TW201520574A - Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module - Google Patents

Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module Download PDF

Info

Publication number
TW201520574A
TW201520574A TW103102698A TW103102698A TW201520574A TW 201520574 A TW201520574 A TW 201520574A TW 103102698 A TW103102698 A TW 103102698A TW 103102698 A TW103102698 A TW 103102698A TW 201520574 A TW201520574 A TW 201520574A
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic field
unidirectional
sensors
sensing module
Prior art date
Application number
TW103102698A
Other languages
Chinese (zh)
Other versions
TWI518349B (en
Inventor
Fu-Te Yuan
Meng-Huang Lai
Jen-Tzong Jeng
Original Assignee
Isentek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isentek Inc filed Critical Isentek Inc
Priority to CN201410129413.XA priority Critical patent/CN104656045B/en
Priority to US14/283,236 priority patent/US9562953B2/en
Priority to DE102014012607.2A priority patent/DE102014012607A1/en
Publication of TW201520574A publication Critical patent/TW201520574A/en
Application granted granted Critical
Publication of TWI518349B publication Critical patent/TWI518349B/en
Priority to US15/387,669 priority patent/US9983271B2/en

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

A magnetic field sensing module including a plurality of magnetic flux concentrators and a plurality of single direction magnetic sensors is provided. Each of the magnetic flux concentrators extends along a first extension direction, and the magnetic flux concentrators are arranged along a second direction. The single direction magnetic sensors are respectively disposed at a position corresponding to a position between the magnetic flux concentrators and positions corresponding to two sides of the magnetic flux concentrators arranged along the second direction. Sensing directions of the single direction magnetic sensors are substantially the same. A measurement method and a manufacturing method of a magnetic field sensing module are also provided.

Description

磁場感測模組、量測方法及磁場感測模組的製作方 法 Magnetic field sensing module, measuring method and magnetic field sensing module law

本發明是有關於一種磁場感測模組、量測方法及磁場感測模組的製作方法。 The invention relates to a magnetic field sensing module, a measuring method and a magnetic field sensing module.

隨著可攜式電子裝置的普及,能夠感應地磁方向的電子羅盤之技術便受到重視。當電子羅盤應用於體積小的可攜式電子裝置(如智慧型手機)時,電子羅盤除了需符合體積小的需求之外,最好還能夠達到三軸的感測,這是因為使用者以手握持手機時,有可能是傾斜地握持,且各種不同的握持角度也都可能產生。 With the popularity of portable electronic devices, the technology of an electronic compass capable of sensing the geomagnetic direction has received attention. When an electronic compass is applied to a small portable electronic device (such as a smart phone), in addition to the small volume requirement, the electronic compass is preferably capable of achieving three-axis sensing because the user When holding the phone in your hand, it may be held obliquely, and various holding angles may also occur.

為了達到三軸的感測,一種習知技術是採用傾斜晶圓技術,其為在矽基板上蝕刻出傾斜面,然後再將巨磁阻(giant magnetoresistance,GMR)多層膜結構或穿隧磁阻(tunneling magnetoresistance,TMR)多層膜結構形成於斜面上。然而,在傾斜面上沉積薄膜容易造成薄膜的厚度不均勻,且傾斜面上的蝕刻製程亦是較為困難且良率較難控制的。 In order to achieve three-axis sensing, a conventional technique is to use a tilted wafer technique in which an inclined surface is etched on a germanium substrate, and then a giant magnetoresistance (GMR) multilayer film structure or tunneling magnetoresistance is applied. (tunneling magnetoresistance, TMR) The multilayer film structure is formed on the inclined surface. However, depositing a film on an inclined surface tends to cause uneven thickness of the film, and the etching process on the inclined surface is also difficult and the yield is difficult to control.

另一種習知技術是採用複合式感測元件的方法來達到三軸的感測,具體而言,其利用兩個彼此垂直配置的巨磁阻多層膜結構(或穿隧磁阻多層膜結構)與一個霍爾元件(Hall element)來達到三軸的感測。然而,由於霍爾元件的感測靈敏度不同於巨磁阻多層膜結構(或穿隧磁阻多層膜結構)的感測靈敏度,這會造成其中一軸上的精確度與其他兩軸上的精確度不同。如此一來,當使用者將可攜式電子裝置旋轉至不同的角度時,將導致對同一磁場的感測靈敏度不同,進而造成使用上的困擾。 Another conventional technique is to use a method of a composite sensing element to achieve three-axis sensing, in particular, to utilize two giant magnetoresistive multilayer film structures (or tunneling magnetoresistive multilayer film structures) arranged perpendicularly to each other. A Hall element is used to achieve three-axis sensing. However, since the sensing sensitivity of the Hall element is different from the sensing sensitivity of the giant magnetoresistive multilayer film structure (or the tunneling magnetoresistive multilayer film structure), this causes the accuracy on one axis to be different from the accuracy on the other two axes. . As a result, when the user rotates the portable electronic device to different angles, the sensing sensitivity to the same magnetic field is different, which causes troubles in use.

在習知技術中,為了達到磁場的多軸感測,通常採用了二次以上的製程,也就是採用了兩塊以上的晶圓的製程來製作出多軸向磁場感測模組,如此將使製程複雜化,且難以降低製作成本。 In the prior art, in order to achieve multi-axis sensing of a magnetic field, a process of two or more processes is generally used, that is, a process using two or more wafers to fabricate a multi-axial magnetic field sensing module, thus The process is complicated and it is difficult to reduce the manufacturing cost.

本發明提供一種磁場感測模組,其可利用多個感測方向相同的單方向磁感測器來達到多軸向的磁場感測。 The invention provides a magnetic field sensing module, which can utilize multiple unidirectional magnetic sensors with the same sensing direction to achieve multi-axis magnetic field sensing.

本發明提供一種量測方法,其可利用簡易的方式來達到多軸向的磁場感測。 The present invention provides a measurement method that can achieve multi-axial magnetic field sensing in a simple manner.

本發明提供一種磁場感測模組的製作方法,其可利用簡易的製作過程製作出可達到多軸向磁場感測的磁場感測模組。 The invention provides a method for manufacturing a magnetic field sensing module, which can produce a magnetic field sensing module capable of achieving multi-axial magnetic field sensing by using a simple manufacturing process.

本發明的一實施例的一種磁場感測模組包括多個磁通集中器及多個單方向磁感測器。每一磁通集中器沿著一第一方向延 伸,且這些磁通集中器沿著一第二方向排列。這些單方向磁感測器分別配置於對應至這些磁通集中器之間的位置及對應至這些磁通集中器之排列於第二方向上的兩側的位置,其中這些單方向磁感測器的感測方向實質上相同。 A magnetic field sensing module according to an embodiment of the invention includes a plurality of magnetic flux concentrators and a plurality of single-directional magnetic sensors. Each flux concentrator extends along a first direction Extending, and the flux concentrators are arranged along a second direction. The unidirectional magnetic sensors are respectively disposed at positions corresponding to the magnetic flux concentrators and corresponding to the two sides of the magnetic flux concentrators arranged in the second direction, wherein the unidirectional magnetic sensors The sensing direction is substantially the same.

本發明的一實施例的一種量測方法用以量測一外來磁場,此量測方法包括:改變外來磁場的磁場分佈,以將外來磁場的在一第一方向上的分量、一第二方向上的分量及一第三方向上的分量在多個不同位置上至少有部分分量轉換至第二方向;以及分別在這些不同位置感測第二方向上的磁場大小,以量測出外來磁場於第一方向上的分量大小、於第二方向上的分量大小及於第三方向上的分量大小。 A measuring method according to an embodiment of the present invention is for measuring an external magnetic field, the measuring method comprising: changing a magnetic field distribution of the external magnetic field to make a component of the external magnetic field in a first direction, a second direction The upper component and a third-party component convert at least a portion of the component to the second direction at a plurality of different locations; and sense the magnitude of the magnetic field in the second direction at the different locations to measure the external magnetic field The size of the component in one direction, the size of the component in the second direction, and the component size in the third direction.

本發明的一實施例的一種磁場感測模組的製作方法,包括:提供一基板;在基板上形成一磁感測多層膜結構;蝕刻磁感測多層膜結構的一第一部分,其中剩餘的磁感測多層膜結構的一第二部分形成多個彼此分離的單方向磁感測器;形成一覆蓋基板及這些單方向磁感測器的絕緣層;以及在絕緣層上形成多個磁通集中器,其中每一磁通集中器沿著一第一方向延伸,這些磁通集中器沿著一第二方向排列,這些單方向磁感測器分別配置於這些磁通集中器之間的位置的下方、這些磁通集中器之排列於第二方向上的兩側的位置的下方及這些磁通集中器的下方。 A method for fabricating a magnetic field sensing module according to an embodiment of the present invention includes: providing a substrate; forming a magnetic sensing multilayer film structure on the substrate; etching a first portion of the magnetic sensing multilayer film structure, wherein the remaining portion A second portion of the magnetic sensing multilayer film structure forms a plurality of unidirectional magnetic sensors separated from each other; forming an insulating layer covering the substrate and the unidirectional magnetic sensors; and forming a plurality of magnetic fluxes on the insulating layer a concentrator, wherein each flux concentrator extends along a first direction, the flux concentrators are arranged along a second direction, and the unidirectional magnetic sensors are respectively disposed at positions between the flux concentrators Below the magnetic flux concentrators are arranged below the positions on both sides in the second direction and below the flux concentrators.

在本發明的實施例的磁場感測模組中,由於藉由磁通集中器來使外來磁場彎曲,因此多個單方向磁感測器的感測方向可 以實質上相同,所以此磁場感測模組可以在較為簡化的架構下達到多軸向的磁場感測,進而降低磁場感測模組的製作困難度及成本。在本發明的實施例的量測方法中,由於藉由改變外來磁場的磁場分佈的方式以將外來磁場轉換至同一方向,因此能夠以在同一方向感測外來磁場的方式就能夠在實際上達到多個軸向的磁場感測。因此,此量測方法可藉由較為簡易的方式達到多個軸向的磁場感測。在本發明的實施例的磁場感測模組的製作方法中,由於是將一磁感測多層膜結構蝕刻成多個彼此分離的單方向磁感測器,再搭配磁通集中器的形成,以完成多軸向磁場感測模組的製作。因此,此製作方法可利用較為簡易的製作過程製作出可達到多軸向磁場感測的磁場感測模組。 In the magnetic field sensing module of the embodiment of the present invention, since the external magnetic field is bent by the magnetic flux concentrator, the sensing directions of the plurality of single-directional magnetic sensors can be The magnetic field sensing module can achieve multi-axis magnetic field sensing under a relatively simplified structure, thereby reducing the difficulty and cost of manufacturing the magnetic field sensing module. In the measuring method of the embodiment of the present invention, since the external magnetic field is converted to the same direction by changing the magnetic field distribution of the external magnetic field, it is possible to actually reach the external magnetic field in the same direction. Multiple axial magnetic field sensing. Therefore, this measurement method can achieve multiple axial magnetic field sensing in a relatively simple manner. In the method for fabricating the magnetic field sensing module of the embodiment of the present invention, since a magnetic sensing multilayer film structure is etched into a plurality of single-directional magnetic sensors separated from each other, and then formed with a magnetic flux concentrator, To complete the fabrication of the multi-axial magnetic field sensing module. Therefore, the manufacturing method can produce a magnetic field sensing module capable of achieving multi-axial magnetic field sensing by using a relatively simple manufacturing process.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、100d、100e‧‧‧磁場感測模組 100, 100d, 100e‧‧‧ magnetic field sensing module

110‧‧‧磁通集中器 110‧‧‧Magnetic concentrator

120、120a、120a1、120a1'、120a2、120a2'、120b、120b1、 120b2、120b3、120b4、120b1’~120b12’、120b1"~120b12"、120c、120c1、120c2、120c1'~120c6'、120d、120d1~120d12‧‧‧單方向磁感測器 120, 120a, 120a1, 120a1', 120a2, 120a2', 120b, 120b1 120b2, 120b3, 120b4, 120b1'~120b12', 120b1"~120b12", 120c, 120c1, 120c2, 120c1'~120c6', 120d, 120d1~120d12‧‧‧ single direction magnetic sensor

122‧‧‧釘扎層 122‧‧‧ pinned layer

124‧‧‧受釘扎層 124‧‧‧ Pinned layer

126‧‧‧間隔層 126‧‧‧ spacer

128‧‧‧自由層 128‧‧‧Free layer

130‧‧‧基板 130‧‧‧Substrate

140‧‧‧絕緣層 140‧‧‧Insulation

150‧‧‧磁感測多層膜結構 150‧‧‧Magnetic sensing multilayer film structure

152‧‧‧第一部分 152‧‧‧Part 1

154‧‧‧第二部分 154‧‧‧Part II

160‧‧‧光阻層 160‧‧‧ photoresist layer

162‧‧‧經圖案化後的光阻層 162‧‧‧ patterned photoresist layer

163、212‧‧‧開口 163, 212‧‧‧ openings

170、220‧‧‧蝕刻物質 170, 220‧‧‧ etching materials

190‧‧‧鐵磁性材料層 190‧‧‧ Ferromagnetic material layer

210‧‧‧圖案化光阻層 210‧‧‧ patterned photoresist layer

A~F‧‧‧端點 A~F‧‧‧ endpoint

BX、BY、BZ‧‧‧分量 B X , B Y , B Z ‧‧‧ components

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

D3‧‧‧第三方向 D3‧‧‧ third direction

E1‧‧‧釘扎方向 E1‧‧‧ pinning direction

E2‧‧‧易磁化軸 E2‧‧‧Electronic axis

GND‧‧‧接地端 GND‧‧‧ ground terminal

P1、P2‧‧‧位置 P1, P2‧‧‧ position

S‧‧‧感測方向 S‧‧‧Sensing direction

VDD‧‧‧電壓供應端 VDD‧‧‧voltage supply

V1、V2、V1X、V2X、V1Y、V2Y、V1Z、V2Z‧‧‧電壓輸出端 V 1 , V 2 , V 1X , V 2X , V 1Y , V 2Y , V 1Z , V 2Z ‧‧‧ voltage output

x、y、z‧‧‧方向 x, y, z‧‧ direction

圖1A為本發明之一實施例之磁場感測模組的上視結構示意圖。 FIG. 1A is a schematic top view of a magnetic field sensing module according to an embodiment of the invention.

圖1B與圖1C為圖1A之磁場感測模組於兩個不同方向的側視結構示意圖。 1B and FIG. 1C are schematic side views of the magnetic field sensing module of FIG. 1A in two different directions.

圖2A、圖2B及圖2C分別為沿著x方向、y方向及z方向的外來磁場施加於圖1A至圖1C之磁場感測模組時,外來磁場被磁 通集中器轉變的磁力線模擬圖。 2A, 2B, and 2C show that when an external magnetic field along the x direction, the y direction, and the z direction is applied to the magnetic field sensing module of FIGS. 1A to 1C, the external magnetic field is magnetically A magnetic line simulation of the transition of the concentrator.

圖3A為圖1A中的單方向磁感測器的多層膜結構之立體示意圖。 3A is a perspective view of the multilayer film structure of the single-direction magnetic sensor of FIG. 1A.

圖3B繪示圖3A之單方向磁感測器的釘扎方向與自由層的易磁化軸。 FIG. 3B illustrates the pinning direction of the unidirectional magnetic sensor of FIG. 3A and the easy magnetization axis of the free layer.

圖3C繪示圖3A中的單方向磁感測器於不同方向的外來磁場的作用下及沒有外來磁場的情況下電阻的變化。 FIG. 3C illustrates the change in resistance of the unidirectional magnetic sensor of FIG. 3A under the action of an external magnetic field in different directions and without an external magnetic field.

圖4A繪示圖1A之磁場感測模組在感測平行於x方向的磁場時的電路架構。 4A is a circuit diagram of the magnetic field sensing module of FIG. 1A when sensing a magnetic field parallel to the x direction.

圖4B繪示當平行於x方向的外來磁場施加於圖4A之電路架構時,單方向磁感測器的電阻變化。 4B illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to the circuit architecture of FIG. 4A.

圖4C繪示當平行於y方向的外來磁場施加於圖4A之電路架構時,單方向磁感測器的電阻變化。 4C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 4A.

圖4D繪示當平行於z方向的外來磁場施加於圖4A之電路架構時,單方向磁感測器的電阻變化。 4D illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of FIG. 4A.

圖5A繪示圖1A之磁場感測模組在感測平行於y方向的磁場時的電路架構。 FIG. 5A illustrates a circuit architecture of the magnetic field sensing module of FIG. 1A when sensing a magnetic field parallel to the y direction.

圖5B繪示當平行於x方向的外來磁場施加於圖5A之電路架構時,單方向磁感測器的電阻變化。 FIG. 5B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to the circuit architecture of FIG. 5A.

圖5C繪示當平行於y方向的外來磁場施加於圖5A之電路架構時,單方向磁感測器的電阻變化。 Figure 5C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the y-direction is applied to the circuit architecture of Figure 5A.

圖5D繪示當平行於z方向的外來磁場施加於圖5A之電路架 構時,單方向磁感測器的電阻變化。 FIG. 5D illustrates that an external magnetic field parallel to the z direction is applied to the circuit frame of FIG. 5A. When configured, the resistance of the unidirectional magnetic sensor changes.

圖6A繪示圖1A之磁場感測模組在感測平行於z方向的磁場時的電路架構。 FIG. 6A illustrates a circuit architecture of the magnetic field sensing module of FIG. 1A when sensing a magnetic field parallel to the z direction.

圖6B繪示當平行於x方向的外來磁場施加於圖6A之電路架構時,單方向磁感測器的電阻變化。 FIG. 6B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to the circuit architecture of FIG. 6A.

圖6C繪示當平行於y方向的外來磁場施加於圖6A之電路架構時,單方向磁感測器的電阻變化。 6C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 6A.

