抗素子とを含んでいる。 As shown in FIGS. 1 to 3, a magnetic sensor 100 according to Embodiment 1 of the present invention includes a substrate 110 and a first magnetoresistive element R1, a second magnetoresistive element R2, and a first magnetic sensor provided on the substrate 110. A resistance element R3 and a second magnetoresistance element R4 are provided. In the present embodiment, the magnetic sensor 100 includes two first magnetoresistive elements and two second magnetoresistive elements.
 基板110は、上面111を有する。基板110は、上面111に直交する方向から見て、矩形状の外形を有している。ただし、基板110の外形は、矩形に限られず、円形または楕円形などでもよい。基板110は、たとえば、Siで構成されている。 The substrate 110 has an upper surface 111. The substrate 110 has a rectangular outer shape when viewed from a direction orthogonal to the upper surface 111. However, the outer shape of the substrate 110 is not limited to a rectangle, and may be a circle or an ellipse. The substrate 110 is made of Si, for example.
 基板110には、上面111に繋がった内表面を有する溝部112が設けられている。溝部112は、後述する第1磁気抵抗素子R1,R3のパターン形状に対応した形状で形成されている。本実施形態においては、溝部112の内表面は、上面111を含む仮想平面に垂直な側面113と、上面111を含む仮想平面に平行な底面114とから構成されている。 The substrate 110 is provided with a groove 112 having an inner surface connected to the upper surface 111. The groove 112 is formed in a shape corresponding to the pattern shape of first magnetoresistive elements R1 and R3 described later. In the present embodiment, the inner surface of the groove portion 112 includes a side surface 113 perpendicular to a virtual plane including the upper surface 111 and a bottom surface 114 parallel to the virtual plane including the upper surface 111.
 本実施形態においては、第1磁気抵抗素子R1,R3および第2磁気抵抗素子R2,R4の各々は、AMR(Anisotropic Magneto Resistance)素子である。ただし、第1磁気抵抗素子R1,R3および第2磁気抵抗素子R2,R4の各々が、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Ballistic Magneto Resistance)、CMR(Colossal Magneto Resistance)などの磁気抵抗素子であってもよい。 In the present embodiment, each of the first magnetoresistive elements R1, R3 and the second magnetoresistive elements R2, R4 is an AMR (Anisotropic Magneto Resistance) element. However, each of the first magnetoresistive elements R1, R3 and the second magnetoresistive elements R2, R4 includes GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), CMR (Colossal Magneto Resistance). It may be a magnetoresistive element.
 本実施形態においては、第1磁気抵抗素子R1,R3および第2磁気抵抗素子R2,R4の各々は、基板110の上面111に直交する方向から見て、ミアンダ状のパターン形状に設けられた磁性体膜120で構成されている。第1磁気抵抗素子R1,R3を構成する磁性体膜120と、第2磁気抵抗素子R2,R4を構成する磁性体膜120とが、同一の材料で構成されている。 In the present embodiment, each of the first magnetoresistive elements R1 and R3 and the second magnetoresistive elements R2 and R4 is magnetically provided in a meander-like pattern shape when viewed from the direction orthogonal to the upper surface 111 of the substrate 110. The body membrane 120 is configured. The magnetic film 120 constituting the first magnetoresistive elements R1 and R3 and the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 are made of the same material.
 第1磁気抵抗素子R1,R3を構成する磁性体膜120は、互いに接続されている、X軸方向に延在する長手部と、Y軸方向に延在する短手部とを含む。第2磁気抵抗素子R2,R4を構成する磁性体膜120は、互いに接続されている、Y軸方向に延在する長手部と、X軸方向に延在する短手部とを含む。 The magnetic film 120 constituting the first magnetoresistive elements R1 and R3 includes a long portion extending in the X-axis direction and a short portion extending in the Y-axis direction, which are connected to each other. The magnetic film 120 constituting the second magnetoresistive elements R2 and R4 includes a long part extending in the Y-axis direction and a short part extending in the X-axis direction, which are connected to each other.
 第1磁気抵抗素子R1,R3を構成する磁性体膜120は、基板110の上面111の一部および溝部112の内表面を連続して覆っている。第2磁気抵抗素子R2,R4を構成する磁性体膜120は、基板110の上面111の他の一部を覆っている。 The magnetic film 120 constituting the first magnetoresistive elements R1, R3 continuously covers a part of the upper surface 111 of the substrate 110 and the inner surface of the groove 112. The magnetic film 120 constituting the second magnetoresistive elements R2 and R4 covers another part of the upper surface 111 of the substrate 110.
 磁性体膜120は、パーマロイなどの強磁性体の薄膜である。磁性体膜120の形状異方性により、磁性体膜120の磁化方向が決まっている。磁性体膜120の磁化方向に対して所定の角度をなす方向に電流が磁性体膜120を流れるようにバイアスするために、図示しないバーバーポール型電極またはバイアス磁石が設けられている。 The magnetic film 120 is a thin film of a ferromagnetic material such as permalloy. The magnetization direction of the magnetic film 120 is determined by the shape anisotropy of the magnetic film 120. A barber pole electrode or a bias magnet (not shown) is provided in order to bias the current to flow through the magnetic film 120 in a direction that forms a predetermined angle with respect to the magnetization direction of the magnetic film 120.
