JP6394740B2 - Magnetic field detector - Google Patents

Magnetic field detector Download PDF

Info

Publication number
JP6394740B2
JP6394740B2 JP2017103166A JP2017103166A JP6394740B2 JP 6394740 B2 JP6394740 B2 JP 6394740B2 JP 2017103166 A JP2017103166 A JP 2017103166A JP 2017103166 A JP2017103166 A JP 2017103166A JP 6394740 B2 JP6394740 B2 JP 6394740B2
Authority
JP
Japan
Prior art keywords
magnetic field
detection
environmental
field detection
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017103166A
Other languages
Japanese (ja)
Other versions
JP2017187502A (en
Inventor
笠島 多聞
多聞 笠島
明宏 小川
明宏 小川
圭 田邊
圭 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017103166A priority Critical patent/JP6394740B2/en
Publication of JP2017187502A publication Critical patent/JP2017187502A/en
Application granted granted Critical
Publication of JP6394740B2 publication Critical patent/JP6394740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微小な磁界などを検出する磁界検出装置に関する。   The present invention relates to a magnetic field detection device that detects a minute magnetic field and the like.

昨今、生体磁界測定、探傷測定や非破壊検査など微弱磁界を測定するニーズが高まっている。   Recently, there is an increasing need for measuring weak magnetic fields such as biomagnetic field measurement, flaw detection measurement and nondestructive inspection.

微小な磁界の測定では、検出対象の磁界に入り込む地磁気や計測装置から発せられる磁界など環境磁界の影響が問題となるため、これらを解決するための様々な環境磁界キャンセリング技術が提案されている。   In the measurement of minute magnetic fields, the influence of environmental magnetic fields such as the geomagnetism that enters the magnetic field to be detected and the magnetic field generated by the measuring device becomes a problem. Various environmental magnetic field canceling techniques have been proposed to solve these problems. .

特許文献1(特開2009−297224号公報)によれば、環境磁界の影響を低減するための複数のコイルの中に環境磁界検出センサと検出センサを配置して環境磁界を排除しながら検出対象の磁界を検出している。   According to Patent Document 1 (Japanese Patent Laid-Open No. 2009-297224), an environmental magnetic field detection sensor and a detection sensor are arranged in a plurality of coils for reducing the influence of an environmental magnetic field, and an object to be detected is excluded while eliminating the environmental magnetic field. The magnetic field is detected.

特許文献2(特開2012−152515号公報)によれば、環境磁界と検出対象となる検出磁界とを含む磁気センサの出力から、環境磁界のみを検出する磁気センサの出力を演算によりその差分をとることで環境磁界のキャンセルを実現し、検出対象となる検出磁界を出力している。ここで、環境磁界である環境磁界と検出対象となる検出磁界とをそれぞれ検出する一対の差動演算部と、一対の差動演算部出力の差動演算を行っているので、差動演算回路は3回路必要となっている。   According to Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-152515), the output of a magnetic sensor that detects only the environmental magnetic field is calculated from the output of the magnetic sensor including the environmental magnetic field and the detection magnetic field to be detected. In this way, cancellation of the environmental magnetic field is realized, and a detection magnetic field to be detected is output. Here, a differential arithmetic circuit that performs a differential operation of a pair of differential operation units and an output of the pair of differential operation units that detect an environmental magnetic field that is an environmental magnetic field and a detection magnetic field that is a detection target, respectively. Requires three circuits.

また、一般的に、環境磁界を検出する磁気センサの環境温度の変動に起因する磁気センサの出力の変動であるいわゆる温度ドリフトが問題となることがある。特に、磁界検出素子に磁気抵抗素子を使った場合、環境温度の変動で磁気センサの出力変動(温度ドリフト)が起きやすい。これは磁気抵抗素子の抵抗変化率が温度により変動することによる。   In general, a so-called temperature drift, which is a fluctuation in the output of the magnetic sensor due to a fluctuation in the environmental temperature of the magnetic sensor that detects the environmental magnetic field, may be a problem. In particular, when a magnetoresistive element is used as the magnetic field detecting element, output fluctuation (temperature drift) of the magnetic sensor is likely to occur due to environmental temperature fluctuation. This is because the resistance change rate of the magnetoresistive element varies with temperature.

特開2009−297224号公報JP 2009-297224 A 特開2012−152515号公報JP 2012-152515 A

特許文献2のように演算により差分をとる方式では電気的な演算回路、特に多数の差動演算部が必要となり、コストやセンサ部の小型化に不利である。   The method of calculating a difference by calculation as in Patent Document 2 requires an electric calculation circuit, particularly a large number of differential calculation units, which is disadvantageous in terms of cost and downsizing of the sensor unit.

そこで、本発明は、差動演算部の部品点数の低減、小型化を目的とする。   Accordingly, an object of the present invention is to reduce the number of parts and the size of the differential operation unit.

上記目的を達成するために、本発明は、第1の磁界発生導体を有する第1の磁界発生部と、第1の磁界検出素子と環境磁界に応じた第1の磁界検出素子の第1の出力が入力され第1の磁界検出素子に環境磁界とは逆方向の第1の帰還電流磁界を第1の磁界発生部が与えるべく第1の磁界発生導体に第1の帰還電流を流す第1の差動演算部とを有する第1の磁界検出部と、第1の帰還電流に応じた第2の電流が流れる第2の磁界発生導体を有する第2の磁界発生部と、第2の磁界検出素子を有する第2の磁界検出部とを有し、第2の磁界発生部は、第2の磁界検出素子に第2の電流に応じた環境磁界とは逆方向の磁界を与え、第2の磁界検出部は検出磁界を検出する磁界検出装置である。   In order to achieve the above object, the present invention provides a first magnetic field generation unit having a first magnetic field generation conductor, a first magnetic field detection element, and a first magnetic field detection element according to an environmental magnetic field. A first feedback current is passed through the first magnetic field generating conductor so that the first magnetic field generating unit applies the first feedback current magnetic field in the direction opposite to the environmental magnetic field to the first magnetic field detecting element when the output is input. A first magnetic field detection unit having a second differential operation unit, a second magnetic field generation unit having a second magnetic field generation conductor through which a second current corresponding to the first feedback current flows, and a second magnetic field A second magnetic field detection unit having a detection element, and the second magnetic field generation unit applies a magnetic field in a direction opposite to the environmental magnetic field according to the second current to the second magnetic field detection element. The magnetic field detector is a magnetic field detector that detects a detected magnetic field.

本発明によれば、環境磁界環境磁界を排除するためのセンサ出力の演算が不要なため、差動演算部の部品点数の低減、小型化が可能となっている。また、環境磁界の環境温度に起因する検出磁界用の磁界検出部の出力の変動(温度ドリフト)を抑制することも可能である。   According to the present invention, since the calculation of the sensor output for eliminating the environmental magnetic field is unnecessary, the number of parts of the differential operation unit can be reduced and the size can be reduced. It is also possible to suppress the fluctuation (temperature drift) in the output of the magnetic field detection unit for the detection magnetic field due to the environmental temperature of the environmental magnetic field.

また、本発明では、第1の磁界発生導体が発生する磁界と第2の磁界発生導体が発生する磁界とが平行であり、第1の磁界検出素子と第2の磁界検出素子とが平行に配置される磁界検出装置としてもよい。   In the present invention, the magnetic field generated by the first magnetic field generating conductor and the magnetic field generated by the second magnetic field generating conductor are parallel, and the first magnetic field detecting element and the second magnetic field detecting element are parallel. It is good also as a magnetic field detector arranged.

本発明によれば、第1の磁界発生導体が発生する磁界と第2の磁界発生導体が発生する磁界とを同等な磁界とすることが可能となる。   According to the present invention, it is possible to make the magnetic field generated by the first magnetic field generating conductor and the magnetic field generated by the second magnetic field generating conductor equivalent to each other.

また、本発明では、第1の磁界発生導体は第1の磁界検出素子と離間して配置された第1のソレノイドコイルであり、第2の磁界発生導体は第2の磁界検出素子と離間して配置された第2のソレノイドコイルであり、第1の磁界検出素子は第1のソレノイドコイルの内部に配置され、第2の磁界検出素子は第2のソレノイドコイルの内部に配置され、第1の磁界検出素子と第2の磁界検出素子とは平行に配置され、第1のソレノイドコイルの中心線と第2のソレノイドコイルの中心線とが平行である磁界検出装置としてもよい。   In the present invention, the first magnetic field generating conductor is a first solenoid coil disposed away from the first magnetic field detecting element, and the second magnetic field generating conductor is separated from the second magnetic field detecting element. The first magnetic field detecting element is disposed in the first solenoid coil, the second magnetic field detecting element is disposed in the second solenoid coil, and the first magnetic field detecting element is disposed in the second solenoid coil. The magnetic field detection element and the second magnetic field detection element may be arranged in parallel so that the center line of the first solenoid coil and the center line of the second solenoid coil are parallel to each other.

本発明によれば、第1および第2のソレノイドコイルを個別に配置するので、一体となったソレノイドコイルと比較して設計が容易となる。   According to the present invention, since the first and second solenoid coils are individually arranged, the design is facilitated as compared with the integrated solenoid coil.

また、本発明では、第2の磁界発生部は第3の磁界発生導体を有し、第2の磁界検出部は、第2の磁界検出素子の検出磁界に応じた第2の出力が入力され、第2の磁界検出素子に検出磁界とは逆方向の磁界を与えるべく第2の磁界発生部に第2の帰還電流を流す第2の差動演算部を有し、第2の磁界発生部は、第2の磁界発生導体に流れる第2の電流に応じた第2の電流磁界および第3の磁界発生導体に流れる第2の帰還電流に応じた第2の帰還電流磁界を発生する磁界検出装置としてもよい。   In the present invention, the second magnetic field generation unit has a third magnetic field generation conductor, and the second magnetic field detection unit receives a second output corresponding to the detection magnetic field of the second magnetic field detection element. The second magnetic field generation unit includes a second differential operation unit that supplies a second feedback current to the second magnetic field generation unit so as to apply a magnetic field in the direction opposite to the detection magnetic field to the second magnetic field detection element. Is a magnetic field detection for generating a second current magnetic field corresponding to the second current flowing in the second magnetic field generating conductor and a second feedback current magnetic field corresponding to the second feedback current flowing in the third magnetic field generating conductor. It is good also as an apparatus.

本発明によれば、環境温度の変化に起因する検出磁界用の磁界検出部(第2の磁界検出部)の出力の変動(温度ドリフト)を抑制することが可能となっている。また、検出磁界とは逆方向の第2の帰還電流磁界を第2の磁界発生部で発生させるので、第2の磁界検出素子の動作領域が制限され、第2の磁界検出素子の抵抗値の温度による変動分を抑制しているので出力電圧の直線性も改善することが可能となっている。   According to the present invention, it is possible to suppress the fluctuation (temperature drift) of the output of the magnetic field detection unit (second magnetic field detection unit) for the detection magnetic field caused by the change in the environmental temperature. Further, since the second feedback current magnetic field in the direction opposite to the detection magnetic field is generated by the second magnetic field generation unit, the operation area of the second magnetic field detection element is limited, and the resistance value of the second magnetic field detection element is reduced. Since the fluctuation due to temperature is suppressed, the linearity of the output voltage can be improved.

また、本発明では、第2の磁界検出部は、第2の磁界検出素子の検出磁界に応じた第2の出力が入力され、第2の磁界検出素子に検出磁界とは逆方向の磁界を与えるべく第2の磁界発生部に第2の帰還電流を流す第2の差動演算部を有し、第2の磁界発生部は、第2の磁界発生導体に流れる第2の電流および第2の帰還電流に応じた磁界を発生する磁界検出装置としてもよい。   In the present invention, the second magnetic field detection unit receives a second output corresponding to the detection magnetic field of the second magnetic field detection element, and applies a magnetic field in a direction opposite to the detection magnetic field to the second magnetic field detection element. A second differential operation unit that causes the second feedback current to flow through the second magnetic field generation unit to provide the second magnetic field generation unit, the second magnetic field generation unit including the second current flowing through the second magnetic field generation conductor and the second It is good also as a magnetic field detection apparatus which generates the magnetic field according to this feedback current.

本発明によれば、第2の磁界発生部は、第2の磁界発生導体に流れる第2の電流および第2の帰還電流に応じた磁界を発生するので、部品点数が低減できる。   According to the present invention, the second magnetic field generation unit generates a magnetic field corresponding to the second current and the second feedback current flowing through the second magnetic field generating conductor, so that the number of parts can be reduced.

また、第1および第2の磁界検出素子は、磁気抵抗素子としてもよい。   Further, the first and second magnetic field detection elements may be magnetoresistive elements.

環境磁界を排除するためのセンサ出力に対する差動演算が不要なため、差動演算部の部品点数の低減、センサ小型化が可能になる。   Since the differential calculation for the sensor output for eliminating the environmental magnetic field is unnecessary, the number of parts of the differential calculation unit can be reduced and the sensor can be downsized.

実施形態1の磁界検出装置の説明図である。It is explanatory drawing of the magnetic field detection apparatus of Embodiment 1. 実施形態2の磁界検出装置の説明図である。It is explanatory drawing of the magnetic field detection apparatus of Embodiment 2. 本発明を実施する形態と磁界の関係を示した模式図である。It is the schematic diagram which showed the relationship between the form which implements this invention, and a magnetic field. 実施例1の第1の磁界検出部の構成図である。FIG. 3 is a configuration diagram of a first magnetic field detection unit according to the first embodiment. 実施例1の第2の磁界検出部と第2の磁界発生部が有する第3の磁界発生導体の構成図である。It is a block diagram of the 3rd magnetic field generation conductor which the 2nd magnetic field detection part of Example 1 and a 2nd magnetic field generation part have. 実施例1の磁界検出装置の構造図である。1 is a structural diagram of a magnetic field detection apparatus of Example 1. FIG.