圖6D繪示當平行於z方向的外來磁場施加於圖6A之電路架構時,單方向磁感測器的電阻變化。 Figure 6D illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of Figure 6A.

圖7A為本發明之另一實施例之磁場感測模組的上視結構示意圖。 FIG. 7A is a schematic top view of a magnetic field sensing module according to another embodiment of the present invention.

圖7B繪示圖7A的磁場感測模組之用以量測x方向磁場的第一惠司同電橋。 FIG. 7B illustrates the first sigma bridge of the magnetic field sensing module of FIG. 7A for measuring the x-direction magnetic field.

圖7C繪示圖7A的磁場感測模組之用以量測y方向磁場的第二惠司同電橋。 FIG. 7C illustrates a second sigma bridge of the magnetic field sensing module of FIG. 7A for measuring a magnetic field in the y direction.

圖7D繪示圖7A的磁場感測模組之用以量測z方向磁場的第三惠司同電橋。 FIG. 7D illustrates a third Huisi bridge of the magnetic field sensing module of FIG. 7A for measuring a z-direction magnetic field.

圖8A為本發明之又一實施例之磁場感測模組的上視結構示意圖。 FIG. 8A is a schematic top view of a magnetic field sensing module according to still another embodiment of the present invention.

圖8B繪示圖8A的磁場感測模組之用以量測x方向磁場的第一惠司同電橋。 FIG. 8B illustrates the first sigma bridge of the magnetic field sensing module of FIG. 8A for measuring the x-direction magnetic field.

圖8C繪示圖8A的磁場感測模組之用以量測y方向磁場的第 二惠司同電橋。 8C illustrates the magnetic field sensing module of FIG. 8A for measuring the magnetic field in the y direction. Second Huisi with the bridge.

圖8D繪示圖8A的磁場感測模組之用以量測z方向磁場的第三惠司同電橋。 FIG. 8D illustrates a third Huisi bridge of the magnetic field sensing module of FIG. 8A for measuring a z-direction magnetic field.

圖9A至圖9F繪示本發明之一實施例之磁場感測模組的製作方法的流程之側視示意圖。 9A-9F are schematic side views showing a flow of a method of fabricating a magnetic field sensing module according to an embodiment of the present invention.

圖10A繪示當平行於x方向的外來磁場施加於用以感測平行於x方向的磁場之本發明之另一實施例之磁場感測模組的電路架構時,單方向磁感測器的電阻變化。 10A illustrates a circuit configuration of a unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to a magnetic field sensing module of another embodiment of the present invention for sensing a magnetic field parallel to the x direction. The resistance changes.

圖10B繪示當平行於y方向的外來磁場施加於圖10A之電路架構時,單方向磁感測器的電阻變化。 FIG. 10B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 10A.

圖10C繪示當平行於z方向的外來磁場施加於圖10A之電路架構時,單方向磁感測器的電阻變化。 Figure 10C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of Figure 10A.

圖11A繪示當平行於x方向的外來磁場施加於用以感測平行於z方向的磁場之本發明之另一實施例之磁場感測模組的電路架構時,單方向磁感測器的電阻變化。 11A illustrates a circuit configuration of a unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to a magnetic field sensing module of another embodiment of the present invention for sensing a magnetic field parallel to the z direction. The resistance changes.

圖11B繪示當平行於y方向的外來磁場施加於圖11A之電路架構時,單方向磁感測器的電阻變化。 FIG. 11B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 11A.

圖11C繪示當平行於z方向的外來磁場施加於圖11A之電路架構時,單方向磁感測器的電阻變化。 Figure 11C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of Figure 11A.

圖1A為本發明之一實施例之磁場感測模組的上視結構 示意圖,而圖1B與圖1C為圖1A之磁場感測模組於兩個不同方向的側視結構示意圖。請參照圖1A至圖1C,本實施例之磁場感測模組100包括多個磁通集中器(magnetic flux concentrator)110及多個單方向磁感測器120。每一磁通集中器110沿著一第一方向D1(其平行於x方向)延伸,且這些磁通集中器110沿著一第二方向D2(其平行於y方向)排列。在本實施例中,這些磁通集中器110的殘磁小於其飽和磁化量的10%。舉例而言,磁通集中器110為軟磁材料,例如為鎳鐵合金、鈷鐵或鈷鐵硼合金、鐵氧磁體或其他高導磁率材料。 1A is a top view of a magnetic field sensing module according to an embodiment of the present invention; FIG. 1B and FIG. 1C are schematic side views of the magnetic field sensing module of FIG. 1A in two different directions. Referring to FIG. 1A to FIG. 1C , the magnetic field sensing module 100 of the embodiment includes a plurality of magnetic flux concentrators 110 and a plurality of unidirectional magnetic sensors 120 . Each flux concentrator 110 extends along a first direction D1 (which is parallel to the x direction) and the flux concentrators 110 are arranged along a second direction D2 (which is parallel to the y direction). In the present embodiment, the residual magnetization of these flux concentrators 110 is less than 10% of the saturation magnetization. For example, magnetic flux concentrator 110 is a soft magnetic material such as a nickel-iron alloy, a cobalt iron or cobalt iron boron alloy, a ferrite magnet, or other high permeability material.

這些單方向磁感測器120分別配置於對應至這些磁通集中器110之間的位置(例如對應於相鄰兩磁通集中器110之間的中線上的位置)及對應至這些磁通集中器110之排列於第二方向D2上的兩側的位置。舉例而言,這些單方向磁感測器120中的單方向磁感測器120a是配置於對應至這些磁通集中器110之間的位置,從圖1B來看,單方向磁感測器120a即是位於這些磁通集中器110之間的位置的下方。此外,這些單方向磁感測器120中的單方向磁感測器120b是對應至這些磁通集中器110之排列於第二方向D2上的兩側的位置,從圖1B來看,單方向磁感測器120b是位於這些磁通集中器110之排列於第二方向D2上的兩側的下方。在本實施例中,部分的這些單方向磁感測器120(如單方向磁感測器120c)是配置於這些磁通集中器110在一第三方向D3(其平行於z方向)上的一側,從圖1B來看,單方向磁感測器120c 配置於這些磁通集中器110的正下方。此外,在本實施例中,第一方向D1實質上垂直於第二方向D2,且第三方向D3實質上垂直於第一方向D1與第二方向D2。 The unidirectional magnetic sensors 120 are respectively disposed at positions corresponding to the magnetic flux concentrators 110 (for example, corresponding to positions on the center line between the adjacent two magnetic flux concentrators 110) and corresponding to the magnetic flux concentrations. The devices 110 are arranged at positions on both sides in the second direction D2. For example, the unidirectional magnetic sensors 120a of the unidirectional magnetic sensors 120 are disposed at positions corresponding to the magnetic flux concentrators 110. As seen from FIG. 1B, the unidirectional magnetic sensors 120a That is, it is located below the position between these flux concentrators 110. In addition, the unidirectional magnetic sensors 120b of the unidirectional magnetic sensors 120 correspond to the positions of the magnetic flux concentrators 110 arranged on the two sides in the second direction D2, as seen from FIG. 1B, the single direction The magnetic sensor 120b is located below both sides of the magnetic flux concentrators 110 arranged in the second direction D2. In this embodiment, some of the unidirectional magnetic sensors 120 (such as the unidirectional magnetic sensor 120c) are disposed in the magnetic flux concentrator 110 in a third direction D3 (which is parallel to the z direction). One side, as seen from FIG. 1B, the unidirectional magnetic sensor 120c It is disposed directly below these flux concentrators 110. Further, in the present embodiment, the first direction D1 is substantially perpendicular to the second direction D2, and the third direction D3 is substantially perpendicular to the first direction D1 and the second direction D2.

在本實施例中,這些單方向磁感測器120例如為巨磁阻感測器、穿隧磁阻感測器或其組合。然而,在其他實施例中,這些單方向磁感測器120可以是巨磁阻感測器、穿隧磁阻感測器、磁通閘(flux gate)、磁阻抗感測器(magneto-impedance sensor)、非各向同性磁阻感測器(anisotropic magnetoresistance sensor,AMR sensor)或其組合。此外,在本實施例中,這些單方向磁感測器120的感測方向S實質上相同。舉例而言,這些單方向磁感測器120的感測方向S實質上平行於第二方向D2。 In the present embodiment, the unidirectional magnetic sensors 120 are, for example, giant magnetoresistive sensors, tunneling magnetoresistive sensors, or a combination thereof. However, in other embodiments, the unidirectional magnetic sensors 120 may be giant magnetoresistive sensors, tunneling magnetoresistive sensors, flux gates, magneto-impedance sensors (magneto-impedance). Sensor), an anisotropic magnetoresistance sensor (AMR sensor) or a combination thereof. Moreover, in the present embodiment, the sensing directions S of the one-way magnetic sensors 120 are substantially the same. For example, the sensing directions S of the unidirectional magnetic sensors 120 are substantially parallel to the second direction D2.

在本實施例中,磁場感測模組100更包括一基板130及一絕緣層140,其中這些單方向磁感測器120配置於基板130上,絕緣層140覆蓋這些單方向磁感測器120,而磁通集中器110配置於絕緣層140上。 In this embodiment, the magnetic field sensing module 100 further includes a substrate 130 and an insulating layer 140. The unidirectional magnetic sensors 120 are disposed on the substrate 130, and the insulating layer 140 covers the unidirectional magnetic sensors 120. The magnetic flux concentrator 110 is disposed on the insulating layer 140.

圖2A、圖2B及圖2C分別為沿著x方向、y方向及z方向的外來磁場施加於圖1A至圖1C之磁場感測模組時,外來磁場被磁通集中器轉變的磁力線模擬圖。請先參照圖2A,當施加一個沿著x方向的外來磁場時,由於受到磁通集中器110的作用,單方向磁感測器120b的所在位置P2處的磁場被轉變為具有y方向(即平行於第二方向D2)的分量的磁場,因此磁場感測模組100可藉由單方向磁感測器120b在y方向上感測到磁場的大小,來判 斷在x方向上的外來磁場的大小。請再參照圖2B,當施加一個沿著y方向的外來磁場時,受到磁通集中器110的作用,單方向磁感測器120a的所在位置P1處的磁場方向仍然維持實質上平行於y方向(即平行於第二方向D2)的方向上,因此磁場感測模組100可藉由單方向磁感測器120a在y方向上感測到磁場的大小,來判斷在y方向上的外來磁場的大小。請再參照圖2C,當施加一個沿著z方向的外來磁場時,由於受到磁通集中器110的作用,單方向磁感測器120b的所在位置P2處的外來磁場方向被轉變至具有y分量的磁場,因此磁場感測模組100可藉由單方向磁感測器120b在y方向上感測到y分量的磁場的大小,來判斷在z方向上的外來磁場的大小。 2A, 2B, and 2C are magnetic line simulation diagrams of the external magnetic field converted by the magnetic flux concentrator when an external magnetic field along the x direction, the y direction, and the z direction is applied to the magnetic field sensing module of FIGS. 1A to 1C, respectively. . Referring first to FIG. 2A, when an external magnetic field along the x direction is applied, the magnetic field at the position P2 of the unidirectional magnetic sensor 120b is converted to have the y direction due to the action of the magnetic flux concentrator 110 (ie, The magnetic field of the component parallel to the second direction D2), so the magnetic field sensing module 100 can sense the magnitude of the magnetic field in the y direction by the unidirectional magnetic sensor 120b. The size of the external magnetic field that is broken in the x direction. Referring again to FIG. 2B, when an external magnetic field along the y direction is applied, the direction of the magnetic field at the position P1 of the unidirectional magnetic sensor 120a is maintained substantially parallel to the y direction by the action of the magnetic flux concentrator 110. (ie, parallel to the second direction D2), the magnetic field sensing module 100 can sense the magnitude of the magnetic field in the y direction by the unidirectional magnetic sensor 120a to determine the external magnetic field in the y direction. the size of. Referring again to FIG. 2C, when an external magnetic field along the z direction is applied, the direction of the external magnetic field at the position P2 of the unidirectional magnetic sensor 120b is converted to have a y component due to the action of the magnetic flux concentrator 110. The magnetic field sensing module 100 can determine the magnitude of the external magnetic field in the z direction by sensing the magnitude of the magnetic field of the y component in the y direction by the unidirectional magnetic sensor 120b.

圖3A為圖1A中的單方向磁感測器的多層膜結構之立體示意圖,圖3B繪示圖3A之單方向磁感測器的釘扎方向與自由層的易磁化軸,而圖3C繪示圖3A中的單方向磁感測器於不同方向的外來磁場的作用下及沒有外來磁場的情況下電阻的變化。請參照圖3A至圖3C,在本實施例中,單方向磁感測器120包括釘扎層(pinning layer)122、受釘扎層(pinned layer)124、間隔層(spacer layer)126及自由層(free layer)128。釘扎層122固定了受釘扎層124的磁化方向(magnetization direction),即為釘扎方向E1,而自由層的易磁化軸E2的方向則可與釘扎方向E1實質上垂直。當單方向磁感測器120為巨磁阻感測器時,間隔層126的材質為非磁性金屬(non-magnetic metal)。此外,當單方向磁感測器120 為穿隧磁阻感測器時,間隔層126的材質為絕緣材質。 3A is a perspective view of the multilayer film structure of the single-direction magnetic sensor of FIG. 1A, and FIG. 3B is a view showing the pinning direction of the single-direction magnetic sensor of FIG. 3A and the easy magnetization axis of the free layer, and FIG. 3C The change of the resistance of the unidirectional magnetic sensor in FIG. 3A under the action of an external magnetic field in different directions and without an external magnetic field. Referring to FIG. 3A to FIG. 3C, in the embodiment, the unidirectional magnetic sensor 120 includes a pinning layer 122, a pinned layer 124, a spacer layer 126, and a free Free layer 128. The pinning layer 122 fixes the magnetization direction of the pinned layer 124, that is, the pinning direction E1, and the direction of the easy magnetization axis E2 of the free layer is substantially perpendicular to the pinning direction E1. When the unidirectional magnetic sensor 120 is a giant magnetoresistive sensor, the spacer layer 126 is made of a non-magnetic metal. In addition, when the single direction magnetic sensor 120 When the tunneling magnetoresistive sensor is used, the spacer layer 126 is made of an insulating material.

圖3C中的曲線圖表現了單方向磁感測器120的電阻R相對於外來磁場B的變化。如圖3C的左上圖所示,當單方向磁感測器120被施加一與釘扎方向同向之外來磁場B時,其電阻R會下降,即曲線圖中黑圓點所對應的電阻R的數值,其中此釘扎方向即為單方向磁感測器120的感測方向S。如圖3C的左下圖所示,當單方向磁感測器120被施加一與釘扎方向相反方向之外來磁場B時,其電阻R會上升,即曲線圖中黑圓點所對應的電阻R的數值。如圖3C的右上圖所示,當單方向磁感測器120被施加一與釘扎方向垂直之外來磁場B時,其電阻R維持不變,即曲線圖中黑圓點所對應的電阻R的數值。另外,如圖3C的右下圖所示,當單方向磁感測器120沒有被施加磁場時,其電阻R維持不變,即曲線圖中黑圓點所對應的電阻R的數值。 The graph in FIG. 3C represents the variation of the resistance R of the unidirectional magnetic sensor 120 with respect to the external magnetic field B. As shown in the upper left diagram of FIG. 3C, when the unidirectional magnetic sensor 120 is applied with a magnetic field B in the same direction as the pinning direction, its resistance R decreases, that is, the resistance R corresponding to the black dot in the graph. The value of the pinning direction is the sensing direction S of the unidirectional magnetic sensor 120. As shown in the lower left diagram of FIG. 3C, when the unidirectional magnetic sensor 120 is applied with a magnetic field B outside the direction opposite to the pinning direction, its resistance R rises, that is, the resistance R corresponding to the black dot in the graph. The value. As shown in the upper right diagram of FIG. 3C, when the unidirectional magnetic sensor 120 is applied with a magnetic field B perpendicular to the pinning direction, its resistance R remains unchanged, that is, the resistance R corresponding to the black dot in the graph. The value. In addition, as shown in the lower right diagram of FIG. 3C, when the unidirectional magnetic sensor 120 is not applied with a magnetic field, its resistance R remains unchanged, that is, the value of the resistance R corresponding to the black dot in the graph.

圖4A繪示圖1A之磁場感測模組在感測平行於x方向的磁場時的電路架構。圖4B繪示當平行於x方向的外來磁場施加於圖4A之電路架構時,單方向磁感測器的電阻變化。圖4C繪示當平行於y方向的外來磁場施加於圖4A之電路架構時,單方向磁感測器的電阻變化。圖4D繪示當平行於z方向的外來磁場施加於圖4A之電路架構時,單方向磁感測器的電阻變化。請參照圖4A至圖4D,部分配置於對應至這些磁通集中器110之排列於第二方向D2(即平行於y方向)上的兩側的位置的這些單方向磁感測器120b耦接成一第一惠司同電橋(Wheatstone bridge),且用以感測一外 來磁場於第一方向D1(即平行於x方向)上的分量BX4A is a circuit diagram of the magnetic field sensing module of FIG. 1A when sensing a magnetic field parallel to the x direction. 4B illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to the circuit architecture of FIG. 4A. 4C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 4A. 4D illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of FIG. 4A. Referring to FIG. 4A to FIG. 4D, the unidirectional magnetic sensors 120b are partially disposed at positions corresponding to the two sides of the magnetic flux concentrators 110 arranged in the second direction D2 (ie, parallel to the y direction). A first Wheatstone bridge is used to sense a component B X of an external magnetic field in a first direction D1 (ie, parallel to the x direction).