 第1磁気抵抗素子R1,R3を構成する磁性体膜120において、上面111上および底面114上に設けられている部分は、X軸方向に延在する長手部と直交するY軸方向の磁界成分が印加されているとき、電気抵抗値が最も小さくなる。第1磁気抵抗素子R1,R3を構成する磁性体膜120において、側面113上に設けられている部分は、X軸方向に延在する長手部と直交するZ軸方向の磁界成分が印加されているとき、電気抵抗値が最も小さくなる。 In the magnetic film 120 constituting the first magnetoresistive elements R1 and R3, the portions provided on the top surface 111 and the bottom surface 114 are magnetic field components in the Y-axis direction orthogonal to the longitudinal portion extending in the X-axis direction. When is applied, the electric resistance value becomes the smallest. In the magnetic film 120 constituting the first magnetoresistive elements R1 and R3, a portion provided on the side surface 113 is applied with a magnetic field component in the Z-axis direction orthogonal to the longitudinal portion extending in the X-axis direction. The electric resistance value is the smallest.
 第2磁気抵抗素子R2,R4を構成する磁性体膜120は、Y軸方向に延在する長手部と直交するX軸方向の磁界成分が印加されているとき、電気抵抗値が最も小さくなる。 The magnetic film 120 constituting the second magnetoresistive elements R2 and R4 has the smallest electric resistance value when a magnetic field component in the X-axis direction orthogonal to the longitudinal portion extending in the Y-axis direction is applied.
 磁気センサ100は、基板110上に設けられた、第1中点Vout1、第2中点Vout2、電源端子Vccおよび接地端子Gndをさらに備える。 The magnetic sensor 100 further includes a first midpoint Vout1, a second midpoint Vout2, a power supply terminal Vcc, and a ground terminal Gnd provided on the substrate 110.
 第1磁気抵抗素子R1および第2磁気抵抗素子R2の各々は、第1中点Vout1に接続されている。第1磁気抵抗素子R3および第2磁気抵抗素子R4の各々は、第2中点Vout2に接続されている。 Each of the first magnetoresistive element R1 and the second magnetoresistive element R2 is connected to the first middle point Vout1. Each of the first magnetoresistive element R3 and the second magnetoresistive element R4 is connected to the second middle point Vout2.
 第2磁気抵抗素子R2および第1磁気抵抗素子R3の各々は、電流が入力される電源端子Vccに接続されている。第1磁気抵抗素子R1および第2磁気抵抗素子R4の各々は、接地端子Gndに接続されている。上記の接続により、本実施形態においては、2つの第1磁気抵抗素子R1,R3と2つの第2磁気抵抗素子R2,R4とが、互いに接続されてホイートストンブリッジ型のフルブリッジ回路を構成している。 Each of the second magnetoresistive element R2 and the first magnetoresistive element R3 is connected to a power supply terminal Vcc to which a current is input. Each of the first magnetoresistive element R1 and the second magnetoresistive element R4 is connected to the ground terminal Gnd. With the above connection, in the present embodiment, the two first magnetoresistive elements R1 and R3 and the two second magnetoresistive elements R2 and R4 are connected to each other to form a Wheatstone bridge type full bridge circuit. Yes.
 図4は、本発明の実施形態1に係る磁気センサの第1磁気抵抗素子に外部磁界が印加されている状態を示す斜視図である。図5は、本発明の実施形態1に係る磁気センサの第2磁気抵抗素子に外部磁界が印加されている状態を示す斜視図である。 FIG. 4 is a perspective view showing a state in which an external magnetic field is applied to the first magnetoresistive element of the magnetic sensor according to the first embodiment of the present invention. FIG. 5 is a perspective view showing a state in which an external magnetic field is applied to the second magnetoresistive element of the magnetic sensor according to Embodiment 1 of the present invention.
 図4,5に示すように、電源端子Vccから入力された電流Iが、第1磁気抵抗素子R1,R3および第2磁気抵抗素子R2,R4の各々を構成する磁性体膜120を流れる。外部磁界は、X軸方向およびY軸方向の磁界成分Bpと、Z軸方向の磁界成分Bzとからなる。磁界成分Bpは、第1磁気抵抗素子R1,R3を構成する磁性体膜120の長手部に対して略垂直な方向に進行し、第2磁気抵抗素子R2,R4を構成する磁性体膜120の長手部に対して略平行な方向に進行する。 As shown in FIGS. 4 and 5, the current I input from the power supply terminal Vcc flows through the magnetic film 120 constituting each of the first magnetoresistive elements R1 and R3 and the second magnetoresistive elements R2 and R4. The external magnetic field includes a magnetic field component Bp in the X-axis direction and the Y-axis direction and a magnetic field component Bz in the Z-axis direction. The magnetic field component Bp travels in a direction substantially perpendicular to the longitudinal portion of the magnetic film 120 constituting the first magnetoresistive elements R1 and R3, and the magnetic field component Bp of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4. It proceeds in a direction substantially parallel to the longitudinal portion.
 そのため、外部磁界が印加されることによって、第1磁気抵抗素子R1,R3を構成する磁性体膜120において、上面111上および底面114上に設けられている部分の電気抵抗値が大きく低下する。一方、第2磁気抵抗素子R2,R4を構成する磁性体膜120の電気抵抗値は、ほとんど低下しない。 Therefore, when an external magnetic field is applied, in the magnetic film 120 constituting the first magnetoresistive elements R1 and R3, the electrical resistance values of the portions provided on the top surface 111 and the bottom surface 114 are greatly reduced. On the other hand, the electric resistance value of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 hardly decreases.
 磁界成分Bzは、第1磁気抵抗素子R1,R3を構成する磁性体膜120の長手部に対して略垂直な方向に進行する。そのため、外部磁界が印加されることによって、第1磁気抵抗素子R1,R3を構成する磁性体膜120において、側面113上に設けられている部分の電気抵抗値が大きく低下する。一方、第2磁気抵抗素子R2,R4は、Z軸方向の磁界成分Bzを検出しない。 The magnetic field component Bz travels in a direction substantially perpendicular to the longitudinal portion of the magnetic film 120 constituting the first magnetoresistive elements R1 and R3. Therefore, when an external magnetic field is applied, the electric resistance value of the portion provided on the side surface 113 in the magnetic film 120 constituting the first magnetoresistive elements R1 and R3 is greatly reduced. On the other hand, the second magnetoresistive elements R2 and R4 do not detect the magnetic field component Bz in the Z-axis direction.
