TWI703337B - Magnetic field sensing apparatus - Google Patents

Magnetic field sensing apparatus Download PDF

Info

Publication number
TWI703337B
TWI703337B TW108121871A TW108121871A TWI703337B TW I703337 B TWI703337 B TW I703337B TW 108121871 A TW108121871 A TW 108121871A TW 108121871 A TW108121871 A TW 108121871A TW I703337 B TWI703337 B TW I703337B
Authority
TW
Taiwan
Prior art keywords
magnetic field
unidirectional
magnetoresistive sensors
electrical signal
sensing device
Prior art date
Application number
TW108121871A
Other languages
Chinese (zh)
Other versions
TW202008002A (en
Inventor
袁輔德
賴孟煌
Original Assignee
愛盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛盛科技股份有限公司 filed Critical 愛盛科技股份有限公司
Priority to US16/522,674 priority Critical patent/US11009562B2/en
Priority to CN201910694023.XA priority patent/CN110794348B/en
Publication of TW202008002A publication Critical patent/TW202008002A/en
Application granted granted Critical
Publication of TWI703337B publication Critical patent/TWI703337B/en

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

A magnetic field sensing apparatus including a magnetic flux concentrator and a plurality of single direction magneto-resistive sensors is provided. The magnetic flux concentrator has a first and a second end portions opposite to each other. The single direction magneto-resistive sensors have the same pinning direction and are disposed beside the magnetic flux concentrator. The single direction magneto-resistive sensors further include a plurality of first and second single direction magneto-resistive sensors. The first single direction magneto-resistive sensors are disposed beside the first end portion and further include a first and a third portions respectively being disposed two opposite sides of the first end portion. The first and a third portions are coupled to a first full Wheatstone bridge. The second single direction magneto-resistive sensors are disposed beside the second end portion and further include a second and a fourth portions respectively being disposed two opposite sides of the second end portion. The second and the fourth portions are coupled to a second full Wheatstone bridge.

Description

磁場感測裝置Magnetic field sensing device

本發明是有關於一種磁場感測裝置。 The present invention relates to a magnetic field sensing device.

隨著科技的發展,具有導航與定位功能的電子產品也越來越多樣化。電子羅盤在車用導航、飛航以及個人手持式裝置的應用領域中提供了相當於傳統羅盤的功能。而為了實現電子羅盤的功能,磁場感測裝置變成了必要的電子元件。 With the development of technology, electronic products with navigation and positioning functions are becoming more and more diversified. The electronic compass provides functions equivalent to the traditional compass in the application fields of car navigation, flying and personal handheld devices. In order to realize the function of the electronic compass, the magnetic field sensing device becomes a necessary electronic component.

為了達到單軸的感測,一般來說會將巨磁阻(giant magnetoresistance,GMR)多層膜結構或穿隧磁阻(tunneling magnetoresistance,TMR)多層膜結構構成惠斯通全橋,並使這些磁阻多層膜結構的釘扎方向設計有兩個互為反平行的釘扎方向(pinning direction)。舉例來說,為了要達到三軸的感測,則需要六個兩兩互為反平行的釘扎方向。然而,要在晶圓上的反鐵磁層(antiferromagnetic layer)設計出不同的釘扎方向會導致製造困難,而產生額外成本,並使得釘扎層穩定度降低。 In order to achieve uniaxial sensing, in general, a giant magnetoresistance (GMR) multilayer film structure or a tunneling magnetoresistance (TMR) multilayer film structure is constructed to form a Wheatstone full bridge, and these magnetic The pinning direction of the barrier multilayer film structure is designed with two pinning directions that are antiparallel to each other. For example, in order to achieve three-axis sensing, six pinning directions that are antiparallel to each other are required. However, designing different pinning directions for the antiferromagnetic layer on the wafer will cause manufacturing difficulties, incur additional costs, and reduce the stability of the pinned layer.

本發明提供一種磁場感測裝置,其製造簡單、生產成本低且具有良好的穩定性。 The invention provides a magnetic field sensing device, which is simple to manufacture, low in production cost, and has good stability.

本發明的一實施例中提供一種磁場感測裝置,包括磁通集中器以及多個單方向磁阻感測器。磁通集中器具有相對的第一端部與第二端部。這些單方向磁阻感測器具有相同的釘扎方向。這些單方向磁阻感測器設置於磁通集中器旁。這些單方向磁阻感測器更包括多個第一單方向磁阻感測器與多個第二單方向磁阻感測器。這些第一單方向磁阻感測器設置於第一端部旁,且這些第一單方向磁阻感測器更包括分別設置於第一端部相對兩側的第一部分與第三部分。第一部分與第三部分耦接成第一惠司同全橋。這些第二單方向磁阻感測器設置於第二端部旁。這些第二單方向第二磁阻感測器更包括分別設置於第二端部相對兩側的第二部分與第四部分,且第二部分與第四部分耦接成第二惠司同全橋。 An embodiment of the present invention provides a magnetic field sensing device, including a magnetic flux concentrator and a plurality of unidirectional magnetoresistive sensors. The magnetic flux concentrator has opposite first and second ends. These unidirectional magnetoresistive sensors have the same pinning direction. These unidirectional magnetoresistive sensors are arranged next to the magnetic flux concentrator. These unidirectional magnetoresistive sensors further include a plurality of first unidirectional magnetoresistive sensors and a plurality of second unidirectional magnetoresistive sensors. The first unidirectional magnetoresistive sensors are disposed beside the first end, and the first unidirectional magnetoresistive sensors further include a first part and a third part respectively disposed on opposite sides of the first end. The first part and the third part are coupled to form a first Huisi full bridge. These second unidirectional magnetoresistive sensors are arranged beside the second end. These second unidirectional second magnetoresistive sensors further include a second part and a fourth part respectively disposed on opposite sides of the second end, and the second part and the fourth part are coupled to form a second Huisi full bridge .

在本發明的一實施例中,上述的磁場感測裝置更包括計算器,耦接於這些磁阻感測器。第一惠司同全橋受一外來磁場影響而輸出一第一電訊號。第二惠司同全橋受此外來磁場影響而輸出第二電訊號。計算器根據第一電訊號與第二電訊號而決定此外來磁場在二不同方向上的磁場分量。 In an embodiment of the present invention, the above-mentioned magnetic field sensing device further includes a calculator, which is coupled to these magnetoresistive sensors. The first whistle and full bridge is affected by an external magnetic field and outputs a first electrical signal. The second whistle and full bridge is affected by the external magnetic field and outputs a second electrical signal. The calculator determines the magnetic field components of the external magnetic field in two different directions according to the first electrical signal and the second electrical signal.

在本發明的一實施例中,上述的這些磁阻感測器更包括多個第三單方向磁阻感測器。這些第三單方向磁阻感測器設置於磁通集中器旁。磁通集中器更包括中間部。中間部位於第一端部 與第二端部之間,且與第一端部與第二端部連接。這些第三單方向磁阻感測器的至少一部分與中間部重疊設置。 In an embodiment of the present invention, the aforementioned magnetoresistive sensors further include a plurality of third unidirectional magnetoresistive sensors. These third unidirectional magnetoresistive sensors are arranged beside the magnetic flux concentrator. The magnetic flux concentrator further includes a middle part. The middle part is at the first end Between the second end and the first end and the second end. At least a part of these third unidirectional magnetoresistive sensors overlaps the middle part.

在本發明的一實施例中,上述的磁場感測裝置更包括分時切換電路,耦接於這些磁阻感測器。在第一時間區間內,分時切換電路將第一部分與第三部分耦接成第一惠司同全橋,且將第二部分與第四部分耦接成第二惠司同全橋,以使計算器根據第一電訊號與第二電訊號而決定此外來磁場在此二不同方向上的磁場分量。在第二時間區間內,分時切換電路從第一部分、第二部分、第三部分與第四部分中選出至少一部分的單方向磁阻感測器與這些第三單方向磁阻感測器耦接成第三惠司同全橋。第三惠司同全橋受此外來磁場影響而輸出一第三電訊號。計算器根據第三電訊號而決定此外來磁場在另一方向上的磁場分量,其中此另一方向上的磁場分量不同於此二不同方向的磁場分量。 In an embodiment of the present invention, the aforementioned magnetic field sensing device further includes a time-sharing switching circuit coupled to these magnetoresistive sensors. In the first time interval, the time-sharing switching circuit couples the first part and the third part into a first wheat-same full bridge, and couples the second part and the fourth part into a second wheat-same full bridge, so that the calculation The device determines the magnetic field components of the external magnetic field in the two different directions according to the first electrical signal and the second electrical signal. In the second time interval, the time-sharing switching circuit selects at least a part of the unidirectional magnetoresistive sensors from the first part, the second part, the third part, and the fourth part to couple with these third unidirectional magnetoresistive sensors. Connected to the third Huisi Tongquan bridge. The third whistle and full bridge is affected by the external magnetic field and outputs a third electrical signal. The calculator determines the magnetic field component of the external magnetic field in another direction according to the third electrical signal, wherein the magnetic field component in the other direction is different from the magnetic field components in the two different directions.

在本發明的一實施例中,上述的這些第三單方向磁阻感測器更包括第五部分與第六部分。第五部分與中間部重疊設置,且第六部分更包括二第六子部分。此二第六子部分分別設置於中間部的相對兩側且不與中間部重疊設置。 In an embodiment of the present invention, the aforementioned third unidirectional magnetoresistive sensors further include a fifth part and a sixth part. The fifth part overlaps with the middle part, and the sixth part further includes two sixth sub-parts. The two sixth sub-parts are respectively arranged on opposite sides of the middle part and not overlapped with the middle part.