図3は、本発明を実施する前提となる第1の磁界検出素子10、第2の磁界検出素子20、環境磁界および検出磁界の関係を示した模式図である。第1の磁界検出素子10は環境磁界のみを検出する位置に配置される。第2の磁界検出素子20は検出磁界が検出できる位置に配置され、環境磁界と検出磁界の両方に感磁特性を示す。つまり、第2の磁界検出素子20は検出磁界発生源の近傍に配置される。ここで、第2の磁界検出素子20において、検出磁界のみを検出するには環境磁界による検出量を低減する必要がある。環境磁界はおおむね均一であることから、環境磁界に応じた第1の磁界検出素子10の検出量は、第2の磁界検出素子20の環境磁界に応じた検出量と同等であると見做せるため、第1の磁界検出素子10での検出量に応じた磁界を、第2の磁界検出素子20の環境磁界に対して逆方向となるように与えることで、第2の磁界検出素子20において環境磁界の影響を低減した状態で検出磁界を検出することが可能となる。なお、ここで、検出磁界は直流磁界、交流磁界が問われるものではない。また、環境磁界に対して逆方向とは第1の磁気検出素子10および第2の磁気検出素子20の環境磁界に応じた検出量を低減する異なる符号となる磁界の方向を意味する。以降の説明においても、逆方向は同様の意味とする。また、第1の磁気検出素子10および第2の磁気検出素子20以外の磁界検出素子にも同様に適用される。   FIG. 3 is a schematic diagram showing the relationship between the first magnetic field detection element 10, the second magnetic field detection element 20, the environmental magnetic field, and the detection magnetic field, which are prerequisites for implementing the present invention. The first magnetic field detection element 10 is disposed at a position where only the environmental magnetic field is detected. The second magnetic field detection element 20 is disposed at a position where the detection magnetic field can be detected, and exhibits a magnetosensitive characteristic for both the environmental magnetic field and the detection magnetic field. That is, the second magnetic field detection element 20 is disposed in the vicinity of the detection magnetic field generation source. Here, in the second magnetic field detection element 20, in order to detect only the detection magnetic field, it is necessary to reduce the detection amount by the environmental magnetic field. Since the environmental magnetic field is generally uniform, the detection amount of the first magnetic field detection element 10 according to the environmental magnetic field can be considered to be equivalent to the detection amount of the second magnetic field detection element 20 according to the environmental magnetic field. Therefore, in the second magnetic field detection element 20, the magnetic field corresponding to the amount detected by the first magnetic field detection element 10 is applied in the opposite direction to the environmental magnetic field of the second magnetic field detection element 20. It is possible to detect the detection magnetic field in a state where the influence of the environmental magnetic field is reduced. Here, the detection magnetic field is not limited to a DC magnetic field or an AC magnetic field. Further, the reverse direction with respect to the environmental magnetic field means the direction of the magnetic field having different signs for reducing the detection amount according to the environmental magnetic field of the first magnetic detection element 10 and the second magnetic detection element 20. In the following description, the reverse direction has the same meaning. The same applies to magnetic field detection elements other than the first magnetic detection element 10 and the second magnetic detection element 20.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。なお、図面は、模式的なものであり、説明の便宜上、厚みと平面寸法との関係、及びデバイス相互間の厚みの比率は、本実施形態の効果が得られる範囲内で現実のセンサ構造とは異なっていてもよい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined. Note that the drawings are schematic, and for convenience of explanation, the relationship between the thickness and the planar dimensions, and the ratio of the thickness between devices are within the range where the effect of this embodiment can be obtained, and the actual sensor structure. May be different.

(実施形態1)
図1は、本実施形態1の磁界検出装置1の概要図である。磁界検出装置1は、第1の磁界発生部110が有する第1の磁界発生導体111、第1の磁界検出素子10、第1の差動演算部210が有する第1の差動演算回路211、第1の抵抗510、第2の磁界発生部120が有する第2の磁界発生導体121、第2の磁界検出素子20、検出抵抗530を備えている。ここで、第1の磁界検出素子10、第1の差動演算部210、第1の抵抗510が第1の磁界検出部410を構成し、第2の磁界検出素子20、検出抵抗530が第2の磁界検出部420を構成する。
(Embodiment 1)
FIG. 1 is a schematic diagram of a magnetic field detection device 1 according to the first embodiment. The magnetic field detection apparatus 1 includes a first magnetic field generation conductor 111 included in the first magnetic field generation unit 110, a first magnetic field detection element 10, a first differential operation circuit 211 included in the first differential operation unit 210, The first resistor 510, the second magnetic field generating conductor 121 included in the second magnetic field generating unit 120, the second magnetic field detecting element 20, and the detecting resistor 530 are provided. Here, the first magnetic field detection element 10, the first differential operation unit 210, and the first resistor 510 constitute the first magnetic field detection unit 410, and the second magnetic field detection element 20 and the detection resistor 530 are the first. 2 magnetic field detectors 420 are configured.

第1の磁界発生部110が有する第1の磁界発生導体111の一端は第1の差動演算部210が有する第1の差動演算回路211の出力端に接続されている。第1の差動演算回路211の一対の入力端のうち一方の入力端には、一端が第1の電位(Vc)に接続された第1の磁界検出素子10の他端が接続されている。第1の差動演算回路211の一対の入力端のうち他方の入力端は、第3の電位(Gnd)に接続されている。第1の磁界検出素子10の他端は、一端が第2の電位(−Vc)に接続された第1の抵抗510の他端と接続されている。第1の磁界発生導体111の他端は第2の磁界発生部120が有する第2の磁界発生導体121の一端に接続されている。第2の磁界発生導体121の他端は、第3の電位(Gnd)に接続されている。一端が第1の電位(Vc)に接続された第2の磁界検出素子20の他端は、検出抵抗530の一端に接続されている。検出抵抗530の他端は第2の電位(−Vc)に接続されている。ここで、第1の磁界検出素子10の他端が第1の出力を出力し、第2の磁界検出素子20の他端が第2の出力を出力する。   One end of the first magnetic field generation conductor 111 included in the first magnetic field generation unit 110 is connected to the output terminal of the first differential operation circuit 211 included in the first differential operation unit 210. One end of the pair of input ends of the first differential arithmetic circuit 211 is connected to the other end of the first magnetic field detection element 10 having one end connected to the first potential (Vc). . The other input terminal of the pair of input terminals of the first differential arithmetic circuit 211 is connected to the third potential (Gnd). The other end of the first magnetic field detection element 10 is connected to the other end of the first resistor 510 whose one end is connected to the second potential (−Vc). The other end of the first magnetic field generation conductor 111 is connected to one end of a second magnetic field generation conductor 121 included in the second magnetic field generation unit 120. The other end of the second magnetic field generating conductor 121 is connected to a third potential (Gnd). The other end of the second magnetic field detection element 20 whose one end is connected to the first potential (Vc) is connected to one end of the detection resistor 530. The other end of the detection resistor 530 is connected to the second potential (−Vc). Here, the other end of the first magnetic field detection element 10 outputs a first output, and the other end of the second magnetic field detection element 20 outputs a second output.

第1の磁界検出部410が備える第1の差動演算部210の入力端には、第1の磁界発生部110が有する第1の磁界発生導体111の近傍に配置された第1の磁界検出素子10の第1の出力が入力され、第1の出力の変動を低減するように第1の差動演算部210の出力である第1の帰還電流が、第1の磁界発生部110が有する第1の磁界発生導体111に流れ、第1の磁界発生導体111は、環境磁界とは逆方向の第1の帰還電流磁界を発生させる。つまり、第1の磁界検出部410が備える第1の差動演算部210は、地磁気や周囲環境磁界などの概ね均一な環境磁界が第1の磁界検出素子10に印加された場合に、その環境磁界を低減するように第1の差動演算部210から第1の磁界発生導体111に第1の帰還電流を流し、環境磁界とは逆方向となる第1の帰還電流磁界を第1の磁界検出素子10に与えるように動作する。従って、環境磁界の影響は第1の帰還電流による環境磁界とは逆方向となる第1の帰還電流磁界により低減されるので、第1の磁界検出素子10の第1の出力の変動が低減される。つまり、環境磁界に応じた第1の帰還電流により環境磁界とは逆方向となる第1の帰還電流磁界を第1の磁界発生部110が発生することになる。以下、第1の磁界発生部110、第1の磁界検出部410について、説明する。   The first magnetic field detection unit disposed in the vicinity of the first magnetic field generation conductor 111 of the first magnetic field generation unit 110 at the input terminal of the first differential operation unit 210 provided in the first magnetic field detection unit 410. The first magnetic field generator 110 has a first feedback current that is an output of the first differential operation unit 210 so that the first output of the element 10 is input and fluctuations in the first output are reduced. The first magnetic field generating conductor 111 flows into the first magnetic field generating conductor 111, and the first magnetic field generating conductor 111 generates a first feedback current magnetic field in a direction opposite to the environmental magnetic field. That is, the first differential operation unit 210 included in the first magnetic field detection unit 410 is configured so that a substantially uniform environmental magnetic field such as terrestrial magnetism or an ambient environmental magnetic field is applied to the first magnetic field detection element 10 in the environment. A first feedback current is passed from the first differential operation unit 210 to the first magnetic field generating conductor 111 so as to reduce the magnetic field, and the first feedback current magnetic field in the opposite direction to the environmental magnetic field is used as the first magnetic field. It operates to be applied to the detection element 10. Therefore, since the influence of the environmental magnetic field is reduced by the first feedback current magnetic field that is in the opposite direction to the environmental magnetic field due to the first feedback current, fluctuations in the first output of the first magnetic field detection element 10 are reduced. The That is, the first magnetic field generator 110 generates a first feedback current magnetic field in the opposite direction to the environmental magnetic field by the first feedback current corresponding to the environmental magnetic field. Hereinafter, the first magnetic field generation unit 110 and the first magnetic field detection unit 410 will be described.

第1の磁界発生部110は、第1の磁界発生導体111を有している。第1の磁界発生導体111は、第1の帰還電流によって発生する環境磁界とは逆方向となる第1の帰還電流磁界を、第1の磁気検出素子10に与えるものであれば、その形状および材質は特に問われるものではない。例えば、第1の磁界検出素子10が一方向に延在する形状であれば、第1の磁界発生導体111は、直線状の導体であってもよく、第1の磁界検出素子10を巻回するソレノイド形状の導体であってもよい。また、第1の磁界発生導体111は第1の磁界検出素子10と絶縁されるとともに第1の磁界検出素子10と一体に形成されてもよく、第1の磁界検出素子10と離間して配置されるとともに第1の磁界検出素子10を囲むようにソレノイド状に形成される、あるいは、直線状に形成されていてもよい。なお、第1の磁界発生部110は、第1の磁界発生導体111の一端が第1の差動演算部210の出力端に接続される構成としてもよく、第1の磁界発生導体111の一端に、非制御端の一端が第1の電位(Vc)に接続された第1の電界効果トランジスタ(図示せず)の他端が接続され、第1の差動演算部210の出力が第1の電界効果トランジスタ(図示せず)の制御端に接続される構成としてもよい。第1の磁界発生導体111の一端が第1の差動演算部210の出力端に接続される場合、第1の差動演算部210の出力端からの出力が第1の帰還電流となる。第1の差動演算部210の出力が第1の電界効果トランジスタ(図示せず)の制御端に接続される場合、第1の差動演算部210の出力端からの出力が電界効果トランジスタ(図示せず)の制御端を制御し、制御端の信号に応じた非制御端の他端に接続された第1の磁界発生導体111に流れる電流が第1の帰還電流となる。また、第1の電界効果トランジスタ(図示せず)に代えて、バイポーラトランジスタ、静電誘導トランジスタなどを適用してもよい。   The first magnetic field generation unit 110 has a first magnetic field generation conductor 111. If the first magnetic field generating conductor 111 gives a first feedback current magnetic field in the opposite direction to the environmental magnetic field generated by the first feedback current to the first magnetic detection element 10, its shape and The material is not particularly limited. For example, as long as the first magnetic field detection element 10 has a shape extending in one direction, the first magnetic field generating conductor 111 may be a linear conductor, and the first magnetic field detection element 10 is wound around the first magnetic field detection element 10. A solenoid-shaped conductor may be used. The first magnetic field generating conductor 111 may be insulated from the first magnetic field detection element 10 and may be formed integrally with the first magnetic field detection element 10, and is arranged apart from the first magnetic field detection element 10. In addition, it may be formed in a solenoid shape so as to surround the first magnetic field detection element 10 or may be formed in a linear shape. The first magnetic field generation unit 110 may have a configuration in which one end of the first magnetic field generation conductor 111 is connected to the output end of the first differential operation unit 210, and one end of the first magnetic field generation conductor 111. The other end of the first field effect transistor (not shown) whose one end of the non-control end is connected to the first potential (Vc) is connected, and the output of the first differential operation unit 210 is the first. It is good also as a structure connected to the control end of this field effect transistor (not shown). When one end of the first magnetic field generating conductor 111 is connected to the output terminal of the first differential operation unit 210, the output from the output terminal of the first differential operation unit 210 becomes the first feedback current. When the output of the first differential operation unit 210 is connected to the control terminal of a first field effect transistor (not shown), the output from the output terminal of the first differential operation unit 210 is the field effect transistor ( The current flowing through the first magnetic field generating conductor 111 connected to the other end of the non-control end corresponding to the signal at the control end is controlled as the first feedback current. Further, instead of the first field effect transistor (not shown), a bipolar transistor, an electrostatic induction transistor, or the like may be applied.