 上記のように、第1磁気抵抗素子R1,R3は、X軸方向およびY軸方向の磁界成分Bp、および、Z軸方向の磁界成分Bzの両方を検出することができる。すなわち、3次元方向の磁界を1つの第1磁気抵抗素子で検出することができる。なお、外部磁界の入射方向がどのような方向であっても、第1磁気抵抗素子R1,R3の電気抵抗値が変動して、電流Iが第1磁気抵抗素子R1,R3の電気抵抗値の低下した箇所を優先的に流れるため、第1磁気抵抗素子R1,R3は、3次元方向に感度を有することになる。 As described above, the first magnetoresistive elements R1 and R3 can detect both the magnetic field component Bp in the X-axis direction and the Y-axis direction and the magnetic field component Bz in the Z-axis direction. That is, a magnetic field in a three-dimensional direction can be detected by one first magnetoresistive element. Note that, regardless of the incident direction of the external magnetic field, the electric resistance values of the first magnetoresistive elements R1 and R3 fluctuate, and the current I is the electric resistance value of the first magnetoresistive elements R1 and R3. The first magnetoresistive elements R1 and R3 have sensitivity in the three-dimensional direction because they flow preferentially through the lowered portion.
 図6は、本発明の実施形態1に係る磁気センサの等価回路図である。図6に示すように、本発明の実施形態1に係る磁気センサ100においては、第1磁気抵抗素子R1は、X軸方向およびY軸方向の磁界成分を検出する可変抵抗部R1Pと、Z軸方向の磁界成分を検出する可変抵抗部R1Vとを有している。可変抵抗部R1Pと可変抵抗部R1Vとは、第1中点Vout1と接地端子Gndとの間において、並列に接続されている。 FIG. 6 is an equivalent circuit diagram of the magnetic sensor according to the first embodiment of the present invention. As shown in FIG. 6, in the magnetic sensor 100 according to the first embodiment of the present invention, the first magnetoresistive element R1 includes a variable resistor R1P that detects magnetic field components in the X-axis direction and the Y-axis direction, and a Z-axis. And a variable resistance portion R1V that detects a magnetic field component in the direction. The variable resistor portion R1P and the variable resistor portion R1V are connected in parallel between the first middle point Vout1 and the ground terminal Gnd.
 第1磁気抵抗素子R3は、X軸方向およびY軸方向の磁界成分を検出する可変抵抗部R3Pと、Z軸方向の磁界成分を検出する可変抵抗部R3Vとを有している。可変抵抗部R3Pと可変抵抗部R3Vとは、電源端子Vccと第2中点Vout2との間において、並列に接続されている。 The first magnetoresistive element R3 includes a variable resistor R3P that detects magnetic field components in the X-axis direction and the Y-axis direction, and a variable resistor R3V that detects magnetic field components in the Z-axis direction. The variable resistor portion R3P and the variable resistor portion R3V are connected in parallel between the power supply terminal Vcc and the second middle point Vout2.
 磁気センサ100が上記の回路構成を有することにより、第1中点Vout1と第2中点Vout2との間に、外部磁界の強さに依存する電位差が発生する。 When the magnetic sensor 100 has the above circuit configuration, a potential difference depending on the strength of the external magnetic field is generated between the first middle point Vout1 and the second middle point Vout2.
 以下、本発明の実施形態1に係る磁気センサの製造方法について説明する。図7は、基板上にフォトレジストを形成した状態を示す部分断面図である。図7に示すように、基板110の上面111上に、フォトレジスト10を形成する。フォトレジスト10には、溝部112の形成位置に対応する部分に開口部が設けられている。フォトレジスト10は、ネガ型およびポジ型のいずれでもよい。なお、フォトレジスト10の代わりに、たとえば窒化シリコン、炭窒化シリコンまたは金属などからなるハードマスクを基板110の上面111上に形成してもよい。 Hereinafter, a method for manufacturing the magnetic sensor according to the first embodiment of the present invention will be described. FIG. 7 is a partial cross-sectional view showing a state in which a photoresist is formed on a substrate. As shown in FIG. 7, a photoresist 10 is formed on the upper surface 111 of the substrate 110. The photoresist 10 is provided with an opening at a portion corresponding to the position where the groove 112 is formed. The photoresist 10 may be either a negative type or a positive type. Instead of the photoresist 10, a hard mask made of, for example, silicon nitride, silicon carbonitride, or metal may be formed on the upper surface 111 of the substrate 110.
 図8は、エッチングにより基板に溝部を形成した状態を示す部分断面図である。フォトレジスト10が設けられた基板110をエッチングした後、フォトレジスト10を除去することにより、図8に示すように、基板110に溝部112が設けられる。その結果、溝部112の内表面である、側面113と底面114とが露出する。エッチング方法は、異方性エッチングが可能な方法であればよく、ドライエッチングおよびウエットエッチングのいずれでもよい。なお、溝部112の形成方法は、エッチングに限られず、切削加工またはレーザースクライブなどを用いてもよい。 FIG. 8 is a partial cross-sectional view showing a state in which a groove is formed in the substrate by etching. After the substrate 110 provided with the photoresist 10 is etched, the photoresist 10 is removed, so that a groove 112 is provided in the substrate 110 as shown in FIG. As a result, the side surface 113 and the bottom surface 114 which are the inner surfaces of the groove 112 are exposed. The etching method may be any method that allows anisotropic etching, and may be either dry etching or wet etching. The method for forming the groove 112 is not limited to etching, and cutting or laser scribing may be used.