具體而言,請參照圖4B,當外來磁場只有分量BX時,在磁通集中器110的作用下,於單方向磁感測器120b1處的磁場會有-y方向上的分量(即與單方向磁感測器120b1的感測方向S方向相反),因此單方向磁感測器120b1的電阻會上升。此外,單方向磁感測器120b2處的磁場則會有+y方向上的分量(即與單方向磁感測器120b1的感測方向S方向相同),因此單方向磁感測器120b2的電阻會下降。同理,單方向磁感測器120b3處的磁場則會有+y方向上的分量(即與單方向磁感測器120b1的感測方向S方向相同),因此單方向磁感測器120b2的電阻會下降。此外,於單方向磁感測器120b4處的磁場會有-y方向上的分量(即與單方向磁感測器120b1的感測方向S方向相反),因此單方向磁感測器120b4的電阻會上升。在第一惠司同電橋中,電壓供應端VDD是耦接於單方向磁感測器120b1與單方向磁感測器120b2之間,接地端GND是耦接於單方向磁感測器120b3與單方向磁感測器120b4之間。此外,電壓輸出端V1X是耦接於單方向磁感測器120b1與單方向磁感測器120b3之間,且電壓輸出端V2X是耦接於單方向磁感測器120b2與單方向磁感測器120b4之間。由於電壓供應端VDD與電壓輸出端V1X之間的電阻(即單方向磁感測器120b1的電阻)大於電壓供應端VDD與電壓輸出端V2X之間的電阻(即單方向磁感測器120b2的電阻),但電壓輸出端V1X與接地端GND之間的電阻(即單方向磁感測器120b3的電阻)小於電壓輸出端 V2X與接地端GND之間的電阻(即單方向磁感測器120b4的電阻),因此電壓輸出端V1X的電壓值會小於電壓輸出端V2X的電壓值。如此一來,便可藉由量測電壓輸出端V1X與電壓輸出端V2X之間的電壓差訊號的大小與正負值,來判斷出外來磁場在x方向上的分量BX的大小與正負值。 Specifically, referring to FIG. 4B, when the external magnetic field has only the component B X , the magnetic field at the unidirectional magnetic sensor 120 b1 has a component in the -y direction under the action of the magnetic flux concentrator 110 (ie, The direction of the sensing direction S of the unidirectional magnetic sensor 120b1 is opposite, so that the resistance of the unidirectional magnetic sensor 120b1 rises. In addition, the magnetic field at the unidirectional magnetic sensor 120b2 will have a component in the +y direction (ie, the same direction as the sensing direction S of the unidirectional magnetic sensor 120b1), and thus the resistance of the unidirectional magnetic sensor 120b2. Will fall. Similarly, the magnetic field at the unidirectional magnetic sensor 120b3 will have a component in the +y direction (ie, the same direction as the sensing direction S of the unidirectional magnetic sensor 120b1), and thus the unidirectional magnetic sensor 120b2 The resistance will drop. In addition, the magnetic field at the unidirectional magnetic sensor 120b4 has a component in the -y direction (ie, opposite to the sensing direction S of the unidirectional magnetic sensor 120b1), and thus the resistance of the unidirectional magnetic sensor 120b4. Will rise. In the first singular bridge, the voltage supply terminal VDD is coupled between the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b2, and the ground GND is coupled to the unidirectional magnetic sensor 120b3. Between the unidirectional magnetic sensors 120b4. In addition, the voltage output terminal V 1X is coupled between the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b3, and the voltage output terminal V 2X is coupled to the unidirectional magnetic sensor 120b2 and the unidirectional magnetic field. Between the sensors 120b4. The resistance between the voltage supply terminal VDD and the voltage output terminal V 1X (ie, the resistance of the single-direction magnetic sensor 120b1) is greater than the resistance between the voltage supply terminal VDD and the voltage output terminal V 2X (ie, a single-direction magnetic sensor) 120b2 resistance), but the resistance between the voltage output terminal V 1X and the ground GND (ie, the resistance of the unidirectional magnetic sensor 120b3) is smaller than the resistance between the voltage output terminal V 2X and the ground GND (ie, unidirectional magnetic The resistance of the sensor 120b4 is such that the voltage value of the voltage output terminal V 1X is less than the voltage value of the voltage output terminal V 2X . In this way, by measuring the magnitude and positive and negative values of the voltage difference signal between the voltage output terminal V 1X and the voltage output terminal V 2X , the magnitude and positive and negative of the component B X of the external magnetic field in the x direction can be determined. value.

請再參照圖4C,當外來磁場只有分量BY時,在磁通集中器110的作用下,於單方向磁感測器120b1、120b2、120b3及120b4處的磁場均會有+y方向上的分量,因此單方向磁感測器120b1、120b2、120b3及120b4的電阻均會下降。此時,由於第一惠司同電橋中的四個單方向磁感測器120b的電阻均相同,因此電壓輸出端V1X的電壓值會實質上等於電壓輸出端V2X的電壓值。如此一來,當量測電壓輸出端V1X與電壓輸出端V2X之間的電壓差訊號的大小與正負值時,會發現測得的結果為0,也就是說,外來磁場的分量BY並不會被第一惠司同電橋的架構感測到。 Referring again to FIG. 4C, when the external magnetic field has only the component B Y , the magnetic fields at the unidirectional magnetic sensors 120b1, 120b2, 120b3, and 120b4 are all in the +y direction under the action of the magnetic flux concentrator 110. The components, therefore, the resistance of the unidirectional magnetic sensors 120b1, 120b2, 120b3, and 120b4 are all reduced. At this time, since the resistances of the four unidirectional magnetic sensors 120b in the first singular bridge are the same, the voltage value of the voltage output terminal V 1X is substantially equal to the voltage value of the voltage output terminal V 2X . In this way, when the magnitude of the voltage difference signal between the equivalent voltage output terminal V 1X and the voltage output terminal V 2X is positive and negative, the measured result is found to be 0, that is, the component B Y of the external magnetic field. It will not be sensed by the architecture of the first Huisi bridge.

請再參照圖4D,當外來磁場只有分量BZ時,在磁通集中器110的作用下,於單方向磁感測器120b1及單方向磁感測器120b2處的磁場會有-y方向上的分量,因此單方向磁感測器120b1與120b2的電阻會上升。此外,單方向磁感測器120b3、120b4處的磁場則會有+y方向上的分量,因此單方向磁感測器120b3、120b4的電阻會下降。由於單方向磁感測器120b1與單方向磁感測器120b3的電阻值比例實質上相同於單方向磁感測器120b2與單方向磁感測器120b4的電阻值比例,因此電壓輸出端V1X的電壓值 會實質上等於電壓輸出端V2X的電壓值。如此一來,當量測電壓輸出端V1X與電壓輸出端V2X之間的電壓差訊號的大小與正負值時,會發現測得的結果為0,也就是說,外來磁場的分量BZ並不會被第一惠司同電橋的架構感測到。 Referring to FIG. 4D again, when the external magnetic field has only the component B Z , the magnetic field at the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b2 may be in the -y direction under the action of the magnetic flux concentrator 110. The component, therefore, the resistance of the unidirectional magnetic sensors 120b1 and 120b2 will rise. Further, the magnetic field at the unidirectional magnetic sensors 120b3, 120b4 has a component in the +y direction, and thus the resistance of the unidirectional magnetic sensors 120b3, 120b4 is lowered. Since the ratio of the resistance values of the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b3 is substantially the same as the ratio of the resistance values of the unidirectional magnetic sensor 120b2 and the unidirectional magnetic sensor 120b4, the voltage output terminal V 1X The voltage value will be substantially equal to the voltage value of the voltage output terminal V 2X . In this way, when the magnitude of the voltage difference signal between the equivalent voltage output terminal V 1X and the voltage output terminal V 2X is positive and negative, the measured result is found to be 0, that is, the component of the external magnetic field B Z It will not be sensed by the architecture of the first Huisi bridge.

圖5A繪示圖1A之磁場感測模組在感測平行於y方向的磁場時的電路架構。圖5B繪示當平行於x方向的外來磁場施加於圖5A之電路架構時,單方向磁感測器的電阻變化。圖5C繪示當平行於y方向的外來磁場施加於圖5A之電路架構時,單方向磁感測器的電阻變化。圖5D繪示當平行於z方向的外來磁場施加於圖5A之電路架構時,單方向磁感測器的電阻變化。請參照圖5A至圖5D,在本實施例中,配置於對應至這些磁通集中器110之間的位置的單方向磁感測器120a及配置於這些磁通集中器110在第三方向D3上的一側的這些單方向磁感測器120c耦接成一第二惠司同電橋,且用以感測外來磁場於第二方向D2(即平行於y方向)上的分量BYFIG. 5A illustrates a circuit architecture of the magnetic field sensing module of FIG. 1A when sensing a magnetic field parallel to the y direction. FIG. 5B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to the circuit architecture of FIG. 5A. Figure 5C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the y-direction is applied to the circuit architecture of Figure 5A. Figure 5D illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of Figure 5A. Referring to FIG. 5A to FIG. 5D, in the embodiment, the unidirectional magnetic sensors 120a disposed at positions corresponding to the magnetic flux concentrators 110 and the magnetic flux concentrators 110 disposed in the third direction D3 are disposed. The unidirectional magnetic sensors 120c on one side of the upper side are coupled to a second singular bridge, and are used to sense the component B Y of the external magnetic field in the second direction D2 (ie, parallel to the y direction).

具體而言,請參照圖5B,當外來磁場只有分量BX時,在磁通集中器110的作用下,於單方向磁感測器120a1與120a2處的磁場的淨y分量為0,因此單方向磁感測器120a1與120a2的電阻維持不變。此外,由於單方向磁感測器120c1與120c2是配置於磁通集中器110下方,因此藉由鐵磁屏蔽(ferromagnetic shielding)效應,單方向磁感測器120c1與120c2不會受到外來磁場的分量BX的影響,所以單方向磁感測器120c1與120c2的電阻 維持不變。在第二惠司同電橋中,電壓供應端VDD是耦接於單方向磁感測器120a1與單方向磁感測器120c1之間,接地端GND是耦接於單方向磁感測器120a2與單方向磁感測器120c2之間。此外,電壓輸出端V1Y是耦接於單方向磁感測器120a1與單方向磁感測器120c2之間,且電壓輸出端V2Y是耦接於單方向磁感測器120a2與單方向磁感測器120c1之間。由於單方向磁感測器120a1、120a2、120c1及120c2均沒有變化,因此電壓輸出端V1Y的電壓值會實質上等於電壓輸出端V2Y的電壓值。如此一來,電壓輸出端V1Y與電壓輸出端V2Y之間所測得的電壓差訊號會為0,也就是說,外來磁場在x方向上的分量BX不會對此惠斯同電路的架構產生影響。 Specifically, referring to FIG. 5B, when the external magnetic field has only the component B X , the net y component of the magnetic field at the unidirectional magnetic sensors 120a1 and 120a2 is 0 by the magnetic flux concentrator 110, so The resistances of the directional magnetic sensors 120a1 and 120a2 remain unchanged. In addition, since the unidirectional magnetic sensors 120c1 and 120c2 are disposed under the magnetic flux concentrator 110, the unidirectional magnetic sensors 120c1 and 120c2 are not subjected to the external magnetic field component by the ferromagnetic shielding effect. The influence of B X , so the resistance of the unidirectional magnetic sensors 120c1 and 120c2 remains unchanged. In the second singular bridge, the voltage supply terminal VDD is coupled between the unidirectional magnetic sensor 120a1 and the unidirectional magnetic sensor 120c1, and the ground GND is coupled to the unidirectional magnetic sensor 120a2. Between the unidirectional magnetic sensors 120c2. In addition, the voltage output terminal V 1Y is coupled between the unidirectional magnetic sensor 120a1 and the unidirectional magnetic sensor 120c2, and the voltage output terminal V 2Y is coupled to the unidirectional magnetic sensor 120a2 and the unidirectional magnetic field. Between the sensors 120c1. Since the unidirectional magnetic sensors 120a1, 120a2, 120c1, and 120c2 are unchanged, the voltage value of the voltage output terminal V 1Y is substantially equal to the voltage value of the voltage output terminal V 2Y . In this way, the measured voltage difference signal between the voltage output terminal V 1Y and the voltage output terminal V 2Y will be 0, that is, the component B X of the external magnetic field in the x direction will not be the same circuit. The architecture has an impact.

請再參照圖5C,當外來磁場只有分量BY時,在磁通集中器110的作用下,於單方向磁感測器120a1與120a2處的磁場均會有+y方向上的分量,因此單方向磁感測器120a1與120a2的電阻均會下降。另一方面,由於單方向磁感測器120c1與120c2是配置於磁通集中器110下方,因此藉由鐵磁屏蔽效應,單方向磁感測器120c1與120c2不會受到外來磁場的分量BY的影響,所以單方向磁感測器120c1與120c2的電阻維持不變。如此一來,在第二惠司同電橋中,由於單方向磁感測器120a1的電阻小於單方向磁感測器120c1的電阻,但單方向磁感測器120c2的電阻大於單方向磁感測器120a2的電阻,因此電壓輸出端V1Y的電壓值會大於電壓輸出端V2Y的電壓值。所以,便可藉由量測電壓輸出 端V1Y與電壓輸出端V2Y之間的電壓差訊號的大小與正負值,來判斷出外來磁場在y方向上的分量BY的大小與正負值。 Referring to FIG. 5C again, when the external magnetic field has only the component B Y , the magnetic field at the unidirectional magnetic sensors 120a1 and 120a2 will have a component in the +y direction under the action of the magnetic flux concentrator 110, so The resistances of the directional magnetic sensors 120a1 and 120a2 are both lowered. On the other hand, since the unidirectional magnetic sensors 120c1 and 120c2 are disposed under the magnetic flux concentrator 110, the unidirectional magnetic sensors 120c1 and 120c2 are not subjected to the component B Y of the external magnetic field by the ferromagnetic shielding effect. The effect, so the resistance of the unidirectional magnetic sensors 120c1 and 120c2 remains unchanged. In this way, in the second Huisi bridge, since the resistance of the unidirectional magnetic sensor 120a1 is smaller than the resistance of the unidirectional magnetic sensor 120c1, the resistance of the unidirectional magnetic sensor 120c2 is greater than the unidirectional magnetic sensing. The resistance of the device 120a2, therefore, the voltage value of the voltage output terminal V 1Y will be greater than the voltage value of the voltage output terminal V 2Y . Therefore, the magnitude and positive and negative values of the component B Y of the external magnetic field in the y direction can be determined by measuring the magnitude and positive and negative values of the voltage difference signal between the voltage output terminal V 1Y and the voltage output terminal V 2Y .

請再參照圖5D,當外來磁場只有分量BZ時,在磁通集中器110的作用下,於單方向磁感測器120a1及單方向磁感測器120a2處的淨磁場的方向實質上平行於z方向,此方向會與單方向磁感測器120a1與120a2的感測方向S垂直,而此方向的磁場不會使單方向磁感測器120a1與120a2的電阻產生變化。另一方面,於單方向磁感測器120c1與120c2處的磁場方向亦是實質上平行於z方向(可參考圖2C所繪示者),而此方向的磁場不會使單方向磁感測器120c1與120c2的電阻產生變化。此時,由於在第三惠司同電橋中,所有的單方向磁感測器120a1、120a2、120c1及120c2的電阻都實質上相同,因此電壓輸出端V1Y的電壓值會實質上等於電壓輸出端V2Y的電壓值。如此一來,當量測電壓輸出端V1Y與電壓輸出端V2Y之間的電壓差訊號的大小與正負值時,會發現測得的結果為0,也就是說,外來磁場的分量BZ並不會被第二惠司同電橋的架構感測到。 Referring again to FIG. 5D, when the external magnetic field has only the component B Z , the direction of the net magnetic field at the unidirectional magnetic sensor 120a1 and the unidirectional magnetic sensor 120a2 is substantially parallel under the action of the magnetic flux concentrator 110. In the z direction, this direction will be perpendicular to the sensing direction S of the unidirectional magnetic sensors 120a1 and 120a2, and the magnetic field in this direction will not change the resistance of the unidirectional magnetic sensors 120a1 and 120a2. On the other hand, the direction of the magnetic field at the unidirectional magnetic sensors 120c1 and 120c2 is also substantially parallel to the z direction (refer to FIG. 2C), and the magnetic field in this direction does not cause unidirectional magnetic sensing. The resistances of the devices 120c1 and 120c2 vary. At this time, since the resistances of all the unidirectional magnetic sensors 120a1, 120a2, 120c1, and 120c2 are substantially the same in the third Huisi bridge, the voltage value of the voltage output terminal V 1Y is substantially equal to the voltage output. The voltage value of terminal V 2Y . In this way, when the magnitude of the voltage difference signal between the equivalent voltage output terminal V 1Y and the voltage output terminal V 2Y is positive and negative, the measured result is found to be 0, that is, the component of the external magnetic field B Z It will not be sensed by the architecture of the second Huisi bridge.