第1の磁界検出部410が備える第1の差動演算部210は、第1の差動演算回路211を有している。第1の差動演算回路211の一対の入力端の一方の入力端に、第1の磁界検出素子10の出力である第1の出力を入力し、他方の入力端が第3の電位(Gnd)に接続されている。また、第3の磁界検出素子(図示せず)が存在する場合に第3の磁界検出素子(図示せず)の他端と一端が第2の電位(―Vc)に接続された第3の抵抗(図示せず)の他端が第1の差動演回路211の他方の入力端に入力されてもよい。また、第1の差動演算回路211の一対の入力端の一方の入力端に、第1の磁界検出素子10の出力である第1の出力が入力され、他方の入力端に第3の電位(Gnd)に接続され、第2の差動演算回路(図示せず)の一対の入力端の一方の入力端に、第3の磁界検出素子(図示せず)の他端と一端が第2の電位(−Vc)に接続された第3の抵抗(図示せず)の他端が入力され、他方の入力端に第3の電位(Gnd)に接続され、第3の差動演算回路(図示せず)の一対の入力端に第1の差動演算回路211および第2の差動演算回路(図示せず)の出力をそれぞれ入力し、第3の差動演算回路(図示せず)の出力が第1の磁界発生部110に第1の帰還電流を流すように動作するような構成としてもよい。なお、環境磁界が与えられた第1の磁界検出素子10と第3の磁界検出素子(図示せず)とは、その抵抗値の変化率の符号が異なることが好ましい。抵抗値の変化率の符号が異なることにより、第1の差動演算部210の出力を大きくすることが可能となるので、環境磁界の検出精度を上げることが可能となる。   The first differential operation unit 210 included in the first magnetic field detection unit 410 includes a first differential operation circuit 211. The first output which is the output of the first magnetic field detection element 10 is input to one input terminal of the pair of input terminals of the first differential arithmetic circuit 211, and the other input terminal is connected to the third potential (Gnd). )It is connected to the. Further, when a third magnetic field detection element (not shown) is present, the other end and one end of the third magnetic field detection element (not shown) are connected to the second potential (−Vc). The other end of the resistor (not shown) may be input to the other input terminal of the first differential circuit 211. Also, the first output which is the output of the first magnetic field detection element 10 is input to one input terminal of the pair of input terminals of the first differential arithmetic circuit 211, and the third potential is input to the other input terminal. (Gnd) and the other end and one end of the third magnetic field detection element (not shown) are connected to one input end of the pair of input ends of the second differential arithmetic circuit (not shown). The other end of a third resistor (not shown) connected to the second potential (−Vc) is input, and the other input end is connected to the third potential (Gnd). The outputs of the first differential arithmetic circuit 211 and the second differential arithmetic circuit (not shown) are respectively input to a pair of input terminals of a third differential arithmetic circuit (not shown). May be configured to operate so that the first feedback current flows through the first magnetic field generator 110. The first magnetic field detection element 10 to which the environmental magnetic field is applied and the third magnetic field detection element (not shown) are preferably different in sign of the rate of change in resistance value. Since the sign of the rate of change of the resistance value is different, the output of the first differential operation unit 210 can be increased, so that the detection accuracy of the environmental magnetic field can be increased.

第1の磁界検出部410は、第1の磁界検出素子10を有しており、第1の帰還電流により生じる環境磁界とは逆方向となる第1の帰還電流磁界の影響を受ける場所に配置される。また、第1の磁界検出部410は、第3から第5の磁界検出素子(図示せず)を有していてもよい。ここで、第1の磁界検出素子10および第3から第5の磁界検出素子(図示せず)は第1の磁界発生部110が発生する第1の帰還電流による環境磁界とは逆方向となる第1の帰還電流磁界の影響を受けるように配置される。この場合、第1の磁界検出素子10と第3の磁界検出素子(図示せず)とが接続された第1の接続点と第4の磁界検出素子(図示せず)と第5の磁界検出素子(図示せず)とが接続された第2の接続点とをそれぞれ一対の第1の差動演算部210の入力端と接続してもよい。このように、いわゆるフルブリッジ接続された第1の磁界検出素子10および第3から第5の磁界の磁界検出素子(図示せず)を使用した場合、環境磁界を低減するように、つまり、第1の接続点と第2の接続点との電位差が0となるように第1の差動演算部210は動作する。つまり、第1の差動演算部210は第1の磁界発生導体111に第1の帰還電流を流すように動作する。従って、第1の磁界検出素子10および第3から第5の磁界検出素子(図示せず)は、第1の帰還電流による環境磁界とは逆方向となる第1の帰還電流磁界が与えられるので環境磁界が低減された状態となっている。なお、第1の磁界検出素子10および第3から第5の磁界検出素子(図示せず)は、一体として形成されることが好ましい。また、第3から第5の磁界検出素子(図示せず)のうち1個ないし3個の磁界検出素子を抵抗としてもよい。なお、第1の磁界検出素子10および第3から第5の磁界検出素子(図示せず)は、AM(異方性)磁気抵抗素子、S−V(スピンバルブ)巨大磁気抵抗素子、トンネル型磁気抵抗素子などの磁気抵抗素子、ホール素子などが挙げられる。   The first magnetic field detection unit 410 includes the first magnetic field detection element 10 and is disposed in a place that is affected by the first feedback current magnetic field that is in the opposite direction to the environmental magnetic field generated by the first feedback current. Is done. Further, the first magnetic field detection unit 410 may include third to fifth magnetic field detection elements (not shown). Here, the first magnetic field detection element 10 and the third to fifth magnetic field detection elements (not shown) are in the opposite direction to the environmental magnetic field generated by the first feedback current generated by the first magnetic field generation unit 110. It arrange | positions so that it may receive to the influence of a 1st feedback current magnetic field. In this case, the first connection point where the first magnetic field detection element 10 and the third magnetic field detection element (not shown) are connected, the fourth magnetic field detection element (not shown), and the fifth magnetic field detection. You may connect the 2nd connection point with which the element (not shown) was connected with the input terminal of a pair of 1st differential calculating part 210, respectively. As described above, when the first magnetic field detection element 10 and the third to fifth magnetic field detection elements (not shown) connected in a so-called full bridge are used, the environmental magnetic field is reduced, that is, The first differential operation unit 210 operates so that the potential difference between the first connection point and the second connection point becomes zero. That is, the first differential operation unit 210 operates so as to flow the first feedback current through the first magnetic field generating conductor 111. Therefore, the first magnetic field detection element 10 and the third to fifth magnetic field detection elements (not shown) are provided with the first feedback current magnetic field that is in the opposite direction to the environmental magnetic field due to the first feedback current. The environmental magnetic field is reduced. The first magnetic field detection element 10 and the third to fifth magnetic field detection elements (not shown) are preferably formed integrally. Further, one to three magnetic field detection elements among the third to fifth magnetic field detection elements (not shown) may be used as resistors. The first magnetic field detecting element 10 and the third to fifth magnetic field detecting elements (not shown) are an AM (anisotropic) magnetoresistive element, an SV (spin valve) giant magnetoresistive element, a tunnel type. Examples thereof include a magnetoresistive element such as a magnetoresistive element, and a Hall element.

ここで、図1に示されるように、一端が第1の電位(Vc)に接続された第1の磁界検出素子10の他端が、一端が第2の電位(−Vc)に接続された第1の抵抗510の他端と接続されている場合は、第1の磁界検出素子10の他端から出力される第1の出力と、第3の電位(Gnd)とが第1の差動演算部210の入力端にそれぞれ入力される。第1の差動演算部210の出力端は、第1の磁界発生部110が有する第1の磁界発生導体111の一端に入力され、第1の磁界発生導体111の他端は、一端が第3の電位(Gnd)に接続されている第2の磁界発生導体121の他端に接続される。環環境磁界に応じて、第1の磁界発生導体111の近傍に配置された第1の磁界検出素子10が影響を受け、その出力である第1の出力の変動を低減するように、第1の帰還電流による環境磁界とは逆方向の第1の帰還電流磁界を第1の磁界検出素子10に与える。すなわち、環境磁界を低減させる第1の帰還電流による環境磁界とは逆方向となる第1の帰還電流磁界と第2の磁界発生導体121に流れる第2の電流による環境磁界とは逆方向となる第2の電流磁界が第1および第2の磁界検出素子(10、20)にそれぞれ与えられるので、第1および第2の磁界検出素子(10、20)の環境磁界による第1および第2の磁界検出素子(10、20)の抵抗変化ΔRは、一様な環境磁界に対して常に零になるように制御されることになる。なお、第1の磁界発生導体111の他端は、一端が第3の電位(Gnd)に接続されている第2の磁界発生導体121の他端に接続されているので、第1の帰還電流と第2の電流は同じである。ΔRが零なので、ΔRの温度変化はほとんどなく、そのため環境磁界のΔRの温度に起因する出力の変動(温度ドリフト)を低減することが可能となっている。特に、第1および第2の磁界検出素子(10、20)がAM磁気抵抗素子、S−V巨大磁気抵抗素子、トンネル型磁気抵抗素子などの磁気抵抗素子である場合、磁気抵抗素子は温度による抵抗値の変動が大きいため出力の変動(温度ドリフト)を低減することは重要である。   Here, as shown in FIG. 1, the other end of the first magnetic field detecting element 10 having one end connected to the first potential (Vc) and one end connected to the second potential (−Vc). When connected to the other end of the first resistor 510, the first output output from the other end of the first magnetic field detection element 10 and the third potential (Gnd) are the first differential. Each is input to the input terminal of the arithmetic unit 210. The output end of the first differential operation unit 210 is input to one end of the first magnetic field generation conductor 111 included in the first magnetic field generation unit 110, and the other end of the first magnetic field generation conductor 111 is the first end. 3 is connected to the other end of the second magnetic field generating conductor 121 connected to the potential of 3 (Gnd). The first magnetic field detecting element 10 disposed in the vicinity of the first magnetic field generating conductor 111 is affected in accordance with the environmental magnetic field of the environment, and the first output is reduced so as to reduce the fluctuation of the first output as its output. A first feedback current magnetic field in a direction opposite to the environmental magnetic field due to the feedback current is applied to the first magnetic field detection element 10. That is, the first feedback current magnetic field in the opposite direction to the environmental magnetic field due to the first feedback current that reduces the environmental magnetic field is opposite to the environmental magnetic field due to the second current flowing in the second magnetic field generating conductor 121. Since the second current magnetic field is applied to the first and second magnetic field detection elements (10, 20), respectively, the first and second magnetic fields due to the environmental magnetic field of the first and second magnetic field detection elements (10, 20) are provided. The resistance change ΔR of the magnetic field detection elements (10, 20) is controlled to be always zero with respect to a uniform environmental magnetic field. Note that the other end of the first magnetic field generating conductor 111 is connected to the other end of the second magnetic field generating conductor 121 whose one end is connected to the third potential (Gnd). And the second current are the same. Since ΔR is zero, there is almost no change in temperature of ΔR, so that it is possible to reduce output fluctuations (temperature drift) due to the temperature of ΔR of the environmental magnetic field. In particular, when the first and second magnetic field detection elements (10, 20) are magnetoresistive elements such as AM magnetoresistive elements, SV giant magnetoresistive elements, tunnel magnetoresistive elements, the magnetoresistive elements depend on temperature. Since the fluctuation of the resistance value is large, it is important to reduce the fluctuation of the output (temperature drift).

なお、第2の電位は−Vc、第3の電位はGndとして説明したが、これに限るものではなく、第2の電位をGnd、第3の電位をVc/2としてもよい。   Note that although the second potential is described as −Vc and the third potential is described as Gnd, the present invention is not limited to this, and the second potential may be Gnd and the third potential may be Vc / 2.

なお、環境磁界が概ね0である場合の第1の抵抗510と第1の磁界検出素子10の抵抗値は同等であることが好ましく、第1の磁界検出素子10および第3から第5の磁界検出素子(図示せず)の抵抗値は同等であることが好ましい。   In addition, it is preferable that the resistance value of the 1st resistance 510 and the 1st magnetic field detection element 10 in case an environmental magnetic field is substantially 0 is equivalent, and the 1st magnetic field detection element 10 and the 3rd-5th magnetic field. The resistance values of the detection elements (not shown) are preferably equal.

第2の磁界検出部420は、第2の磁界検出素子20、検出抵抗530を備えている。従って、第2の磁界検出素子20は、第2の磁界検出素子20の近傍に発生する検出磁界を検出することが可能となっている。なお、ここで検出磁界とは、第1の磁界検出素子10に直接的に影響を与えない程度の磁界である。従って、検出磁界の影響を受けにくいように、第1の磁界検出部410と第2の磁界検出部420とは、離間して配置される。また、第2の磁界検出素子20の近傍に、第2の磁界発生部120が配置されている。第2の磁界発生部120には、第1の帰還電流に応じた第2の電流が流れ、第2の磁界発生部は環境磁界とは逆方向となる第2の電流磁界を発生する。つまり、第1の帰還電流に応じた第2の磁界発生部120が発生する環境磁界とは逆方向となる第2の電流磁界は環境磁界とは逆方向となる磁界であり、環境磁界の影響を低減させるものである。従って、第2の磁界検出素子20は、環境磁界の影響が低減された状態で、検出磁界を検出することが可能となっている。以下、第2の磁界発生部120、第1の磁界検出部420について、説明する。   The second magnetic field detection unit 420 includes a second magnetic field detection element 20 and a detection resistor 530. Therefore, the second magnetic field detection element 20 can detect a detection magnetic field generated in the vicinity of the second magnetic field detection element 20. Here, the detection magnetic field is a magnetic field that does not directly affect the first magnetic field detection element 10. Therefore, the first magnetic field detection unit 410 and the second magnetic field detection unit 420 are arranged apart from each other so as not to be affected by the detection magnetic field. A second magnetic field generation unit 120 is disposed in the vicinity of the second magnetic field detection element 20. A second current corresponding to the first feedback current flows through the second magnetic field generation unit 120, and the second magnetic field generation unit generates a second current magnetic field having a direction opposite to the environmental magnetic field. In other words, the second current magnetic field that is opposite to the environmental magnetic field generated by the second magnetic field generation unit 120 according to the first feedback current is a magnetic field that is opposite to the environmental magnetic field, and is affected by the environmental magnetic field. Is reduced. Therefore, the second magnetic field detection element 20 can detect the detection magnetic field in a state where the influence of the environmental magnetic field is reduced. Hereinafter, the second magnetic field generation unit 120 and the first magnetic field detection unit 420 will be described.