 図9は、基板上に磁性体膜を形成した状態を示す部分断面図である。図9に示すように、溝部112が設けられた基板110上に、磁性体膜120を成膜する。溝部112の内表面を磁性体膜120で均一に覆う方法としては、LSI(large scale integration)を製造する際に使用される銅配線技術、または、TSV(through silicon via)技術などを適用することができる。成膜方法としては、スパッタリングまたは蒸着などを用いることができる。 FIG. 9 is a partial cross-sectional view showing a state where a magnetic film is formed on a substrate. As shown in FIG. 9, the magnetic film 120 is formed on the substrate 110 provided with the groove 112. As a method of uniformly covering the inner surface of the groove 112 with the magnetic film 120, a copper wiring technique used in manufacturing LSI (large scale integration) or a TSV (through silicon via) technique is applied. Can do. As a film forming method, sputtering, vapor deposition, or the like can be used.
 図10は、磁性体膜が成膜された基板上にフォトレジストを形成した状態を示す部分断面図である。図10に示すように、第1磁気抵抗素子および第2磁気抵抗素子の各々のパターン形状に対応するように、フォトレジスト11が設けられる。溝部112は、フォトレジスト11に覆われている。フォトレジスト11は、ネガ型およびポジ型のいずれでもよい。 FIG. 10 is a partial cross-sectional view showing a state in which a photoresist is formed on a substrate on which a magnetic film is formed. As shown in FIG. 10, a photoresist 11 is provided so as to correspond to each pattern shape of the first magnetoresistive element and the second magnetoresistive element. The groove portion 112 is covered with the photoresist 11. The photoresist 11 may be either a negative type or a positive type.
 図11は、エッチングにより不要な磁性体膜を除去した状態を示す部分断面図である。図11に示すように、磁性体膜120をパターニングしてフォトレジスト11を除去することにより、第1磁気抵抗素子R1,R3、および、第2磁気抵抗素子R2,R4が形成される。 FIG. 11 is a partial cross-sectional view showing a state where an unnecessary magnetic film is removed by etching. As shown in FIG. 11, by patterning the magnetic film 120 and removing the photoresist 11, the first magnetoresistive elements R1, R3 and the second magnetoresistive elements R2, R4 are formed.
 本発明の実施形態1に係る磁気センサ100は、第1磁気抵抗素子R1,R3によって、3次元方向の磁界を検出することができ、また、第1磁気抵抗素子R1,R3および第2磁気抵抗素子R2,R4の各々のパターン形状は、従来の2次元方向の磁界を検出する磁気抵抗素子のパターン形状と同様であり、簡易な構成を有する。 The magnetic sensor 100 according to Embodiment 1 of the present invention can detect a magnetic field in a three-dimensional direction by the first magnetoresistive elements R1 and R3, and the first magnetoresistive elements R1 and R3 and the second magnetoresistive elements. The pattern shape of each of the elements R2 and R4 is the same as the pattern shape of a magnetoresistive element that detects a magnetic field in a conventional two-dimensional direction, and has a simple configuration.
 さらに、上記のように、本実施形態に係る磁気センサにおいて、ブリッジ回路を構成する抵抗は全て磁気抵抗素子である。このため、全ての抵抗を同じ材料で形成することができる。さらに、全ての抵抗を同じ製造工程で製造することができる。 Furthermore, as described above, in the magnetic sensor according to the present embodiment, all the resistors constituting the bridge circuit are magnetoresistive elements. For this reason, all the resistors can be formed of the same material. Furthermore, all resistors can be manufactured in the same manufacturing process.
 なお、溝部112の幅および深さを適宜調整することにより、Z軸方向の磁界成分の検出感度を変更することができる。また、溝部112の内表面の形状を適宜整することにより、Z軸方向の磁界成分の検出感度を変更することができる。 Note that the detection sensitivity of the magnetic field component in the Z-axis direction can be changed by appropriately adjusting the width and depth of the groove 112. Moreover, the detection sensitivity of the magnetic field component in the Z-axis direction can be changed by appropriately adjusting the shape of the inner surface of the groove 112.
 図12は、本発明の実施形態1に係る磁気センサの第1変形例に係る第1磁気抵抗素子の構成を示す部分断面図である。図13は、本発明の実施形態1に係る磁気センサの第2変形例に係る第1磁気抵抗素子の構成を示す部分断面図である。 FIG. 12 is a partial cross-sectional view showing a configuration of a first magnetoresistive element according to a first modification of the magnetic sensor according to the first embodiment of the present invention. FIG. 13 is a partial cross-sectional view showing the configuration of the first magnetoresistance element according to the second modification example of the magnetic sensor according to the first embodiment of the present invention.
 図12に示すように、本発明の実施形態1に係る磁気センサの第1変形例においては、溝部112aの内表面は、上面111を含む仮想平面に垂直な側面113と、上面111を含む仮想平面に平行な底面114と、上面111を含む仮想平面に交差する方向に延在して側面113と底面114とを繋ぐ傾斜面115とから構成されている。 As shown in FIG. 12, in the first modification of the magnetic sensor according to the first embodiment of the present invention, the inner surface of the groove 112 a has a side surface 113 perpendicular to a virtual plane including the upper surface 111 and a virtual surface including the upper surface 111. A bottom surface 114 parallel to the plane and an inclined surface 115 extending in a direction intersecting with a virtual plane including the upper surface 111 and connecting the side surface 113 and the bottom surface 114 are formed.