圖6A繪示圖1A之磁場感測模組在感測平行於z方向的磁場時的電路架構。圖6B繪示當平行於x方向的外來磁場施加於圖6A之電路架構時,單方向磁感測器的電阻變化。圖6C繪示當平行於y方向的外來磁場施加於圖6A之電路架構時,單方向磁感測器的電阻變化。圖6D繪示當平行於z方向的外來磁場施加於圖6A之電路架構時,單方向磁感測器的電阻變化。請參照圖6A至 圖6D,配置於對應至這些磁通集中器110之排列於第二方向D2上的兩側的位置的這些單方向磁感測器120b藉由一第一導電路徑耦接成第一惠司同電橋(如圖4A所繪示的第一惠司同電橋),且藉由一第二導電路徑耦接成一第三惠司同電橋(如圖6A所繪示的惠司同電橋)。第一惠司同電橋用以感測外來磁場於第一方向D1上的分量BX,而第三惠司同電橋用以感測外來磁場於第三方向D3(即z方向)上的分量BZ,其中第一導電路徑耦接這些單方向磁感測器120b的順序不同於第二導電路徑耦接這些單方向磁感測器120b的順序,此可由圖6A中繪示的交錯式第二導電路徑不同於圖4A中繪示的非交錯式的第一導電路徑看出。 FIG. 6A illustrates a circuit architecture of the magnetic field sensing module of FIG. 1A when sensing a magnetic field parallel to the z direction. FIG. 6B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to the circuit architecture of FIG. 6A. 6C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 6A. Figure 6D illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of Figure 6A. Referring to FIG. 6A to FIG. 6D, the unidirectional magnetic sensors 120b disposed at positions corresponding to the two sides of the magnetic flux concentrators 110 arranged in the second direction D2 are coupled by a first conductive path. The first Huisi is the same as the bridge (the first Huisi bridge shown in Figure 4A), and is coupled to a third Huisi bridge by a second conductive path (as shown in Figure 6A). bridge). The first Huisi bridge is used to sense the component B X of the external magnetic field in the first direction D1, and the third Huisi bridge is used to sense the component B of the external magnetic field in the third direction D3 (ie, the z direction) Z , wherein the order in which the first conductive path is coupled to the unidirectional magnetic sensors 120b is different from the order in which the second conductive paths are coupled to the unidirectional magnetic sensors 120b, which may be interlaced second in FIG. 6A The conductive path is different from the non-interlaced first conductive path depicted in Figure 4A.

具體而言,請參照圖6B,當外來磁場只有分量BX時,在磁通集中器110的作用下,於單方向磁感測器120b1處的磁場會有-y方向上的分量,因此單方向磁感測器120b1的電阻會上升。此外,單方向磁感測器120b2處的磁場則會有+y方向上的分量,因此單方向磁感測器120b2的電阻會下降。同理,單方向磁感測器120b3處的磁場則會有+y方向上的分量,因此單方向磁感測器120b2的電阻會下降。此外,於單方向磁感測器120b4處的磁場會有-y方向上的分量,因此單方向磁感測器120b4的電阻會上升。在第三惠司同電橋中,電壓供應端VDD是耦接於單方向磁感測器120b1與單方向磁感測器120b4之間,接地端GND是耦接於單方向磁感測器120b2與單方向磁感測器120b3之間。此外,電壓輸出端V1Z是耦接於單方向磁感測器120b1與單方向磁感測器120b3 之間,且電壓輸出端V2Z是耦接於單方向磁感測器120b2與單方向磁感測器120b4之間。由於電壓供應端VDD與電壓輸出端V1Z之間的電阻(即單方向磁感測器120b1的電阻)以及電壓供應端VDD與電壓輸出端V2Z之間的電阻(即單方向磁感測器120b4的電阻)皆受到提升而彼此實質上相等,且電壓輸出端V1Z與接地端GND之間的電阻(即單方向磁感測器120b3的電阻)以及電壓輸出端V2Z與接地端GND之間的電阻(即單方向磁感測器120b2的電阻)皆為下降而彼此實質上相等,因此電壓輸出端V1Z的電壓值會實質上等於電壓輸出端V2Z的電壓值。如此一來,在量測電壓輸出端V1Z與電壓輸出端V2Z之間的電壓差訊號的大小與正負值時,會發現此電壓差為0,也就是說,外來磁場的分量BX不會被第三惠司同電橋的架構量測到。 Specifically, referring to FIG. 6B, when the external magnetic field has only the component B X , the magnetic field at the unidirectional magnetic sensor 120 b1 has a component in the -y direction under the action of the magnetic flux concentrator 110, so The resistance of the directional magnetic sensor 120b1 will rise. In addition, the magnetic field at the unidirectional magnetic sensor 120b2 will have a component in the +y direction, so the resistance of the unidirectional magnetic sensor 120b2 will decrease. Similarly, the magnetic field at the unidirectional magnetic sensor 120b3 will have a component in the +y direction, so the resistance of the unidirectional magnetic sensor 120b2 will decrease. Further, the magnetic field at the unidirectional magnetic sensor 120b4 has a component in the -y direction, and thus the resistance of the unidirectional magnetic sensor 120b4 rises. In the third singular bridge, the voltage supply terminal VDD is coupled between the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b4, and the ground GND is coupled to the unidirectional magnetic sensor 120b2. Between the unidirectional magnetic sensors 120b3. In addition, the voltage output terminal V 1Z is coupled between the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b3, and the voltage output terminal V 2Z is coupled to the unidirectional magnetic sensor 120b2 and the unidirectional magnetic field. Between the sensors 120b4. The resistance between the voltage supply terminal VDD and the voltage output terminal V 1Z (ie, the resistance of the unidirectional magnetic sensor 120b1) and the resistance between the voltage supply terminal VDD and the voltage output terminal V 2Z (ie, a unidirectional magnetic sensor) The resistors of 120b4 are all raised to be substantially equal to each other, and the resistance between the voltage output terminal V 1Z and the ground GND (ie, the resistance of the unidirectional magnetic sensor 120b3) and the voltage output terminal V 2Z and the ground GND The resistance between the resistors (i.e., the resistance of the unidirectional magnetic sensor 120b2) is substantially equal to each other, so that the voltage value of the voltage output terminal V 1Z is substantially equal to the voltage value of the voltage output terminal V 2Z . In this way, when measuring the magnitude and positive and negative values of the voltage difference signal between the voltage output terminal V 1Z and the voltage output terminal V 2Z , the voltage difference is found to be 0, that is, the component B X of the external magnetic field is not It will be measured by the structure of the third Huisi and the bridge.

請再參照圖6C,當外來磁場只有分量BY時,在磁通集中器110的作用下,於單方向磁感測器120b1、120b2、120b3及120b4處的磁場均會有+y方向上的分量,因此單方向磁感測器120b1、120b2、120b3及120b4的電阻均會下降。此時,由於第三惠司同電橋中的四個單方向磁感測器120b的電阻均相同,因此電壓輸出端V1Z的電壓值會實質上等於電壓輸出端V2Z的電壓值。如此一來,當量測電壓輸出端V1Z與電壓輸出端V2Z之間的電壓差訊號的大小與正負值時,會發現測得的結果為0,也就是說,外來磁場的分量BY並不會被第三惠司同電橋的架構感測到。 Referring again to FIG. 6C, when the external magnetic field has only the component B Y , the magnetic fields at the unidirectional magnetic sensors 120b1, 120b2, 120b3, and 120b4 are both in the +y direction under the action of the magnetic flux concentrator 110. The components, therefore, the resistance of the unidirectional magnetic sensors 120b1, 120b2, 120b3, and 120b4 are all reduced. At this time, since the resistances of the four single-directional magnetic sensors 120b in the third-six bridge are the same, the voltage value of the voltage output terminal V1Z is substantially equal to the voltage value of the voltage output terminal V2Z . In this way, when the magnitude of the voltage difference signal between the voltage measuring terminal V 1Z and the voltage output terminal V 2Z is positive and negative, the measured result is found to be 0, that is, the component B Y of the external magnetic field. It will not be sensed by the architecture of the third Huisi bridge.

請再參照圖6D,當外來磁場只有分量BZ時,在磁通集 中器110的作用下,於單方向磁感測器120b1及單方向磁感測器120b2處的磁場會有-y方向上的分量,因此單方向磁感測器120b1與120b2的電阻會上升。此外,單方向磁感測器120b3、120b4處的磁場則會有+y方向上的分量,因此單方向磁感測器120b3、120b4的電阻會下降。此時,由於電壓供應端VDD與電壓輸出端V1Z之間的電阻(即單方向磁感測器120b1的電阻)大於電壓供應端VDD與電壓輸出端V2Z之間的電阻(即單方向磁感測器120b4的電阻),但電壓輸出端V1Z與接地端GND之間的電阻(即單方向磁感測器120b3的電阻)小於電壓輸出端V2Z與接地端GND之間的電阻(即單方向磁感測器120b2的電阻),因此電壓輸出端V1Z的電壓值會小於電壓輸出端V2Z的電壓值。如此一來,便可藉由量測電壓輸出端V1Z與電壓輸出端V2Z之間的電壓差訊號的大小與正負值,來判斷出外來磁場在z方向上的分量BZ的大小與正負值。 Referring to FIG. 6D again, when the external magnetic field has only the component B Z , the magnetic field at the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b2 will have a -y direction under the action of the magnetic flux concentrator 110. The component, therefore, the resistance of the unidirectional magnetic sensors 120b1 and 120b2 will rise. Further, the magnetic field at the unidirectional magnetic sensors 120b3, 120b4 has a component in the +y direction, and thus the resistance of the unidirectional magnetic sensors 120b3, 120b4 is lowered. At this time, since the resistance between the voltage supply terminal VDD and the voltage output terminal V 1Z (ie, the resistance of the unidirectional magnetic sensor 120b1) is greater than the resistance between the voltage supply terminal VDD and the voltage output terminal V 2Z (ie, unidirectional magnetic The resistance of the sensor 120b4), but the resistance between the voltage output terminal V 1Z and the ground GND (ie, the resistance of the unidirectional magnetic sensor 120b3) is smaller than the resistance between the voltage output terminal V 2Z and the ground GND (ie, The resistance of the unidirectional magnetic sensor 120b2), therefore, the voltage value of the voltage output terminal V 1Z will be smaller than the voltage value of the voltage output terminal V 2Z . In this way, by measuring the magnitude and positive and negative values of the voltage difference signal between the voltage output terminal V 1Z and the voltage output terminal V 2Z , the magnitude and positive and negative of the component B Z of the external magnetic field in the z direction can be determined. value.

綜合圖4A至圖6D的分析可知,由於圖4A至圖4D的第一惠司同電橋的架構只會偵測到第一方向D1上的磁場而不受第二方向D2與第三方向D3上的磁場的影響,且由於圖5A至圖5D的第二惠司同電橋的架構只會偵測到第二方向D2上的磁場而不受第一方向D1與第三方向D3上的磁場的影響,且由於圖6A至圖6D的第三惠司同電橋的架構只會偵測到第三方向D3上的磁場而不受第一方向D1與第二方向D2上的磁場的影響,因此無論外來磁場是具有第一方向D1至第三方向D3中的哪幾個方向的分量,或同時具有第一方向D1至第三方向D3上的分量,或外來磁 場為0,均可以利用第一、第二及第三惠司同電橋來分別偵測第一方向D1、第二方向D2及第三方向D3上的外來磁場的分量,並根據所測得的分量作向量和的計算,以得到外來磁場的大小與方向。換言之,本實施例之磁場感測模組100可以達到三軸的磁場量測。 4A to FIG. 6D, the structure of the first singular bridge of FIG. 4A to FIG. 4D only detects the magnetic field in the first direction D1 and is not affected by the second direction D2 and the third direction D3. The influence of the magnetic field, and because the structure of the second phosic bridge of Figures 5A to 5D only detects the magnetic field in the second direction D2 and is not affected by the magnetic fields in the first direction D1 and the third direction D3 And because the structure of the third phosic bridge of FIG. 6A to FIG. 6D only detects the magnetic field in the third direction D3 and is not affected by the magnetic field in the first direction D1 and the second direction D2, so no matter the outside The magnetic field is a component having which of the first direction D1 to the third direction D3, or has a component in the first direction D1 to the third direction D3, or an external magnetic field The field is 0, and the first, second, and third Huisi bridges can be used to separately detect the components of the external magnetic field in the first direction D1, the second direction D2, and the third direction D3, and according to the measured The components are calculated as vector sums to obtain the magnitude and direction of the external magnetic field. In other words, the magnetic field sensing module 100 of the embodiment can achieve three-axis magnetic field measurement.

在本實施例的磁場感測模組100中,由於藉由磁通集中器110來使外來磁場彎曲,因此多個單方向磁感測器120的感測方向S可以實質上相同,所以此磁場感測模組100可以在較為簡化的架構下達到多軸向的磁場感測,進而降低磁場感測模組100的製作困難度及成本。 In the magnetic field sensing module 100 of the present embodiment, since the external magnetic field is bent by the magnetic flux concentrator 110, the sensing directions S of the plurality of unidirectional magnetic sensors 120 can be substantially the same, so the magnetic field The sensing module 100 can achieve multi-axis magnetic field sensing under a relatively simplified structure, thereby reducing the difficulty and cost of manufacturing the magnetic field sensing module 100.

此外,第一、第二及第三惠司同電橋的電路可以利用電路開關設計的方式,在一個週期時間中的三個不同的子時間中被形成,以分別在不同的子時間量測外來磁場在第一方向D1、第二方向D2及第三方向D3上的分量BX、BY及BZ。藉由此方式,即使第一惠司同電橋與第三惠司同電橋共用單方向磁感測器120b1、120b2、120b3及120b4也仍能正常運作,這是因為第一惠司同電橋與第三惠司同電橋是在不同的子時間中形成的。當第一、第二及第三惠司同電橋在多個週期時間中反覆依序地被形成,則磁場感測模組100便能夠即時地監控外來磁場的變化。 In addition, the circuits of the first, second and third Huisi bridges can be formed in three different sub-times in one cycle time by means of circuit switch design to measure externally at different sub-times respectively. The components B X , B Y and B Z of the magnetic field in the first direction D1, the second direction D2, and the third direction D3. In this way, even if the first phosic bridge and the third phoenix bridge share the unidirectional magnetic sensors 120b1, 120b2, 120b3, and 120b4, the first operation can still operate normally, because the first Huisi bridge and the first Sanhuisi and the bridge are formed in different sub-times. When the first, second, and third squad bridges are sequentially formed in a plurality of cycle times, the magnetic field sensing module 100 can instantly monitor the change of the external magnetic field.

在另一實施例中,第一惠司同電橋與第三惠司同電橋也可以不要共用單方向磁感測器120b,而可以在單方向磁感測器120b1、120b2、120b3及120b4附近分別額外配置四個單方向磁感 測器120b(未繪示於圖4A至圖6D中,但在以下的實施例中會以其他圖式來繪示此概念)。換言之,另一部分配置於對應至這些磁通集中器110之排列於第二方向D2上的兩側的位置的這些單方向磁感測器120b耦接成第三惠司同電橋,且用以感測外來磁場於第三方向D3上的分量。在此情況下,第一、第二及第三惠司同電橋可以在一週期時間中的多個不同的子時間中形成,但也可以是同時存在。 In another embodiment, the first singular bridge and the third singular bridge may not share the unidirectional magnetic sensor 120b, but may be respectively adjacent to the unidirectional magnetic sensors 120b1, 120b2, 120b3, and 120b4. Additional configuration of four single-direction magnetic senses The detector 120b (not shown in FIGS. 4A to 6D, but in the following embodiments, this concept will be illustrated in other drawings). In other words, the other unidirectional magnetic sensors 120b disposed at positions corresponding to the two sides of the magnetic flux concentrators 110 arranged in the second direction D2 are coupled to the third singular bridge, and are used for sensing The component of the external magnetic field in the third direction D3 is measured. In this case, the first, second and third Huisi bridges may be formed in a plurality of different sub-times in one cycle time, but may also be present at the same time.

另外,在其他實施例中,由於單方向磁感測器120c實際上對外來磁場是沒有反應的,因此亦可將單方向磁感測器120c(例如單方向磁感測器120c1與120c2)取代成電阻器(如分別取式成兩個電阻器),而此電阻器的電阻值與第二惠司同電橋中的單方向磁感測器120a在沒有受到外來磁場作用下的原始電阻值實質上相同。換言之,磁場感測模組100可包括多個電阻器,其與配置於對應至這些磁通集中器110之間的位置的這些單方向磁感測器120a耦接成第二惠司同電橋,且用以感測外來磁場於第二方向D2上的分量。 In addition, in other embodiments, since the unidirectional magnetic sensor 120c is actually unresponsive to the external magnetic field, the unidirectional magnetic sensor 120c (eg, the unidirectional magnetic sensors 120c1 and 120c2) may be replaced. The resistors (for example, two resistors respectively), and the resistance value of the resistor and the original resistance value of the single-direction magnetic sensor 120a in the second Huisi bridge are not subjected to the external magnetic field. Same on the same. In other words, the magnetic field sensing module 100 can include a plurality of resistors coupled to the two-way magnetic sensors 120a disposed at positions corresponding to the magnetic flux concentrators 110 to form a second Huisi bridge. And used to sense the component of the external magnetic field in the second direction D2.