第2の磁界発生部120は、第2の磁界発生導体121を有している。第2の磁界発生導体121は、第2の電流によって発生する環境磁界とは逆方向となる第2の電流磁界を、第2の磁気検出素子20に与えるものであれば、その形状および材質は特に問われるものではない。例えば、第2の磁界検出素子20が一方向に延在する形状であれば、第2の磁界発生導体121は、直線状の導体であってもよく、ソレノイド形状の導体であってもよい。また、第2の磁界発生導体121は第2の磁界検出素子20と絶縁されるとともに第2の磁界検出素子20と一体に形成されてもよく、第2の磁界検出素子20と離間して配置されるとともに第2の磁界検出素子20を囲むようにソレノイド状に形成される、あるいは、直線状に形成されていてもよい。なお、第2の磁界発生部120は、第2の磁界発生導体121の一端が第1の磁界発生導体111の端部に導体を介して接続される構成としてもよく、また、第2の磁界発生導体121の一端に、非制御端の一端が第1の電位(Vc)に接続された第2の電界効果トランジスタ(図示せず)の他端が接続され、第1の磁界発生部110の出力端(第1の磁界発生導体111の出力端)が第2の電界効果トランジスタ(図示せず)の制御端に接続される構成としてもよい。なお、第2の磁界発生導体121の一端が第1の磁界発生導体111の端部に導体を介して接続される構成となる場合、第1の帰還電流と第2の電流は同一となる。第1の磁界発生部110の出力端(第1の磁界発生導体111の出力端)が第2の電界効果トランジスタ(図示せず)の制御端に接続される場合、第1の磁界発生部110の出力端(第1の磁界発生導体111の出力端)からの出力が第2の電界効果トランジスタ(図示せず)の制御端を制御し、制御端の信号に応じた非制御端の他端に接続された第2の磁界発生導体121に流れる電流が第2の電流となる。また、第2の電界効果トランジスタ(図示せず)に代えて、バイポーラトランジスタ、静電誘導トランジスタなどを適用してもよい。なお、第1の帰還電流による第1の磁界発生部110が発生する環境磁界とは逆方向となる第1の帰還電流磁界と、第2の電流による第2の磁界発生部120が発生する環境磁界とは逆方向となる第2の電流磁界とを同等な磁界とするためには、第2の磁界発生部120は、第1の磁界発生部110と同等な構造をとることが好ましい。特に、第1の磁界発生導体111と第2の磁界発生導体121は同等な構造をとることが好ましい。また、特に、磁界発生導体111が発生する磁界と第2の磁界発生導体121が発生する磁界は平行であることが好ましい。   The second magnetic field generation unit 120 has a second magnetic field generation conductor 121. As long as the second magnetic field generating conductor 121 gives the second magnetic field to the second magnetic detection element 20 in the opposite direction to the environmental magnetic field generated by the second current, the shape and material thereof are There is no particular question. For example, as long as the second magnetic field detection element 20 has a shape extending in one direction, the second magnetic field generating conductor 121 may be a linear conductor or a solenoid-shaped conductor. Further, the second magnetic field generating conductor 121 may be insulated from the second magnetic field detection element 20 and formed integrally with the second magnetic field detection element 20, and is disposed apart from the second magnetic field detection element 20. In addition, it may be formed in a solenoid shape so as to surround the second magnetic field detection element 20, or may be formed in a linear shape. The second magnetic field generation unit 120 may have a configuration in which one end of the second magnetic field generation conductor 121 is connected to the end of the first magnetic field generation conductor 111 via a conductor. The other end of a second field effect transistor (not shown) whose one end of the non-control end is connected to the first potential (Vc) is connected to one end of the generation conductor 121, and The output end (the output end of the first magnetic field generating conductor 111) may be connected to the control end of the second field effect transistor (not shown). When one end of the second magnetic field generating conductor 121 is connected to the end of the first magnetic field generating conductor 111 via the conductor, the first feedback current and the second current are the same. When the output terminal of the first magnetic field generation unit 110 (the output terminal of the first magnetic field generation conductor 111) is connected to the control terminal of a second field effect transistor (not shown), the first magnetic field generation unit 110 is connected. The output from the output terminal (the output terminal of the first magnetic field generating conductor 111) controls the control terminal of the second field effect transistor (not shown), and the other terminal of the non-control terminal according to the signal of the control terminal The current flowing through the second magnetic field generating conductor 121 connected to the second current is the second current. Further, a bipolar transistor, an electrostatic induction transistor, or the like may be applied instead of the second field effect transistor (not shown). Note that the first feedback current magnetic field that is opposite to the environmental magnetic field generated by the first magnetic field generation unit 110 by the first feedback current and the environment generated by the second magnetic field generation unit 120 by the second current are generated. In order to make the second current magnetic field opposite to the magnetic field the same magnetic field, the second magnetic field generator 120 preferably has a structure equivalent to that of the first magnetic field generator 110. In particular, it is preferable that the first magnetic field generating conductor 111 and the second magnetic field generating conductor 121 have an equivalent structure. In particular, the magnetic field generated by the magnetic field generating conductor 111 and the magnetic field generated by the second magnetic field generating conductor 121 are preferably parallel.

第2の磁界検出部420は、第2の磁界検出素子20を有しており、第2の電流磁界の影響を受ける場所に配置される。また、第2の磁界検出部420は、第6から第8の磁界検出素子(図示せず)を有していてもよい。ここで、第2の磁界検出素子20および第6から第8の磁界検出素子(図示せず)は第2の磁界発生部120が発生する第2の電流磁界の影響を受けるように配置される。この場合、第2の磁界検出素子20と第6の磁界検出素子(図示せず)とが接続された第3の接続点と第の7磁界検出素子(図示せず)と第8の磁界検出素子(図示せず)とが接続された第4の接続点とをそれぞれ一対の第3の差動演算部(図示せず)の入力端と接続してもよい。このように、いわゆるフルブリッジ接続された第2の磁界検出素子20および第6から第8の磁界の磁界検出素子(図示せず)を使用した場合、第3の接続点と第4の接続点との電位差から検出磁界を検出することが可能となっている。また、フルブリッジ接続されているので、出力を大きくすることも可能である。また、第2の磁界検出部420の近傍に発生する磁界は環境磁界と第2の電流磁界の両方の磁界を合わせた磁界となり、環境磁界の影響が低減された状態となっているのはいうまでもない。従って、第2の磁界検出素子20および第6から第8の磁気抵抗素子(図示せず)は、環境磁界の影響が低減された状態で検出磁界を検出することが可能となっている。なお、第2の磁界検出素子20および第6から第8の磁界検出素子(図示せず)は一体として形成されることが好ましい。また、第6から第8の磁界検出素子(図示せず)のうち1個ないし3個の磁界検出素子を抵抗としてもよい。なお、第2の磁界検出素子20および第6から第8の磁界検出素子(図示せず)は、AM磁気抵抗素子、S−V巨大磁気抵抗素子、トンネル型磁気抵抗素子などの磁気抵抗素子、ホール素子などが挙げられる。なお、第1の帰還電流により生じる環境磁界とは逆方向となる第1の帰還電流磁界および第2の電流により生じる環境磁界とは逆方向となる第2の電流磁界に対して同等な磁界の影響を受けるためには、第2の磁界検出部420は、第1の磁界検出部410と同等な構造をとることが好ましい。特に、第1の磁界検出素子10と第2の磁界検出素子20は同等な構造をとることが好ましい。複数の磁界検出素子が存在する場合も同様であり、第2の磁界検出部420は、第1の磁界検出部410と同等な磁界検出素子の構造および配置とすることが好ましい。また、特に、第2の磁界検出部420と第1の磁界検出部410とは平行に配置されることが好ましい。   The second magnetic field detection unit 420 includes the second magnetic field detection element 20 and is disposed at a location that is affected by the second current magnetic field. The second magnetic field detection unit 420 may include sixth to eighth magnetic field detection elements (not shown). Here, the second magnetic field detection element 20 and the sixth to eighth magnetic field detection elements (not shown) are arranged so as to be affected by the second current magnetic field generated by the second magnetic field generation unit 120. . In this case, a third connection point where the second magnetic field detection element 20 and the sixth magnetic field detection element (not shown) are connected, a seventh magnetic field detection element (not shown), and an eighth magnetic field detection. You may connect the 4th connection point with which the element (not shown) was connected with the input terminal of a pair of 3rd differential calculating part (not shown), respectively. Thus, when the so-called full-bridge connected second magnetic field detecting element 20 and sixth to eighth magnetic field detecting elements (not shown) are used, the third connecting point and the fourth connecting point are used. It is possible to detect the detection magnetic field from the potential difference between the two. Further, since the full bridge connection is used, the output can be increased. In addition, the magnetic field generated in the vicinity of the second magnetic field detection unit 420 is a magnetic field that combines both the environmental magnetic field and the second current magnetic field, and the influence of the environmental magnetic field is reduced. Not too long. Therefore, the second magnetic field detecting element 20 and the sixth to eighth magnetoresistive elements (not shown) can detect the detected magnetic field in a state where the influence of the environmental magnetic field is reduced. The second magnetic field detection element 20 and the sixth to eighth magnetic field detection elements (not shown) are preferably formed integrally. Further, one to three magnetic field detection elements among the sixth to eighth magnetic field detection elements (not shown) may be used as resistors. The second magnetic field detection element 20 and the sixth to eighth magnetic field detection elements (not shown) are magnetoresistive elements such as AM magnetoresistive elements, SV giant magnetoresistive elements, tunnel magnetoresistive elements, Examples include a Hall element. It should be noted that a magnetic field equivalent to the first current magnetic field that is opposite to the environmental magnetic field generated by the first feedback current and the second current magnetic field that is opposite to the environmental magnetic field generated by the second current. In order to be affected, the second magnetic field detector 420 preferably has a structure equivalent to that of the first magnetic field detector 410. In particular, it is preferable that the first magnetic field detection element 10 and the second magnetic field detection element 20 have an equivalent structure. The same applies to the case where there are a plurality of magnetic field detection elements, and the second magnetic field detection unit 420 preferably has the same structure and arrangement of magnetic field detection elements as the first magnetic field detection unit 410. In particular, the second magnetic field detector 420 and the first magnetic field detector 410 are preferably arranged in parallel.

第2の磁界検出部420は、第3の差動演算部(図示せず)を有していても良く、第3の差動演算部(図示せず)は第7の差動演算回路(図示せず)を有していてもよい。ここで、第7の差動演算回路(図示せず)の一対の入力端の一方の入力端に、第2の磁界検出素子20の出力である第2の出力を入力し、他端が第3の電位(Gnd)に接続されたものであっても良い。また、第6の磁界検出素子(図示せず)が存在する場合に、第6の磁界検出素子(図示せず)の他端と一端が第2の電位(−Vc)に接続された第4の抵抗(図示せず)の他端とが接続された接続端が第7の差動演回路(図示せず)の他方の入力端に接続されてもよい。また、第7の差動演算回路(図示せず)の一対の入力端の一方の入力端に、第2の磁界検出素子20の出力である第2の出力が入力され、他方の入力端に第3の電位(Gnd)が接続され、第8の差動演算回路(図示せず)の一対の入力端の一方の入力端に、第6の磁界検出素子(図示せず)の他端と一端が第2の電位(−Vc)に接続された第4の抵抗(図示せず)の他端とが接続された接続端が接続され、他方の入力端に第3の電位(Gnd)が接続され、第9の差動演算回路(図示せず)の一対の入力端に第7の差動演算回路(図示せず)および第8の差動演算回路(図示せず)の出力をそれぞれ入力し、第9の差動演算回路(図示せず)の出力を第3の差動演算部(図示せず)の出力としてもよい。なお、環境磁界が与えられた第2の磁界検出素子20と第6の磁界検出素子(図示せず)とは、その抵抗値の変化率の符号が異なることが好ましい。抵抗値の変化率の符号が異なることにより、第3の差動演算部(図示せず)の出力を大きくすることが可能となるので、環境磁界の検出精度を上げることが可能となる。   The second magnetic field detection unit 420 may include a third differential operation unit (not shown), and the third differential operation unit (not shown) includes a seventh differential operation circuit (not shown). (Not shown). Here, the second output which is the output of the second magnetic field detection element 20 is input to one input terminal of the pair of input terminals of the seventh differential operation circuit (not shown), and the other end is the first input terminal. 3 may be connected to the potential (Gnd). In addition, when there is a sixth magnetic field detection element (not shown), the other end and one end of the sixth magnetic field detection element (not shown) are connected to the second potential (−Vc). The connection end to which the other end of the resistor (not shown) is connected may be connected to the other input end of the seventh differential circuit (not shown). Also, the second output, which is the output of the second magnetic field detection element 20, is input to one input terminal of a pair of input terminals of a seventh differential operation circuit (not shown), and the other input terminal is connected to the other input terminal. A third potential (Gnd) is connected, and one end of a pair of input ends of an eighth differential arithmetic circuit (not shown) is connected to the other end of the sixth magnetic field detecting element (not shown). A connection end connected to the other end of a fourth resistor (not shown) whose one end is connected to the second potential (−Vc) is connected, and a third potential (Gnd) is connected to the other input end. The outputs of a seventh differential arithmetic circuit (not shown) and an eighth differential arithmetic circuit (not shown) are respectively connected to a pair of input terminals of a ninth differential arithmetic circuit (not shown). The output of the ninth differential operation circuit (not shown) may be used as the output of the third differential operation unit (not shown). The second magnetic field detection element 20 to which the environmental magnetic field is applied and the sixth magnetic field detection element (not shown) preferably have different signs of the rate of change in resistance value. Since the sign of the rate of change of the resistance value is different, the output of the third differential operation unit (not shown) can be increased, so that the detection accuracy of the environmental magnetic field can be increased.

ここで、図1に示されるように一端が第1の電位(Vc)に接続された第2の磁界検出素子20の他端は、一端が第2の電位(−Vc)に接続された検出抵抗530の他端に接続されている。従って、検出抵抗530の他端から検出磁界に応じた出力を得ることが可能となっている。また、第3の差動演算部(図示せず)が存在する場合、第3の差動演算部(図示せず)の出力が検出磁界に応じた出力となっている。   Here, as shown in FIG. 1, the other end of the second magnetic field detection element 20 having one end connected to the first potential (Vc) is detected with one end connected to the second potential (−Vc). The other end of the resistor 530 is connected. Therefore, an output corresponding to the detected magnetic field can be obtained from the other end of the detection resistor 530. When a third differential operation unit (not shown) exists, the output of the third differential operation unit (not shown) is an output corresponding to the detected magnetic field.

なお、第2の電位は−Vc、第3の電位はGndとして説明したが、これに限るものではなく、第2の電位をGnd、第3の電位をVc/2としてもよい。   Note that although the second potential is described as −Vc and the third potential is described as Gnd, the present invention is not limited to this, and the second potential may be Gnd and the third potential may be Vc / 2.

なお、環境磁界が概ね0である場合の第1の磁界検出素子10と第2の磁界検出素子20の抵抗値は同等であることが好ましく、第2の磁界検出素子20および第6から第8の磁界検出素子(図示せず)の抵抗値は同等であることが好ましい。   Note that the resistance values of the first magnetic field detection element 10 and the second magnetic field detection element 20 when the environmental magnetic field is approximately 0 are preferably equal, and the second magnetic field detection element 20 and the sixth to eighth magnetic field detection elements 20 are preferably the same. The resistance values of the magnetic field detecting elements (not shown) are preferably equal.