 本発明の実施形態1に係る磁気センサの第1変形例においては、図12中の矢印で示すように、Z軸方向に交差する方向に外部磁界Bが印加された場合に、傾斜面115上に位置する部分の磁性体膜120によって外部磁界Bを効果的に検出することができる。 In the first modification of the magnetic sensor according to the first embodiment of the present invention, as shown by an arrow in FIG. 12, when an external magnetic field B is applied in a direction crossing the Z-axis direction, The external magnetic field B can be effectively detected by the portion of the magnetic film 120 located in the region.
 図13に示すように、本発明の実施形態1に係る磁気センサの第2変形例においては、溝部112bの内表面は、上面111を含む仮想平面に垂直な側面113と、湾曲した底面116とから構成されている。 As shown in FIG. 13, in the second modification of the magnetic sensor according to the first embodiment of the present invention, the inner surface of the groove 112b includes a side surface 113 perpendicular to a virtual plane including the upper surface 111, and a curved bottom surface 116. It is composed of
 本発明の実施形態1に係る磁気センサの第2変形例においては、図13中の矢印で示すように、Z軸方向に交差する方向に外部磁界Bが印加された場合に、底面116上に位置する部分の磁性体膜120によって外部磁界Bを効果的に検出することができる。底面116が円弧状に湾曲していることにより、外部磁界Bの印加方向とZ軸方向との交差角度によらず、外部磁界Bを効果的に検出することができる。 In the second modification of the magnetic sensor according to the first embodiment of the present invention, as shown by an arrow in FIG. 13, when an external magnetic field B is applied in a direction crossing the Z-axis direction, The external magnetic field B can be effectively detected by the portion of the magnetic film 120 that is positioned. Since the bottom surface 116 is curved in an arc shape, the external magnetic field B can be effectively detected regardless of the intersection angle between the application direction of the external magnetic field B and the Z-axis direction.
 本実施形態においては、磁気センサ100は、ホイートストンブリッジ型のフルブリッジ回路を含んでいたが、これに限られず、ハーフブリッジ回路を含んでいてもよい。図14は、本発明の実施形態1に係る磁気センサの第3変形例に係る磁気センサの等価回路図である。 In the present embodiment, the magnetic sensor 100 includes a Wheatstone bridge type full-bridge circuit, but is not limited thereto, and may include a half-bridge circuit. FIG. 14 is an equivalent circuit diagram of a magnetic sensor according to a third modification of the magnetic sensor according to Embodiment 1 of the present invention.
 図14に示すように、本発明の実施形態1に係る磁気センサの第3変形例に係る磁気センサ100aにおいては、電源端子Vccと接地端子Gndとの間において、第1磁気抵抗素子R1と第2磁気抵抗素子R2とが直列に接続されている。第1磁気抵抗素子R1と第2磁気抵抗素子R2との間に、第1中点Vout1が接続されている。第1中点Vout1と接地端子Gndとの間の電位差の変化に基づいて、外部磁界を検出することができる。 As shown in FIG. 14, in the magnetic sensor 100a according to the third modification of the magnetic sensor according to the first embodiment of the present invention, the first magnetoresistive element R1 and the first magnetoresistive element R1 are connected between the power supply terminal Vcc and the ground terminal Gnd. Two magnetoresistive elements R2 are connected in series. A first middle point Vout1 is connected between the first magnetoresistive element R1 and the second magnetoresistive element R2. An external magnetic field can be detected based on a change in potential difference between the first middle point Vout1 and the ground terminal Gnd.
 (実施形態2)
 以下、本発明の実施形態2に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態2に係る磁気センサは、第1磁気抵抗素子のパターン形状のみ、本発明の実施形態1に係る磁気センサ100と異なるため、本発明の実施形態1に係る磁気センサ100と同様である構成については説明を繰り返さない。
(Embodiment 2)
Hereinafter, a magnetic sensor according to Embodiment 2 of the present invention will be described with reference to the drawings. The magnetic sensor according to the second embodiment of the present invention is different from the magnetic sensor 100 according to the first embodiment of the present invention only in the pattern shape of the first magnetoresistive element, and therefore the magnetic sensor 100 according to the first embodiment of the present invention. The description of the same configuration as in FIG.
 図15は、本発明の実施形態2に係る磁気センサの第1磁気抵抗素子のパターン形状を示す平面図である。図15に示すように、第1磁気抵抗素子R1,R3は、基板110の上面111に直交する方向から見て、2重渦巻き状のパターン形状に設けられた磁性体膜120で構成されている。2重渦巻き状のパターンは、一方の渦巻き状パターン、他方の渦巻き状パターン、および、一方の渦巻き状パターンと他方の渦巻き状パターンとを2重渦巻き状パターンの中央部にて連結するS字状パターンを含む。なお、2重渦巻き状パターンは逆方向に巻いていてもよく、この場合、2重渦巻き状パターンの中央部が逆S字状パターンで構成される。 FIG. 15 is a plan view showing the pattern shape of the first magnetoresistive element of the magnetic sensor according to the second embodiment of the present invention. As shown in FIG. 15, the first magnetoresistive elements R <b> 1 and R <b> 3 are configured by a magnetic film 120 provided in a double spiral pattern when viewed from a direction orthogonal to the upper surface 111 of the substrate 110. . The double spiral pattern includes one spiral pattern, the other spiral pattern, and an S-shape that connects one spiral pattern and the other spiral pattern at the center of the double spiral pattern. Includes patterns. Note that the double spiral pattern may be wound in the opposite direction, and in this case, the central portion of the double spiral pattern is constituted by an inverted S-shaped pattern.