在本發明的一實施例中,上述的磁場感測裝置更包括分時切換電路,耦接於這些磁阻感測器。在第一時間區間內,分時切換電路將第一部分與第三部分耦接成第一惠司同全橋,且將第二部分與第四部分耦接成第二惠司同全橋,以使計算器根據第一電訊號與第二電訊號而決定此外來磁場在二不同方向上的磁場分 量。在第二時間區間內,分時切換電路從第一部分、第二部分、第三部分與第四部分中選出至少一部分的單方向磁阻感測器與這些第三單方向磁阻感測器耦接成第三惠司同全橋。第三惠司同全橋受此外來磁場影響而輸出第三電訊號。計算器根據第三電訊號而決定外來磁場在另一方向上的磁場分量,其中此另一方向上的磁場分量不同於此二不同方向的磁場分量。 In an embodiment of the present invention, the aforementioned magnetic field sensing device further includes a time-sharing switching circuit coupled to these magnetoresistive sensors. In the first time interval, the time-sharing switching circuit couples the first part and the third part into a first wheat-same full bridge, and couples the second part and the fourth part into a second wheat-same full bridge, so that the calculation According to the first electrical signal and the second electrical signal, the device determines the magnetic field distribution of the external magnetic field in two different directions. the amount. In the second time interval, the time-sharing switching circuit selects at least a part of the unidirectional magnetoresistive sensors from the first part, the second part, the third part, and the fourth part to couple with these third unidirectional magnetoresistive sensors. Connected to the third Huisi Tongquan bridge. The third whistle and full bridge is affected by the external magnetic field and outputs a third electrical signal. The calculator determines the magnetic field component of the external magnetic field in another direction according to the third electrical signal, wherein the magnetic field component in the other direction is different from the magnetic field components in the two different directions.

在本發明的一實施例中,上述的這些磁阻感測器更包括多個第三單方向磁阻感測器。這些第三單方向磁阻感測器設置於磁通集中器旁且包括第五部分與第六部分。磁通集中器具有二短邊與二長邊。二短邊中的任一者與此二長邊連接。第一端部與第二端部分別包括二長邊的一部分與二短邊中的一者。第一部分與第三部分分別設置於屬於第一端部的二長邊旁。第二部分與第四部分分別設置於屬於第二端部的二長邊旁。第五部分設置於屬於第一端部的短邊旁且不與第一端部重疊設置。第六部分設置於屬於第二端部的短邊旁且不與第二端部重疊設置。 In an embodiment of the present invention, the aforementioned magnetoresistive sensors further include a plurality of third unidirectional magnetoresistive sensors. These third unidirectional magnetoresistive sensors are arranged beside the magnetic flux concentrator and include a fifth part and a sixth part. The magnetic flux concentrator has two short sides and two long sides. Either one of the two short sides is connected to the two long sides. The first end and the second end respectively include a part of two long sides and one of two short sides. The first part and the third part are respectively arranged beside the two long sides belonging to the first end. The second part and the fourth part are respectively arranged beside the two long sides belonging to the second end. The fifth part is arranged beside the short side belonging to the first end and is not arranged to overlap with the first end. The sixth part is arranged beside the short side belonging to the second end and is not arranged to overlap the second end.

在本發明的一實施例中,上述的磁場感測裝置更包括分時切換電路,耦接於這些磁阻感測器。在第一時間區間內,分時切換電路將第一部分與第三部分耦接成第一惠司同全橋,且將第二部分與第四部分耦接成第二惠司同全橋,以使計算器根據第一電訊號與第二電訊號而決定此外來磁場在此二不同方向上的磁場分量。在第二時間區間內,分時切換電路將第五部分與該六部分耦接成一第三惠司同全。第三惠司同全橋依據此外來磁場而輸出 一第三電訊號。計算器根據第三電訊號而決定此外來磁場在另一方向上的磁場分量,其中此另一方向上的磁場分量不同於此二不同方向的磁場分量。 In an embodiment of the present invention, the aforementioned magnetic field sensing device further includes a time-sharing switching circuit coupled to these magnetoresistive sensors. In the first time interval, the time-sharing switching circuit couples the first part and the third part into a first wheat-same full bridge, and couples the second part and the fourth part into a second wheat-same full bridge, so that the calculation The device determines the magnetic field components of the external magnetic field in the two different directions according to the first electrical signal and the second electrical signal. In the second time interval, the time-sharing switching circuit couples the fifth part and the sixth part to form a third part. The third whistle and full bridge outputs according to the external magnetic field A third telecommunication signal. The calculator determines the magnetic field component of the external magnetic field in another direction according to the third electrical signal, wherein the magnetic field component in the other direction is different from the magnetic field components in the two different directions.

在本發明的一實施例中,上述的磁場感測裝置更包括單方向磁場感測元件,耦接於該計算器。單方向磁場感測元件受此外來磁場影響而輸出一第三電訊號。計算器根據第三電訊號決定外來磁場在另一方向上的磁場分量,其中另一方向上的磁場分量不同於此二不同方向的磁場分量。 In an embodiment of the present invention, the aforementioned magnetic field sensing device further includes a unidirectional magnetic field sensing element coupled to the calculator. The unidirectional magnetic field sensing element is affected by the external magnetic field and outputs a third electrical signal. The calculator determines the magnetic field component of the external magnetic field in another direction according to the third electrical signal, where the magnetic field component in the other direction is different from the magnetic field components in the two different directions.

在本發明的一實施例中,上述的單方向磁阻感測器的種類包括巨磁阻感測器或穿隧磁阻感測器。 In an embodiment of the present invention, the types of unidirectional magnetoresistive sensors described above include giant magnetoresistive sensors or tunneling magnetoresistive sensors.

基於上述,在本發明實施例的磁場感測裝置中,藉由這些釘扎方向相同的單方向磁阻感測器的釘扎方向實現多軸感測,因此其製造過程簡單、成本較低且具有良好的穩定性。 Based on the above, in the magnetic field sensing device of the embodiment of the present invention, multi-axis sensing is realized by the pinning directions of the unidirectional magnetoresistive sensors with the same pinning direction, so the manufacturing process is simple, the cost is low, and Has good stability.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

100、100a~100d:磁場感測裝置 100, 100a~100d: Magnetic field sensing device

110:磁通集中器 110: Flux Concentrator

120:單方向磁阻感測器 120: Single direction magnetoresistive sensor

122:釘扎層 122: pinned layer

124:受釘扎層 124: Pinned Layer

126:間隔層 126: Interval layer

128:自由層 128: free layer

1201:第一單方向磁阻感測器 1201: The first unidirectional magnetoresistive sensor

1202:第二單方向磁阻感測器 1202: The second unidirectional magnetoresistive sensor

1203:第三單方向磁阻感測器 1203: The third unidirectional magnetoresistive sensor

130:計算器 130: calculator

140:分時切換電路 140: Time-sharing switching circuit

150:單方向磁場感測元件 150: Unidirectional magnetic field sensing element

C1~C12:接點 C1~C12: Contact

D1~D3:方向 D1~D3: Direction

E1:釘扎方向 E1: Pinning direction

E2:易磁化軸 E2: easy magnetization axis

EP1:第一端部 EP1: First end

EP2:第二端部 EP2: second end

H、HD1、HD2、HD3:外來磁場 H, HD1 , HD2 , HD3 : external magnetic field

H’:轉變後的外來磁場 H’: External magnetic field after transformation

LE:長邊 LE: Long side

LE1:上長邊 LE1: Upper long side

LE2:下長邊 LE2: Lower long side

MP:中間部 MP: Middle

PX、PY、PZ:位置 P X , P Y , P Z : position

P1:第一部分 P1: Part One

P2:第二部分 P2: Part Two

P3:第三部分 P3: Part Three

P4:第四部分 P4: Part Four

P5、P5c:第五部分 P5, P5c: Part Five

P6、P6c:第六部分 P6, P6c: Part 6

SP6:第六子部分 SP6: Subpart 6

R:電阻 R: resistance

FWH1:第一惠司同全橋 FWH1: First Huisi Tong Quanqiao

FWH2:第二惠司同全橋 FWH2: The second Huisi with the full bridge

FWH3、FWH3b、FWH3c:第三惠司同全橋 FWH3, FWH3b, FWH3c: the third Huisi Tongquanqiao

S:基板 S: substrate

SD:感測方向 SD: sensing direction

SE:短邊 SE: short side

SE1:左短邊 SE1: Left short side

SE2:右短邊 SE2: Right short side

圖1為本發明之一實施例的磁場感測裝置的上視結構示意圖。 FIG. 1 is a schematic top view of the structure of a magnetic field sensing device according to an embodiment of the invention.

圖2A、圖2B及圖2C分別為沿著不同方向的外來磁場施加於圖1之磁場感測裝置時,外來磁場被磁通集中器轉變的磁力 線模擬圖。 Figures 2A, 2B, and 2C show the magnetic force transformed by the magnetic flux concentrator when external magnetic fields in different directions are applied to the magnetic field sensing device of Figure 1 Line simulation diagram.

圖3A為圖1中的單方向磁阻感測器的多層膜結構之立體示意圖。 3A is a three-dimensional schematic diagram of the multilayer film structure of the unidirectional magnetoresistive sensor in FIG. 1.

圖3B繪示圖3A之單方向磁阻感測器的釘扎方向與自由層的易磁化軸。 FIG. 3B illustrates the pinning direction of the unidirectional magnetoresistive sensor of FIG. 3A and the easy magnetization axis of the free layer.

圖3C繪示圖3A中的單方向磁阻感測器於不同方向的外來磁場的作用下及沒有外來磁場的情況下電阻的變化。 FIG. 3C shows the resistance change of the unidirectional magnetoresistive sensor in FIG. 3A under the action of external magnetic fields in different directions and without external magnetic fields.

圖4A至圖4C為圖1中的磁場感測裝置置於不同方向的外來磁場的示意圖。 4A to 4C are schematic diagrams of external magnetic fields placed in different directions by the magnetic field sensing device in FIG. 1.

圖5A至圖7A是本發明不同實施例的磁場感測裝置的在第一時間區間的上視示意圖。 5A to 7A are schematic top views of magnetic field sensing devices in different embodiments of the present invention in a first time interval.

圖5B至圖7B分別是圖5A與圖7A的磁場感測裝置在第二時間區間的上視示意圖。 5B to 7B are schematic top views of the magnetic field sensing device of FIGS. 5A and 7A in a second time interval, respectively.

圖8是本發明另一實施例的磁場感測裝置的上視示意圖。 FIG. 8 is a schematic top view of a magnetic field sensing device according to another embodiment of the invention.

為了方便說明本發明實施例的磁場感測裝置的配置方式,磁場感測裝置可被視為處於由方向D1、D2、D3構成的一空間內,且上述方向D1、D2、D3兩兩互為垂直。 In order to facilitate the description of the configuration of the magnetic field sensing device of the embodiment of the present invention, the magnetic field sensing device can be regarded as being in a space formed by the directions D1, D2, and D3, and the aforementioned directions D1, D2, and D3 are mutually exclusive. vertical.