従来のように、環境磁界の影響を低減するために演算により各磁界検出部の出力の差分をとる方式では、第1および第2の磁界検出素子(10、20)に対応する磁界検出部の出力を出力する2つの差動演算部と、当該差動演算部の出力の差動を出力する差動演算部が必要となる。一方、本実施形態1では、第1の磁界検出部410が備える第1の差動演算部210だけで同等な働きが得られるため、差動演算部の部品点数の低減、小型化が可能となっている。また、第3の差動演算部(図示せず)が存在したとしても同様である。つまり、従来では、第1および第3の差動演算部の出力の差動演算を行う差動演算部が必要であるが、本実施形態では必要とはならない。   As in the prior art, in the method of calculating the difference between the outputs of the magnetic field detectors by calculation in order to reduce the influence of the environmental magnetic field, the magnetic field detectors corresponding to the first and second magnetic field detectors (10, 20) Two differential operation units that output outputs and a differential operation unit that outputs the differential of the outputs of the differential operation units are required. On the other hand, in the first embodiment, since the same function can be obtained only by the first differential operation unit 210 included in the first magnetic field detection unit 410, the number of parts of the differential operation unit can be reduced and the size can be reduced. It has become. The same applies even if a third differential operation unit (not shown) exists. That is, conventionally, a differential operation unit that performs a differential operation on the outputs of the first and third differential operation units is necessary, but this embodiment is not necessary.

また、本実施形態1では、検出磁界を検出するに当たり、第1の差動演算部210の出力により環境磁界検出用の磁界検出部(第1の磁界検出部410)および検出磁界用の磁界検出部(第2の磁界検出部420)のそれぞれに、概ね一様と考えられる環境磁界と逆方向の第1の磁界発生部110が発生する第1の帰還電流磁界および第2の磁界発生部120が発生する第2の電流磁界を与える電流帰還ループを形成することで、環境磁界の環境温度の変化に起因する検出磁界用の磁界検出部(第2の磁界検出部420)の出力の変動(温度ドリフト)を低減することが可能となっている。   In the first embodiment, when detecting the detected magnetic field, the magnetic field detection unit for detecting the environmental magnetic field (first magnetic field detection unit 410) and the magnetic field detection for the detection magnetic field are detected by the output of the first differential operation unit 210. The first feedback current magnetic field and the second magnetic field generator 120 generated by the first magnetic field generator 110 in the opposite direction to the environmental magnetic field that is considered to be substantially uniform in each of the units (second magnetic field detector 420). By forming a current feedback loop that gives a second current magnetic field that generates a fluctuation in the output of the magnetic field detection unit for the detection magnetic field (second magnetic field detection unit 420) due to a change in the environmental temperature of the environmental magnetic field ( (Temperature drift) can be reduced.

(実施形態2)
図2は、本実施形態2の磁界検出装置2の概要図である。磁界検出装置2は、第1の磁界発生部110が有する第1の磁界発生導体111、第1の磁界検出素子10、第1の差動演算部210が有する第1の差動演算回路211、第1の抵抗510、第2の磁界発生部120が有する第2の磁界発生導体121、第3の磁界発生導体122、第2の磁界検出素子20、第2の差動演算部220が有する第4の差動演算回路221、第2の抵抗520、検出抵抗540を備えている。ここで、第1の磁界検出素子10、第1の差動演算部210、第1の抵抗510が第1の磁界検出部410を構成し、第2の磁界検出素子20、第2の差動演算部220、第2の抵抗520、検出抵抗540が第2の磁界検出部420を構成する。以下に接続関係を示す。
(Embodiment 2)
FIG. 2 is a schematic diagram of the magnetic field detection device 2 of the second embodiment. The magnetic field detection device 2 includes a first magnetic field generation conductor 111 included in the first magnetic field generation unit 110, a first magnetic field detection element 10, a first differential operation circuit 211 included in the first differential operation unit 210, The first resistor 510, the second magnetic field generation conductor 121 included in the second magnetic field generation unit 120, the third magnetic field generation conductor 122, the second magnetic field detection element 20, and the second differential operation unit 220 include 4 differential operation circuit 221, second resistor 520, and detection resistor 540. Here, the first magnetic field detection element 10, the first differential operation unit 210, and the first resistor 510 constitute a first magnetic field detection unit 410, and the second magnetic field detection element 20 and the second differential field The calculation unit 220, the second resistor 520, and the detection resistor 540 constitute a second magnetic field detection unit 420. The connection relationship is shown below.

第1の磁界発生部110が有する第1の磁界発生導体111の一端は第1の差動演算部210が有する第1の差動演算回路211の出力端に接続されている。第1の差動演算回路211の一対の入力端のうち一方の入力端には、一端が第1の電位(Vc)に接続された第1の磁界検出素子10の他端が接続されている。第1の差動演算回路211の一対の入力端のうち他方の入力端は、第3の電位(Gnd)に接続されている。第1の磁界検出素子10の他端は、一端が第2の電位(−Vc)に接続された第1の抵抗510の他端と接続されている。第1の磁界発生導体111の他端は第2の磁界発生部120が有する第2の磁界発生導体121の一端に接続されている。第2の磁界発生導体121の他端は、第3の電位(Gnd)に接続されている。一端が第1の電位(Vc)に接続された第2の磁界検出素子20の他端は、第2の差動演算部220が有する第4の差動演算回路221の一対の入力端の一方の入力端に接続されている。第4の差動演算回路221の一対の入力端の他方の入力端は、第3の電位(Gnd)に接続されている。第2の磁界検出素子20の他端は、一端が第2の電位(−Vc)に接続された第2の抵抗520の他端と接続されている。第4の差動演算回路221の出力端は、検出抵抗540の一端に接続されている。検出抵抗540の他端は第3の磁界発生導体122の一端に接続されている。第3の磁界発生導体122の他端は、第3の電位(Gnd)に接続されている。ここで、第1の磁界検出素子10の他端が第1の出力を出力し、第2の磁界検出素子20の他端が第2の出力を出力する。実施形態1と異なるのは、第2の磁界検出部420が第2の差動演算部220を備える点、第2の磁界発生部120が、第3の磁界発生導体122を備える点であり、第2の磁界検出部420で検出される検出磁界に対して電流帰還ループを形成していることである。他の構成は実施形態1と同様であるので、第2の磁界発生部120、第2の磁界検出部420について以下に説明する。実施形態1と同等な構成についての説明は割愛する。   One end of the first magnetic field generation conductor 111 included in the first magnetic field generation unit 110 is connected to the output terminal of the first differential operation circuit 211 included in the first differential operation unit 210. One end of the pair of input ends of the first differential arithmetic circuit 211 is connected to the other end of the first magnetic field detection element 10 having one end connected to the first potential (Vc). . The other input terminal of the pair of input terminals of the first differential arithmetic circuit 211 is connected to the third potential (Gnd). The other end of the first magnetic field detection element 10 is connected to the other end of the first resistor 510 whose one end is connected to the second potential (−Vc). The other end of the first magnetic field generation conductor 111 is connected to one end of a second magnetic field generation conductor 121 included in the second magnetic field generation unit 120. The other end of the second magnetic field generating conductor 121 is connected to a third potential (Gnd). The other end of the second magnetic field detection element 20 whose one end is connected to the first potential (Vc) is one of a pair of input ends of the fourth differential operation circuit 221 included in the second differential operation unit 220. Is connected to the input terminal. The other input terminal of the pair of input terminals of the fourth differential arithmetic circuit 221 is connected to the third potential (Gnd). The other end of the second magnetic field detection element 20 is connected to the other end of the second resistor 520 whose one end is connected to the second potential (−Vc). The output terminal of the fourth differential arithmetic circuit 221 is connected to one end of the detection resistor 540. The other end of the detection resistor 540 is connected to one end of the third magnetic field generating conductor 122. The other end of the third magnetic field generating conductor 122 is connected to a third potential (Gnd). Here, the other end of the first magnetic field detection element 10 outputs a first output, and the other end of the second magnetic field detection element 20 outputs a second output. The difference from the first embodiment is that the second magnetic field detection unit 420 includes a second differential operation unit 220, and the second magnetic field generation unit 120 includes a third magnetic field generation conductor 122. A current feedback loop is formed with respect to the detected magnetic field detected by the second magnetic field detector 420. Since other configurations are the same as those of the first embodiment, the second magnetic field generation unit 120 and the second magnetic field detection unit 420 will be described below. A description of a configuration equivalent to that of the first embodiment is omitted.

第2の磁界検出部420は第2の差動演算部220を有し、第2の差動演算部220は第4の差動演算回路221を有している。ここで、第4の差動演算回路221の一対の入力端の一方の入力端に、第2の磁界検出素子20の出力である第2の出力を入力し、他方の入力端は第3の電位(Gnd)に接続されている。また、第6の磁界検出素子(図示せず)が存在する場合に、第6の磁界検出素子(図示せず)の他端と一端が第2の電位(−Vc)に接続された第3の抵抗(図示せず)の他端とが接続された接続端が第4の差動演回路221の他方の入力端に接続されてもよい。また、第4の差動演算回路221の一対の入力端の一方の入力端に、第2の磁界検出素子20の出力である第2の出力が入力され、他方の入力端に第3の電位(Gnd)が接続され、第5の差動演算回路(図示せず)の一対の入力端の一方の入力端に、第6の磁界検出素子(図示せず)の他端と一端が第2の電位(−Vc)に接続された第3の抵抗(図示せず)の他端とが接続された接続端が接続され、他方の入力端に第3の電位(Gnd)が接続され、第6の差動演算回路(図示せず)の一対の入力端に第4の差動演算回路221および第5の差動演算回路(図示せず)の出力をそれぞれ入力し、第6の差動演算回路(図示せず)の出力端が検出抵抗540の一端に接続されていてもよい。なお、環境磁界が与えられた第2の磁界検出素子20と第6の磁界検出素子(図示せず)とは、その抵抗値の変化率の符号が異なることが好ましい。抵抗値の変化率の符号が異なることにより、第2の差動演算部220の出力を大きくすることが可能となるので、環境磁界の検出精度を上げることが可能となる。   The second magnetic field detection unit 420 includes a second differential operation unit 220, and the second differential operation unit 220 includes a fourth differential operation circuit 221. Here, the second output which is the output of the second magnetic field detection element 20 is input to one input terminal of the pair of input terminals of the fourth differential arithmetic circuit 221, and the other input terminal is the third input terminal. It is connected to a potential (Gnd). In addition, when a sixth magnetic field detection element (not shown) is present, the other end and one end of the sixth magnetic field detection element (not shown) are connected to the second potential (−Vc). A connection end to which the other end of the resistor (not shown) is connected may be connected to the other input end of the fourth differential circuit 221. In addition, the second output which is the output of the second magnetic field detection element 20 is input to one input terminal of the pair of input terminals of the fourth differential arithmetic circuit 221, and the third potential is input to the other input terminal. (Gnd) is connected, and the other end and one end of the sixth magnetic field detecting element (not shown) are connected to one input end of the pair of input ends of the fifth differential arithmetic circuit (not shown). A connection terminal connected to the other end of a third resistor (not shown) connected to the second potential (−Vc), a third potential (Gnd) connected to the other input terminal, The outputs of the fourth differential arithmetic circuit 221 and the fifth differential arithmetic circuit (not shown) are respectively input to a pair of input terminals of six differential arithmetic circuits (not shown), and the sixth differential arithmetic circuit An output terminal of an arithmetic circuit (not shown) may be connected to one end of the detection resistor 540. The second magnetic field detection element 20 to which the environmental magnetic field is applied and the sixth magnetic field detection element (not shown) preferably have different signs of the rate of change in resistance value. Since the sign of the rate of change of the resistance value is different, the output of the second differential operation unit 220 can be increased, so that the detection accuracy of the environmental magnetic field can be increased.

ここで、図2に示されるように、第2の磁界発生部120が有する第3の磁界発生導体122の一端は、一端が第2の差動演算部220の出力端に接続された検出抵抗540の他端に接続され、検出抵抗540には第2の帰還電流が流れる。従って、検出抵抗540の一端から検出磁界に応じた出力を得ることが可能となっている。また、第2の差動演算部220の出力端と、非制御端の一端が第1の電位(Vc)に接続された第3の電界効果トランジスタ(図示せず)の制御端が接続され、検出抵抗540の一端が第3の電界効果トランジスタ(図示せず)の非制御端の他端に接続される構成としてもよい。この場合、第2の差動演算部220の出力端からの出力が第3の電界効果トランジスタ(図示せず)の制御端を制御し、制御端の信号に応じた非制御端の他端に接続された検出抵抗540に流れる電流が第2の帰還電流となる。また、第3の電界効果トランジスタ(図示せず)に代えて、バイポーラトランジスタ、静電誘導トランジスタなどを適用してもよい。なお、第1の帰還電流と第2の電流とがそれぞれ異なる導体に個別に流れる構成とすることも可能である。第1の磁界発生導体111の一端と一端がGndに接続された第2の磁界発生導体121の他端とを導体で接続する場合は、第1の帰還電流と第2の電流を同じにすることができる。   Here, as shown in FIG. 2, one end of the third magnetic field generating conductor 122 included in the second magnetic field generation unit 120 is connected to the output terminal of the second differential operation unit 220. The second feedback current flows through the detection resistor 540 connected to the other end of the 540. Therefore, an output corresponding to the detected magnetic field can be obtained from one end of the detection resistor 540. Further, the output terminal of the second differential operation unit 220 and the control terminal of a third field effect transistor (not shown) in which one end of the non-control terminal is connected to the first potential (Vc) are connected, One end of the detection resistor 540 may be connected to the other end of the non-control end of a third field effect transistor (not shown). In this case, the output from the output end of the second differential operation unit 220 controls the control end of the third field effect transistor (not shown), and the other end of the non-control end according to the signal at the control end. The current flowing through the connected detection resistor 540 becomes the second feedback current. Further, a bipolar transistor, an electrostatic induction transistor, or the like may be applied instead of the third field effect transistor (not shown). It is also possible to adopt a configuration in which the first feedback current and the second current individually flow through different conductors. When one end of the first magnetic field generating conductor 111 and the other end of the second magnetic field generating conductor 121 having one end connected to Gnd are connected by a conductor, the first feedback current and the second current are made the same. be able to.