 2重渦巻き状パターンは、主に略円弧状の湾曲部が巻き回されて構成されている。円弧は、多角形の角の数が無限大に大きくなった際の近似形であるため、2重渦巻き状パターンを流れる電流の向きは、水平方向の略全方位(360°)に亘っている。よって、第1磁気抵抗素子R1,R3は、水平方向の略全方位(360°)に亘って、外部磁界を検出することができる。また、第1磁気抵抗素子R1,R3の各々は、直線状延在部を含んでいないため、磁界検出の異方性が低減されている。 The double spiral pattern is mainly configured by winding a substantially arc-shaped curved portion. Since the arc is an approximate shape when the number of corners of the polygon becomes infinitely large, the direction of the current flowing through the double spiral pattern extends over almost all directions (360 °) in the horizontal direction. . Therefore, the first magnetoresistive elements R1 and R3 can detect the external magnetic field over substantially the entire horizontal direction (360 °). In addition, since each of the first magnetoresistive elements R1 and R3 does not include a linear extending portion, anisotropy of magnetic field detection is reduced.
 なお、第1磁気抵抗素子R1,R3が、基板110の上面111に直交する方向から見て、円環状のパターン形状に設けられた磁性体膜120で構成されていてもよい。この場合、磁性体膜120は、円環状の周方向の全周に亘って設けられている。円環状は、円形に限られず、楕円形であってもよい。 Note that the first magnetoresistive elements R1 and R3 may be configured by the magnetic film 120 provided in an annular pattern shape when viewed from the direction orthogonal to the upper surface 111 of the substrate 110. In this case, the magnetic film 120 is provided over the entire circumference in the annular circumferential direction. The annular shape is not limited to a circle but may be an ellipse.
 また、溝部112は、第1磁気抵抗素子R1,R3のパターン形状の全体に亘って形成されていなくてもよいが、パターン形状の周方向の全周に亘って設けられていることが、磁界検出の異方性を低減する観点から好ましい。 In addition, the groove 112 may not be formed over the entire pattern shape of the first magnetoresistive elements R1 and R3. However, the groove 112 may be provided over the entire circumference in the circumferential direction of the pattern shape. This is preferable from the viewpoint of reducing detection anisotropy.
 (実施形態3)
 以下、本発明の実施形態3に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態3に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子のパターン形状のみ、本発明の実施形態1に係る磁気センサ100と異なるため、本発明の実施形態1に係る磁気センサ100と同様である構成については説明を繰り返さない。
(Embodiment 3)
Hereinafter, a magnetic sensor according to Embodiment 3 of the present invention will be described with reference to the drawings. The magnetic sensor according to the third embodiment of the present invention differs from the magnetic sensor 100 according to the first embodiment of the present invention only in the pattern shape of the first magnetoresistive element and the second magnetoresistive element. The description of the same configuration as that of the magnetic sensor 100 according to 1 will not be repeated.
 図16は、本発明の実施形態3に係る磁気センサの構成を示す平面図である。図16に示すように、本発明の実施形態3に係る磁気センサ300においては、第1磁気抵抗素子R1,R3は、基板110の上面111に直交する方向から見て、2重渦巻き状のパターン形状に設けられた磁性体膜120で構成されている。第2磁気抵抗素子R2,R4は、基板110の上面111に直交する方向から見て、ミアンダ状のパターン形状に設けられた磁性体膜120で構成されている。第2磁気抵抗素子R2,R4を構成する磁性体膜120の長手部は、ジグザグに形成されている。第2磁気抵抗素子R2,R4を構成する磁性体膜120の長手部において直線状に延在している部分の長さは、10μm以下である。 FIG. 16 is a plan view showing the configuration of the magnetic sensor according to the third embodiment of the present invention. As shown in FIG. 16, in the magnetic sensor 300 according to Embodiment 3 of the present invention, the first magnetoresistive elements R <b> 1 and R <b> 3 are double spiral patterns when viewed from the direction orthogonal to the upper surface 111 of the substrate 110. The magnetic film 120 is provided in a shape. The second magnetoresistive elements R2 and R4 are configured by a magnetic film 120 provided in a meandering pattern shape when viewed from a direction orthogonal to the upper surface 111 of the substrate 110. The longitudinal portion of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 is formed in a zigzag manner. The length of the linearly extending portion of the magnetic film 120 constituting the second magnetoresistive elements R2 and R4 is 10 μm or less.
 磁性体膜120の直線状に延在している部分の長さが短くなるに従って、磁気抵抗素子の抵抗変化率は低下する。磁性体膜120の直線状に延在している部分の長さが10μmである第2磁気抵抗素子R2,R4の抵抗変化率は0.5%未満である。そのため、第2磁気抵抗素子R2,R4は、外部磁界が印加されても電気抵抗値がほとんど変化しない。 The resistance change rate of the magnetoresistive element decreases as the length of the linearly extending portion of the magnetic film 120 becomes shorter. The resistance change rate of the second magnetoresistive elements R2 and R4 in which the length of the linearly extending portion of the magnetic film 120 is 10 μm is less than 0.5%. Therefore, the second magnetoresistive elements R2 and R4 hardly change in electric resistance value even when an external magnetic field is applied.
 上記のように、本実施形態に係る磁気センサ300においては、第2磁気抵抗素子R2,R4の抵抗変化率が、第1磁気抵抗素子R1,R3の抵抗変化率より小さい。すなわち、第1磁気抵抗素子R1,R3は、外部磁界が印加されることによって電気抵抗値が変化するいわゆる感磁抵抗である。第2磁気抵抗素子R2,R4は、外部磁界が印加されてもほとんど電気抵抗値が変化しない固定抵抗である。 As described above, in the magnetic sensor 300 according to the present embodiment, the resistance change rates of the second magnetoresistive elements R2 and R4 are smaller than the resistance change rates of the first magnetoresistive elements R1 and R3. That is, the first magnetoresistive elements R1 and R3 are so-called magnetosensitive resistors whose electric resistance values change when an external magnetic field is applied. The second magnetoresistive elements R2 and R4 are fixed resistors whose electric resistance values hardly change even when an external magnetic field is applied.