圖1為本發明之一實施例的磁場感測裝置的上視結構示意圖。圖2A、圖2B及圖2C分別為沿著不同方向的外來磁場施加於圖1之磁場感測裝置時,外來磁場被磁通集中器轉變的磁力線 模擬圖。圖3A為圖1中的單方向磁阻感測器的多層膜結構之立體示意圖。圖3B繪示圖3A之單方向磁阻感測器的釘扎方向與自由層的易磁化軸。圖3C繪示圖3A中的單方向磁阻感測器於不同方向的外來磁場的作用下及沒有外來磁場的情況下電阻的變化。 FIG. 1 is a schematic top view of the structure of a magnetic field sensing device according to an embodiment of the invention. Figures 2A, 2B, and 2C show the lines of force transformed by the magnetic flux concentrator when external magnetic fields in different directions are applied to the magnetic field sensing device of Figure 1 Mock up. 3A is a three-dimensional schematic diagram of the multilayer film structure of the unidirectional magnetoresistive sensor in FIG. 1. FIG. 3B illustrates the pinning direction of the unidirectional magnetoresistive sensor of FIG. 3A and the easy magnetization axis of the free layer. FIG. 3C shows the resistance change of the unidirectional magnetoresistive sensor in FIG. 3A under the action of external magnetic fields in different directions and without external magnetic fields.

在本實施例中,磁場感測裝置100包括基板S、磁通集中器110、多個單方向磁阻感測器120以及計算器130。於以下的段落中會詳細地說明上述各元件。 In this embodiment, the magnetic field sensing device 100 includes a substrate S, a magnetic flux concentrator 110, a plurality of unidirectional magnetoresistive sensors 120, and a calculator 130. The above components will be explained in detail in the following paragraphs.

在本發明的實施例中,基板S例如是空白的矽基板(blank silicon)、玻璃基板或具有積體電路(integrated-circuit)的矽基板,本發明不以此為限。於本實施例中,方向D1、D2例如是與基板S的表面平行的方向,而方向D3例如是與基板S的表面垂直的方向。 In the embodiment of the present invention, the substrate S is, for example, a blank silicon substrate (blank silicon), a glass substrate, or a silicon substrate with integrated-circuit, and the present invention is not limited thereto. In this embodiment, the directions D1 and D2 are, for example, directions parallel to the surface of the substrate S, and the direction D3 is, for example, a direction perpendicular to the surface of the substrate S.

在本發明的實施例中,磁通集中器110係指其能夠將磁場的磁力線集中的元件。磁通集中器110的材料例如是具有高導磁率的鐵磁材料,其例如為鎳鐵合金、鈷鐵或鈷鐵硼合金、鐵氧磁體或其他高導磁率材料,本發明不以此為限。於以下的段落中會簡要地說明不同方向的外來磁場如何被磁通集中器110影響。 In the embodiment of the present invention, the magnetic flux concentrator 110 refers to an element capable of concentrating the lines of magnetic force of a magnetic field. The material of the magnetic flux concentrator 110 is, for example, a ferromagnetic material with high permeability, such as nickel-iron alloy, cobalt-iron or cobalt-iron-boron alloy, ferrite magnet, or other high-permeability materials, and the present invention is not limited thereto. The following paragraphs will briefly explain how external magnetic fields in different directions are affected by the magnetic flux concentrator 110.

請先參照圖2A,當施加一個沿著方向D1的外來磁場HD1時,由於受到磁通集中器110的作用,單方向磁阻感測器120的所在位置PX處的磁場被轉變為具有方向D2(即平行於方向D2)的分量的磁場,因此磁場感測裝置100可藉由單方向磁阻感測器120在方向D2上感測到外來磁場的大小,來判斷在方向D1上的外來磁場的大小。 2A, when an external magnetic field H D1 along the direction D1 is applied, due to the action of the magnetic flux concentrator 110, the magnetic field at the position P X of the unidirectional magnetoresistive sensor 120 is transformed into The magnetic field of the component in the direction D2 (that is, parallel to the direction D2), so the magnetic field sensing device 100 can sense the magnitude of the external magnetic field in the direction D2 by the unidirectional magnetoresistive sensor 120 to determine the magnetic field in the direction D1 The size of the external magnetic field.

請再參照圖2B,當施加一個沿著方向D2的外來磁場HD2時,受到磁通集中器110的作用,單方向磁阻感測器120的所在位置PY處的磁場方向仍然維持實質上平行於方向D2(即平行於方向D2)的方向上。 2B again, when an external magnetic field HD2 along the direction D2 is applied, the magnetic field direction at the position P Y of the unidirectional magnetoresistive sensor 120 remains substantially under the action of the magnetic flux concentrator 110 In the direction parallel to the direction D2 (ie parallel to the direction D2).

請再參照圖2C,當施加一個沿著方向D3的外來磁場HD3時,由於受到磁通集中器110的作用,單方向磁阻感測器120的所在位置PZ處的外來磁場方向被轉變至具有方向D2分量的磁場,因此磁場感測模組100可藉由單方向磁阻感測器120在方向D2上感測到方向D2磁場分量的大小,來判斷在方向D3上的外來磁場的大小。 2C again, when an external magnetic field HD3 along the direction D3 is applied, due to the action of the magnetic flux concentrator 110, the direction of the external magnetic field at the position P Z of the unidirectional magnetoresistive sensor 120 is changed To a magnetic field with a direction D2 component, the magnetic field sensing module 100 can sense the magnitude of the magnetic field component in the direction D2 by the unidirectional magnetoresistive sensor 120 in the direction D2 to determine the magnitude of the external magnetic field in the direction D3 size.

在本發明的實施例中,單方向磁阻感測器120指其電阻可經由外來磁場變化而對應改變的感測器,其種類包括巨磁阻感測器或穿隧磁阻感測器。請參照圖3A至圖3C,在本實施例中,單方向磁阻感測器120包括釘扎層(pinning layer)122、受釘扎層(pinned layer)124、間隔層(spacer layer)126及自由層(free layer)128。釘扎層122固定了受釘扎層124的磁化方向(magnetization direction),即為釘扎方向E1,而自由層128的易磁化軸E2的方向則可與釘扎方向E1實質上垂直。當單方向磁阻感測器120為巨磁阻感測器時,間隔層126的材質為非磁性金屬(non-magnetic metal)。此外,當單方向磁阻感測器120為穿隧磁阻感測器時,間隔層126的材質為絕緣材質。應注意的是,於本實施例中,所謂的「單方向」係指這些磁阻感測器的釘扎方向E1 為同一個方向,其例如是方向D2。 In the embodiment of the present invention, the unidirectional magnetoresistive sensor 120 refers to a sensor whose resistance can be changed correspondingly by an external magnetic field. Its types include giant magnetoresistive sensors or tunneling magnetoresistive sensors. 3A to 3C, in this embodiment, the unidirectional magnetoresistive sensor 120 includes a pinning layer 122, a pinned layer 124, a spacer layer 126 and Free layer 128. The pinning layer 122 fixes the magnetization direction of the pinned layer 124, which is the pinning direction E1, and the direction of the easy magnetization axis E2 of the free layer 128 can be substantially perpendicular to the pinning direction E1. When the unidirectional magnetoresistive sensor 120 is a giant magnetoresistive sensor, the material of the spacer layer 126 is a non-magnetic metal (non-magnetic metal). In addition, when the unidirectional magnetoresistance sensor 120 is a tunnel magnetoresistance sensor, the material of the spacer layer 126 is an insulating material. It should be noted that in this embodiment, the so-called "single direction" refers to the pinning direction E1 of these magnetoresistive sensors It is the same direction, which is, for example, direction D2.

圖3C中的曲線圖表現了單方向磁阻感測器120的電阻R相對於外來磁場H的變化。如圖3C的左上圖所示,當單方向磁阻感測器120被施加一與釘扎方向E1同向之外來磁場H時,其電阻R會下降,即曲線圖中黑圓點所對應的電阻R的數值,其中此釘扎方向即為單方向磁阻感測器120的感測方向SD。如圖3C的左下圖所示,當單方向磁阻感測器120被施加一與釘扎方向E1相反方向之外來磁場H時,其電阻R會上升,即曲線圖中黑圓點所對應的電阻R的數值。如圖3C的右上圖所示,當單方向磁阻感測器120被施加一與釘扎方向E1垂直之外來磁場H時,其電阻R維持不變,即曲線圖中黑圓點所對應的電阻R的數值。另外,如圖3C的右下圖所示,當單方向磁阻感測器120沒有被施加磁場時,其電阻R維持不變,即曲線圖中黑圓點所對應的電阻R的數值。 The graph in FIG. 3C shows the change of the resistance R of the unidirectional magnetoresistive sensor 120 with respect to the external magnetic field H. As shown in the upper left diagram of FIG. 3C, when the unidirectional magnetoresistive sensor 120 is applied with an external magnetic field H in the same direction as the pinning direction E1, its resistance R will decrease, that is, the black dot in the graph corresponds to The value of the resistance R, where the pinning direction is the sensing direction SD of the unidirectional magnetoresistive sensor 120. As shown in the lower left diagram of FIG. 3C, when a unidirectional magnetoresistive sensor 120 is applied with an external magnetic field H in a direction opposite to the pinning direction E1, its resistance R will rise, that is, the black dot in the graph corresponds to The value of the resistance R. As shown in the upper right diagram of FIG. 3C, when the unidirectional magnetoresistive sensor 120 is applied with an external magnetic field H perpendicular to the pinning direction E1, its resistance R remains unchanged, that is, the black dot in the graph corresponds to The value of the resistance R. In addition, as shown in the lower right diagram of FIG. 3C, when the unidirectional magnetoresistive sensor 120 is not applied with a magnetic field, its resistance R remains unchanged, that is, the value of the resistance R corresponding to the black dot in the graph.

在本發明的實施例中,計算器130係泛指會接收電訊號而對電訊號做出不同數學運算的元件,其例如是可進行加法、減法、乘法、除法或其組合,或者是進行其他不同種類的數學運算,本發明並不以此為限。 In the embodiment of the present invention, the calculator 130 generally refers to a component that receives electrical signals and performs different mathematical operations on the electrical signals. For example, it can perform addition, subtraction, multiplication, division, or a combination thereof, or perform other operations. Different types of mathematical operations are not limited to this invention.