また、検出抵抗540の他端は、第2の磁界発生部120が有する第3の磁界発生導体122の一端に接続されているので、第2の差動演算部220の出力端から第2の磁界発生部120が有する第3の磁界発生導体122に第2の帰還電流が流れることによって、検出磁界を低減する検出磁界とは逆方向の第2の帰還電流磁界を第2の磁界発生部120が発生する。ここで、検出磁界に対して逆方向とは第2の磁気検出素子20の検出磁界に応じた検出量を低減する異なる符号となる磁界の方向を意味する。また、第2の磁界検出部420が有する第2の磁気検出素子20以外の磁界検出素子にも同様に適用される。つまり、第2の差動演算部220は第3の磁界発生導体122に第2の帰還電流を流すように動作する。従って、第2の磁界発生部120は、第2の磁界発生導体121に流れる第2の電流に応じた第2の電流磁界および第3の磁界発生導体122に流れる第2の帰還電流に応じた第2の帰還電流磁界を発生することになる。従って、検出磁界を低減する第2の帰還電流に応じた検出磁界とは逆方向の第2の帰還電流磁界と、環境磁界を低減する第1の帰還電流に応じた環境磁界とは逆方向の第2の電流磁界とが第2の磁界検出素子20に与えられる。   In addition, the other end of the detection resistor 540 is connected to one end of the third magnetic field generating conductor 122 included in the second magnetic field generation unit 120, so that the second differential operation unit 220 can output the second When the second feedback current flows through the third magnetic field generating conductor 122 included in the magnetic field generation unit 120, the second feedback current magnetic field in the direction opposite to the detection magnetic field for reducing the detection magnetic field is changed to the second magnetic field generation unit 120. Occurs. Here, the reverse direction with respect to the detected magnetic field means the direction of the magnetic field having a different sign for reducing the detection amount according to the detected magnetic field of the second magnetic detection element 20. The same applies to magnetic field detection elements other than the second magnetic detection element 20 included in the second magnetic field detection unit 420. That is, the second differential operation unit 220 operates so as to cause the second feedback current to flow through the third magnetic field generating conductor 122. Therefore, the second magnetic field generation unit 120 responds to the second current magnetic field corresponding to the second current flowing through the second magnetic field generation conductor 121 and the second feedback current flowing through the third magnetic field generation conductor 122. A second feedback current magnetic field is generated. Therefore, the second feedback current magnetic field in the direction opposite to the detection magnetic field according to the second feedback current for reducing the detection magnetic field and the environmental magnetic field in the direction opposite to the first feedback current for reducing the environmental magnetic field. A second current magnetic field is applied to the second magnetic field detection element 20.

なお、検出抵抗540の他端を第2の磁界発生導体121の一端に接続し、第2の磁界発生導体121に第2の電流と第2の帰還電流を流してもよい。この場合、第2の磁界発生導体121に流れる第2の電流と第2の帰還電流とに応じた磁界が発生することになる。従って、部品点数が低減できることになる。また、第1の磁界発生導体111がソレノイド形状であれば、第2の磁界発生導体121は第1の磁界発生導体111と同等のソレノイド形状とすることが可能である。さらに、第1の磁界発生導体111と第2の磁界発生導体121を同一の材料を利用することで、第3の磁界発生導体122を利用する必要がないので温度係数の依存性をより低減できることになる。また、第2の磁界発生導体121と第3の磁界発生導体122が発生するそれぞれの磁界の相互作用を考慮する必要がないので、検出磁界の領域を広くすることが可能となる。   Note that the other end of the detection resistor 540 may be connected to one end of the second magnetic field generating conductor 121, and the second current and the second feedback current may flow through the second magnetic field generating conductor 121. In this case, a magnetic field corresponding to the second current flowing through the second magnetic field generating conductor 121 and the second feedback current is generated. Therefore, the number of parts can be reduced. Further, if the first magnetic field generating conductor 111 is a solenoid shape, the second magnetic field generating conductor 121 can have a solenoid shape equivalent to that of the first magnetic field generating conductor 111. Further, by using the same material for the first magnetic field generating conductor 111 and the second magnetic field generating conductor 121, it is not necessary to use the third magnetic field generating conductor 122, so that the dependency of the temperature coefficient can be further reduced. become. Further, since it is not necessary to consider the interaction between the respective magnetic fields generated by the second magnetic field generating conductor 121 and the third magnetic field generating conductor 122, the detection magnetic field region can be widened.

なお、第2の電位は−Vc、第3の電位はGndとして説明したが、これに限るものではなく、第2の電位をGnd、第3の電位をVc/2としてもよい。   Note that although the second potential is described as −Vc and the third potential is described as Gnd, the present invention is not limited to this, and the second potential may be Gnd and the third potential may be Vc / 2.

このように、本実施形態2では、環境磁界検出磁界を検出するに当たり、第2の帰還電流と第2の電流とに応じた磁界が第2の磁界検出部420に与えられる。よって、第2の差動演算部220の出力に応じて検出磁界を低減する第2の帰還電流を第2の磁界発生部120に流し、電流帰還ループを形成しているので、第2の磁界検出部420が有する第2の磁界検出素子20の抵抗変化ΔRは検出磁界に対して常に零になるように制御されるため、実施形態1と比較して環境温度に起因する第2の磁界検出部420の検出磁界に対する出力変動(温度ドリフト)を抑制しながら検出磁界を検出することが可能となっている。また、電流帰還ループを形成することにより第2の磁界検出部420が有する第2の磁界検出素子20の動作領域が制限され、抵抗変化ΔRの温度に起因する変動分を抑制しているので第2の磁界検出部420の出力の直線性も改善することが可能となっている。   As described above, in the second embodiment, when detecting the environmental magnetic field detection magnetic field, a magnetic field corresponding to the second feedback current and the second current is applied to the second magnetic field detection unit 420. Therefore, since the second feedback current that reduces the detected magnetic field according to the output of the second differential operation unit 220 flows to the second magnetic field generation unit 120 to form a current feedback loop, the second magnetic field Since the resistance change ΔR of the second magnetic field detection element 20 included in the detection unit 420 is controlled to be always zero with respect to the detection magnetic field, the second magnetic field detection caused by the environmental temperature compared to the first embodiment. It is possible to detect the detected magnetic field while suppressing output fluctuation (temperature drift) with respect to the detected magnetic field of the unit 420. In addition, since the current feedback loop is formed, the operation region of the second magnetic field detection element 20 included in the second magnetic field detection unit 420 is limited, and the variation due to the temperature of the resistance change ΔR is suppressed. The linearity of the output of the second magnetic field detector 420 can also be improved.

(実施例1)
図4は、実施例1の第1の磁界検出部410の構成図である。磁界検出部410は第1の差動演算回路211と、第1の磁気抵抗素子10、第3から第5の磁気抵抗素子(30、40、50)を有している。ここで、第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40、50)はS−V巨大磁気抵抗素子であり、基板上に形成され、自由層と導電層とピン止め層が積層された構造となっている。第1の磁気抵抗素子10の一端は第1の電位(Vc)に接続され、第1の磁気抵抗素子10の他端と第3の磁気抵抗素子30の他端が接続され、第3の磁気抵抗素子30の一端が第3の電位(Gnd)に接続されている。第4の磁気抵抗素子40の一端は第1の電位(Vc)に接続され、第4の磁気抵抗素子40の他端と第5の磁気抵抗素子50の他端が接続され、第5の磁気抵抗素子50の一端が第3の電位(Gnd)に接続されている。ここで、第1の磁気抵抗素子10と第3から第5の磁気抵抗素子(30、40、50)は同一平面に配置され、第1の磁気抵抗素子10と第3の磁気抵抗素子30の長手方向が同一直線上になるように配置され、第4の磁気抵抗素子40と第5の磁気抵抗素子50の長手方向が同一直線上になるように配置されている。第1の磁気抵抗素子10、第3から第5の磁気抵抗素子(30、40、50)が有するそれぞれのピン止め層のピン止めの向きは長手方向と直交するとともに、第1の磁気抵抗素子10に対して第3の磁気抵抗素子30のピン止めの向きは逆方向とし、第4の磁気抵抗素子40に対して第5の磁気抵抗素子50のピン止めの向きは逆方向とする。また、対角に配置される第1の磁気抵抗素子10と第5の磁気抵抗素子50、第3の磁気抵抗素子30と第4の磁気抵抗素子40のピン止めの向きは同一方向となっている。さらに、第1の磁気抵抗素子10および第3の磁気抵抗素子30と、第4の磁気抵抗素子40および第5の磁気抵抗素子50とは、互いに平行に配置されている。このように第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40,50)を配置することにより、ある方向の環境磁界に対して、第1の磁気抵抗素子10と第3の磁気抵抗素子30の接続電位(V1)が変動し、第4の磁気抵抗素子40と第5の磁気抵抗素子50の接続電位(V2)は第1の磁気抵抗素子10と第3の磁気抵抗素子30の接続電位(V1)とは反対の極性で同等の変動を示すので、第1の差動演算回路211の入力電位差を大きくすることが可能となる。すなわち、環境磁界に応じて出力される第1の差動演算回路211の出力の精度を高めることになる。
Example 1
FIG. 4 is a configuration diagram of the first magnetic field detection unit 410 according to the first embodiment. The magnetic field detection unit 410 includes a first differential operation circuit 211, a first magnetoresistive element 10, and third to fifth magnetoresistive elements (30, 40, 50). Here, the first magnetoresistive element 10 and the third to fifth magnetoresistive elements (30, 40, 50) are SV giant magnetoresistive elements, which are formed on a substrate, and have a free layer, a conductive layer, The pinned layer is laminated. One end of the first magnetoresistive element 10 is connected to the first potential (Vc), the other end of the first magnetoresistive element 10 and the other end of the third magnetoresistive element 30 are connected, and a third magnetism One end of the resistance element 30 is connected to the third potential (Gnd). One end of the fourth magnetoresistive element 40 is connected to the first potential (Vc), the other end of the fourth magnetoresistive element 40 is connected to the other end of the fifth magnetoresistive element 50, and the fifth magnetism One end of the resistance element 50 is connected to the third potential (Gnd). Here, the first magnetoresistive element 10 and the third to fifth magnetoresistive elements (30, 40, 50) are arranged on the same plane, and the first magnetoresistive element 10 and the third magnetoresistive element 30 are The fourth magnetoresistive element 40 and the fifth magnetoresistive element 50 are arranged so that their longitudinal directions are on the same straight line. The pinning directions of the pinning layers of the first magnetoresistive element 10 and the third to fifth magnetoresistive elements (30, 40, 50) are orthogonal to the longitudinal direction, and the first magnetoresistive element The direction of pinning of the third magnetoresistive element 30 with respect to 10 is reversed, and the direction of pinning of the fifth magnetoresistive element 50 with respect to the fourth magnetoresistive element 40 is reversed. Further, the pinning directions of the first magnetoresistive element 10 and the fifth magnetoresistive element 50 and the third magnetoresistive element 30 and the fourth magnetoresistive element 40 which are arranged diagonally are the same direction. Yes. Furthermore, the first magnetoresistive element 10 and the third magnetoresistive element 30, and the fourth magnetoresistive element 40 and the fifth magnetoresistive element 50 are arranged in parallel to each other. By arranging the first magnetoresistive element 10 and the third to fifth magnetoresistive elements (30, 40, 50) in this way, the first magnetoresistive element 10 and the environmental magnetic field in a certain direction The connection potential (V1) of the third magnetoresistive element 30 fluctuates, and the connection potential (V2) of the fourth magnetoresistive element 40 and the fifth magnetoresistive element 50 changes between the first magnetoresistive element 10 and the third magnetoresistive element 30. Since the same variation is exhibited with the opposite polarity to the connection potential (V1) of the magnetoresistive element 30, the input potential difference of the first differential operation circuit 211 can be increased. That is, the accuracy of the output of the first differential arithmetic circuit 211 that is output according to the environmental magnetic field is increased.