圖7A為本發明之另一實施例之磁場感測模組的上視結構示意圖,圖7B繪示圖7A的磁場感測模組之用以量測x方向磁場的第一惠司同電橋,圖7C繪示圖7A的磁場感測模組之用以量測y方向磁場的第二惠司同電橋,且圖7D繪示圖7A的磁場感測模組之用以量測z方向磁場的第三惠司同電橋。請參照圖7A至圖7D,本實施例的磁場感測模組100d與圖4A的磁場感測模組類 似,而兩者的差異是在於磁通集中器110與單方向磁感測器120的數量上的差異。事實上,本發明不限制在磁場感測模組中的磁通集中器110與單方向磁感測器120的數量,只要這些單方向磁感測器120是相對於磁通集中器110是配置在與圖4A相對應的相對位置上即可,而圖7A至圖7D只是舉出其中一個例子,且本發明不以此為限。在圖7A至圖7D中,標示X的單方向磁感測器120b的位置是與圖4A中的單方向磁感測器120b的位置相對應,亦即標示X的單方向磁感測器120b是配置於磁通集中器110之排列於第二方向D2上的兩側的位置。此外,標示Z的單方向磁感測器120d的位置是與圖4A中的單方向磁感測器120b的位置相對應,而標示X的單方向磁感測器120b與標示Z的單方向磁感測器120d分別形成第一惠司同電橋(如圖7B所繪示)與第三惠司同電橋(如圖7C所繪示),這就是上面實施例提到的第一惠司同電橋與第三惠司同電橋沒有共用單方向磁感測器的情形。此外,標示Y的單方向磁感測器120a與120c形成第二惠司同電橋。此外,在本實施例中,對於那些配置於相鄰兩磁通集中器110之間的單方向磁感測器120b與120d而言,它們並不會配置於相鄰兩磁通集中器110之間的中線上,而是會較靠近其中一個磁通集中器110,然而,單方向磁感測器120a則是會配置在相鄰兩磁通集中器110之間的中線上。 7A is a top view of a magnetic field sensing module according to another embodiment of the present invention, and FIG. 7B is a first view of the magnetic field sensing module of FIG. 7A for measuring a magnetic field in the x direction; 7C illustrates a second sigma bridge of the magnetic field sensing module of FIG. 7A for measuring a y-direction magnetic field, and FIG. 7D illustrates a magnetic field sensing module of FIG. 7A for measuring a z-direction magnetic field. The third Huisi is the same as the bridge. Referring to FIG. 7A to FIG. 7D, the magnetic field sensing module 100d of the embodiment and the magnetic field sensing module of FIG. 4A Similarly, the difference between the two is due to the difference in the number of flux concentrators 110 and unidirectional magnetic sensors 120. In fact, the present invention does not limit the number of flux concentrators 110 and unidirectional magnetic sensors 120 in the magnetic field sensing module as long as these unidirectional magnetic sensors 120 are configured relative to the flux concentrator 110. In the relative position corresponding to FIG. 4A, FIG. 7A to FIG. 7D are only one example, and the invention is not limited thereto. In FIGS. 7A to 7D, the position of the unidirectional magnetic sensor 120b indicating X is corresponding to the position of the unidirectional magnetic sensor 120b in FIG. 4A, that is, the unidirectional magnetic sensor 120b indicating X. It is a position disposed on both sides of the magnetic flux concentrator 110 arranged in the second direction D2. Further, the position of the unidirectional magnetic sensor 120d indicating Z is corresponding to the position of the unidirectional magnetic sensor 120b in FIG. 4A, and the unidirectional magnetic sensor 120b indicating X and the unidirectional magnetic indicating Z The sensor 120d respectively forms a first Huisi bridge (as shown in FIG. 7B) and a third Huisi bridge (as shown in FIG. 7C), which is the first Huisi bridge mentioned in the above embodiment. There is no sharing of a single-directional magnetic sensor with the third Huisi bridge. In addition, the unidirectional magnetic sensors 120a and 120c labeled Y form a second Huisi bridge. In addition, in the embodiment, for the unidirectional magnetic sensors 120b and 120d disposed between the adjacent two magnetic flux concentrators 110, they are not disposed in the adjacent two magnetic flux concentrators 110. On the middle line, it will be closer to one of the flux concentrators 110, however, the unidirectional magnetic sensor 120a will be disposed on the center line between the adjacent two flux concentrators 110.

在第一惠司同電橋中,如圖7B所繪示,電壓供應端VDD是依序經過單方向磁感測器120b1’、120b2’及120b3’後才抵 達電壓輸出端V1X,且電壓輸出端V1X是依序經過單方向磁感測器120b4’、120b5’及120b6’後才才抵達接地端GND。另一方面,電壓供應端VDD是依序經過單方向磁感測器120b7’、120b8’及120b9’後才抵達電壓輸出端V2X,且電壓輸出端V2X是依序經過單方向磁感測器120b10’、120b11’及120b12’後才才抵達接地端GND。此外,這些單方向磁感測器120b1’~120b12’的感測方向S都朝向+y方向。也就是說,單方向磁感測器120b1’、120b2’及120b3’的位置與功能都是對應至圖4A的單方向磁感測器120b3的位置與功能,單方向磁感測器120b4’、120b5’及120b6’的位置與功能都是對應至圖4A的單方向磁感測器120b1的位置與功能,單方向磁感測器120b7’、120b8’及120b9’的位置與功能是對應至圖4A的單方向磁感測器120b4的位置與功能,而單方向磁感測器120b10’、120b11’及120b12’的位置與功能是對應至圖4A的單方向磁感測器120b2的位置與功能。因此,圖7B的第一惠司同電橋除了在單方向磁感測器120b的數量上與圖4B的第一惠司同電橋不一樣,以及電源供應端VDD及接地端GND與圖4B的接法是相反之外,圖4A與圖7B的第一惠司同電橋的運作原理是相似而可以類推的,因此再此就不再詳細解釋圖7B的第一惠司同電橋的運作細節。 In the first bridge with the benefits Division, depicted in FIG. 7B, a voltage supply terminal VDD in one direction sequentially through magnetic sensors 120b1 ', 120b2' and 120b3 'after arrival the voltage output terminal V 1X, and the output voltage The terminal V 1X passes through the single-directional magnetic sensors 120b4', 120b5' and 120b6' sequentially before reaching the ground GND. On the other hand, the voltage supply terminal VDD passes through the single-direction magnetic sensors 120b7', 120b8', and 120b9' sequentially, and then reaches the voltage output terminal V 2X , and the voltage output terminal V 2X sequentially passes the single-direction magnetic sensing. The devices 120b10', 120b11' and 120b12' arrive at the ground GND. Further, the sensing directions S of the unidirectional magnetic sensors 120b1' to 120b12' are all oriented in the +y direction. That is, the position and function of the unidirectional magnetic sensors 120b1', 120b2', and 120b3' correspond to the position and function of the unidirectional magnetic sensor 120b3 of FIG. 4A, and the unidirectional magnetic sensor 120b4', The positions and functions of 120b5' and 120b6' correspond to the position and function of the single-direction magnetic sensor 120b1 of FIG. 4A, and the positions and functions of the single-direction magnetic sensors 120b7', 120b8' and 120b9' correspond to the figure. The position and function of the unidirectional magnetic sensor 120b4 of the 4A, and the position and function of the unidirectional magnetic sensors 120b10', 120b11' and 120b12' correspond to the position and function of the unidirectional magnetic sensor 120b2 of FIG. 4A. . Therefore, the first singular bridge of FIG. 7B is different from the first singular bridge of FIG. 4B except for the number of the unidirectional magnetic sensors 120b, and the power supply terminal VDD and the ground GND are connected to FIG. 4B. The method is the opposite. The operation principle of the first singular bridge of FIG. 4A and FIG. 7B is similar and can be analogized, so that the operation details of the first singular bridge of FIG. 7B will not be explained in detail again.

此外,在圖7C的第二惠司同電橋中,電壓供應端VDD是經由單方向磁感測器120a1'連接至電壓輸出端V2Y,而電壓輸出端V2Y是依序經由單方向磁感測器120c1'、120c2'及120c3'連接至 接地端GND。另一方面,電壓供應端VDD是依序經由單方向磁感測器120c4'、120c5'及120c6'連接至電壓輸出端V1Y,而電壓輸出端V1Y經由單方向磁感測器120a2'連接至接地端GND。也就是說,單方向磁感測器120a1'的位置與功能是對應於圖5B之單方向磁感測器120a1的位置與功能,單方向磁感測器120c1'、120c2'及120c3'的位置與功能是對應於圖5B之單方向磁感測器120c2的位置與功能,單方向磁感測器120c4'、120c5'及120c6'的位置與功能是對應於圖5B之單方向磁感測器120c1的位置與功能,而單方向磁感測器120a2'的位置與功能是對應於圖5B之單方向磁感測器120a2的位置與功能。 In addition, in the second sigma bridge of FIG. 7C, the voltage supply terminal VDD is connected to the voltage output terminal V 2Y via the unidirectional magnetic sensor 120a1 ′, and the voltage output terminal V 2Y is sequentially transmitted via the unidirectional magnetic field. The detectors 120c1', 120c2' and 120c3' are connected to the ground GND. On the other hand, the voltage supply terminal VDD is sequentially connected to the voltage output terminal V 1Y via the unidirectional magnetic sensors 120c4', 120c5' and 120c6', and the voltage output terminal V 1Y is connected via the unidirectional magnetic sensor 120a2'. To ground GND. That is, the position and function of the unidirectional magnetic sensor 120a1' corresponds to the position and function of the unidirectional magnetic sensor 120a1 of FIG. 5B, and the positions of the unidirectional magnetic sensors 120c1', 120c2', and 120c3' The function and function correspond to the position and function of the unidirectional magnetic sensor 120c2 of FIG. 5B. The position and function of the unidirectional magnetic sensors 120c4', 120c5' and 120c6' correspond to the unidirectional magnetic sensor of FIG. 5B. The position and function of the 120c1, and the position and function of the unidirectional magnetic sensor 120a2' corresponds to the position and function of the unidirectional magnetic sensor 120a2 of FIG. 5B.

此外,在圖7D的第三惠司同電橋中,電壓供應端VDD是依序經由單方向磁感測器120d4、120d5及120d6連接至電壓輸出端V1Z,而電壓輸出端V1Z是依序經由單方向磁感測器120d1、120d2及120d3連接至接地端GND。另一方面,電壓供應端VDD是依序經由單方向磁感測器120d9、120d8及120d7連接至電壓輸出端V2Z,而電壓輸出端V2Z是依序經由單方向磁感測器120d12、120d11及120d10連接至接地端GND。也就是說,單方向磁感測器120d4、120d5及120d6的位置與功能是對應至圖6B之單方向磁感測器120b1的位置與功能,單方向磁感測器120d1、120d2及120d3的位置與功能是對應至圖6B之單方向磁感測器120b3的位置與功能,單方向磁感測器120d9、120d8及120d7的位置與功能是對應至圖6B之單方向磁感測器120b4的位置與功能,且單方向 磁感測器120d12、120d11及120d10的位置與功能是對應至圖6B之單方向磁感測器120b2的位置與功能,其中單方向磁感測器120d1~120d12的感測方向S均朝向y方向。 In addition, in the third Huisi bridge of FIG. 7D, the voltage supply terminal VDD is sequentially connected to the voltage output terminal V 1Z via the single-direction magnetic sensors 120d4, 120d5 and 120d6, and the voltage output terminal V 1Z is sequentially It is connected to the ground GND via the unidirectional magnetic sensors 120d1, 120d2, and 120d3. On the other hand, the voltage supply terminal VDD is sequentially connected to the voltage output terminal V 2Z via the unidirectional magnetic sensors 120d9, 120d8 and 120d7, and the voltage output terminal V 2Z is sequentially passed through the single-direction magnetic sensors 120d12, 120d11. And 120d10 is connected to the ground GND. That is, the positions and functions of the unidirectional magnetic sensors 120d4, 120d5, and 120d6 correspond to the position and function of the unidirectional magnetic sensor 120b1 of FIG. 6B, and the positions of the unidirectional magnetic sensors 120d1, 120d2, and 120d3. The function and function correspond to the position and function of the unidirectional magnetic sensor 120b3 of FIG. 6B. The position and function of the unidirectional magnetic sensors 120d9, 120d8 and 120d7 correspond to the position of the unidirectional magnetic sensor 120b4 of FIG. 6B. And the function, and the position and function of the unidirectional magnetic sensors 120d12, 120d11 and 120d10 correspond to the position and function of the unidirectional magnetic sensor 120b2 of FIG. 6B, wherein the sensing of the unidirectional magnetic sensors 120d1~120d12 The directions S are all oriented in the y direction.

比較圖7A至圖7D與圖4A至圖6D可知,本實施例之磁場感測模組100d亦可實現類似於圖4A至圖6D的磁場感測模組100之第一、第二及第三惠司同電橋,進而達到多軸向的磁場感測。此外,相較於圖4A至圖6D之第一、第二及第三惠司同電橋,本實施例之磁場感測模組100d中的第一、第二及第三惠司同電橋均串接了較多的單方向磁感測器,因此可具有更為靈敏的感測效果。 7A to FIG. 7D and FIG. 4A to FIG. 6D, the magnetic field sensing module 100d of the present embodiment can also implement the first, second, and third magnetic field sensing modules 100 similar to those of FIGS. 4A-6D. Huisi is connected to the bridge to achieve multi-axial magnetic field sensing. In addition, the first, second, and third Huisi bridges in the magnetic field sensing module 100d of the present embodiment are both in series with the first, second, and third Huisi bridges of FIG. 4A to FIG. 6D. More unidirectional magnetic sensors are connected, so it can have a more sensitive sensing effect.

圖8A為本發明之又一實施例之磁場感測模組的上視結構示意圖,圖8B繪示圖8A的磁場感測模組之用以量測x方向磁場的第一惠司同電橋,圖8C繪示圖8A的磁場感測模組之用以量測y方向磁場的第二惠司同電橋,且圖8D繪示圖8A的磁場感測模組之用以量測z方向磁場的第三惠司同電橋。請參照圖8A至圖8D,本實施例之磁場感測模組100e與圖7A至圖7D之磁場感測模組100d類似,而兩者的差異在於本實施例之磁場感測模組100e中的第一惠司同電橋與第三惠司同電橋共用了單方向磁感測器120b。在圖8A至圖8B中,標示著「X or Z」的單方向磁感測器120b在一個週期時間中的兩個不同的子時間中分別用以感測x方向與z方向上的磁場。 8A is a top view of a magnetic field sensing module according to another embodiment of the present invention, and FIG. 8B is a first view of the magnetic field sensing module of FIG. 8A for measuring a magnetic field in the x direction; 8C illustrates a second sigma bridge of the magnetic field sensing module of FIG. 8A for measuring a y-direction magnetic field, and FIG. 8D illustrates a magnetic field sensing module of FIG. 8A for measuring a z-direction magnetic field. The third Huisi is the same as the bridge. 8A to 8D, the magnetic field sensing module 100e of the present embodiment is similar to the magnetic field sensing module 100d of FIGS. 7A to 7D, and the difference between the two is in the magnetic field sensing module 100e of the embodiment. The first Huisi bridge and the third Huisi bridge share the single direction magnetic sensor 120b. In FIGS. 8A to 8B, the unidirectional magnetic sensor 120b labeled "X or Z" is used to sense magnetic fields in the x direction and the z direction, respectively, in two different sub-times in one cycle time.

在本實施例中,第一、第二及第三惠司同電橋分別是在 一個週期時間中的三個不同的子時間中分別形成。當如圖8B形成第一惠司同電橋時,電壓供應端VDD被切換以連接至端點B與端點E,且接地端被切換以連接至端點C與端點D,此時,電壓供應端VDD是依序經由單方向磁感測器120b1"、120b2"及120b3"連接至電壓輸出端V1,且電壓輸出端V1是依序經由單方向磁感測器120b4"、120b5"及120b6"連接至接地端GND。另一方面,電壓供應端VDD依序經由單方向磁感測器120b7"、120b8"及120b9"連接至電壓輸出端V2,且電壓輸出端V2依序經由單方向磁感測器120b10"、120b11"及120b12"連接至接地端GND。 In this embodiment, the first, second, and third Huisi bridges are respectively formed in three different sub-times in one cycle time. When the first sigma bridge is formed as shown in FIG. 8B, the voltage supply terminal VDD is switched to be connected to the terminal B and the terminal E, and the ground terminal is switched to be connected to the terminal C and the terminal D, at this time, the voltage sequentially supply terminal VDD via a unidirectional magnetic sensors 120b1 ", 120b2" and 120b3 "output terminal connected to the voltage V 1, and V 1 is the voltage output terminal sequentially via the unidirectional magnetic sensors 120b4", 120b5 " And 120b6" is connected to ground GND. On the other hand, the voltage supply terminal VDD is sequentially connected to the voltage output terminal V 2 via the unidirectional magnetic sensors 120b7", 120b8" and 120b9", and the voltage output terminal V 2 is sequentially passed through the unidirectional magnetic sensor 120b10" , 120b11" and 120b12" are connected to the ground GND.

也就是說,單方向磁感測器120b1"、120b2"及120b3"的位置與功能都是對應至圖4A的單方向磁感測器120b3的位置與功能,單方向磁感測器120b4"、120b5"及120b6"的位置與功能都是對應至圖4A的單方向磁感測器120b1的位置與功能,單方向磁感測器120b7"、120b8"及120b9"的位置與功能是對應至圖4A的單方向磁感測器120b4的位置與功能,而單方向磁感測器120b10"、120b11"及120b12"的位置與功能是對應至圖4A的單方向磁感測器120b2的位置與功能。 That is, the positions and functions of the unidirectional magnetic sensors 120b1", 120b2" and 120b3" correspond to the position and function of the unidirectional magnetic sensor 120b3 of FIG. 4A, the unidirectional magnetic sensor 120b4", The positions and functions of 120b5" and 120b6" correspond to the position and function of the single-direction magnetic sensor 120b1 of FIG. 4A, and the positions and functions of the single-direction magnetic sensors 120b7", 120b8" and 120b9" correspond to the figure. The position and function of the unidirectional magnetic sensor 120b4 of the 4A, and the position and function of the unidirectional magnetic sensors 120b10", 120b11" and 120b12" correspond to the position and function of the unidirectional magnetic sensor 120b2 of FIG. 4A. .

當如圖8C形成第二惠司同電橋時,電壓供應端VDD被切換以連接至端點A,且接地端GND被切換以連接至端點F。此時,電壓供應端VDD是經由單方向磁感測器120a1'連接至電壓輸出端V2,且電壓輸出端V2是依序經由單方向磁感測器120c3'、120c2'及120c1'連接至接地端GND。另一方面,電壓供應端VDD 是依序經由單方向磁感測器120c4'、120c5'及120c6'連接至電壓輸出端V1,且電壓輸出端V1是經由單方向磁感測器120a2'連接至接地端GND。 When the second sigma bridge is formed as shown in FIG. 8C, the voltage supply terminal VDD is switched to be connected to the terminal A, and the ground GND is switched to be connected to the terminal F. At this time, the voltage supply terminal VDD is connected to the voltage output terminal V 2 via the unidirectional magnetic sensor 120a1', and the voltage output terminal V 2 is sequentially connected via the unidirectional magnetic sensors 120c3', 120c2' and 120c1'. To ground GND. On the other hand, is a voltage supply terminal VDD via sequential uni-directional magnetic sensors 120c4 ', 120c5' and 120c6 'connected to the voltage output terminal V 1, and V 1 is the voltage output terminal via a unidirectional magnetic sensors 120a2' Connect to ground GND.

也就是說,單方向磁感測器120a1'的位置與功能是對應於圖5B之單方向磁感測器120a1的位置與功能,單方向磁感測器120c3'、120c2'及120c1'的位置與功能是對應於圖5B之單方向磁感測器120c2的位置與功能,單方向磁感測器120c4'、120c5'及120c6'的位置與功能是對應於圖5B之單方向磁感測器120c1的位置與功能,而單方向磁感測器120a2'的位置與功能是對應於圖5B之單方向磁感測器120a2的位置與功能。再者,單方向磁感測器120a1'、120a2'及120c1'~120c6'的感測方向S均朝向y方向。 That is, the position and function of the unidirectional magnetic sensor 120a1' corresponds to the position and function of the unidirectional magnetic sensor 120a1 of FIG. 5B, and the positions of the unidirectional magnetic sensors 120c3', 120c2' and 120c1' The function and function correspond to the position and function of the unidirectional magnetic sensor 120c2 of FIG. 5B. The position and function of the unidirectional magnetic sensors 120c4', 120c5' and 120c6' correspond to the unidirectional magnetic sensor of FIG. 5B. The position and function of the 120c1, and the position and function of the unidirectional magnetic sensor 120a2' corresponds to the position and function of the unidirectional magnetic sensor 120a2 of FIG. 5B. Furthermore, the sensing directions S of the unidirectional magnetic sensors 120a1', 120a2' and 120c1'~120c6' all face the y direction.

當如圖8D形成第二惠司同電橋時,電壓供應端VDD被切換而連接至端點B與端點D,且接地端GND被切換而連接至端點C與端點E。此時,電壓功應端VDD依序經由單方向磁感測器120b1"、120b2"及120b3"連接至電壓輸出端V1,且電壓輸出端V1依序經由單方向磁感測器120b4"、120b5"及120b6"連接至接地端GND。另一方面,電壓供應端VDD依序經由單方向磁感測器120b12"、120b11"及120b10"連接至電壓輸出端V2,且電壓輸出端V2是依序經由單方向磁感測器120b9"、120b8"及120b7"連接至接地端GND。 When the second sigma bridge is formed as shown in FIG. 8D, the voltage supply terminal VDD is switched to be connected to the terminal B and the terminal D, and the ground GND is switched to be connected to the terminal C and the terminal E. At this time, the voltage should power terminal VDD via sequential uni-directional magnetic sensors 120b1 ", 120b2" and 120b3 'connected to the voltage output terminal V 1, V 1 and the voltage output terminal sequentially via a unidirectional magnetic sensors 120b4 " , 120b5" and 120b6" are connected to the ground GND. On the other hand, the voltage supply terminal VDD is sequentially connected to the voltage output terminal V 2 via the single-direction magnetic sensors 120b12", 120b11" and 120b10", and the voltage output terminal V 2 is sequentially passed through the single-direction magnetic sensor 120b9. ", 120b8" and 120b7" are connected to ground GND.

藉由電壓輸出端與接地端以上述方式經切換而連接至端點A~F,磁場感測模組100e可以在一個週期時間中的三個子時 間中分別形成第一惠司同電橋、第二惠司同電橋及第三惠司同電橋,以分別感測x方向、y方向及z方向上的磁場。上述電壓輸出端與接地端相對於端點A~F之切換可利用積體電路中的切換電路來達成,這些切換電路可整合至特定應用積體電路(application specific integrated circuit,ASIC)中,或者整個磁場感測模組100e亦可以與特定應用積體電路整合在同一個晶片當中。 The voltage output terminal and the ground terminal are connected to the terminals A to F by switching in the above manner, and the magnetic field sensing module 100e can be in three sub-times in one cycle time. The first Huisi Tongqiao, the Second Huisi Tongqiao and the Third Huisi same bridge are respectively formed to sense the magnetic fields in the x direction, the y direction and the z direction, respectively. The switching between the voltage output terminal and the ground terminal with respect to the terminals A~F can be achieved by using a switching circuit in the integrated circuit, and the switching circuits can be integrated into an application specific integrated circuit (ASIC), or The entire magnetic field sensing module 100e can also be integrated in the same chip with a specific application integrated circuit.

相較於圖7A至圖7D的磁場感測模組100d中的第一、第二及第三惠司同電橋分別具有各自的單方向磁感測器120b、120a及120d,圖8A至圖8D的磁場感測模組100e中的第一及第三惠司同電橋則是共用單方向磁感測器120b,因此圖8之磁場感測模組100e具有體積小、設計簡單、走線較簡單、電極墊較少等優點,且這些惠司同電橋的線路甚至可以利用單一層的重配置線路層(redistribution layer,RDL)來完成。然而,圖7A至圖7D的磁場感測模組100d所具有的優點則是可分別獨立地調整第一、第二及第三惠司同電橋的輸出電壓的電壓增益值,也就是在電壓為類比狀態的時候,就可以各自調整其電壓增益值。如此一來,可藉由各自獨立調整電壓增益值,而讓x、y及z方個中相同的磁場量值能夠對應到相同大小的電壓值,進而簡化後端(如數位電路)的運算與設計。 The first, second, and third sigma bridges in the magnetic field sensing module 100d of FIG. 7A to FIG. 7D respectively have respective unidirectional magnetic sensors 120b, 120a and 120d, FIGS. 8A to 8D. The first and third sigma bridges in the magnetic field sensing module 100e share the unidirectional magnetic sensor 120b, so the magnetic field sensing module 100e of FIG. 8 has a small size, a simple design, and a simple wiring. The advantages of the electrode pads are small, and the lines of these Huisi bridges can even be completed by using a single layer of redistribution layer (RDL). However, the magnetic field sensing module 100d of FIGS. 7A-7D has the advantage of independently adjusting the voltage gain values of the output voltages of the first, second, and third Huisi bridges, that is, the voltage is When analogous, you can adjust its voltage gain value. In this way, by independently adjusting the voltage gain values, the same magnetic field magnitudes in the x, y, and z squares can be matched to the same magnitude of the voltage value, thereby simplifying the operation of the back end (eg, digital circuit). design.

請再參照圖1A、圖1B及圖1C,本發明的一實施例提出一種量測方法,用以量測一外來磁場。此量測方法包括改變外來磁場的磁場分佈,以將外來磁場的在第一方向D1上的分量、第二 方向D2上的分量及第三方向D3上的分量在多個不同位置上至少有部分分量轉換至第二方向D2。在本實施例中,改變外來磁場的磁場分佈的方法包括在第二方向D2上排列多個磁通集中器110,來改變外來磁場的分佈,其中每一磁通集中器110沿著第一方向D1延伸。改變磁場的情形可參照圖2A至圖2C所繪示。 Referring to FIG. 1A, FIG. 1B and FIG. 1C again, an embodiment of the present invention provides a measurement method for measuring an external magnetic field. The measuring method comprises changing the magnetic field distribution of the external magnetic field to make the component of the external magnetic field in the first direction D1, the second The component in the direction D2 and the component in the third direction D3 are converted to the second direction D2 at a plurality of different positions. In the present embodiment, the method of changing the magnetic field distribution of the external magnetic field includes arranging a plurality of magnetic flux concentrators 110 in the second direction D2 to change the distribution of the external magnetic field, wherein each magnetic flux concentrator 110 is along the first direction D1 extends. The case of changing the magnetic field can be illustrated with reference to FIGS. 2A to 2C.

此外,上述的這些不同位置例如是這些單方向磁感測器120所配置的位置。另外,如圖4A至圖6D的實施例所述,外來磁場的分量BX、分量BY及分量BZ分別在不同的位置被磁通集中器110導引至具有y方向上的分量之方向上。再者,此量測方法更包括分別在這些不同位置感測第二方向D2上的磁場大小,以量測出外來磁場於第一方向D1上的分量大小、於第二方向D2上的分量大小及於第三方向D3上的分量大小。亦即可如圖4A至圖6D的實施例所述,將單方向磁感測器120配置於如圖4A至圖6D之單方向磁感測器120a、120b及120c的位置,以感測外來磁場的分量BX、分量BY及分量BZMoreover, these different positions described above are, for example, the positions at which the one-way magnetic sensors 120 are disposed. In addition, as shown in the embodiment of FIGS. 4A to 6D, the components B X , B y and B Z of the external magnetic field are respectively guided by the magnetic flux concentrator 110 to the direction having the component in the y direction at different positions. on. Furthermore, the measuring method further comprises sensing the magnitude of the magnetic field in the second direction D2 at the different positions to measure the component size of the external magnetic field in the first direction D1 and the component size in the second direction D2. And the component size in the third direction D3. Alternatively, as shown in the embodiment of FIGS. 4A to 6D, the unidirectional magnetic sensor 120 is disposed at positions of the unidirectional magnetic sensors 120a, 120b, and 120c as shown in FIGS. 4A to 6D to sense the outside. The component B X , the component B Y and the component B Z of the magnetic field.

本實施例的量測方法可選取這些單方向磁感測器120的一第一部分(例如單方向磁感測器120b)耦接成第一惠斯同電橋,選取這些單方向磁感測器120的一第二部分(例如單方向磁感測器120a及120c)耦接成一第二惠斯同電橋,且選取這些單方向磁感測器120的第一部分(例如單方向磁感測器120b)耦接成一第三惠斯同電橋。此外,本實施例的量測方法可分別利用第一惠斯同電橋、第二惠斯同電橋及第三惠斯同電橋量測出外來磁場於第 一方向D1上的分量BX的大小、於第二方向D2上的分量BY的大小及於第三方向D3上的分量BZ的大小,其中在第三惠司同電橋中耦接這些單方向磁感測器120b的順序不同於在第一惠司同電橋中耦接這些單方向磁感測器120b的順序。 The measurement method of this embodiment may select a first portion of the unidirectional magnetic sensors 120 (for example, the unidirectional magnetic sensor 120b) to be coupled to the first Wheatstone bridge, and select the unidirectional magnetic sensors. A second portion of 120 (eg, unidirectional magnetic sensors 120a and 120c) is coupled to a second Wheatstone bridge, and a first portion of the unidirectional magnetic sensors 120 is selected (eg, a unidirectional magnetic sensor) 120b) coupled into a third Wheatstone bridge. In addition, the measuring method of the embodiment can measure the component B X of the external magnetic field in the first direction D1 by using the first Wheatstone bridge, the second Wheatstone bridge, and the third Wheatstone bridge. The size of the component B Y in the second direction D2 and the size of the component B Z in the third direction D3, wherein the order of the unidirectional magnetic sensors 120b is coupled in the third sigma bridge Unlike the order in which the unidirectional magnetic sensors 120b are coupled in the first singular bridge.

在另一施例中,量測方法可包括選取這些單方向磁感測器120的第一部分(例如單方向磁感測器120b)耦接成一第一惠斯同電橋,選取這些單方向磁感測器120的一第二部分(例如單方向磁感測器120a及120c)耦接成一第二惠斯同電橋,且選取這些單方向磁感測器120的一額外的第三部分耦接成一第三惠斯同電橋,其中此額外的第三部分的位置與功能與第一部分相對應,此第三部分例如為圖7A之單方向磁感測器120d。 In another embodiment, the measuring method may include selecting a first portion of the unidirectional magnetic sensors 120 (eg, the unidirectional magnetic sensor 120b) to be coupled to a first Wheatstone bridge, and selecting the unidirectional magnetic A second portion of the sensor 120 (eg, the unidirectional magnetic sensors 120a and 120c) is coupled to a second Wheatstone bridge, and an additional third portion of the unidirectional magnetic sensor 120 is coupled. Connected to a third Wheatstone bridge, wherein the position and function of the additional third portion corresponds to the first portion, such as the single direction magnetic sensor 120d of FIG. 7A.

在本實施例的量測方法中,由於藉由改變外來磁場的磁場分佈的方式以將外來磁場轉換至同一方向,因此能夠以在同一方向感測外來磁場的方式就能夠在實際上達到多個軸向的磁場感測。因此,此量測方法可藉由較為簡易的方式達到多個軸向的磁場感測。此外,上述之量測方法亦圖以用上述其他的磁場感測模組來實現。 In the measuring method of the present embodiment, since the external magnetic field is converted to the same direction by changing the magnetic field distribution of the external magnetic field, it is possible to actually reach the plurality of external magnetic fields in the same direction. Axial magnetic field sensing. Therefore, this measurement method can achieve multiple axial magnetic field sensing in a relatively simple manner. In addition, the above measurement method is also implemented by using the other magnetic field sensing modules described above.

圖9A至圖9F繪示本發明之一實施例之磁場感測模組的製作方法的流程之側視示意圖。請參照圖9A至圖9F,本實施例之磁場感測模組的製作方法可用以製作上述磁場感測模組100或其他實施例的磁場感測模組,而以下以製作上述磁場感測模組100為例。此製作方法包括下列步驟。首先,請參照圖9A,提供基板 130。接著,在基板130上形成磁感測多層膜結構150,其中磁感測多層膜結構150例如為在基板上由下往上堆疊之釘扎層122、受釘扎層124、間隔層126及自由層128(如圖3A所繪示)。在本實施例中,磁感測多層膜結構150的感測方向(即為圖3A之釘扎方向E1)實質上平行於第二方向D2。 9A-9F are schematic side views showing a flow of a method of fabricating a magnetic field sensing module according to an embodiment of the present invention. Referring to FIG. 9A to FIG. 9F, the magnetic field sensing module of the present embodiment can be used to fabricate the magnetic field sensing module 100 or the magnetic field sensing module of other embodiments, and the magnetic field sensing module is fabricated as follows. Group 100 is an example. This production method includes the following steps. First, please refer to FIG. 9A, providing a substrate 130. Next, a magnetic sensing multilayer film structure 150 is formed on the substrate 130, wherein the magnetic sensing multilayer film structure 150 is, for example, a pinned layer 122, a pinned layer 124, a spacer layer 126, and freely stacked on the substrate from bottom to top. Layer 128 (as shown in Figure 3A). In the present embodiment, the sensing direction of the magnetic sensing multilayer film structure 150 (ie, the pinning direction E1 of FIG. 3A) is substantially parallel to the second direction D2.

然後,在本實施例中,可在磁感測多層膜結構150上形成一光阻層160,然後如圖9B所繪示,再將光阻層160圖案化,以形成經圖案化後的光阻層162。經圖案化後的光阻層162具有曝露出磁感測多層膜結構150的第一部分152的開口163,且經圖案化後的光阻層162覆蓋磁感測多層膜結構150的第二部分154。圖案化光阻層160的方法可利用一般微影製程中的步驟來達成。 Then, in this embodiment, a photoresist layer 160 may be formed on the magnetic sensing multilayer film structure 150, and then the photoresist layer 160 is patterned to form patterned light as shown in FIG. 9B. Resistive layer 162. The patterned photoresist layer 162 has an opening 163 exposing the first portion 152 of the magnetic sensing multilayer film structure 150, and the patterned photoresist layer 162 covers the second portion 154 of the magnetic sensing multilayer film structure 150. . The method of patterning the photoresist layer 160 can be accomplished using steps in a typical lithography process.

之後,蝕刻磁感測多層膜結構150的第一部分152,其中剩餘的磁感測多層膜結構150的第二部分154形成多個彼此分離的單方向磁感測器120。在本實施例中,可使蝕刻物質170穿透經圖案化後的光阻層162的開口163,以蝕刻磁感測多層膜結構150的第一部分152。其中,蝕刻物質170可為濕式蝕刻中的蝕刻液,或者是乾式蝕刻中的電漿。然後,再將經圖案化後的光阻層160移除。接著,如圖9C所繪示,形成一覆蓋基板130及這些單方向磁感測器120的絕緣層140。 Thereafter, the first portion 152 of the magnetic sensing multilayer film structure 150 is etched, wherein the remaining second portion 154 of the magnetic sensing multilayer film structure 150 forms a plurality of unidirectional magnetic sensors 120 that are separated from one another. In the present embodiment, the etchant 170 can be etched through the opening 163 of the patterned photoresist layer 162 to etch the first portion 152 of the magnetic sensing multilayer film structure 150. The etchant 170 may be an etchant in a wet etch or a plasma in a dry etch. Then, the patterned photoresist layer 160 is removed. Next, as shown in FIG. 9C, an insulating layer 140 covering the substrate 130 and the unidirectional magnetic sensors 120 is formed.

然後,如圖9D所繪示,在絕緣層140上形成一鐵磁性材料層190。在此之後,如圖9E與圖9F所繪示,圖案化鐵磁性材料層190,以形成彼此分離的多個磁通集中器110。在本實施例中, 在圖9D的步驟之後,可如圖9E所繪示,在鐵磁性材料層190上形成圖案化光阻層210。形成圖案化光阻210層的方式可為先塗佈一層連續地光阻層,然後再利用一般微影製程中的步驟將連續地光阻層曝光及顯影成如圖9E所繪示的圖案化光阻層210。接著,使蝕刻物質220穿過圖案化光阻層210的開口212而蝕刻鐵磁性材料層190中未被圖案化光阻層210覆蓋的部分,而剩餘未被蝕刻的鐵磁性材料層190即形成多個彼此分離的磁通集中器110。然後,再將圖案化光阻層210移除。 Then, as shown in FIG. 9D, a ferromagnetic material layer 190 is formed on the insulating layer 140. Thereafter, as illustrated in FIGS. 9E and 9F, the ferromagnetic material layer 190 is patterned to form a plurality of magnetic flux concentrators 110 that are separated from each other. In this embodiment, After the step of FIG. 9D, a patterned photoresist layer 210 may be formed on the ferromagnetic material layer 190 as illustrated in FIG. 9E. The patterned photoresist layer 210 may be formed by first coating a continuous photoresist layer, and then exposing and developing the continuous photoresist layer into a pattern as shown in FIG. 9E by using the steps in a general lithography process. Photoresist layer 210. Next, the etching material 220 is passed through the opening 212 of the patterned photoresist layer 210 to etch a portion of the ferromagnetic material layer 190 that is not covered by the patterned photoresist layer 210, and the remaining unetched ferromagnetic material layer 190 is formed. A plurality of magnetic flux concentrators 110 separated from each other. The patterned photoresist layer 210 is then removed.