在簡要地說明完上述各元件的功能之後,於以下的段落中會詳細的說明各元件之間的配置關係。 After briefly explaining the functions of the above-mentioned components, the configuration relationship between the components will be described in detail in the following paragraphs.

請參照圖1,於本實施例中,磁通集中器110具有第一、第二端部EP1、EP2以及中間部MP。第一端部EP1相對於第二端部EP2,其中第一端部EP1例如是左端部,第二端部EP2例如是 右端部,但不以此為限。又,每一個端部EP1、EP2皆具有相對的上、下兩側。中間部MP與第一、第二端部EP1、EP2連接。更具體來說,磁通集中器110例如是矩形,其具有相對的二短邊SE與二長邊LE,二短邊SE中的任一者與二長邊LE連接。第一端部EP1包括左短邊SE1以及上長邊LE1與下長邊LE2兩邊的左部分。第二端部EP2包括右短邊SE2以及上長邊LE1與下長邊LE2兩邊的右部分。 Please refer to FIG. 1, in this embodiment, the magnetic flux concentrator 110 has first and second end portions EP1 and EP2 and a middle portion MP. The first end EP1 is relative to the second end EP2, where the first end EP1 is, for example, the left end, and the second end EP2 is, for example, Right end, but not limited to this. Moreover, each end EP1, EP2 has opposite upper and lower sides. The middle part MP is connected to the first and second end parts EP1 and EP2. More specifically, the magnetic flux concentrator 110 is, for example, a rectangle, which has two opposite short sides SE and two long sides LE, and any one of the two short sides SE is connected to the two long sides LE. The first end EP1 includes a left short side SE1 and a left part on both sides of the upper long side LE1 and the lower long side LE2. The second end EP2 includes the right short side SE2 and the right parts of the upper long side LE1 and the lower long side LE2.

請再參照圖1,大體上來說,這些單方向磁阻感測器120設置於磁通集中器110旁。依據設置位置的不同,這些單方向磁阻感測器120可被分為多個第一、第二單方向磁阻感測器1201、1202。詳細來說,這些第一單方向磁阻感測器1201設置於第一端部EP1旁,且再更依據設置位置的不同,這些第一單方向磁阻感測器1201又被分為第一、第三部分P1、P3,其中第一、第三部分P1、P3分設於第一端部EP1的相對兩側(上、下兩側),且分設於屬於第一端部EP1的上長邊LE1、下長邊LE2旁。類似地,這些第二單方向磁阻感測器1202則設置於第二端部EP2旁,且再更依據設置位置的不同,這些第二單方向磁阻感測器1202又被分為第二、第四部分P2、P4,其中第二、第四部分P2、P4分設於第二端部EP2的相對兩側(上、下兩側),且分設於屬於第二端部EP2的上長邊LE1、下長邊LE2旁。 Please refer to FIG. 1 again. Generally speaking, these unidirectional magnetoresistive sensors 120 are arranged beside the magnetic flux concentrator 110. According to different installation positions, these unidirectional magnetoresistive sensors 120 can be divided into a plurality of first and second unidirectional magnetoresistive sensors 1201 and 1202. In detail, the first unidirectional magnetoresistive sensors 1201 are arranged beside the first end EP1, and according to the different installation positions, the first unidirectional magnetoresistive sensors 1201 are further divided into first , The third part P1, P3, where the first and third parts P1, P3 are separately arranged on opposite sides (upper and lower sides) of the first end EP1, and are separately arranged on the upper part of the first end EP1 Next to the long side LE1 and the lower long side LE2. Similarly, these second unidirectional magnetoresistive sensors 1202 are arranged beside the second end EP2, and according to the different installation positions, these second unidirectional magnetoresistive sensors 1202 are further divided into second , The fourth part P2, P4, where the second and fourth parts P2, P4 are separately arranged on opposite sides (upper and lower sides) of the second end EP2, and are separately arranged on the upper part of the second end EP2 Next to the long side LE1 and the lower long side LE2.

請再參照圖1,於本實施例中,第一、第三部分P1、P3耦接成第一惠司同全橋FWH1,而第二、第四部分P2、P4部分則 耦接成第二惠司同全橋FWH2。也就是說,位於不同端部EP1、EP2旁的多個第一、多個第二單方向磁阻感測器1201、1202分別耦接成兩個惠司同全橋FWH1、FWH2。計算器130與第一、第二惠司同全橋FWH1、FWH2耦接,並用以接收來自第一、第二惠司同全橋FWH1、FWH2的電訊號。 Please refer to Figure 1 again. In this embodiment, the first and third parts P1 and P3 are coupled to form the first Wheatstone with the full bridge FWH1, and the second and fourth parts P2 and P4 are Coupled to the second Huisi full bridge FWH2. In other words, the first and second unidirectional magnetoresistive sensors 1201 and 1202 located beside different ends EP1 and EP2 are respectively coupled to form two Wheatstone full bridges FWH1 and FWH2. The calculator 130 is coupled to the first and second wheat-side full bridges FWH1 and FWH2, and is used to receive electrical signals from the first and second wheat-side full bridges FWH1 and FWH2.

在說明完上述各元件的配置之後,於以下的段落中會詳細的說明磁場感測裝置100如何測量不同方向上的磁場分量。 After describing the configuration of the above-mentioned components, in the following paragraphs, how the magnetic field sensing device 100 measures the magnetic field components in different directions will be described in detail.

圖4A至圖4C為圖1中的磁場感測裝置置於不同方向的外來磁場的示意圖。 4A to 4C are schematic diagrams of external magnetic fields placed in different directions by the magnetic field sensing device in FIG. 1.

請同時參照圖2A與圖4A,當磁場感測裝置100置於磁場方向為方向D1的外來磁場HD1中時,外來磁場HD1會因為磁通集中器110的影響而改變其方向。也就是說,外來磁場HD1的磁場方向會由原先的方向D1轉變成在方向D2上或在方向D2的反方向上的磁場(轉變後的磁場標示為H’),而位於不同位置的單方向磁阻感測器120則會因為不同的磁場方向會有不同的電阻變化。 Referring to FIG. 2A and 4A, when a magnetic field sensing device 100 is placed in the magnetic field direction is the direction D1 D1 external magnetic fields H, the external magnetic fields H D1 because of the influence of the flux concentrators 110 changes its direction. In other words, the magnetic field direction of the external magnetic field H D1 will be transformed from the original direction D1 to a magnetic field in the direction D2 or in the opposite direction to the direction D2 (the transformed magnetic field is denoted as H'), and a single direction at a different position The magnetoresistive sensor 120 will have different resistance changes due to different magnetic field directions.

詳細來說,第一、第四部分P1、P4(左上、右下部分)會因為磁通集中器110的關係而感測到磁場方向為方向D2的反方向的磁場分量,又,單方向磁阻感測器120的釘扎方向E1都是方向D2,因此第一、第四部分P1、P4中的第一、第二單方向磁阻感測器1201、1202因為「被轉變的外來磁場HD1的磁場方向」與「釘扎方向E1」兩方向互為反平行而導致其電阻值產生正△R的變化,其中△R大於0。 In detail, the first and fourth parts P1 and P4 (upper left and lower right parts) will sense the magnetic field component in the direction opposite to the direction D2 due to the relationship between the magnetic flux concentrator 110, and the unidirectional magnetic The pinning direction E1 of the resistive sensor 120 is the direction D2. Therefore, the first and second unidirectional magnetoresistive sensors 1201 and 1202 in the first and fourth parts P1 and P4 are due to the "transformed external magnetic field H The two directions of the “magnetic field direction of D1 ” and the “pinning direction E1” are anti-parallel to each other, resulting in a positive △R change in the resistance value, where △R is greater than 0.

反之,第二、第三部分P2、P3(右上、左下部分)會因為磁通集中器110的關係感測到磁場方向為方向D2的磁場分量,又,單方向磁阻感測器120的釘扎方向E1都是方向D2,因此第二、第三部分P2、P3中的第一、第二單方向磁阻感測器1201、1202會因為「被轉變的外來磁場HD1的磁場方向」與「釘扎方向E1」兩方向互為平行而導致其電阻值產生負△R的變化,其中△R大於0。 Conversely, the second and third parts P2 and P3 (upper right and lower left parts) will sense the magnetic field component in the direction D2 due to the relationship between the magnetic flux concentrator 110, and the nail of the unidirectional magnetoresistive sensor 120 The piercing direction E1 is the direction D2. Therefore, the first and second unidirectional magnetoresistive sensors 1201 and 1202 in the second and third parts P2 and P3 will be affected by the "transformed magnetic field direction of the external magnetic field H D1 " The two directions of the "pinning direction E1" are parallel to each other, resulting in a negative △R change in its resistance, where △R is greater than 0.

因此,由於第一惠司同全橋FWH1中的第一、第三部分P1、P3的電阻變化(第一部分P1的電阻值變化為正、第三部分P3的電阻值變化為負)與第二惠司同全橋FWH2中的第二、第四部分P2、P4的電阻變化(第二部分P2的電阻值變化為負、第三部分P3的電阻值變化為正)彼此互為相反,因此第一、第二惠司同全橋FWH1、FWH2兩者所分別輸出的第一、第二電訊號的訊號方向互為反向。計算器130根據第一、第二電訊號進行減法運算,並根據減法運算結果來判斷外來磁場HD1在方向D1上的大小與正負值。 Therefore, since the resistance changes of the first and third parts P1 and P3 in the first and third parts of the full bridge FWH1 (the resistance value of the first part P1 is positive, the resistance value of the third part P3 is negative) and the second The resistance changes of the second and fourth parts P2 and P4 in the full bridge FWH2 (the resistance change of the second part P2 is negative, and the resistance change of the third part P3 is positive) are opposite to each other, so the first, The signal directions of the first and second electrical signals respectively output by the second wheat and full bridges FWH1 and FWH2 are opposite to each other. The calculator 130 performs a subtraction operation based on the first and second electrical signals, and determines the magnitude and the positive or negative value of the external magnetic field H D1 in the direction D1 according to the result of the subtraction operation.