図5は、実施例1の第2の磁界検出部420と第2の磁界発生部120が有する第3の磁界発生導体122の構成図である。第2の磁界検出部420は第4の差動演算回路221と、検出抵抗540、第2の磁気抵抗素子20、第6から第8の磁気抵抗素子(60、70、80)を有している。ここで、第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)はS−V巨大磁気抵抗素子であり、基板上に形成され、自由層と導電層とピン止め層が積層された構造となっている。また、第2の磁気抵抗素子20、第6から第8の磁気抵抗素子(60、70、80)の上に絶縁膜が形成され、その上部に第3の磁界発生導体122が絶縁膜と一体となって形成されている。第2の磁気抵抗素子20の一端は第1の電位(Vc)に接続され、第2の磁気抵抗素子20の他端と第6の磁気抵抗素子60の他端が接続され、第6の磁気抵抗素子60の一端が第3の電位(Gnd)に接続されている。第7の磁気抵抗素子70の一端は第1の電位(Vc)に接続され、第7の磁気抵抗素子70の他端と第8の磁気抵抗素子80の他端が接続され、第8の磁気抵抗素子80の一端が第3の電位(Gnd)に接続されている。ここで、第2の磁気抵抗素子20と第6から第8の磁気抵抗素子(60、70、80)は同一平面に配置され、第2の磁気抵抗素子20と第6の磁気抵抗素子60の長手方向が同一直線上になるように配置され、第7の磁気抵抗素子70と第8の磁気抵抗素子80の長手方向が同一直線上になるように配置されている。第2の磁気抵抗素子20、第6から第8の磁気抵抗素子(60、70、80)が有するそれぞれのピン止め層のピン止めの向きは長手方向と直交するとともに、第2の磁気抵抗素子20に対して第6の磁気抵抗素子60のピン止めの向きは逆方向とし、第7の磁気抵抗素子70に対して第8の磁気抵抗素子80のピン止めの向きは逆方向とする。また、対角に配置される第2の磁気抵抗素子20と第8の磁気抵抗素子80、第6の磁気抵抗素子60と第7の磁気抵抗素子70のピン止めの向きは同一方向となっている。さらに、第2の磁気抵抗素子20および第6の磁気抵抗素子60と、第7の磁気抵抗素子70および第8の磁気抵抗素子80とは、互いに平行に配置されている。第3の磁界発生導体122は、第2の磁気抵抗素子20と第6の磁気抵抗素子60との上部では同一直線上の第1導電体部123となり、第7の磁気抵抗素子70と第8の磁気抵抗素子80との上部でも同一直線上の第2導電体部124になるように配置されており、検出磁界とは逆方向となる磁界を第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)に与えられるように配置されている。ここで、平行に配置された同一の材料、線幅および長さである第1および第2導電体部(123、124)間の中央に、直線状の第3導電体部125が第1および第2導電体部(123、124)と平行に存在する。また、第1の方向の第1および第3の導電体部(123、125)の一端同士が接続され、第1の方向とは逆方向の第2および第3の導線体部(124、125)の他端同士が接続される。このように第2の磁気抵抗素子20および第6から第8の磁気抵抗子(60、70,80)と、第3の磁界発生導体122を配置することにより、検出磁界に対して、第2の磁気抵抗素子20と第6の磁気抵抗素子60の接続電位(V3)が変動し、第7の磁気抵抗素子70と第8の磁気抵抗素子80の接続電位(V4)は第2の磁気抵抗素子20と第6の磁気抵抗素子60の接続電位(V3)とは反対の極性で同等の変動を示すので、第4の差動演算回路221の入力電位差を大きくすることが可能となる。すなわち、検出磁界に応じて出力される第4の差動演算回路221の出力の精度を高めることになる。また、第4の差動演算回路221の出力端は一端が第3の磁界発生導体122の第1の導電体部123の他端に接続される検出抵抗540の他端に接続され、第3の磁界発生導体122の第2の導電体部124の一端は第3の電位(GND)に接続される。   FIG. 5 is a configuration diagram of the third magnetic field generation conductor 122 included in the second magnetic field detection unit 420 and the second magnetic field generation unit 120 according to the first embodiment. The second magnetic field detection unit 420 includes a fourth differential arithmetic circuit 221, a detection resistor 540, a second magnetoresistive element 20, and sixth to eighth magnetoresistive elements (60, 70, 80). Yes. Here, the second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80) are SV giant magnetoresistive elements, which are formed on a substrate, and have a free layer, a conductive layer, The pinned layer is laminated. An insulating film is formed on the second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80), and a third magnetic field generating conductor 122 is integrated with the insulating film on the upper part. It is formed. One end of the second magnetoresistive element 20 is connected to the first potential (Vc), the other end of the second magnetoresistive element 20 and the other end of the sixth magnetoresistive element 60 are connected, and the sixth magnetism One end of the resistance element 60 is connected to the third potential (Gnd). One end of the seventh magnetoresistive element 70 is connected to the first potential (Vc), the other end of the seventh magnetoresistive element 70 and the other end of the eighth magnetoresistive element 80 are connected, and the eighth magnetic One end of the resistance element 80 is connected to the third potential (Gnd). Here, the second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80) are arranged in the same plane, and the second magnetoresistive element 20 and the sixth magnetoresistive element 60 are The seventh magnetoresistive element 70 and the eighth magnetoresistive element 80 are arranged so that their longitudinal directions are on the same straight line. The pinning directions of the pinning layers of the second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80) are orthogonal to the longitudinal direction, and the second magnetoresistive element 20, the direction of pinning of the sixth magnetoresistive element 60 is opposite to that of the sixth magnetoresistive element 60, and the direction of pinning of the eighth magnetoresistive element 80 is opposite to that of the seventh magnetoresistive element 70. In addition, the pinning directions of the second magnetoresistive element 20 and the eighth magnetoresistive element 80, and the sixth magnetoresistive element 60 and the seventh magnetoresistive element 70 arranged diagonally are the same direction. Yes. Furthermore, the second magnetoresistive element 20 and the sixth magnetoresistive element 60, and the seventh magnetoresistive element 70 and the eighth magnetoresistive element 80 are arranged in parallel to each other. The third magnetic field generating conductor 122 becomes the first conductor portion 123 on the same straight line above the second magnetoresistive element 20 and the sixth magnetoresistive element 60, and the seventh magnetoresistive element 70 and the eighth The second magnetoresistive element 124 is also arranged on the same straight line as the upper part of the second magnetoresistive element 80, and a magnetic field in the opposite direction to the detected magnetic field is applied to the second magnetoresistive element 20 and the sixth to sixth magnetic resistance elements. It arrange | positions so that it may be given to eight magnetoresistive elements (60,70,80). Here, in the center between the first and second conductor parts (123, 124) having the same material, line width and length arranged in parallel, the linear third conductor part 125 is the first and second conductor parts 125. It exists in parallel with the second conductor part (123, 124). Further, one ends of the first and third conductor portions (123, 125) in the first direction are connected to each other, and the second and third conductor portions (124, 125) in the direction opposite to the first direction are connected. ) Are connected to each other. By arranging the second magnetoresistive element 20 and the sixth to eighth magnetoresistors (60, 70, 80) and the third magnetic field generating conductor 122 in this manner, the second magnetic resistance element 20 and the sixth magnetic field generating conductor 122 are arranged with respect to the detected magnetic field. The connection potential (V3) between the first magnetoresistance element 20 and the sixth magnetoresistance element 60 varies, and the connection potential (V4) between the seventh magnetoresistance element 70 and the eighth magnetoresistance element 80 is the second magnetoresistance. Since the connection potential (V3) between the element 20 and the sixth magnetoresistive element 60 exhibits the same fluctuation with the opposite polarity, the input potential difference of the fourth differential arithmetic circuit 221 can be increased. That is, the accuracy of the output of the fourth differential arithmetic circuit 221 output according to the detected magnetic field is increased. The output terminal of the fourth differential arithmetic circuit 221 has one end connected to the other end of the detection resistor 540 connected to the other end of the first conductor portion 123 of the third magnetic field generating conductor 122, and the third One end of the second conductor portion 124 of the magnetic field generating conductor 122 is connected to a third potential (GND).

図6は実施例1の磁界検出装置3の構造図である。実装基板1aには図4に示した第1の差動演算回路211を有する第1の磁界検出部410と図5に示した第4の差動演算回路221を有する第2の磁界検出部420および第2の磁界発生部120が有する第3の磁界発生導体122が実装されている。ここで、第1の磁界発生導体111は第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40、50)と離間して配置され、第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40、50)を囲むように配置された第1のソレノイドコイルであり、第2の磁界発生導体121は第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)と離間して配置され、第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)を囲むように配置された第2のソレノイドコイルである。なお、第1および第2のソレノイドコイルはターン数、巻回方向、材質、幅、長さが同等なものとなっている。また、第1および第2のソレノイドコイルは実装基板1aの両端部側にそれぞれ配置され、第1および第2のソレノイドコイルの中心線が平行となるように配置されている。ここで、中心線とはソレノイドコイルを長さ方向から見た場合のソレノイドコイルの中心を延長した直線である。第1の磁界発生部110が有する第1の磁界発生導体111は環境磁界とは逆方向の第1の帰還電流磁界を第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40、50)に与えられるように配置されており、第2の磁界発生部120が有する第2の磁界発生導体121は環境磁界とは逆方向の第2の電流磁界を第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)に与えられるように配置されている。第1の磁界発生導体111の一端と第1の差動演算回路211の出力端が接続され、第1の磁界発生導体111の他端と第2の磁界発生導体121の一端が接続され、第2の磁界発生導体121の他端は第3の電位(Gnd)に接続されている。従って、第1の磁界発生導体111に流れる第1の帰還電流と第2の磁界発生導体121に流れる第2の電流は同じ電流となる。ここで、第1および第2のソレノイドコイルの巻回方向が同じであるので、第1の帰還電流磁界の第1のソレノイドコイルの中心線の磁界と第2の電流磁界の第2のソレノイドコイルの中心線の磁界は概ね同じ方向となる。   FIG. 6 is a structural diagram of the magnetic field detection device 3 according to the first embodiment. The mounting substrate 1a includes a first magnetic field detection unit 410 having the first differential operation circuit 211 shown in FIG. 4 and a second magnetic field detection unit 420 having the fourth differential operation circuit 221 shown in FIG. And the 3rd magnetic field generation | occurrence | production conductor 122 which the 2nd magnetic field generation part 120 has is mounted. Here, the first magnetic field generating conductor 111 is disposed apart from the first magnetoresistive element 10 and the third to fifth magnetoresistive elements (30, 40, 50). The first solenoid coil is disposed so as to surround the third to fifth magnetoresistive elements (30, 40, 50), and the second magnetic field generating conductor 121 includes the second magnetoresistive element 20 and the sixth magnetoresistive element. The eighth magnetoresistive element (60, 70, 80) is disposed apart from the second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80). The second solenoid coil. The first and second solenoid coils have the same number of turns, winding direction, material, width, and length. The first and second solenoid coils are arranged on both end sides of the mounting substrate 1a, respectively, so that the center lines of the first and second solenoid coils are parallel to each other. Here, the center line is a straight line obtained by extending the center of the solenoid coil when the solenoid coil is viewed from the length direction. The first magnetic field generation conductor 111 included in the first magnetic field generation unit 110 generates a first feedback current magnetic field in a direction opposite to the environmental magnetic field by using the first magnetoresistance element 10 and the third to fifth magnetoresistance elements (30 , 40, 50), and the second magnetic field generating conductor 121 included in the second magnetic field generation unit 120 applies a second current magnetic field in the direction opposite to the environmental magnetic field to the second magnetoresistive. Arranged to be applied to the element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80). One end of the first magnetic field generating conductor 111 and the output end of the first differential arithmetic circuit 211 are connected, the other end of the first magnetic field generating conductor 111 and one end of the second magnetic field generating conductor 121 are connected, The other end of the second magnetic field generating conductor 121 is connected to a third potential (Gnd). Therefore, the first feedback current flowing through the first magnetic field generating conductor 111 and the second current flowing through the second magnetic field generating conductor 121 are the same current. Here, since the winding directions of the first and second solenoid coils are the same, the magnetic field at the center line of the first solenoid coil of the first feedback current magnetic field and the second solenoid coil of the second current magnetic field The magnetic field of the center line is substantially in the same direction.

上述した通り、第1の磁界発生導体111および第2の磁界発生導体121は、ソレノイド状のコイルとなっており、第1の磁界発生導体111と離間して配置された第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40、50)は第1の磁界発生導体111である第1のソレノイドコイルの内部に配置され、第2の磁界発生導体121と離間して配置された第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)は第2の磁界発生導体121である第2のソレノイドコイルの内部に配置されている。さらに、第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40、50)は、第1の磁界発生導体111の中心、すなわち第1のソレノイドコイルの中心線から概ね等距離に配置され、第1の磁気抵抗素子10および第3の磁気抵抗素子30と第4の磁気抵抗素子40および第5の磁気抵抗素子50とが第1の磁界発生導体111である第1のソレノイドコイルの中心を通る第1直線(図示せず)に対して線対称となり、かつ、第1の磁気抵抗素子10および第4の磁気抵抗素子40と第3の磁気抵抗素子30および第5の磁気抵抗素子50とが第1の磁界発生導体111である第1のソレノイドコイルの中心を通る第1直線(図示せず)と直交する第2直線(図示せず)に対して線対称となることが好ましい。第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)は、第2の磁界発生導体121の中心、すなわち第2のソレノイドコイルの中心線から概ね等距離に配置され、第2の磁気抵抗素子20および第6の磁気抵抗素子60と第7の磁気抵抗素子70および第8の磁気抵抗素子80とが第2の磁界発生導体121である第2のソレノイドコイルの中心を通る第3直線(図示せず)に対して線対称となり、かつ、第2の磁気抵抗素子20および第7の磁気抵抗素子70と第6の磁気抵抗素子60および第8の磁気抵抗素子80とが第2の磁界発生導体121である第2のソレノイドコイルの中心を通る第3直線(図示せず)と直交する第4直線(図示せず)に対して線対称となることが好ましい。さらに、第1の磁気抵抗素子10および第3から第5の磁気抵抗素子(30、40、50)が配置されている面と第2および第6から第8の磁気抵抗素子(60、70、80)が配置されている面は、第1から第8の磁気抵抗素子(10〜80)の長手方向が同一方向を向くように、平行となっていることが好ましい。なお、本実施例1では、第2直線と第1のソレノイドコイルの中心を通る中心線がほぼ一致しており、第4直線と第2ソレノイドコイルの中心を通る中心線がほぼ一致した配置となっている。このような配置とすることで、第1から第8の磁気抵抗素子(10〜80)は、長手方向と直交する磁界に対して抵抗が変化することになるので、同一磁界に対する図4、5に示されるそれぞれのブリッジ回路の出力を大きくすることが可能である。また、第1および第2のソレノイドコイルを個別に配置するので、一体となったソレノイドコイルと比較して設計が容易となっている。また、一体となったソレノイドコイルよりコイル自体の小型化が可能となっている。   As described above, the first magnetic field generating conductor 111 and the second magnetic field generating conductor 121 are solenoid-like coils, and the first magnetoresistive element disposed apart from the first magnetic field generating conductor 111. 10 and the third to fifth magnetoresistive elements (30, 40, 50) are arranged inside the first solenoid coil which is the first magnetic field generating conductor 111 and are separated from the second magnetic field generating conductor 121. The arranged second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80) are arranged inside the second solenoid coil which is the second magnetic field generating conductor 121. Further, the first magnetoresistive element 10 and the third to fifth magnetoresistive elements (30, 40, 50) are substantially equal from the center of the first magnetic field generating conductor 111, that is, from the center line of the first solenoid coil. The first magnetoresistive element 10 and the third magnetoresistive element 30, the fourth magnetoresistive element 40 and the fifth magnetoresistive element 50 are disposed at a distance, and the first magnetic field generating conductor 111 is the first magnetic field generating conductor 111. The first magnetoresistive element 10, the fourth magnetoresistive element 40, the third magnetoresistive element 30, and the fifth magnetoresistive element are axisymmetric with respect to a first straight line (not shown) passing through the center of the solenoid coil. The magnetoresistive element 50 is symmetrical with respect to a second straight line (not shown) orthogonal to a first straight line (not shown) passing through the center of the first solenoid coil that is the first magnetic field generating conductor 111. It is preferable. The second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80) are substantially equidistant from the center of the second magnetic field generating conductor 121, that is, the center line of the second solenoid coil. And a second solenoid coil in which the second magnetoresistive element 20, the sixth magnetoresistive element 60, the seventh magnetoresistive element 70, and the eighth magnetoresistive element 80 are the second magnetic field generating conductor 121. And a second magnetoresistive element 20, a seventh magnetoresistive element 70, a sixth magnetoresistive element 60, and an eighth magnetoresistive element. The element 80 may be axisymmetric with respect to a fourth straight line (not shown) orthogonal to a third straight line (not shown) passing through the center of the second solenoid coil that is the second magnetic field generating conductor 121. preferable. Furthermore, the surface on which the first magnetoresistive element 10 and the third to fifth magnetoresistive elements (30, 40, 50) are arranged and the second and sixth to eighth magnetoresistive elements (60, 70, 80) is preferably parallel so that the longitudinal directions of the first to eighth magnetoresistive elements (10 to 80) face the same direction. In the first embodiment, the second straight line and the center line passing through the center of the first solenoid coil substantially coincide with each other, and the fourth straight line and the center line passing through the center of the second solenoid coil substantially coincide with each other. It has become. With such an arrangement, the first to eighth magnetoresistive elements (10 to 80) change in resistance with respect to the magnetic field orthogonal to the longitudinal direction. It is possible to increase the output of each bridge circuit shown in FIG. In addition, since the first and second solenoid coils are individually arranged, the design is facilitated as compared with the integrated solenoid coil. In addition, the coil itself can be made smaller than the integrated solenoid coil.