 第2磁気抵抗素子R2,R4を固定抵抗とすることにより、外部磁界に対する磁気センサ300の配置の自由度を高めることができる。 By using the second magnetoresistive elements R2 and R4 as fixed resistors, the degree of freedom of arrangement of the magnetic sensor 300 with respect to an external magnetic field can be increased.
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。 In the description of the embodiment described above, configurations that can be combined may be combined with each other.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10,11 フォトレジスト、100,100a,300 磁気センサ、110 基板、111 上面、112,112a,112b 溝部、113 側面、114,116 底面、115 傾斜面、120 磁性体膜、B 外部磁界、Bp,Bz 磁界成分、Gnd 接地端子、I 電流、R1,R3 第1磁気抵抗素子、R1P,R1V,R3V,R3P 可変抵抗部、R2,R4 第2磁気抵抗素子、Vcc 電源端子、Vout1 第1中点、Vout2 第2中点。 10, 11 photoresist, 100, 100a, 300 magnetic sensor, 110 substrate, 111 top surface, 112, 112a, 112b groove, 113 side surface, 114, 116 bottom surface, 115 inclined surface, 120 magnetic film, B external magnetic field, Bp, Bz magnetic field component, Gnd ground terminal, I current, R1, R3 first magnetoresistive element, R1P, R1V, R3V, R3P variable resistance part, R2, R4 second magnetoresistive element, Vcc power supply terminal, Vout1 first midpoint, Vout2 2nd midpoint.

Claims (8)

  1.  上面を有し、該上面に繋がった内表面を有する溝部が設けられた基板と、
     前記基板に設けられ、互いに接続されてブリッジ回路を構成する第1磁気抵抗素子および第2磁気抵抗素子とを備え、
     前記第1磁気抵抗素子は、前記上面の一部および前記内表面を連続して覆う磁性体膜で構成されており、
     前記第2磁気抵抗素子は、前記上面の他の一部を覆う磁性体膜で構成されている、磁気センサ。
    A substrate having an upper surface and provided with a groove having an inner surface connected to the upper surface;
    A first magnetoresistive element and a second magnetoresistive element provided on the substrate and connected to each other to form a bridge circuit;
    The first magnetoresistive element is composed of a magnetic film that continuously covers a part of the upper surface and the inner surface,
    The second magnetoresistive element is a magnetic sensor configured of a magnetic film that covers another part of the upper surface.
  2.  前記内表面が、前記上面を含む仮想平面に垂直な側面を含む、請求項1に記載の磁気センサ。 The magnetic sensor according to claim 1, wherein the inner surface includes a side surface perpendicular to a virtual plane including the upper surface.
  3.  前記内表面が、前記上面を含む仮想平面に平行な底面を含む、請求項1または請求項2に記載の磁気センサ。 The magnetic sensor according to claim 1 or 2, wherein the inner surface includes a bottom surface parallel to a virtual plane including the upper surface.
  4.  前記内表面が、湾曲した底面を含む、請求項1または請求項2に記載の磁気センサ。 The magnetic sensor according to claim 1 or 2, wherein the inner surface includes a curved bottom surface.
  5.  前記第1磁気抵抗素子を構成する前記磁性体膜と、前記第2磁気抵抗素子を構成する前記磁性体膜とが、同一の材料で構成されている、請求項1から請求項4のいずれか1項に記載の磁気センサ。 The said magnetic body film which comprises the said 1st magnetoresistive element, and the said magnetic body film which comprises the said 2nd magnetoresistive element are comprised by the same material, The any one of Claims 1-4 The magnetic sensor according to item 1.
  6.  前記第1磁気抵抗素子が、前記上面に直交する方向から見て、円環状または渦巻状に設けられている、請求項1から請求項5のいずれか1項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 5, wherein the first magnetoresistive element is provided in an annular shape or a spiral shape when viewed from a direction orthogonal to the upper surface.
  7.  前記第2磁気抵抗素子が、前記上面に直交する方向から見て、ミアンダ状に設けられている、請求項1から請求項6のいずれか1項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 6, wherein the second magnetoresistive element is provided in a meander shape when viewed from a direction orthogonal to the upper surface.
  8.  前記第1磁気抵抗素子を2つ含み、
     前記第2磁気抵抗素子を2つ含み、
     2つの前記第1磁気抵抗素子と2つの前記第2磁気抵抗素子とが、互いに接続されてフルブリッジ回路を構成している、請求項1から請求項7のいずれか1項に記載の磁気センサ。
    Including two first magnetoresistive elements;
    Including two of the second magnetoresistive elements;
    The magnetic sensor according to any one of claims 1 to 7, wherein the two first magnetoresistive elements and the two second magnetoresistive elements are connected to each other to form a full bridge circuit. .