請同時參照圖2B與圖4B,當磁場感測裝置100置於磁場方向為方向D2的外來磁場HD2中時,大體來說,外來磁場HD2並不太會被磁通集中器110影響而改變其方向。因此,第一至第四部分P1~P4中的第一、第二單方向磁阻感測器1201、1202的釘扎方向E1與外來磁場HD2的方向兩方向互為平行,而導致每一個單方向磁阻感測器120的電阻值皆產生負△R的變化,其中△R大 於0。 2B and 4B at the same time, when the magnetic field sensing device 100 is placed in the external magnetic field HD2 with the direction of the magnetic field in the direction D2, generally speaking, the external magnetic field HD2 is not likely to be affected by the magnetic flux concentrator 110. Change its direction. Accordingly, the first to the fourth portion of the first, second single direction of the magnetoresistive sensor pinning directions P1 ~ P4 of the 1201, 1202 and two mutually E1 direction of external magnetic fields H D2 in parallel, each resulting The resistance value of the unidirectional magnetoresistive sensor 120 has a negative ΔR change, where ΔR is greater than zero.

因此,由於用來構成兩個惠司同全橋FWH1、FWH2的磁阻感測器120的電阻變化都一樣,也就是說,在每一個惠司同全橋FWH1、FWH2中的兩電壓輸出端之間所量測到的電壓差訊號為0,外來磁場HD2的大小不會被第一、第二惠司同全橋FWH1、FWH2的架構感測到。 Therefore, since the resistance changes of the magnetoresistive sensors 120 used to form the two Wyss and full bridges FWH1 and FWH2 are the same, that is, between the two voltage output terminals of each Wyss and full bridges FWH1 and FWH2 the measured voltage difference signal is zero, the magnitude of external magnetic fields H D2 is not a first, a second full-bridge benefits Division and FWH1, FWH2 architecture sensed.

請同時參照圖2C與圖4C,當磁場感測裝置100置於磁場方向為方向D3的外來磁場HD3中時,外來磁場HD3會因為磁通集中器110的影響而其方向。也就是說,外來磁場HD3的磁場方向會由原先的方向D2轉變成在方向D2上或在方向D2的反方向上的磁場,而位於不同位置的單方向磁阻感測器120則會因為不同的磁場方向會有不同的電阻變化。 Referring to FIG. 2C and 4C, the magnetic field sensing device when placed in a magnetic field direction 100 is the direction D3 D3 external magnetic fields H, the external magnetic fields H D3 because affect flux concentrators 110 and its direction. In other words, the magnetic field direction of the external magnetic field HD3 will be changed from the original direction D2 to a magnetic field in the direction D2 or in the opposite direction to the direction D2, while the unidirectional magnetoresistive sensors 120 located at different positions will be different The direction of the magnetic field will have different resistance changes.

詳細來說,第一、第二部分P1、P2(左上、右上部分)會因為磁通集中器110的關係而感測到磁場方向為方向D2的反方向的磁場分量,又,單方向磁阻感測器120的釘扎方向E1都是方向D2,因此第一、第二部分P1、P2中的第一、第二單方向磁阻感測器1201、1202因為「被轉變的外來磁場HD3的磁場方向」與「釘扎方向E1」兩方向互為反平行而導致其電阻值產生正△R的變化,其中△R大於0。 In detail, the first and second parts P1 and P2 (upper left and upper right parts) will sense the magnetic field component in the opposite direction of the direction D2 due to the relationship between the magnetic flux concentrator 110, and the unidirectional magnetic resistance The pinning direction E1 of the sensor 120 is the direction D2, so the first and second unidirectional magnetoresistive sensors 1201 and 1202 in the first and second parts P1 and P2 are due to the "transformed external magnetic field H D3 The two directions of the "magnetic field direction" and the "pinning direction E1" are anti-parallel to each other, resulting in a positive △R change in the resistance value, where △R is greater than 0.

請參照圖4C,並對照圖2C,反之,第三、第四部分P3、P4(左下、右下部分)會因為磁通集中器110的關係感測到磁場方向為方向D2的磁場分量,又,單方向磁阻感測器120的釘扎方 向E1都是方向D2,因此第三、第四部分P3、P4中的第一、第二單方向磁阻感測器1201、1202會因為「被轉變的外來磁場HD3的磁場方向」與「釘扎方向E1」兩方向互為平行而導致其電阻值產生負△R的變化,其中△R大於0。 Please refer to Figure 4C and compare to Figure 2C. On the contrary, the third and fourth parts P3 and P4 (bottom left and bottom right parts) will sense the magnetic field component in the direction D2 due to the relationship of the magnetic flux concentrator 110, and , The pinning direction E1 of the unidirectional magnetoresistive sensor 120 is the direction D2, so the first and second unidirectional magnetoresistive sensors 1201 and 1202 in the third and fourth parts P3 and P4 will be The direction of the transformed external magnetic field HD3 and the "pinning direction E1" are parallel to each other, resulting in a negative △R change in its resistance, where △R is greater than 0.

因此,由於第一惠司同全橋FWH1中的第一、第三部分P1、P3的電阻變化(第一部分P1的電阻值變化為正、第三部分P3的電阻值變化為負)與第二惠司同全橋FWH2中的第二、第四部分P2、P4的電阻變化(第二部分P2的電阻值變化為正、第四部分P4的電阻值變化為負)彼此相同,因此第一、第二惠司同全橋FWH1、FWH2兩者所分別輸出的第一、第二電訊號的訊號方向互為同向。計算器130根據第一、第二電訊號進行加法運算,並根據加法運算結果來判斷外來磁場HD3在方向D3上的大小與正負值。 Therefore, since the resistance changes of the first and third parts P1 and P3 in the first and third parts of the full bridge FWH1 (the resistance value of the first part P1 is positive, the resistance value of the third part P3 is negative) and the second The resistance changes of the second and fourth parts P2 and P4 in the same full bridge FWH2 (the resistance change of the second part P2 is positive and the resistance change of the fourth part P4 is negative) are the same as each other, so the first and second The signal directions of the first and second electrical signals respectively output by the Wyeth and full bridges FWH1 and FWH2 are the same. The calculator 130 performs addition operations based on the first and second electrical signals, and determines the magnitude and the positive and negative values of the external magnetic field HD3 in the direction D3 based on the addition results.

承上述,在本實施例的磁場感測裝置100中,由於這些單方向磁阻感測器120的釘扎方向E1皆設計為同一方向,因此其製造過程簡單,成本較低且具有良好的穩定性。並且,磁場感測裝置100將這些單方向磁阻感測器120分別設置於磁通集中器110相對兩端部旁EP1、EP2而分別形成兩個惠司同全橋FWH1、FWH2,並藉由兩個惠司同全橋FWH1、FWH2因外在磁場影響而輸出的電訊號以實現多軸感測(例如是兩軸感測,即可決定外來磁場在二不同方向D1、D3上的磁場分量)。由於第一、第二惠司同全橋FWH1、FWH2的電路架構分布於對應的端部EP1、EP2區 域,因此其電路架構較為簡單而不複雜,可有效地降低製造成本。 In view of the above, in the magnetic field sensing device 100 of this embodiment, since the pinning directions E1 of the unidirectional magnetoresistive sensors 120 are all designed to be the same direction, the manufacturing process is simple, the cost is low, and the stability is good. Sex. In addition, the magnetic field sensing device 100 arranges the unidirectional magnetoresistive sensors 120 at the opposite ends EP1 and EP2 of the magnetic flux concentrator 110 to form two Wheatstone full bridges FWH1 and FWH2 respectively. The electrical signals output by the Wyss and full bridges FWH1 and FWH2 due to the influence of the external magnetic field are used to achieve multi-axis sensing (for example, two-axis sensing, which can determine the magnetic field components of the external magnetic field in two different directions D1 and D3). Since the circuit architectures of the first and second Huis are the same as the full bridge FWH1 and FWH2, they are distributed in the corresponding end EP1 and EP2 areas Therefore, its circuit architecture is relatively simple and not complicated, which can effectively reduce manufacturing costs.

在此必須說明的是,下述實施例沿用前述實施例的部分內容,省略了相同技術內容的說明,關於相同的元件名稱可以參考前述實施例的部分內容,下述實施例不再重複贅述。此外,為了清楚地顯示圖面,下方段落所述及的圖中省略部分與先前實施例相同的元件的標號。 It must be noted here that the following embodiments follow part of the content of the foregoing embodiments, and the description of the same technical content is omitted. For the same component names, reference may be made to part of the foregoing embodiments, and the following embodiments will not be repeated. In addition, in order to clearly show the drawing, the reference numerals of the parts that are the same as those in the previous embodiment are omitted in the drawings described in the following paragraphs.

圖5A至圖7A是本發明不同實施例的磁場感測裝置的在第一時間區間的上視示意圖。圖5B至圖7B分別是圖5A與圖7A的磁場感測裝置在第二時間區間的上視示意圖。圖8是本發明另一實施例的磁場感測裝置的上視示意圖。 5A to 7A are schematic top views of magnetic field sensing devices in different embodiments of the present invention in a first time interval. 5B to 7B are schematic top views of the magnetic field sensing device of FIGS. 5A and 7A in a second time interval, respectively. FIG. 8 is a schematic top view of a magnetic field sensing device according to another embodiment of the invention.

請參照圖5A,圖5A的磁場感測裝置100a大致上類似於圖1的磁場感測裝置100,其主要差異在於:磁場感測裝置100a更包括分時切換電路140,其中分時切換電路140耦接於這些單方向磁阻感測器120,且用以切換這些單方向磁阻感測器120的之間的接點的至少一部分而改變這些磁阻感測器120之間的電路接法,以形成與第一、第二惠司同全橋FWH1、FWH2不同的架構的另一惠司同全橋。在本實施例中,這些磁阻感測器120更包括多個第三單方向磁阻感測器1203。於本實施例中,這些第三單方向磁阻感測器1203與中間部MP重疊設置。 Please refer to FIG. 5A. The magnetic field sensing device 100a of FIG. 5A is substantially similar to the magnetic field sensing device 100 of FIG. 1. The main difference is that the magnetic field sensing device 100a further includes a time-sharing switching circuit 140, wherein the time-sharing switching circuit 140 It is coupled to the unidirectional magnetoresistive sensors 120 and used to switch at least a part of the contacts between the unidirectional magnetoresistive sensors 120 to change the circuit connection between the magnetoresistive sensors 120 , To form another Huisi full bridge with a different architecture from the first and second Wisi full bridges FWH1 and FWH2. In this embodiment, the magnetoresistive sensors 120 further include a plurality of third unidirectional magnetoresistive sensors 1203. In this embodiment, these third unidirectional magnetoresistive sensors 1203 overlap the middle part MP.

於本實施例中,磁場感測裝置100a可藉由分時切換電路140而在不同的時間區間內切換這些單方向磁阻感測器120之間的電路接法,而可量測到方向D1~D3的磁場分量。換言之,本實 施例的磁場感測裝置100a可實現三軸感測。可於以下的段落中會分段說明磁場感測裝置100a如何量測方向D1~D3的磁場分量。 In this embodiment, the magnetic field sensing device 100a can switch the circuit connection between the unidirectional magnetoresistive sensors 120 in different time intervals through the time-sharing switching circuit 140, and the direction D1 can be measured. ~D3's magnetic field component. In other words, the actual The magnetic field sensing device 100a of the embodiment can realize three-axis sensing. In the following paragraphs, how the magnetic field sensing device 100a measures the magnetic field components of the directions D1 to D3 will be described in sections.

請參照圖5A,在第一時間區間內,分時切換電路140將這些第一、第二單方向磁阻感測器1201、1202分別形成兩個惠司同全橋FWH1、FWH2,而量測方向D1、D3的磁場分量。磁場感測裝置100a量測方向D1、D3上的磁場分量的原理大致上類似於圖1的磁場感測裝置100,於此不在贅述。 Referring to FIG. 5A, in the first time interval, the time-sharing switching circuit 140 forms the first and second unidirectional magnetoresistive sensors 1201 and 1202 into two wheat-same full bridges FWH1 and FWH2, respectively, and the measurement direction The magnetic field components of D1 and D3. The principle of the magnetic field sensing device 100a for measuring the magnetic field components in the directions D1 and D3 is substantially similar to that of the magnetic field sensing device 100 of FIG. 1, and will not be repeated here.

請參照圖5B,在第二時間區間內,分時切換電路140可從第一至第四部分P1~P4中選出至少一部分的單方向磁阻感測器120而與這些第三單方向磁阻感測器1203耦接成第三惠司同全橋FWH3。舉例而言,分時切換電路140例如是選擇第一、第三部分P1、P3中最靠近第三單方向磁阻感測器1203的兩個第一單方向磁阻感測器1201進行耦接全橋的動作。 Referring to FIG. 5B, in the second time interval, the time-sharing switching circuit 140 may select at least a part of the unidirectional magnetoresistive sensors 120 from the first to fourth parts P1 to P4 and interact with these third unidirectional magnetoresistive sensors. The sensor 1203 is coupled to the third Wyeth full bridge FWH3. For example, the time-sharing switching circuit 140 selects the two first unidirectional magnetoresistive sensors 1201 closest to the third unidirectional magnetoresistive sensor 1203 in the first and third parts P1 and P3 for coupling. Full bridge action.

請參照圖5B,並對照圖2B,當磁場感測裝置100a置於磁場方向為方向D2的外來磁場HD2中時,由於第三單方向磁阻感測器1203被磁通集中器110屏蔽,而不會感測到外來磁場HD2,而兩個第一單方向磁阻感測器1201則因外來磁場HD2影響而導致其電阻值產生負△R的變化。因此,當第三惠司同全橋FWH3受外來磁場HD2影響時,這些第三單方向磁阻感測器1203的電阻值是沒有變化的,而此兩個第一單方向磁阻感測器1201a電阻值產生負△R的變化,因此在第三惠司同全橋FWH3中的兩電壓輸出端之間所量測到的電壓差訊號(即第三電訊號)係為一非零的電 訊號,也就是說,外來磁場HD2的大小可被第三惠司同全橋FWH3的架構感測到。計算器130再根據此第三電訊號來判斷外來磁場HD2在方向D2上的大小與正負值。 Please refer to FIG. 5B and compare to FIG. 2B, when the magnetic field sensing device 100a is placed in the external magnetic field HD2 with the magnetic field direction D2 , since the third unidirectional magnetoresistive sensor 1203 is shielded by the magnetic flux concentrator 110, Instead of sensing the external magnetic field HD2 , the two first unidirectional magnetoresistive sensors 1201 have negative ΔR changes due to the influence of the external magnetic field HD2 . Thus, when the third full bridge FWH3 benefits Division and influence of external magnetic field by H D2, the third single-direction of the magnetoresistive sensor resistance value of 1203 is not changed, and this two unidirectional first magnetoresistive sensor The resistance value of 1201a produces a negative △R change, so the voltage difference signal measured between the two voltage output terminals in the third Wyeth and full bridge FWH3 (ie the third electrical signal) is a non-zero electrical signal That is, the size of external magnetic fields H D2 may be a third benefit of the Division with a sense of the full-bridge architecture FWH3 sensed. The calculator 130 then determines the magnitude and the positive or negative value of the external magnetic field HD2 in the direction D2 according to the third electrical signal.

承上述,於其他的實施例中,分時切換電路140也可以選擇其他的第一、第二單方向磁阻感測器1201、1202並與這些第三單方向磁阻感測器1203以耦接成第三惠司同全橋FWH3,本發明並不以此為限。 In view of the above, in other embodiments, the time-sharing switching circuit 140 can also select other first and second unidirectional magnetoresistive sensors 1201 and 1202 and couple with these third unidirectional magnetoresistive sensors 1203. Connected to the third Wyeth and full bridge FWH3, the present invention is not limited to this.

請參照圖6A,圖6A的磁場感測裝置100b大致上類似於圖5A的磁場感測裝置100a,其主要差異在於:在磁場感測裝置100b中,依據設置位置的不同,這些第三單方向磁阻感測器1203可被分為第五、第六部分P5、P6。第六部分P6又包括二個第六子部分SP6。第五部分P5與中間部MP重疊設置,而二第六子部分SP6分別設置於中間部MP的相對兩側(上、下兩側)旁且不與中間部MP重疊設置。 Please refer to FIG. 6A. The magnetic field sensing device 100b of FIG. 6A is substantially similar to the magnetic field sensing device 100a of FIG. 5A. The main difference is that in the magnetic field sensing device 100b, depending on the position of the third unidirectional The magnetoresistive sensor 1203 can be divided into fifth and sixth parts P5 and P6. The sixth part P6 includes two sixth sub-parts SP6. The fifth part P5 is arranged to overlap the middle part MP, and the two sixth sub-parts SP6 are respectively arranged beside the opposite sides (upper and lower sides) of the middle part MP without overlapping with the middle part MP.

請參照圖6A,在第一時間區間內,分時切換電路140將這些第一、第二單方向磁阻感測器1201、1202分別形成兩個惠司同全橋FWH1、FWH2,而量測方向D1、D3的磁場分量。磁場感測裝置100a量測方向D1、D3上的磁場分量的原理大致上類似於圖1的磁場感測裝置100,於此不在贅述。 Referring to FIG. 6A, in the first time interval, the time-sharing switching circuit 140 forms the first and second unidirectional magnetoresistive sensors 1201 and 1202 into two wheat-same full bridges FWH1 and FWH2, respectively, and the measurement direction The magnetic field components of D1 and D3. The principle of the magnetic field sensing device 100a for measuring the magnetic field components in the directions D1 and D3 is substantially similar to that of the magnetic field sensing device 100 of FIG. 1, and will not be repeated here.

請參照圖6B,在第二時間區間內,分時切換電路140將第五、第六部分P5、P6耦接成第三惠司同全橋FWH3b。基於類似於圖5B的磁場感測裝置100a的原理,當第三惠司同全橋 FWH3b受外來磁場HD2影響時,第三惠司同全橋FWH3b中的屬於第六部分P6的第三單方向磁阻感測器1203會因為外來磁場HD2而改變電阻值,而屬於第五部分P5的則否,因此第三惠司同全橋FWH3b可輸出一非零的第三電訊號。計算器130再根據此第三電訊號來判斷外來磁場HD2在方向D2上的大小與正負值。 Referring to FIG. 6B, in the second time interval, the time-sharing switching circuit 140 couples the fifth and sixth parts P5 and P6 into the third wheat-to-full bridge FWH3b. Based on the principle of magnetic field sensing apparatus 100a 5B is similar to FIG, when the third full bridge FWH3b benefits Division and influence of external magnetic field by H D2, the third part of the same benefits of a full bridge FWH3b Division third single direction of magnetic sixth portion P6 resistive sensors 1203 because of external magnetic fields H D2 and the resistance value is changed, and the fifth portion P5 belongs is NO, the third full bridge FWH3b benefits Division and may output a non-zero third electrical signal. The calculator 130 then determines the magnitude and the positive or negative value of the external magnetic field HD2 in the direction D2 according to the third electrical signal.

請參照圖7A,圖7A的磁場感測裝置100c大致上類似於圖6A的磁場感測裝置100b,其主要差異在於:這些第三單方向磁阻感測器1203的設置位置不同。詳細來說,這些第三單方向磁阻感測器1203包括第五、第六部分P5c、P6c。第五部分P5c設置於屬於第一端部EP1的短邊(即左短邊SE1)旁且不與第一端部EP1重疊設置,而第六部分P6c設置於屬於第二端部EP2的短邊(即右短邊SE2)旁且不與第二端部EP2重疊設置。 Please refer to FIG. 7A. The magnetic field sensing device 100c of FIG. 7A is substantially similar to the magnetic field sensing device 100b of FIG. 6A. The main difference is that the third unidirectional magnetoresistive sensors 1203 are arranged at different positions. In detail, these third unidirectional magnetoresistive sensors 1203 include fifth and sixth parts P5c and P6c. The fifth part P5c is arranged beside the short side (ie, the left short side SE1) belonging to the first end EP1 and does not overlap with the first end EP1, and the sixth part P6c is arranged on the short side belonging to the second end EP2 (Ie, the right short side SE2) and not overlapped with the second end EP2.

請參照圖7A,在第一時間區間內,分時切換電路140將這些第一、第二單方向磁阻感測器1201、1202分別形成兩個惠司同全橋FWH1、FWH2,而量測方向D1、D3的磁場分量。磁場感測裝置100c量測方向D1、D3上的磁場分量的原理大致上類似於圖1的磁場感測裝置100,於此不在贅述。 Referring to FIG. 7A, in the first time interval, the time-sharing switching circuit 140 forms the first and second unidirectional magnetoresistive sensors 1201 and 1202 into two wheat-same full bridges FWH1 and FWH2, respectively, and the measurement direction The magnetic field components of D1 and D3. The principle of the magnetic field sensing device 100c for measuring the magnetic field components in the directions D1 and D3 is substantially similar to that of the magnetic field sensing device 100 of FIG. 1, and will not be repeated here.

請參照圖7B,在第二時間區間內,分時切換電路140將第五、第六部分P5c、P6c耦接成第三惠司同全橋FWH3c。請對照圖2B,當第三惠司同全橋FWH3c受外來磁場HD2影響時,於第五、第六部分P5c、P6c的所在處的外來磁場HD2會被磁通集中器110所影響而使其磁場方向改變為方向D1,因此這些單方向第三 磁阻感測器1203會因為磁通集中器110的關係而感測到在方向D1的磁場,而可使其電阻改變。因此第三惠司同全橋FWH3c可輸出一非零的第三電訊號。計算器130再根據此第三電訊號來判斷外來磁場HD2在方向D2上的大小與正負值。 Referring to FIG. 7B, in the second time interval, the time-sharing switching circuit 140 couples the fifth and sixth parts P5c and P6c into a third Wysh and full bridge FWH3c. Please reference to Figure 2B, when the third full bridge FWH3c benefits Division and influence of external magnetic field by H D2, the fifth, sixth portion P5c, external magnetic fields H D2 at P6c is where the magnetic flux concentrator 110 fallout The direction of the magnetic field changes to the direction D1. Therefore, the unidirectional third magnetoresistive sensor 1203 senses the magnetic field in the direction D1 due to the relationship of the magnetic flux concentrator 110, and its resistance can be changed. Therefore, the third whistle and full bridge FWH3c can output a non-zero third electrical signal. The calculator 130 then determines the magnitude and the positive or negative value of the external magnetic field HD2 in the direction D2 according to the third electrical signal.

請參照圖8,圖8的磁場感測裝置100d大致上類似於圖1的磁場感測裝置100,其主要差異在於:磁場感測裝置100d更包括單方向磁場感測元件150,其與計算器130耦接。於上述的說明中,這些單方向磁阻感測器120所構成的第一、第二惠司同全橋FWH1、FWH2用以量測在方向D1、D3上的磁場分量,而單方向磁場感測元件150則用以量測在方向D2上的磁場分量,以使本實施例的磁場感測裝置100d實現三軸感測。也就是說,單方向磁場感測元件150可受外來磁場影響而輸出電訊號(即第三電訊號),而計算器130可依據單方向磁場感測元件150所輸出的電訊號決定在方向D2上的磁場分量。熟習本領域技術的通常知識者可以藉由各種不同的磁阻感測器以構成功能上能夠量測在方向D2上的磁場分量的單方向磁場感測元件150,本發明並不以此為限。 Please refer to FIG. 8. The magnetic field sensing device 100d of FIG. 8 is substantially similar to the magnetic field sensing device 100 of FIG. 1. The main difference is that the magnetic field sensing device 100d further includes a unidirectional magnetic field sensing element 150, which is similar to a computer 130 Coupled. In the above description, the first and second Wheatstone full bridges FWH1 and FWH2 formed by the unidirectional magnetoresistive sensors 120 are used to measure the magnetic field components in the directions D1 and D3, while the unidirectional magnetic field sensing The element 150 is used to measure the magnetic field component in the direction D2, so that the magnetic field sensing device 100d of this embodiment realizes three-axis sensing. In other words, the unidirectional magnetic field sensing element 150 can be affected by the external magnetic field to output an electrical signal (that is, the third electrical signal), and the calculator 130 can determine the direction D2 according to the electrical signal output by the unidirectional magnetic field sensing element 150 The magnetic field component on the Those who are familiar with the art can use various magnetoresistive sensors to construct a unidirectional magnetic field sensing element 150 that can measure the magnetic field component in the direction D2. The present invention is not limited to this. .

綜上所述,在本發明實施例的磁場感測裝置中,由於這些單方向磁阻感測器的釘扎方向皆為同一方向,因此其製造過程簡單,成本較低且具有良好的穩定性。並且,磁場感測裝置將這些單方向磁阻感測器分別設置於磁通集中器相對兩端部旁而分別形成兩個惠司同全橋,並藉由兩個惠司同全橋因外在磁場影響而輸出的電訊號以實現多軸感測,其電路架構較為簡單而不複雜, 可有效地降低製造成本。 In summary, in the magnetic field sensing device of the embodiment of the present invention, since the pinning directions of the unidirectional magnetoresistive sensors are all in the same direction, the manufacturing process is simple, the cost is low, and the stability is good. . In addition, the magnetic field sensing device arranges these unidirectional magnetoresistive sensors at the opposite ends of the magnetic flux concentrator to form two Huisi full bridges respectively, and the two Huisi full bridges are due to the external magnetic field. Affected and output electrical signals to achieve multi-axis sensing, the circuit structure is relatively simple and not complicated Can effectively reduce manufacturing costs.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make slight changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100‧‧‧磁場感測裝置 100‧‧‧Magnetic field sensing device

110‧‧‧磁通集中器 110‧‧‧Flux Concentrator

120‧‧‧單方向磁阻感測器 120‧‧‧Single Direction Magnetoresistive Sensor

1201~1202‧‧‧第一、第二單方向磁阻感測器 1201~1202‧‧‧The first and second unidirectional magnetoresistive sensors

130‧‧‧計算器 130‧‧‧Calculator

C1~C8‧‧‧接點 C1~C8‧‧‧Contact

D1~D3‧‧‧方向 D1~D3‧‧‧direction

E1‧‧‧釘扎方向 E1‧‧‧Pinning direction

E2‧‧‧易磁化軸 E2‧‧‧Easy magnetization axis

EP1‧‧‧第一端部 EP1‧‧‧First end

EP2‧‧‧第二端部 EP2‧‧‧Second end

LE‧‧‧長邊 LE‧‧‧long side

LE1‧‧‧上長邊 LE1‧‧‧Upper long side

LE2‧‧‧下長邊 LE2‧‧‧Bottom long side

MP‧‧‧中間部 MP‧‧‧Middle

P1‧‧‧第一部分 P1‧‧‧Part One

P2‧‧‧第二部分 P2‧‧‧Part Two

P3‧‧‧第三部分 P3‧‧‧Part Three

P4‧‧‧第四部分 P4‧‧‧Part Four

FWH1‧‧‧第一惠司同全橋 FWH1‧‧‧First Huisi Tongquan Bridge

FWH2‧‧‧第二惠司同全橋 FWH2‧‧‧The Second Huisi Tongquan Bridge

S‧‧‧基板 S‧‧‧Substrate

SE‧‧‧短邊 SE‧‧‧Short side

SE1‧‧‧左短邊 SE1‧‧‧Left short edge

SE2‧‧‧右短邊 SE2‧‧‧Right short side

Claims (8)

一種磁場感測裝置,包括:磁通集中器,具有相對的第一端部與第二端部;多個單方向磁阻感測器,具有相同的釘扎方向,該些單方向磁阻感測器設置於該磁通集中器旁,且該些單方向磁阻感測器更包括多個第一單方向磁阻感測器與多個第二單方向磁阻感測器,其中,該些第一單方向磁阻感測器設置於該第一端部旁,且該些第一單方向磁阻感測器更包括分別設置於該第一端部相對兩側的第一部分與第三部分,且該第一部分與該第三部分耦接成一第一惠司同全橋,該些第二單方向磁阻感測器設置於該第二端部旁,且該些第二單方向磁阻感測器更包括分別設置於該第二端部相對兩側的第二部分與第四部分,且該第二部分與該第四部分耦接成一第二惠司同全橋;計算器,耦接於該些磁阻感測器,其中,該第一惠司同全橋受一外來磁場影響而輸出一第一電訊號,該第二惠司同全橋受該外來磁場影響而輸出一第二電訊號,該計算器根據該第一電訊號與該第二電訊號而決定該外來磁場在二不同方向上的磁場分量,其中該些磁阻感測器更包括多個第三單方向磁阻感測器,該些第三單方向磁阻感測器設置於該磁通集中器旁, 該磁通集中器更包括中間部,該中間部位於該第一端部與該第二端部之間,且與該第一端部與該第二端部連接,其中該些第三單方向磁阻感測器的至少一部分與該中間部重疊設置,分時切換電路,耦接於該些磁阻感測器,其中,在第一時間區間內,該分時切換電路將該第一部分與該第三部分耦接成該第一惠司同全橋,且將該第二部分與該第四部分耦接成該第二惠司同全橋,以使該計算器根據該第一電訊號與該第二電訊號而決定該外來磁場在該二不同方向上的磁場分量。 A magnetic field sensing device, comprising: a magnetic flux concentrator having opposite first and second ends; a plurality of unidirectional magnetoresistive sensors with the same pinning direction, and the unidirectional magnetoresistive sensors The sensor is arranged beside the magnetic flux concentrator, and the unidirectional magnetoresistive sensors further include a plurality of first unidirectional magnetoresistive sensors and a plurality of second unidirectional magnetoresistive sensors, wherein the The first unidirectional magnetoresistive sensors are disposed beside the first end, and the first unidirectional magnetoresistive sensors further include a first part and a third part respectively disposed on opposite sides of the first end. Part, and the first part and the third part are coupled to form a first Wheatstone full bridge, the second unidirectional magnetoresistive sensors are arranged beside the second end, and the second unidirectional magnetoresistive The sensor further includes a second part and a fourth part respectively disposed on opposite sides of the second end, and the second part and the fourth part are coupled to form a second whole bridge; a calculator, coupled In the magnetoresistive sensors, the first Wheatstone full bridge is affected by an external magnetic field and outputs a first electrical signal, and the second Wheatstone full bridge is affected by the external magnetic field and outputs a second electrical signal , The calculator determines the magnetic field components of the external magnetic field in two different directions according to the first electrical signal and the second electrical signal, wherein the magnetoresistive sensors further include a plurality of third unidirectional magnetoresistive sensors The third unidirectional magnetoresistive sensors are arranged beside the magnetic flux concentrator, The magnetic flux concentrator further includes an intermediate portion located between the first end portion and the second end portion, and connected to the first end portion and the second end portion, wherein the third unidirectional At least a part of the magnetoresistive sensor overlaps the middle part, and the time-sharing switching circuit is coupled to the magnetoresistive sensors. In the first time interval, the time-sharing switching circuit connects the first part with The third part is coupled to form the first wheat-to-full bridge, and the second part and the fourth part to be coupled to the second wheat-to-full bridge, so that the calculator is based on the first electrical signal and the The second electrical signal determines the magnetic field components of the external magnetic field in the two different directions. 如申請專利範圍第1項所述的磁場感測裝置,其中,在第二時間區間內,該分時切換電路從該第一部分、該第二部分、該第三部分與該第四部分中選出至少一部分的單方向磁阻感測器與該些第三單方向磁阻感測器耦接成一第三惠司同全橋,該第三惠司同全橋受該外來磁場影響而輸出一第三電訊號,該計算器根據該第三電訊號而決定該外來磁場在另一方向上的磁場分量,其中該另一方向上的磁場分量不同於該二不同方向的磁場分量。 The magnetic field sensing device according to claim 1, wherein, in the second time interval, the time-sharing switching circuit is selected from the first part, the second part, the third part, and the fourth part At least a part of the unidirectional magnetoresistive sensors and the third unidirectional magnetoresistive sensors are coupled to form a third whistle full bridge, and the third whistle full bridge is affected by the external magnetic field and outputs a third telecommunication According to the third electrical signal, the calculator determines the magnetic field component of the external magnetic field in another direction, wherein the magnetic field component in the other direction is different from the magnetic field components in the two different directions. 如申請專利範圍第1項所述的磁場感測裝置,其中,該些第三單方向磁阻感測器更包括第五部分與第六部分,該第五部分與該中間部重疊設置,且該第六部分更包括二第六子部分,該二第六子部分分別設置於該中間部的相對兩側且不與該中間部重疊設置。 The magnetic field sensing device according to claim 1, wherein the third unidirectional magnetoresistive sensors further include a fifth part and a sixth part, the fifth part and the middle part are overlapped, and The sixth part further includes two sixth sub-parts, and the two sixth sub-parts are respectively disposed on opposite sides of the middle part and not overlapped with the middle part. 如申請專利範圍第1項所述的磁場感測裝置,其中,在第二時間區間內,該分時切換電路將該第五部分與該第六部分耦接成一第三惠司同全橋,該第三惠司同全橋依據該外來磁場而輸出一第三電訊號,該計算器根據該第三電訊號而決定該外來磁場在另一方向上的磁場分量,其中該另一方向上的磁場分量不同於該二不同方向的磁場分量。 According to the magnetic field sensing device described in item 1 of the scope of patent application, in the second time interval, the time-sharing switching circuit couples the fifth part and the sixth part to form a third Huisi full bridge, the The third Huisi full bridge outputs a third electrical signal according to the external magnetic field. The calculator determines the magnetic field component of the external magnetic field in another direction according to the third electrical signal, wherein the magnetic field component in the other direction is different from The two magnetic field components in different directions. 如申請專利範圍第1項所述的磁場感測裝置,其中,該些磁阻感測器更包括多個第三單方向磁阻感測器,該些第三單方向磁阻感測器設置於該磁通集中器旁且包括第五部分與第六部分,該磁通集中器具有二短邊與二長邊,該二短邊中的任一者與該二長邊連接,該第一端部與該第二端部分別包括該二長邊的一部分與該二短邊中的一者,其中,該第一部分與該第三部分分別設置於屬於該第一端部的該二長邊旁,該第二部分與該第四部分分別設置於屬於該第二端部的該二長邊旁,該第五部分設置於屬於該第一端部的該短邊旁且不與該第一端部重疊設置,該第六部分設置於屬於該第二端部的該短邊旁且不與該第二端部重疊設置。 The magnetic field sensing device according to claim 1, wherein the magnetoresistive sensors further include a plurality of third unidirectional magnetoresistive sensors, and the third unidirectional magnetoresistive sensors are arranged Beside the magnetic flux concentrator and include a fifth part and a sixth part, the magnetic flux concentrator has two short sides and two long sides, any one of the two short sides is connected to the two long sides, and the first The end and the second end respectively include a part of the two long sides and one of the two short sides, wherein the first part and the third part are respectively disposed on the two long sides belonging to the first end The second part and the fourth part are respectively disposed beside the two long sides belonging to the second end part, and the fifth part is disposed beside the short side part belonging to the first end part and not connected to the first end part. The ends are overlapped, and the sixth part is disposed beside the short side belonging to the second end and not overlapped with the second end. 如申請專利範圍第5項所述的磁場感測裝置,其中,在第二時間區間內,該分時切換電路將該第五部分與該第六部分耦接成一第三惠司同全橋,該第三惠司同全橋依據該外來磁場而輸出一第三電訊號,該計算器根據該第三電訊號而決定該外來磁場在另一方向上的磁場分量,其中該另一方向上的磁場分量不同於該二不同方向的磁場分量。 According to the magnetic field sensing device described in item 5 of the scope of patent application, wherein, in the second time interval, the time-sharing switching circuit couples the fifth part and the sixth part to form a third Huisi full bridge, the The third Huisi full bridge outputs a third electrical signal according to the external magnetic field. The calculator determines the magnetic field component of the external magnetic field in another direction according to the third electrical signal, wherein the magnetic field component in the other direction is different from The two magnetic field components in different directions. 如申請專利範圍第1項所述的磁場感測裝置,更包括單方向磁場感測元件,耦接於該計算器,其中該單方向磁場感測元件受該外來磁場影響而輸出一第三電訊號,該計算器根據該第三電訊號決定該外來磁場在另一方向上的磁場分量,其中該另一方向上的磁場分量不同於該二不同方向的磁場分量。 The magnetic field sensing device described in claim 1 further includes a unidirectional magnetic field sensing element coupled to the calculator, wherein the unidirectional magnetic field sensing element is affected by the external magnetic field to output a third electrical signal According to the third electrical signal, the calculator determines the magnetic field component of the external magnetic field in another direction, wherein the magnetic field component in the other direction is different from the magnetic field components in the two different directions. 如申請專利範圍第1項所述的磁場感測裝置,其中該單方向磁阻感測器的種類包括巨磁阻感測器或穿隧磁阻感測器。 According to the magnetic field sensing device described in item 1 of the scope of patent application, the types of the unidirectional magnetoresistive sensor include giant magnetoresistive sensors or tunneling magnetoresistive sensors.
TW108121871A 2018-08-03 2019-06-24 Magnetic field sensing apparatus TWI703337B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/522,674 US11009562B2 (en) 2018-08-03 2019-07-26 Magnetic field sensing apparatus
CN201910694023.XA CN110794348B (en) 2018-08-03 2019-07-30 Magnetic field sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862714094P 2018-08-03 2018-08-03
US62/714,094 2018-08-03

Publications (2)

Publication Number Publication Date
TW202008002A TW202008002A (en) 2020-02-16
TWI703337B true TWI703337B (en) 2020-09-01

Family

ID=70412713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121871A TWI703337B (en) 2018-08-03 2019-06-24 Magnetic field sensing apparatus

Country Status (1)

Country Link
TW (1) TWI703337B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202216701U (en) * 2011-07-11 2012-05-09 联创汽车电子有限公司 Giant magneto-Resistive throttle angular position transducer
US20130265039A1 (en) * 2012-02-10 2013-10-10 Memsic, Inc. Planar three-axis magnetometer
US20140015525A1 (en) * 2012-07-11 2014-01-16 Stmicroelectronics S.R.L. Integrated multilayer magnetoresistive sensor and manufacturing method thereof
TW201520574A (en) * 2013-11-17 2015-06-01 Isentek Inc Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
TW201520575A (en) * 2013-11-28 2015-06-01 Univ Nat Taiwan Magnetic field sensing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202216701U (en) * 2011-07-11 2012-05-09 联创汽车电子有限公司 Giant magneto-Resistive throttle angular position transducer
US20130265039A1 (en) * 2012-02-10 2013-10-10 Memsic, Inc. Planar three-axis magnetometer
US20140015525A1 (en) * 2012-07-11 2014-01-16 Stmicroelectronics S.R.L. Integrated multilayer magnetoresistive sensor and manufacturing method thereof
CN103543417A (en) * 2012-07-11 2014-01-29 意法半导体股份有限公司 Integrated multilayer magnetoresistive sensor and manufacturing method thereof
TW201520574A (en) * 2013-11-17 2015-06-01 Isentek Inc Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
TW201520575A (en) * 2013-11-28 2015-06-01 Univ Nat Taiwan Magnetic field sensing device

Also Published As

Publication number Publication date
TW202008002A (en) 2020-02-16

Similar Documents

Publication Publication Date Title
USRE49404E1 (en) Three axis magnetic field sensor
CN110794348B (en) Magnetic field sensing device
TWI747285B (en) Magnetic field sensing apparatus
US9983271B2 (en) Measurement method for measuring an external magnetic field and manufacturing method of a magnetic field sensing module
JP5876583B2 (en) Magnetic sensor and magnetic detection method thereof
JP6420665B2 (en) Magnetoresistive sensor for measuring magnetic fields
US9964601B2 (en) Magnetic sensor
US9709640B2 (en) Single bridge magnetic field sensor
JP6886222B2 (en) Magnetic sensor
TWI665460B (en) Magnetic field sensing device and magnetic field sensing apparatus
US20160291097A1 (en) Tunneling magneto-resistor device for sensing a magnetic field
TW201520574A (en) Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
JP6321323B2 (en) Magnetic sensor
TW202036019A (en) Magnetic field sensing apparatus
TWI703337B (en) Magnetic field sensing apparatus
US9778324B2 (en) Yoke configuration to reduce high offset in X-, Y-, and Z-magnetic sensors
JP6185298B2 (en) Magnetic sensor
TW201418741A (en) Triaxial magnetic field sensor with fluxguide
JP6721393B2 (en) Magnetic sensor
JP6701047B2 (en) Magnetic sensor and method of manufacturing magnetic sensor
US20230176147A1 (en) Magnetic sensor, electric control device, correction method, and magnetic sensor manufacturing method
KR20230089608A (en) 3-axis magnetoresistance sensor
JP2018165703A (en) Magnetic sensor