第1の磁界検出部410で環境磁界が検出されると第1の磁気抵抗素子10と第3の磁気抵抗素子30の接続電位(V1)と第4の磁気抵抗素子40と第5の磁気抵抗素子50の接続電位(V2)に電位差が発生し、第1の差動演算回路211はこの電位差に応じた出力、すなわち第1の帰還電流を第1の磁界発生導体111へ流し、環境磁界を低減させるように環境磁界とは逆方向の磁界を発生させる。結果、第1の差動演算回路211の一対の入力端の電位差は零となり、環境磁界に応じた第1の帰還電流が第2の電流として第2の磁界発生導体121へ流れる。   When the first magnetic field detection unit 410 detects an environmental magnetic field, the connection potential (V1) between the first magnetoresistance element 10 and the third magnetoresistance element 30, the fourth magnetoresistance element 40, and the fifth magnetoresistance. A potential difference is generated in the connection potential (V2) of the element 50, and the first differential operation circuit 211 passes an output corresponding to the potential difference, that is, a first feedback current to the first magnetic field generating conductor 111, and an environmental magnetic field is generated. A magnetic field in the direction opposite to the environmental magnetic field is generated so as to reduce. As a result, the potential difference between the pair of input terminals of the first differential arithmetic circuit 211 becomes zero, and the first feedback current corresponding to the environmental magnetic field flows to the second magnetic field generating conductor 121 as the second current.

第1の磁界検出部210および第2の磁界検出部420に影響する環境磁界は概ね均一であると考えられるため、第2の磁界発生導体121において第2の電流により発生する磁界が環境磁界を低減させることで、第2の磁気抵抗素子20、第6から第8の磁気抵抗素子(60、70、80)は環境磁界が低減された状態で検出磁界を検出することができる。   Since the environmental magnetic field that affects the first magnetic field detection unit 210 and the second magnetic field detection unit 420 is considered to be substantially uniform, the magnetic field generated by the second current in the second magnetic field generation conductor 121 changes the environmental magnetic field. By reducing, the second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80) can detect the detection magnetic field in a state where the environmental magnetic field is reduced.

第2の磁界検出部420で検出磁界が検出されると第2の磁気抵抗素子20と第6の磁気抵抗素子60の接続電位(V3)と第7の磁気抵抗素子70と第8の磁気抵抗素子80の接続電位(V4)に電位差が発生し、第4の差動演算回路221はこの電位差を0とするように第2の帰還電流を検出抵抗540および第3の磁界発生導体122へ流し、第3の磁界発生導体122は検出磁界を低減させるように検出磁界とは逆方向の磁界を発生させる。   When the detected magnetic field is detected by the second magnetic field detector 420, the connection potential (V3) of the second magnetoresistive element 20 and the sixth magnetoresistive element 60, the seventh magnetoresistive element 70, and the eighth magnetoresistive. A potential difference is generated in the connection potential (V4) of the element 80, and the fourth differential operation circuit 221 causes the second feedback current to flow to the detection resistor 540 and the third magnetic field generating conductor 122 so that the potential difference becomes zero. The third magnetic field generating conductor 122 generates a magnetic field opposite to the detected magnetic field so as to reduce the detected magnetic field.

従って、第4の差動演算回路221の一対の入力端の電位差は零となり、検出磁界に応じた第2の帰還電流を検出抵抗540と第4の演算回路221との接続点において電圧値として検出することが可能となる。   Accordingly, the potential difference between the pair of input terminals of the fourth differential arithmetic circuit 221 is zero, and the second feedback current corresponding to the detected magnetic field is used as a voltage value at the connection point between the detection resistor 540 and the fourth arithmetic circuit 221. It becomes possible to detect.

第1の差動演回路211の出力は、第1の磁界発生導体111に対して環境磁界を低減させる磁界を発生させる電流を流す電流帰還ループを形成しているので、第1の磁界検出部410が有する磁気抵抗素子(10、30、40、50)の抵抗変化ΔRは環境磁界に対して第1の差動演回路211の出力が常に零になるように制御されるため、抵抗変化△Rにおける温度による出力変動(温度ドリフト)を抑制することができる。また、第2の磁界発生導体121にも同等の電流が流れることから第2の磁界発生導体121が発生する環境磁界を低減させる第2の電流磁界も第2の磁界検出部420が有する磁気抵抗素子(20、60、70、80)の抵抗変化△Rの温度による出力変動(温度ドリフト)が抑制されることになる。つまり、第4の差動演算回路221の出力は環境磁界における磁気抵抗素子の抵抗変化△Rの温度による出力変動(温度ドリフト)が抑制された状態で検出磁界を検出することが可能である。また、検出磁界においても第2の帰還電流を第3の磁界発生導体122に流す電流帰還ループを形成しているので、第2の磁界検出部420が有する磁気抵抗素子(20、60、70,80)の抵抗変化△Rの温度による出力変動(温度ドリフト)を抑制させることが可能である。   Since the output of the first differential circuit 211 forms a current feedback loop for flowing a current for generating a magnetic field for reducing the environmental magnetic field to the first magnetic field generating conductor 111, the first magnetic field detecting unit The resistance change ΔR of the magnetoresistive element (10, 30, 40, 50) included in 410 is controlled so that the output of the first differential circuit 211 is always zero with respect to the environmental magnetic field. Output fluctuation (temperature drift) due to temperature in R can be suppressed. In addition, since an equivalent current flows through the second magnetic field generation conductor 121, the second magnetic field detection unit 420 also includes a second current magnetic field that reduces the environmental magnetic field generated by the second magnetic field generation conductor 121. The output fluctuation (temperature drift) due to the temperature of the resistance change ΔR of the element (20, 60, 70, 80) is suppressed. That is, the output of the fourth differential arithmetic circuit 221 can detect the detected magnetic field in a state where the output fluctuation (temperature drift) due to the temperature of the resistance change ΔR of the magnetoresistive element in the environmental magnetic field is suppressed. In addition, since a current feedback loop is formed in which the second feedback current flows through the third magnetic field generating conductor 122 even in the detected magnetic field, the magnetoresistive elements (20, 60, 70,. It is possible to suppress the output fluctuation (temperature drift) due to the temperature of the resistance change ΔR of 80).

第2の磁界発生導体121において第2の電流により発生する磁界が環境磁界を低減するため、第2の磁気抵抗素子20および第6から第8の磁気抵抗素子(60、70、80)は環境磁界が低減された状態で検出磁界を検出することができるので、環境磁界を除くための演算回路が必要なく、部品点数が削減でき、コストを抑え小型化が可能である。   Since the magnetic field generated by the second current in the second magnetic field generating conductor 121 reduces the environmental magnetic field, the second magnetoresistive element 20 and the sixth to eighth magnetoresistive elements (60, 70, 80) are the environment. Since the detection magnetic field can be detected in a state where the magnetic field is reduced, there is no need for an arithmetic circuit for removing the environmental magnetic field, the number of parts can be reduced, the cost can be reduced, and the size can be reduced.

微小な検出磁界などの磁界を検出する磁界検出装置および磁界検出装置を利用する測定機器、電気機器などに適用可能である。   The present invention can be applied to a magnetic field detection device that detects a magnetic field such as a minute detection magnetic field, a measurement device that uses the magnetic field detection device, and an electric device.

1 2 3 磁界検出装置
1a 実装基板
10 20 磁界検出素子
110 120 磁界発生部
111 121 122 磁界発生導体
123 124 125 導電体部
210 220 差動演算部
211 221 差動演算回路
410 420 磁界検出部
510 520 抵抗
530 540 検出抵抗
1 2 3 Magnetic field detection device 1a Mounting board 10 20 Magnetic field detection element 110 120 Magnetic field generation unit 111 121 122 Magnetic field generation conductor 123 124 125 Conductor unit 210 220 Differential operation unit 211 221 Differential operation circuit 410 420 Magnetic field detection unit 510 520 Resistance 530 540 Detection resistance

Claims (2)

第1のコイルを有する第1の磁界発生部と、
第1の磁界検出素子と環境磁界に応じた前記第1の磁界検出素子の第1の出力が入力され前記第1の磁界検出素子に前記環境磁界とは逆方向の第1の帰還電流磁界を前記第1の磁界発生部が与えるべく前記第1のコイルに第1の帰還電流を流す第1の差動演算部とを有する第1の磁界検出部と、
前記第1の帰還電流に応じた第2の電流が流れる第2のコイルを有する第2の磁界発生部と、
第2の磁界検出素子を有する第2の磁界検出部とを有し、
前記第2のコイルは、前記第2の磁界検出素子に前記第2の電流に応じた前記環境磁界とは逆方向の磁界を与え、
前記第2の磁界検出部は検出磁界を検出し、前記第1のコイルの中心線と前記第2のコイルの中心線とが平行かつ、ほぼ一致しており、前記第1の磁界検出素子は、前記第1のコイルの内部に配置されており、前記第2の磁界検出素子は、前記第2のコイルの内部に配置されている磁界検出装置。
A first magnetic field generator having a first coil;
A first output of the first magnetic field detection element corresponding to the first magnetic field detection element and the environmental magnetic field is input, and a first feedback current magnetic field in a direction opposite to the environmental magnetic field is applied to the first magnetic field detection element. A first magnetic field detection unit having a first differential operation unit for supplying a first feedback current to the first coil to be provided by the first magnetic field generation unit;
A second magnetic field generator having a second coil through which a second current corresponding to the first feedback current flows;
A second magnetic field detection unit having a second magnetic field detection element,
The second coil applies a magnetic field in a direction opposite to the environmental magnetic field according to the second current to the second magnetic field detection element,
The second magnetic field detection unit detects a detection magnetic field, and a center line of the first coil and a center line of the second coil are parallel and substantially coincide with each other, and the first magnetic field detection element is The magnetic field detection device is arranged inside the first coil, and the second magnetic field detection element is arranged inside the second coil .
前記第1および第2の磁界検出素子は、磁気抵抗素子である請求項1に記載の磁界検出装置。 The magnetic field detection device according to claim 1, wherein the first and second magnetic field detection elements are magnetoresistive elements.
JP2017103166A 2017-05-25 2017-05-25 Magnetic field detector Active JP6394740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017103166A JP6394740B2 (en) 2017-05-25 2017-05-25 Magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017103166A JP6394740B2 (en) 2017-05-25 2017-05-25 Magnetic field detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013225532A Division JP6255902B2 (en) 2013-10-30 2013-10-30 Magnetic field detector

Publications (2)

Publication Number Publication Date
JP2017187502A JP2017187502A (en) 2017-10-12
JP6394740B2 true JP6394740B2 (en) 2018-09-26

Family

ID=60046475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103166A Active JP6394740B2 (en) 2017-05-25 2017-05-25 Magnetic field detector

Country Status (1)

Country Link
JP (1) JP6394740B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232647B2 (en) * 2018-03-29 2023-03-03 旭化成エレクトロニクス株式会社 Magnetic detector
US11002806B2 (en) * 2018-03-29 2021-05-11 Asahi Kasei Microdevices Corporation Magnetic field detection device
SE1950159A1 (en) * 2019-02-11 2020-08-12 Alexei Kalaboukhov Measurement system for magnetic samples

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1140214A (en) * 1980-01-29 1983-01-25 Malcolm E. Bell Multisensor magnetometers
JPS58154615A (en) * 1982-03-10 1983-09-14 Copal Co Ltd Magnetic detector
JPS603515A (en) * 1983-06-21 1985-01-09 Copal Co Ltd Magnetism detector

Also Published As

Publication number Publication date
JP2017187502A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6255902B2 (en) Magnetic field detector
US7737678B2 (en) Magnetic sensor and current sensor
US8952687B2 (en) Current sensor
JP4807535B2 (en) Magnetic sensor
CN110494760B (en) Magnetic sensor
JP5888402B2 (en) Magnetic sensor element
JP2015219061A (en) Magnetic field detection sensor and magnetic field detection device using the same
JP2011196798A (en) Current sensor
JP7140149B2 (en) Current sensors, magnetic sensors and circuits
JP6394740B2 (en) Magnetic field detector
US20160041209A1 (en) Sensor element with temperature compensating function, and magnetic sensor and electric power measuring device which use same
JP6690617B2 (en) Magnetic sensor device and current sensor
JP2016145745A (en) Magnetic sensor
WO2015156260A1 (en) Current detection device
CN110837066B (en) Magnetic field sensing device
JP6413317B2 (en) Current sensor
WO2015125699A1 (en) Magnetic sensor
JP5924694B2 (en) Magnetic field detection device, current detection device, semiconductor integrated circuit, and magnetic field detection method
JP2013047610A (en) Magnetic balance type current sensor
TWI703338B (en) Electric current sensor
TWI714107B (en) Electric current sensor
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus
JP7286932B2 (en) magnetic sensor
JP2011196698A (en) Current detector
WO2017141763A1 (en) Current sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6394740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150