與圖1A所繪示者相同的是,每一磁通集中器110沿著第一方向D1延伸,且這些磁通集中器110沿著第二方向D2排列。在本實施例中,第一方向D1與第二方向D2實質上平行於基板130。這些單方向磁感測器120分別配置於這些磁通集中器110之間的位置的下方(例如單方向磁感測器120a)、這些磁通集中器110之排列於第二方向D2上的兩側的位置的下方(例如單方向磁感測器120b)及這些磁通集中器110的下方,例如正下方(例如單方向磁感測器120c)。至此,即完成磁場感測模組100的製作。 As with the one illustrated in FIG. 1A, each flux concentrator 110 extends along a first direction D1 and the flux concentrators 110 are aligned along a second direction D2. In the present embodiment, the first direction D1 and the second direction D2 are substantially parallel to the substrate 130. The unidirectional magnetic sensors 120 are respectively disposed below the position between the magnetic flux concentrators 110 (for example, the unidirectional magnetic sensor 120a), and the two magnetic flux concentrators 110 are arranged in the second direction D2. Below the position of the side (for example, the unidirectional magnetic sensor 120b) and below the flux concentrators 110, for example, directly below (for example, the unidirectional magnetic sensor 120c). So far, the production of the magnetic field sensing module 100 is completed.

在本實施例的磁場感測模組的製作方法中,由於是將一磁感測多層膜結構150蝕刻成多個彼此分離的單方向磁感測器120,再搭配磁通集中器110的形成,以完成多軸向磁場感測模組100的製作。因此,此製作方法可利用較為簡易的製作過程製作出可達到多軸向磁場感測的磁場感測模組,進而節省製程時間及製作成本。此外,在本實施例的磁場感測模組的製作方法中,可利 用單一晶圓的製程,就可完成磁場感測模組100的製作。因此,相較於習知技術使用二個以上的晶圓的製程來製作多軸向磁場感測模組,本實施例的磁場感測模組的製作方法能利用較簡單的製程及較低的製作成本來製作出多軸向的磁場感測模組。 In the method for fabricating the magnetic field sensing module of the present embodiment, since a magnetic sensing multilayer film structure 150 is etched into a plurality of single-directional magnetic sensors 120 separated from each other, the magnetic flux concentrator 110 is formed. To complete the fabrication of the multi-axial magnetic field sensing module 100. Therefore, the manufacturing method can produce a magnetic field sensing module capable of achieving multi-axial magnetic field sensing by using a relatively simple manufacturing process, thereby saving process time and manufacturing cost. In addition, in the manufacturing method of the magnetic field sensing module of the embodiment, The fabrication of the magnetic field sensing module 100 can be accomplished using a single wafer process. Therefore, the method for fabricating the magnetic field sensing module of the present embodiment can utilize a relatively simple process and a lower process than the process of using two or more wafers to fabricate a multi-axial magnetic field sensing module. The manufacturing cost is to produce a multi-axial magnetic field sensing module.

值得注意的是,第一惠司同電橋、第二惠司同電橋及第三惠司同電橋的電路連接方式並不以上述實施例所描述的為限,在相同的元件配置形式下,亦可採用不同的電路連接方式來形成第一惠司同電橋、第二惠司同電橋及第三惠司同電橋,但所達到的功能與效果是相同或類似的,以下舉出本發明的另一實施例來說明此點。 It is worth noting that the circuit connection of the first Huisi Bridge, the Second Huisi Bridge and the Third Huisi Bridge is not limited to the one described in the above embodiment. Under the same component configuration, Different circuit connections can be used to form the first Huisi bridge, the second Huisi bridge and the third Huisi bridge, but the functions and effects achieved are the same or similar, and the following is another An embodiment will illustrate this point.

圖10A繪示當平行於x方向的外來磁場施加於用以感測平行於x方向的磁場之本發明之另一實施例之磁場感測模組的電路架構時,單方向磁感測器的電阻變化。圖10B繪示當平行於y方向的外來磁場施加於圖10A之電路架構時,單方向磁感測器的電阻變化。圖10C繪示當平行於z方向的外來磁場施加於圖10A之電路架構時,單方向磁感測器的電阻變化。圖11A繪示當平行於x方向的外來磁場施加於用以感測平行於z方向的磁場之本發明之另一實施例之磁場感測模組的電路架構時,單方向磁感測器的電阻變化。圖11B繪示當平行於y方向的外來磁場施加於圖11A之電路架構時,單方向磁感測器的電阻變化。圖11C繪示當平行於z方向的外來磁場施加於圖11A之電路架構時,單方向磁感測器的電阻變化。 10A illustrates a circuit configuration of a unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to a magnetic field sensing module of another embodiment of the present invention for sensing a magnetic field parallel to the x direction. The resistance changes. FIG. 10B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 10A. Figure 10C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of Figure 10A. 11A illustrates a circuit configuration of a unidirectional magnetic sensor when an external magnetic field parallel to the x direction is applied to a magnetic field sensing module of another embodiment of the present invention for sensing a magnetic field parallel to the z direction. The resistance changes. FIG. 11B illustrates the change in resistance of the unidirectional magnetic sensor when an external magnetic field parallel to the y direction is applied to the circuit architecture of FIG. 11A. Figure 11C illustrates the change in resistance of a unidirectional magnetic sensor when an external magnetic field parallel to the z-direction is applied to the circuit architecture of Figure 11A.

請參照圖10A至圖10C及圖11A至圖11C,本實施例之圖10A至圖10C之第一惠司同電橋的功能類似於圖4A之第一惠司同電橋的功能,且本實施例之圖11A至圖11C的第三惠司同電橋的功能類似於圖6A之第三惠司同電橋的功能,而其差異如下所述。在圖10A至圖10C之第一惠司同電橋中,電壓供應端VDD經由單方向磁感測器120b1連接至電壓輸出端V1X,且電壓輸出端V1X經由單方向磁感測器120b2連接至接地端GND。另一方面,電壓供應端VDD經由單方向磁感測器120b3連接至電壓輸出端V2X,且電壓輸出端V2X經由單方向磁感測器120b4連接至接地端GND。在圖10A中,由於單方向磁感測器120b1的電阻大於單方向磁感測器120b3的電阻,但單方向磁感測器120b2的電阻小於單方向磁感測器120b4的電阻,因此電壓輸出端V1X的電壓小於電壓輸出端V2X的電壓,所以電壓輸出端V1X與電壓輸出端V2X之間的電壓差會形成對應於外來磁場的分量BX的訊號。在圖10B中,由於四個單方向磁感測器120b1~120b4的電阻皆下降,因此電壓輸出端V1X與電壓輸出端V2X之間的電壓差為0,而沒有訊號產生。在圖10C中,由於單方向磁感測器120b1與120b2的電阻皆下降,且單方向磁感測器120b3與120b4的電阻皆下降,所以單方向磁感測器120b1與單方向磁感測器120b2的比例實質上等於單方向磁感測器120b3與單方向磁感測器120b4的比例,因此因此電壓輸出端V1X與電壓輸出端V2X之間的電壓差為0,而沒有訊號產生。所以,如圖10A之第一惠司同電橋也可實現x方向的 感測。 Referring to FIG. 10A to FIG. 10C and FIG. 11A to FIG. 11C , the function of the first Huisi bridge of FIG. 10A to FIG. 10C of the present embodiment is similar to the function of the first Huisi bridge of FIG. 4A , and the embodiment is The function of the third Huisi bridge of FIGS. 11A to 11C is similar to that of the third Huisi bridge of FIG. 6A, and the difference is as follows. In FIGS. 10A to 10C of the first bridge Division and benefits, the voltage supply terminal VDD is connected via a unidirectional magnetic sensors 120b1 to the voltage output terminal V 1X, and the voltage output terminal V 1X is connected via a unidirectional magnetic sensors 120b2 To ground GND. On the other hand, the voltage supply terminal VDD is connected to the voltage output terminal V 2X via the unidirectional magnetic sensor 120b3, and the voltage output terminal V 2X is connected to the ground terminal GND via the unidirectional magnetic sensor 120b4. In FIG. 10A, since the resistance of the unidirectional magnetic sensor 120b1 is greater than the resistance of the unidirectional magnetic sensor 120b3, the resistance of the unidirectional magnetic sensor 120b2 is smaller than the resistance of the unidirectional magnetic sensor 120b4, so the voltage output The voltage at terminal V 1X is less than the voltage at voltage output terminal V 2X , so the voltage difference between voltage output terminal V 1X and voltage output terminal V 2X forms a signal corresponding to component B X of the external magnetic field. In FIG. 10B, since the resistances of the four unidirectional magnetic sensors 120b1 to 120b4 are both lowered, the voltage difference between the voltage output terminal V 1X and the voltage output terminal V 2X is 0, and no signal is generated. In FIG. 10C, since the resistances of the unidirectional magnetic sensors 120b1 and 120b2 are both decreased, and the resistances of the unidirectional magnetic sensors 120b3 and 120b4 are both decreased, the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor are used. The ratio of 120b2 is substantially equal to the ratio of the unidirectional magnetic sensor 120b3 to the unidirectional magnetic sensor 120b4, so that the voltage difference between the voltage output terminal V 1X and the voltage output terminal V 2X is zero, and no signal is generated. Therefore, the sensing of the x direction can also be achieved by the first Huisi bridge of FIG. 10A.

在圖11A至圖11C的第三惠司同電橋中,電壓供應端VDD經由單方向磁感測器120b1連接至電壓輸出端V1Z,且電壓輸出端V1Z經由單方向磁感測器120b4連接至接地端GND。另一方面,電壓供應端VDD經由單方向磁感測器120b3連接至電壓輸出端V2Z,且電壓輸出端V2Z經由單方向磁感測器120b4連接至接地端GND。在圖11A中,單方向磁感測器120b1與120b4的電阻皆上升,而單方向磁感測器120b3及120b2的電阻皆下降,因此單方向磁感測器120b1與單方向磁感測器120b4的比例實質上相等於單方向磁感測器120b3與單方向磁感測器120b2的比例,因此電壓輸出端V1Z與電壓輸出端V2Z的電壓實質上相等。所以,電壓輸出端V1Z與電壓輸出端V2Z之間的電壓差為0而沒有訊號輸出。在圖11B中,四個單方向磁感測器120b1~120b4的電阻皆下降,因此電壓輸出端V1Z與電壓輸出端V2Z之間的電壓差為0而沒有訊號輸出。在圖11C中,單方向磁感測器120b1的電阻大於單方向磁感測器120b3的電阻,而單方向磁感測器120b4的電阻小於單方向磁感測器120b2的電阻,因此電壓輸出端V1Z的電壓小於電壓輸出端V2Z的電壓,所以電壓輸出端V1Z與電壓輸出端V2Z之間的電壓差會形成對應於外來磁場的分量BZ的訊號。因此,圖11A至圖11C所繪示的第三惠司同電橋亦可用以感測z方向的磁場。 In FIGS. 11A to 11C benefits Division and a third bridge, the voltage supply terminal VDD is connected via a unidirectional magnetic sensors 120b1 to the voltage output terminal V 1Z, and the voltage output terminal V 1Z is connected via a unidirectional magnetic sensors 120b4 To ground GND. On the other hand, the voltage supply terminal VDD is connected to the voltage output terminal V 2Z via the unidirectional magnetic sensor 120b3, and the voltage output terminal V 2Z is connected to the ground GND via the unidirectional magnetic sensor 120b4. In FIG. 11A, the resistances of the unidirectional magnetic sensors 120b1 and 120b4 both rise, and the resistances of the unidirectional magnetic sensors 120b3 and 120b2 decrease, so the unidirectional magnetic sensor 120b1 and the unidirectional magnetic sensor 120b4 The ratio is substantially equal to the ratio of the unidirectional magnetic sensor 120b3 to the unidirectional magnetic sensor 120b2, so the voltage output terminal V 1Z and the voltage output terminal V 2Z are substantially equal in voltage. Therefore, the voltage difference between the voltage output terminal V 1Z and the voltage output terminal V 2Z is 0 without signal output. In FIG. 11B, the resistances of the four unidirectional magnetic sensors 120b1 to 120b4 are all decreased, so that the voltage difference between the voltage output terminal V 1Z and the voltage output terminal V 2Z is 0 without signal output. In FIG. 11C, the resistance of the unidirectional magnetic sensor 120b1 is greater than the resistance of the unidirectional magnetic sensor 120b3, and the resistance of the unidirectional magnetic sensor 120b4 is smaller than the resistance of the unidirectional magnetic sensor 120b2, thus the voltage output. The voltage of V 1Z is less than the voltage of the voltage output terminal V 2Z , so the voltage difference between the voltage output terminal V 1Z and the voltage output terminal V 2Z forms a signal corresponding to the component B Z of the external magnetic field. Therefore, the third Huisi bridge shown in FIG. 11A to FIG. 11C can also be used to sense the magnetic field in the z direction.

綜上所述,在本發明的實施例的磁場感測模組中,由於 藉由磁通集中器來使外來磁場彎曲,因此多個單方向磁感測器的感測方向可以實質上相同,所以此磁場感測模組可以在較為簡化的架構下達到多軸向的磁場感測,進而降低磁場感測模組的製作困難度及成本。在本發明的實施例的量測方法中,由於藉由改變外來磁場的磁場分佈的方式以將外來磁場轉換至同一方向,因此能夠以在同一方向感測外來磁場的方式就能夠在實際上達到多個軸向的磁場感測。因此,此量測方法可藉由較為簡易的方式達到多個軸向的磁場感測。在本發明的實施例的磁場感測模組的製作方法中,由於是將一磁感測多層膜結構蝕刻成多個彼此分離的單方向磁感測器,再搭配磁通集中器的形成,以完成多軸向磁場感測模組的製作。因此,此製作方法可利用較為簡易的製作過程製作出可達到多軸向磁場感測的磁場感測模組。 In summary, in the magnetic field sensing module of the embodiment of the present invention, The magnetic flux concentrator bends the external magnetic field, so that the sensing directions of the plurality of unidirectional magnetic sensors can be substantially the same, so the magnetic field sensing module can achieve a multi-axial magnetic field under a simplified structure. Sensing, thereby reducing the difficulty and cost of manufacturing the magnetic field sensing module. In the measuring method of the embodiment of the present invention, since the external magnetic field is converted to the same direction by changing the magnetic field distribution of the external magnetic field, it is possible to actually reach the external magnetic field in the same direction. Multiple axial magnetic field sensing. Therefore, this measurement method can achieve multiple axial magnetic field sensing in a relatively simple manner. In the method for fabricating the magnetic field sensing module of the embodiment of the present invention, since a magnetic sensing multilayer film structure is etched into a plurality of single-directional magnetic sensors separated from each other, and then formed with a magnetic flux concentrator, To complete the fabrication of the multi-axial magnetic field sensing module. Therefore, the manufacturing method can produce a magnetic field sensing module capable of achieving multi-axial magnetic field sensing by using a relatively simple manufacturing process.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧磁場感測模組 100‧‧‧Magnetic sensing module

110‧‧‧磁通集中器 110‧‧‧Magnetic concentrator

120、120a、120b、120c‧‧‧單方向磁感測器 120, 120a, 120b, 120c‧‧‧ single direction magnetic sensor

130‧‧‧基板 130‧‧‧Substrate

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

S‧‧‧感測方向 S‧‧‧Sensing direction

x、y、z‧‧‧方向 x, y, z‧‧ direction

Claims (23)

一種磁場感測模組,包括:多個磁通集中器,每一該磁通集中器沿著一第一方向延伸,且該些磁通集中器沿著一第二方向排列;以及多個單方向磁感測器,分別配置於對應至該些磁通集中器之間的位置及對應至該些磁通集中器之排列於該第二方向上的兩側的位置,其中該些單方向磁感測器的感測方向實質上相同。 A magnetic field sensing module includes: a plurality of magnetic flux concentrators, each of the magnetic flux concentrators extending along a first direction, and the magnetic flux concentrators are arranged along a second direction; and a plurality of single The directional magnetic sensors are respectively disposed at positions corresponding to the magnetic flux concentrators and corresponding to the two sides of the magnetic flux concentrators arranged in the second direction, wherein the unidirectional magnetic The sensing directions of the sensors are substantially the same. 如申請專利範圍第1項所述的磁場感測模組,其中該些單方向磁感測器的感測方向實質上平行於該第二方向。 The magnetic field sensing module of claim 1, wherein the sensing directions of the one-way magnetic sensors are substantially parallel to the second direction. 如申請專利範圍第1項所述的磁場感測模組,其中該第一方向實質上垂直於該第二方向。 The magnetic field sensing module of claim 1, wherein the first direction is substantially perpendicular to the second direction. 如申請專利範圍第1項所述的磁場感測模組,其中部分的該些單方向磁感測器配置於該些磁通集中器在一第三方向上的一側,其中該第三方向實質上垂直於該第一方向與該第二方向。 The magnetic field sensing module of claim 1, wherein the one-way magnetic sensors are disposed on a side of the magnetic flux concentrator on a third direction, wherein the third direction is substantially The upper direction is perpendicular to the first direction and the second direction. 如申請專利範圍第4項所述的磁場感測模組,其中部分配置於對應至該些磁通集中器之排列於該第二方向上的兩側的位置的該些單方向磁感測器耦接成一第一惠司同電橋,且用以感測一外來磁場於該第一方向上的分量。 The magnetic field sensing module of claim 4, wherein the plurality of magnetic sensors are disposed at positions corresponding to the two sides of the magnetic flux concentrators arranged in the second direction. The first bridge is coupled to the first bridge, and is configured to sense a component of the external magnetic field in the first direction. 如申請專利範圍第5項所述的磁場感測模組,其中配置於對應至該些磁通集中器之間的位置及配置於該些磁通集中器在該第三方向上的一側的該些單方向磁感測器耦接成一第二惠司同電橋,且用以感測該外來磁場於該第二方向上的分量。 The magnetic field sensing module of claim 5, wherein the magnetic field sensing module is disposed at a position corresponding to the magnetic flux concentrators and disposed on a side of the magnetic flux concentrators on the third direction The unidirectional magnetic sensors are coupled to a second singular bridge and are configured to sense a component of the external magnetic field in the second direction. 如申請專利範圍第6項所述的磁場感測模組,其中另一部分配置於對應至該些磁通集中器之排列於該第二方向上的兩側的位置的該些單方向磁感測器耦接成一第三惠司同電橋,且用以感測該外來磁場於該第三方向上的分量,其中在該第三惠司同電橋中耦接該些單方向磁感測器的順序不同於在該第一惠司同電橋中耦接該些單方向磁感測器的順序。 The magnetic field sensing module of claim 6, wherein the other portion is disposed in the one-way magnetic sensing corresponding to the positions of the magnetic flux concentrators arranged on the two sides in the second direction The device is coupled to a third singular bridge, and is configured to sense a component of the external magnetic field in the third direction, wherein the order of coupling the unidirectional magnetic sensors in the third phosic bridge is different The sequence of coupling the unidirectional magnetic sensors in the first singular bridge. 如申請專利範圍第4項所述的磁場感測模組,其中配置於對應至該些磁通集中器之排列於該第二方向上的兩側的位置的該些單方向磁感測器藉由一第一導電路徑耦接成一第一惠司同電橋,且藉由一第二導電路徑耦接成一第三惠司同電橋,該第一惠司同電橋用以感測一外來磁場於該第一方向上的分量,該第三惠司同電橋用以感測該外來磁場於該第三方向上的分量,該第一導電路徑耦接該些單方向磁感測器的順序不同於該第二導電路徑耦接該些單方向磁感測器的順序。 The magnetic field sensing module of claim 4, wherein the one-way magnetic sensors disposed at positions corresponding to the two sides of the magnetic flux concentrators arranged in the second direction are borrowed The first conductive path is coupled to the first and second bridges, and coupled to the third and second bridges by a second conductive path, the first and the same bridge are used to sense an external magnetic field. a component in the first direction, the third squad is used to sense a component of the external magnetic field in the third direction, and the first conductive path is coupled to the unidirectional magnetic sensor in a different order from the first The two conductive paths are coupled to the order of the one-way magnetic sensors. 如申請專利範圍第1項所述的磁場感測模組,更包括多個電阻器,其與配置於對應至該些磁通集中器之間的位置的該些單方向磁感測器耦接成一惠司同電橋,且用以感測一外來磁場於該第二方向上的分量。 The magnetic field sensing module of claim 1, further comprising a plurality of resistors coupled to the one-way magnetic sensors disposed at positions corresponding to the magnetic flux concentrators The first bridge is used to sense the component of an external magnetic field in the second direction. 如申請專利範圍第1項所述的磁場感測模組,其中該些單方向磁感測器為巨磁阻感測器、穿隧磁阻感測器或其組合。 The magnetic field sensing module of claim 1, wherein the single-direction magnetic sensors are giant magnetoresistive sensors, tunneling magnetoresistive sensors, or a combination thereof. 如申請專利範圍第1項所述的磁場感測模組,其中該些磁通集中器的殘磁小於其飽和磁化量的10%。 The magnetic field sensing module of claim 1, wherein the residual flux of the magnetic flux concentrators is less than 10% of the saturation magnetization. 一種量測方法,用以量測一外來磁場,該量測方法包括:改變該外來磁場的磁場分佈,以將該外來磁場的在一第一方向上的分量、一第二方向上的分量及一第三方向上的分量在多個不同位置上至少有部分分量轉換至該第二方向;以及分別在該些不同位置感測該第二方向上的磁場大小,以量測出該外來磁場於該第一方向上的分量大小、於該第二方向上的分量大小及於該第三方向上的分量大小。 A measuring method for measuring an external magnetic field, the measuring method comprising: changing a magnetic field distribution of the external magnetic field, the component of the external magnetic field in a first direction, a component in a second direction, and A third-party upward component converts at least a portion of the component to the second direction at a plurality of different locations; and sensing a magnitude of the magnetic field in the second direction at the different locations to measure the external magnetic field The component size in the first direction, the component size in the second direction, and the component size in the third direction. 如申請專利範圍第12項所述的量測方法,其中改變該外來磁場的磁場分佈的方法包括在該第二方向上排列多個磁通集中器,且每一該磁通集中器沿著該第一方向延伸。 The measuring method of claim 12, wherein the method of changing a magnetic field distribution of the external magnetic field comprises arranging a plurality of magnetic flux concentrators in the second direction, and each of the magnetic flux concentrators is along the The first direction extends. 如申請專利範圍第13項所述的量測方法,其中該些不同位置包括對應至該些磁通集中器之間的位置及對應至該些磁通集中器之排列於該第二方向上的兩側的位置。 The measuring method of claim 13, wherein the different positions include a position corresponding to the magnetic flux concentrators and an arrangement corresponding to the magnetic flux concentrators in the second direction The position on both sides. 如申請專利範圍第13項所述的量測方法,其中該些磁通集中器的殘磁小於其飽和磁化量的10%。 The measuring method according to claim 13, wherein the residual flux of the magnetic flux concentrators is less than 10% of the saturation magnetization. 如申請專利範圍第12項所述的量測方法,其中該第一方向、該第二方向及該第三方向彼此實質上垂直。 The measuring method of claim 12, wherein the first direction, the second direction, and the third direction are substantially perpendicular to each other. 如申請專利範圍第12項所述的量測方法,其中分別在該些不同位置感測該第二方向上的磁場大小,以量測出該外來磁場於該第一方向上的分量大小、於該第二方向上的分量大小及於該第三方向上的分量大小的方法包括:在該些不同位置上分別設置多個單方向磁感測器,其中該些 單方向磁感測器的感測方向皆為該第二方向;以及選取該些單方向磁感測器的一第一部分耦接成一第一惠斯同電橋,選取該些單方向磁感測器的一第二部分耦接成一第二惠斯同電橋,選取該些單方向磁感測器的該第一部分耦接成一第三惠斯同電橋,且分別利用該第一惠斯同電橋、該第二惠斯同電橋及該第三惠斯同電橋量測出該外來磁場於該第一方向上的分量大小、於該第二方向上的分量大小及於該第三方向上的分量大小,其中在該第三惠司同電橋中耦接該些單方向磁感測器的順序不同於在該第一惠司同電橋中耦接該些單方向磁感測器的順序。 The measuring method of claim 12, wherein the magnitude of the magnetic field in the second direction is sensed at the different positions to measure a component of the external magnetic field in the first direction, The method of the component size in the second direction and the component size in the third direction includes: respectively setting a plurality of single-directional magnetic sensors at the different positions, wherein the The sensing direction of the single-direction magnetic sensor is the second direction; and a first portion of the single-direction magnetic sensors is coupled to form a first Wheatstone bridge, and the single-direction magnetic sensing is selected. A second portion of the device is coupled to a second Wheatstone bridge, and the first portion of the unidirectional magnetic sensors is coupled to a third Wheatstone bridge, and the first Wheats are utilized respectively. The bridge, the second Wheatstone bridge, and the third Wheatstone bridge measure the component size of the external magnetic field in the first direction, the component size in the second direction, and the third party An upward component size, wherein the order of coupling the unidirectional magnetic sensors in the third singular bridge is different from the order of coupling the unidirectional magnetic sensors in the first sigma bridge . 如申請專利範圍第12項所述的量測方法,其中分別在該些不同位置感測該第二方向上的磁場大小,以量測出該外來磁場於該第一方向上的分量大小、於該第二方向上的分量大小及於該第三方向上的分量大小的方法包括:在該些不同位置上分別設置多個單方向磁感測器,其中該些單方向磁感測器的感測方向皆為該第二方向;以及選取該些單方向磁感測器的一第一部分耦接成一第一惠斯同電橋,選取該些單方向磁感測器的一第二部分耦接成一第二惠斯同電橋,選取該些單方向磁感測器的一第三部分耦接成一第三惠斯同電橋,且分別利用該第一惠斯同電橋、該第二惠斯同電橋及該第三惠斯同電橋量測出該外來磁場於該第一方向上的分量大小、於該第二方向上的分量大小及於該第三方向上的分量大小。 The measuring method of claim 12, wherein the magnitude of the magnetic field in the second direction is sensed at the different positions to measure a component of the external magnetic field in the first direction, The method for sizing the component in the second direction and the component size in the third direction comprises: respectively arranging a plurality of single-directional magnetic sensors at the different positions, wherein the sensing of the single-direction magnetic sensors The direction of the second direction is selected; and a first portion of the single-direction magnetic sensors is coupled to form a first Wheatstone bridge, and a second portion of the single-direction magnetic sensors is coupled into one a second Wheatstone bridge, wherein a third portion of the unidirectional magnetic sensors is coupled to form a third Wheatstone bridge, and the first Wheatstone bridge and the second Wheatstone are respectively utilized. The same bridge and the third Wheatstone bridge measure the component size of the external magnetic field in the first direction, the component size in the second direction, and the component size in the third direction. 一種磁場感測模組的製作方法,包括: 提供一基板;在該基板上形成一磁感測多層膜結構;蝕刻該磁感測多層膜結構的一第一部分,其中剩餘的該磁感測多層膜結構的一第二部分形成多個彼此分離的單方向磁感測器;形成一覆蓋該基板及該些單方向磁感測器的絕緣層;以及在該絕緣層上形成多個磁通集中器,其中每一該磁通集中器沿著一第一方向延伸,該些磁通集中器沿著一第二方向排列,該些單方向磁感測器分別配置於該些磁通集中器之間的位置的下方、該些磁通集中器之排列於該第二方向上的兩側的位置的下方及該些磁通集中器的下方。 A method for manufacturing a magnetic field sensing module, comprising: Providing a substrate; forming a magnetic sensing multilayer film structure on the substrate; etching a first portion of the magnetic sensing multilayer film structure, wherein a remaining second portion of the magnetic sensing multilayer film structure is formed to be separated from each other a unidirectional magnetic sensor; forming an insulating layer covering the substrate and the unidirectional magnetic sensors; and forming a plurality of magnetic flux concentrators on the insulating layer, wherein each of the magnetic flux concentrators is along a first direction extending, the magnetic flux concentrators are arranged along a second direction, the single-direction magnetic sensors are respectively disposed below the position between the magnetic flux concentrators, the magnetic flux concentrators Arranged below the positions on both sides in the second direction and below the flux concentrators. 如申請專利範圍第19項所述的磁場感測模組的製作方法,其中蝕刻該磁感測多層膜結構的該部分的方法包括:在該磁感測多層膜結構上形成一光阻層;圖案化該光阻層,以使經圖案化後的該光阻層具有曝露出該磁感測多層膜結構的該第一部分的開口,且使經圖案化後的該光阻層覆蓋該磁感測多層膜結構的該第二部分;以及使蝕刻物質穿透經圖案化後的該光阻層的該開口,以蝕刻該磁感測多層膜結構的該第一部分。 The method of manufacturing the magnetic field sensing module of claim 19, wherein the method of etching the portion of the magnetic sensing multilayer film structure comprises: forming a photoresist layer on the magnetic sensing multilayer film structure; Patterning the photoresist layer such that the patterned photoresist layer has an opening exposing the first portion of the magnetic sensing multilayer film structure, and the patterned photoresist layer covers the magnetic sense Detecting the second portion of the multilayer film structure; and passing the etchant through the patterned opening of the photoresist layer to etch the first portion of the magnetic sensing multilayer film structure. 如申請專利範圍第19項所述的磁場感測模組的製作方法,其中在該絕緣層上形成該些磁通集中器的方法包括:在該絕緣層上形成一鐵磁性材料層;以及 圖案化該鐵磁性材料層,以形成彼此分離的多個磁通集中器。 The method of manufacturing the magnetic field sensing module of claim 19, wherein the method of forming the magnetic flux concentrators on the insulating layer comprises: forming a ferromagnetic material layer on the insulating layer; The ferromagnetic material layer is patterned to form a plurality of magnetic flux concentrators that are separated from each other. 如申請專利範圍第19項所述的磁場感測模組的製作方法,其中該第一方向與該第二方向實質上平行於該基板,且該第一方向實質上垂直於該第二方向。 The method of fabricating the magnetic field sensing module of claim 19, wherein the first direction and the second direction are substantially parallel to the substrate, and the first direction is substantially perpendicular to the second direction. 如申請專利範圍第19項所述的磁場感測模組的製作方法,其中在該基板上形成該磁感測多層膜結構的步驟包括:使該磁感測多層膜結構的感測方向實質上平行於該第二方向。 The method for fabricating a magnetic field sensing module according to claim 19, wherein the step of forming the magnetic sensing multilayer film structure on the substrate comprises: substantially sensing a sensing direction of the magnetic sensing multilayer film structure Parallel to the second direction.
TW103102698A 2013-11-17 2014-01-24 Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module TWI518349B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201410129413.XA CN104656045B (en) 2013-11-17 2014-04-01 Magnetic field sensing module, measuring method and manufacturing method of magnetic field sensing module
US14/283,236 US9562953B2 (en) 2013-11-17 2014-05-21 Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
DE102014012607.2A DE102014012607A1 (en) 2013-11-17 2014-08-26 Magnetic field sensing module, measuring method and method of manufacturing a magnetic field sensing module
US15/387,669 US9983271B2 (en) 2013-11-17 2016-12-22 Measurement method for measuring an external magnetic field and manufacturing method of a magnetic field sensing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361905268P 2013-11-17 2013-11-17

Publications (2)

Publication Number Publication Date
TW201520574A true TW201520574A (en) 2015-06-01
TWI518349B TWI518349B (en) 2016-01-21

Family

ID=53934946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103102698A TWI518349B (en) 2013-11-17 2014-01-24 Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module

Country Status (1)

Country Link
TW (1) TWI518349B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595249B (en) * 2015-10-16 2017-08-11 愛盛科技股份有限公司 Magnetic field sensing apparatus
US10168398B2 (en) 2015-10-16 2019-01-01 Isentek Inc. Magnetic field sensing apparatus
TWI703337B (en) * 2018-08-03 2020-09-01 愛盛科技股份有限公司 Magnetic field sensing apparatus
US11009562B2 (en) 2018-08-03 2021-05-18 Isentek Inc. Magnetic field sensing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072850B (en) 2016-11-09 2020-06-12 爱盛科技股份有限公司 Magnetic field sensing device
US10877107B2 (en) * 2017-07-17 2020-12-29 Isentek Inc. Magnetic field sensing device and magnetic field sensing apparatus
TWI703336B (en) * 2018-08-15 2020-09-01 愛盛科技股份有限公司 Magnetic field sensing device
TWI747285B (en) * 2019-05-27 2021-11-21 愛盛科技股份有限公司 Magnetic field sensing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595249B (en) * 2015-10-16 2017-08-11 愛盛科技股份有限公司 Magnetic field sensing apparatus
US10168398B2 (en) 2015-10-16 2019-01-01 Isentek Inc. Magnetic field sensing apparatus
TWI703337B (en) * 2018-08-03 2020-09-01 愛盛科技股份有限公司 Magnetic field sensing apparatus
US11009562B2 (en) 2018-08-03 2021-05-18 Isentek Inc. Magnetic field sensing apparatus

Also Published As

Publication number Publication date
TWI518349B (en) 2016-01-21

Similar Documents

Publication Publication Date Title
US9983271B2 (en) Measurement method for measuring an external magnetic field and manufacturing method of a magnetic field sensing module
TWI518349B (en) Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
JP6438959B2 (en) Single chip Z-axis linear magnetoresistive sensor
US9722175B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
JP6687627B2 (en) Single-chip Z-axis linear magnetoresistive sensor with calibration / initialization coil
EP2827165B1 (en) Magnetoresistance magnetic field gradient sensor
JP6193212B2 (en) Single chip 2-axis bridge type magnetic field sensor
JP6076345B2 (en) 3-axis magnetic field sensor
US9279865B2 (en) Method and structure for testing and calibrating three axis magnetic field sensing devices
US7795862B2 (en) Matching of GMR sensors in a bridge
US20150145504A1 (en) Magnetoresistive Gear Tooth Sensor
EP3062119B1 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
JP2017516987A (en) Monolithic three-axis linear magnetic sensor and manufacturing method thereof
KR20120066612A (en) Three axis magnetic field sensor
WO2012097673A1 (en) Independently packaged bridge type magnetic field sensor
CN102918413A (en) Process integration of a single chip three axis magnetic field sensor
TWI747285B (en) Magnetic field sensing apparatus
US9322889B2 (en) Low hysteresis high sensitivity magnetic field sensor
US20160238670A1 (en) Magnetic sensor
US20080211490A1 (en) Magnetic detector and method for making the same
US11009562B2 (en) Magnetic field sensing apparatus
KR20150102052A (en) Magnetic Sensing Apparatus, Magnetic Induction Method and Preparation Technique Therefor
JP6321323B2 (en) Magnetic sensor
US11009569B2 (en) Magnetic field sensing device
JP6185298B2 (en) Magnetic sensor