PCT/JP2017/017474 2016-05-19 2017-05-09 Magnetic sensor WO2017199787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-100517 2016-05-19
JP2016100517 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017199787A1 true WO2017199787A1 (en) 2017-11-23

Family

ID=60325781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017474 WO2017199787A1 (en) 2016-05-19 2017-05-09 Magnetic sensor

Country Status (1)

Country Link
WO (1) WO2017199787A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404939B2 (en) 2020-03-09 2023-12-26 株式会社プロテリアル GMR element and detection device
US11953567B2 (en) 2021-08-25 2024-04-09 Analog Devices International Unlimited Company Magnetic multi-turn sensor and method of manufacture

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270020A1 (en) * 2004-06-03 2005-12-08 Honeywell International Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
US20060171081A1 (en) * 2005-01-21 2006-08-03 Marcus Brcuer Magnetic sensor with tilted magnetoresistive structures
JP2009222650A (en) * 2008-03-18 2009-10-01 Ricoh Co Ltd Magnetic sensor and personal digital assistant
US20100327864A1 (en) * 2009-06-30 2010-12-30 Stmicroelectronics S.R.L. Magnetoresistive sensor and manufacturing method thereof
US20140159717A1 (en) * 2012-12-12 2014-06-12 Stmicroelectronics S.R.L. Magnetoresistive sensor integrated in a chip for detecting magnetic fields perpendicular to the chip and manufacturing process thereof
WO2014156751A1 (en) * 2013-03-26 2014-10-02 株式会社村田製作所 Magnetic sensor
CN104681713A (en) * 2014-12-25 2015-06-03 上海华虹宏力半导体制造有限公司 Anisotropic magnetoresistance and preparing method for improving Z-axis sensitivity of anisotropic magnetoresistance
WO2015182365A1 (en) * 2014-05-30 2015-12-03 株式会社村田製作所 Magnetic sensor
US20150349243A1 (en) * 2014-06-03 2015-12-03 Semiconductor Manufacturing International (Shanghai) Corporation Magnetoresistive sensor, related manufacturing method, and related electronic device
CN105261699A (en) * 2015-09-08 2016-01-20 杭州士兰集成电路有限公司 Manufacturing method of single-chip triaxial anisotropic magnetoresistive sensor
WO2016013345A1 (en) * 2014-07-24 2016-01-28 株式会社村田製作所 Magnetic sensor
CN105304811A (en) * 2015-11-19 2016-02-03 杭州士兰微电子股份有限公司 Substrate structure with slope, magnetoresistive sensor and manufacture method of same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270020A1 (en) * 2004-06-03 2005-12-08 Honeywell International Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
US20060171081A1 (en) * 2005-01-21 2006-08-03 Marcus Brcuer Magnetic sensor with tilted magnetoresistive structures
JP2009222650A (en) * 2008-03-18 2009-10-01 Ricoh Co Ltd Magnetic sensor and personal digital assistant
US20100327864A1 (en) * 2009-06-30 2010-12-30 Stmicroelectronics S.R.L. Magnetoresistive sensor and manufacturing method thereof
US20140159717A1 (en) * 2012-12-12 2014-06-12 Stmicroelectronics S.R.L. Magnetoresistive sensor integrated in a chip for detecting magnetic fields perpendicular to the chip and manufacturing process thereof
WO2014156751A1 (en) * 2013-03-26 2014-10-02 株式会社村田製作所 Magnetic sensor
WO2015182365A1 (en) * 2014-05-30 2015-12-03 株式会社村田製作所 Magnetic sensor
US20150349243A1 (en) * 2014-06-03 2015-12-03 Semiconductor Manufacturing International (Shanghai) Corporation Magnetoresistive sensor, related manufacturing method, and related electronic device
WO2016013345A1 (en) * 2014-07-24 2016-01-28 株式会社村田製作所 Magnetic sensor
CN104681713A (en) * 2014-12-25 2015-06-03 上海华虹宏力半导体制造有限公司 Anisotropic magnetoresistance and preparing method for improving Z-axis sensitivity of anisotropic magnetoresistance
CN105261699A (en) * 2015-09-08 2016-01-20 杭州士兰集成电路有限公司 Manufacturing method of single-chip triaxial anisotropic magnetoresistive sensor
CN105304811A (en) * 2015-11-19 2016-02-03 杭州士兰微电子股份有限公司 Substrate structure with slope, magnetoresistive sensor and manufacture method of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404939B2 (en) 2020-03-09 2023-12-26 株式会社プロテリアル GMR element and detection device
US11953567B2 (en) 2021-08-25 2024-04-09 Analog Devices International Unlimited Company Magnetic multi-turn sensor and method of manufacture

Similar Documents

Publication Publication Date Title
JP5152495B2 (en) Magnetic sensor and portable information terminal device
JP5144803B2 (en) Rotation detector
JP5271448B2 (en) Magnetic position detector
JP6597370B2 (en) Magnetic sensor
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
JP5843079B2 (en) Magnetic sensor and magnetic sensor system
KR20080031964A (en) Asymmetrical amr wheatstone bridge layout for position sensor
WO2015182365A1 (en) Magnetic sensor
US9678177B2 (en) Magnetic sensor device for suppressing magnetic saturation
CN104280699A (en) Single-Chip Three-Axis Magnetic Field Sensing Device
WO2008072610A1 (en) Magnetic sensor, and magnetic encoder using the sensor
JP2009300150A (en) Magnetic sensor and magnetic sensor module
JP2016170028A (en) Magnetic sensor
WO2019167598A1 (en) Magnetic sensor
JP2015219227A (en) Magnetic sensor
JP5802565B2 (en) Magnetic sensor
WO2014156751A1 (en) Magnetic sensor
WO2011074488A1 (en) Magnetic sensor
WO2017209169A1 (en) Magnetic sensor
JP2014089088A (en) Magnetoresistive effect element
WO2017199787A1 (en) Magnetic sensor
CN110837066B (en) Magnetic field sensing device
CN111433620B (en) Magnetic sensor
JP6699638B2 (en) Magnetic sensor
JP5630247B2 (en) Rotation angle sensor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799212

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP