TWI700700B - 半導體記憶裝置 - Google Patents

半導體記憶裝置 Download PDF

Info

Publication number
TWI700700B
TWI700700B TW108133500A TW108133500A TWI700700B TW I700700 B TWI700700 B TW I700700B TW 108133500 A TW108133500 A TW 108133500A TW 108133500 A TW108133500 A TW 108133500A TW I700700 B TWI700700 B TW I700700B
Authority
TW
Taiwan
Prior art keywords
circuit
detection circuit
test
voltage
power
Prior art date
Application number
TW108133500A
Other languages
English (en)
Other versions
TW202113855A (zh
Inventor
須藤直昭
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW108133500A priority Critical patent/TWI700700B/zh
Application granted granted Critical
Publication of TWI700700B publication Critical patent/TWI700700B/zh
Publication of TW202113855A publication Critical patent/TW202113855A/zh

Links

Images

Abstract

提供能夠減低消耗電力,同時當測試運作時,正確執行電源切斷運作的半導體記憶裝置。 本發明的快閃記憶體,包含:低電力電壓檢測電路,檢測供給電壓下降到一定電壓;高精度電壓檢測電路,檢測供給電壓下降到一定電壓;以及控制器,當內部電路為測試狀態時,選擇高精度電壓檢測電路,當內部電路不為測試狀態時,選擇低電力電壓檢測電路,響應低電力電壓檢測電路或高精度電壓檢測電路的檢測結果,執行電源切斷運作。

Description

半導體記憶裝置
本發明是關於快閃記憶體等半導體記憶裝置,特別是關於測試運作時的電源切斷(Power Down)檢測。
NAND型快閃記憶體為了儲存讀取、編程、抹除等用途的電壓設定,或是使用者選項等的設定資訊,而使用了熔絲格(Fuse Cell)。熔絲格被設定為如記憶體陣列內無法由使用者存取的記憶區域。快閃記憶體在供電時,從熔絲格當中讀取設定資訊作為電源開啟(Power Up)運作,將設定資訊載入到內部暫存器。控制器於電源開啟運作結束後,基於保持在內部暫存器當中的設定資訊控制各運作(專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本專利第6494139號公報
[發明所欲解決的課題]
針對快閃記憶體供電時的電源開啟檢測運作,以及斷電時的電源切斷檢測運作,參照第1圖說明。第1圖表示來自於外部供給的電壓以及時間的關係。
電源開啟檢測部,例如,供給3.0V的電壓的快閃記憶體中,當該運作保證電壓為2.7V~3.3V時,檢測約2.2V的電源開啟電壓位準V_PU,作為供電時為了讓電源開啟運作開始的電壓。電源開啟檢測部最初使用精度比較不高的檢測電路,檢測供給電壓到達一定電壓,接著,使用精度比較高的檢測電路,檢測供給電壓到達電源開啟電壓位準V_PU。精度高的檢測電路,包含基準電壓產生電路,或用來比較基準電壓與供給電壓的比較電路。檢測到電源開啟電壓位準V_PU後,則執行電源開啟程序,內部電路將初始化(重設),從記憶體陣列的熔絲格當中讀取的設定資訊,將設定於暫存器……等運作。其後,當供給電壓上昇到運作保證電壓,則開始正常的運作。
第2圖表示既有的電源切斷檢測部。電源切斷檢測部10檢測到供給電壓Vcc下降到電源切斷電壓位準V_PD後,則輸出重設訊號給中央處理器或邏輯電路等內部電路20。例如,外部的電力供給能力較低,或出現比內部電路20的運作還大的峰值電流時,供給電壓Vcc下降到電源切斷電壓位準V_PD。內部電路20接收到來自於電源切斷檢測部10的重設訊號後,則執行電源切斷運作,停止內部電路20的電荷泵(Charge Pump)電路的運作,執行中央處理器或邏輯等的重設。
電源切斷電壓位準V_PD比電源開啟電壓位準V_PU還低(若不這樣的話,電源開啟運作之後將執行電源切斷運作,無法讓快閃記憶體運作);另外,電源切斷電壓位準V_PD以及電源開啟電壓位準V_PU,都設定為比內部電路的CMOS(互補式金屬氧化物半導體)的運作電壓Vt(例如,PMOS(P型金屬氧化物半導體)的臨界值與NMOS(N型金屬氧化物半導體)的臨界值的合計)還大(若不這樣的話,就無法讓電源開啟運作或電源切斷運作正確執行)。
另外,當快閃記憶體為待命(Standby)狀態時,在該狀態下可容許消耗的消耗電流,依規格而定義。由於這樣的約制,電源切斷檢測部10的構成,不會超過待命狀態的容許消耗電流,且運作電流為最小。例如第3圖所示,電源切斷檢測部10使用電阻分壓以及反相器,由簡易的電路所構成,檢測到電源切斷電壓位準V_PD時,輸出H位準的檢測訊號Vdet。
由於電源切斷檢測部10不包含如電源開啟檢測部的基準電壓產生電路或比較電路,因此能夠減低消耗電力,但反過來說,檢測精度比電源開啟檢測部還差。因此,如第1圖所示,電源切斷檢測部10檢測範圍H2的變動(Variation),比電源開啟檢測部檢測範圍H1的變動還大。
使用這樣的電源切斷檢測部10時,由於檢測範圍H2的變動很大,因此本質上始終存在無法正確檢測電源切斷電壓位準V_PD的問題。假如快閃記憶體為待命狀態,即使電源切斷電壓位準V_PD的檢測範圍有些許的誤差,也沒有特別的影響;但如果內部電路的測試中無法正確檢測電源切斷電壓位準V_PD,則很有可能對快閃記憶體引起嚴重的問題。在測試記憶單元陣列或其周邊電路等情況下,大多是實行多併行測定,因此,在供給電壓容易下降的環境中,在測試當中,即使供給電壓下降到比電源切斷電壓位準V_PD還低,也無法開始電源切斷運作,則會因為錯誤的運作,導致高電壓施加在預期之外的電路,而使電路故障;或是錯誤的測試資料被編程到記憶單元,而使測試本身也失去了信賴性。
本發明的目的是解決這樣的既有課題,提供能夠減低消耗電力,同時當測試運作時,正確執行電源切斷運作的半導體記憶裝置。 [用以解決課題的手段]
關於本發明的半導體記憶裝置,包含:第1檢測電路,檢測供給電壓下降到一定電壓;第2檢測電路,具有比該第1檢測電路還高的檢測精度,檢測該供給電壓下降到該一定電壓;選擇裝置,當內部電路為測試狀態時,選擇該第2檢測電路;當該內部電路不為該測試狀態時,選擇該第1檢測電路;以及執行裝置,響應該第1檢測電路或該第2檢測電路的檢測結果,執行電源切斷運作。 [發明效果]
根據本發明,使得當內部電路為測試狀態時,選擇第2檢測電路,當內部電路不為測試狀態時,選擇第1檢測電路;響應所選擇的第1檢測電路或第2檢測電路的檢測結果,執行電源切斷運作,因此,能夠減低消耗電力,同時當測試運作時,正確執行電源切斷運作。
其次,針對本發明的實施形態參照圖式詳細說明。本發明的半導體記憶裝置,較佳的態樣為NAND(反及)型或NOR(反或)型快閃記憶體、可變電阻式記憶體、以及磁阻式隨機存取記憶體等非揮發性記憶體。以下的說明當中,例示NAND型快閃記憶體。 [實施例]
關於本發明實施例的快閃記憶體的概略構成於第4圖表示。本實施例的快閃記憶體100,包含:記憶單元陣列110,以行列狀配置複數個記憶單元;輸入輸出緩衝120,連接外部輸入輸出端子I/O;位址暫存器130,從輸入輸出緩衝120接收位址資料;控制器140,從輸入輸出緩衝120接收指令資料等,並控制各部;字元線選擇電路150,從位址暫存器130接收行位址資訊Ax,解碼行位址資訊Ax,基於解碼結果執行區塊的選擇以及字元線的選擇等;頁緩衝/感測電路160,保持從字元線選擇電路150所選擇的頁當中讀取出的資料,同時保持應編程到所選擇的頁的輸入資料;列選擇電路170,從位址暫存器130接收列位址資訊Ay,解碼列位址資訊Ay,基於該解碼結果,選擇頁緩衝/感測電路160內的列位址的資料;內部電壓產生電路180,產生資料的讀取、編程、抹除等用途所必要的各種電壓(寫入電壓Vpgm、通過電壓Vpass、讀取通過電壓Vread、抹除電壓Vers等);電源開啟檢測部190,在供電時監視由外部端子供給的供給電壓Vcc,檢測電源開啟電壓位準V_PU,輸出電源開啟檢測訊號PWRDET;電源切斷檢測部200,監視供給電壓Vcc,檢測電源切斷電壓位準V_PD,輸出電源切斷檢測訊號DET_H/DET_L;以及測試控制電路240,執行包含記憶單元陣列及其周邊電路在內的內部電路的測試。
記憶單元陣列110包含列方向配置的m個區塊BLK(0)、BLK(1)、……、BLK(m-1)。一個區塊中形成有複數個NAND串列,每個NAND串列為複數個記憶單元直列連接。NAND串列可以在基板表面上2維形成,也可以在基板表面上3維形成。另外,記憶單元可以為記憶1位元(2值資料)的單級單元型(SLC, Single Level Cell),也可以為記憶多位元的多級單元型(MLC, Multi Level Cell)。1個NAND串列直列連接複數個記憶單元(例如64個)、位元線側選擇電晶體、以及源極線側選擇電晶體而構成。位元線側選擇電晶體的汲極,連接對應的1個位元線GBL;源極線側選擇電晶體的源極,連接共同的源極線SL。
讀取運作當中,對位元線施加一些正的電壓,對選擇字元線施加一些電壓(例如0V),對非選擇字元線施加通過電壓Vpass(例如4.5V),對選擇閘極線施加正的電壓(例如4.5V),使NAND串列的位元線側選擇電晶體,以及源極線側選擇電晶體導通,對共同源極線施加0V。編程(寫入)運作當中,對選擇字元線施加高電壓的編程電壓Vpgm(15~20V),對非選擇的字元線施加中間電位(例如10V),使位元線側選擇電晶體導通,使源極線側選擇電晶體斷開,把「0」或「1」對應的電位提供給位元線。抹除運作當中,對區塊內的選擇字元線施加0V,對P井區施加高電壓(例如20V),將浮閘的電子從基板拉出,藉此以區塊為單位抹除資料。
電源開啟檢測部190檢測到供電時提供給快閃記憶體100的供給電壓Vcc到達電源開啟電壓位準V_PU後,輸出電源開啟檢測訊號PWRDET給控制器140。控制器140包含如中央處理器或唯讀記憶體/隨機存取記憶體等,唯讀記憶體/隨機存取記憶體當中儲存執行電源開啟運作、電源切斷運作、讀取運作、編程運作、以及抹除運作等用途的命令或資料等程式。控制器140接收到電源開啟檢測訊號PWRDET後,響應電源開啟檢測訊號PWRDET,依照唯讀記憶體/隨機存取記憶體當中讀取出的程式執行電源開啟運作。電源開啟運作當中,執行包含控制器140在內的內部電路的重設,或記憶單元陣列110的熔絲格的讀取等。
電源切斷檢測部200檢測到供給電壓Vcc下降到電源切斷電壓位準V_PD後,相應快閃記憶體100的運作狀態,輸出電源切斷檢測訊號DET_L或DET_H給控制器140。控制器140接收到電源切斷檢測訊號DET_L/DET_H後,響應電源切斷檢測訊號DET_L/DET_H,依照唯讀記憶體/隨機存取記憶體當中讀取出的程式執行電源切斷運作。電源切斷運作當中,執行包含控制器140在內的內部電路的重設,或電荷泵電路的停止等。
測試控制電路240並未特別限定其構成,例如,可以是內建自我測試(BIST, Built-In Self Test)電路。內建自我測試電路是將記憶體或邏輯等測試簡易化的設計技術之一,包含了用於自我測試包含記憶單元陣列110或其周邊電路在內的內部電路的機能,能夠在晶圓等級、晶片等級、或者封裝等級執行內部電路的測試。另外,內建自我測試電路可以包含如產生測試形態的電路,對照測試結果與期望值的電路,輸出合格或不合格作為對照結果的電路等。
測試控制電路240,例如,響應施加於測試用端子的測試訊號,而執行內部電路的測試;或者響應從外部輸入進來的測試用指令,而執行內部電路的測試。執行內部電路的測試時,測試控制電路240輸出如H位準的測試訊號TEST_PD表示測試中。
第5圖表示本實施例的電源切斷檢測部200的內部構成。如同圖所示,電源切斷檢測部200包含:低電力電壓檢測電路210,高精度電壓檢測電路220,以及選擇器230。低電力電壓檢測電路210為比較簡易的電路,由更可以減低消耗電力的電路所構成,例如,如第3圖所示,由包含電阻與反相器之檢測電路10所構成。檢測電路10時常監控供給電壓Vcc,而檢測電路10的電阻大小,被選擇使得當檢測節點N已下降到電源切斷電壓位準V_PD時,檢測節點N的電壓變為反相器的臨界值以下。如此一來,檢測到供給電壓Vcc下降到電源切斷電壓位準V_PD後,低電力電壓檢測電路210輸出表示該檢測結果的H位準的檢測訊號DET_L給選擇器230(對應第3圖的檢測訊號Vdet)。
高精度電壓檢測電路220包含:基準電壓產生器222,產生基準電壓Vref;以及比較電路224,比較基準電壓產生器222產生的基準電壓Vref以及供給電壓Vcc。基準電壓Vref設定為電源切斷電壓位準V_PD,供給電壓Vcc下降到電源切斷電壓位準V_PD以下後,比較電路224輸出表示該情事的H位準的檢測訊號DET_H給選擇器230。
基準電壓產生電路222並未特別限定其構成,例如,使用幾乎不依靠電源電壓的變動或運作溫度的能帶隙參考(BGR, Band Gap Reference)電路。第6圖表示一般的能帶隙參考電路。如同圖所示,能帶隙參考電路包含:第1電流路徑、第2電流路徑,位於電源電壓Vcc(iBGR)與GND之間;PMOS電晶體P1、電阻R1、雙極性電晶體Q1,於第1電流路徑直列連接;PMOS電晶體P2、電阻R2、R、雙極性電晶體Q2,於第2電流路徑直列連接;以及差動放大電路AMP,其反向輸入端子(-)連接電阻R1與電晶體Q1共同連接的節點VN,其非反向輸入端子(+)連接電阻R2與電阻R共同連接的節點VP,其輸出端子與電晶體P1、P2的閘極共同連接。差動放大電路AMP調整輸出電壓,使得電晶體Q1的順向電壓,等於電晶體Q2的順向電壓與電阻R產生的電壓相加後的電壓,並從輸出節點BGR輸出基準電壓Vref。
比較電路224並未特別限定其構成,例如,如第7圖所示,包含比較器CMP,用以比較由供給電壓Vcc產生的內部電壓VI以及基準電壓Vref。設基準電壓Vref等於電源切斷電壓位準V_PD。當VI>Vref時,比較器CMP輸出L位準的檢測訊號DET_H;當Vref≧VI時,比較器CMP輸出H位準的檢測訊號DET_H。
基準電壓產生器222以及比較電路224,響應來自於測試控制電路240的測試訊號TEST_PD運作或不運作。例如,當測試訊號TEST_PD為H位準時,基準電壓產生器222以及比較電路224賦能(Enable);當測試訊號TEST_PD為L位準時,基準電壓產生器222以及比較電路224失能(Disable)。
選擇器230接收來自於低電力電壓檢測電路210的檢測訊號DET_L,以及來自於高精度電壓檢測電路220的檢測訊號DET_H,基於來自測試控制電路240的測試訊號TEST_PD選擇其中一個訊號,輸出選擇的檢測訊號給控制器140。例如,當測試訊號TEST_PD為H位準時,選擇高精度電壓檢測電路220的檢測訊號DET_H;當測試訊號TEST_PD為L位準時,選擇低電力電壓檢測電路210的檢測訊號DET_L。檢測訊號DET_L或DET_H表示電源切斷電壓位準V_PD時,控制器140響應檢測訊號DET_L或DET_H,執行內部電路的重設等。
其次,針對本實施例的電源切斷檢測部200的運作進行說明。由測試控制電路240執行內部電路(記憶單元陣列或周邊電路)的測試時,響應測試訊號TEST_PD使高精度電壓檢測電路220運作,且選擇器230將高精度電壓檢測電路220的檢測訊號DET_H輸出給控制器140。意即,測試狀態當中,低電力電壓檢測電路210與高精度電壓檢測電路220雙方都在運作,高精度電壓檢測電路220的檢測訊號DET_H由選擇器230提供給控制器140。
另一方面,並未由測試控制電路240執行內部電路的測試時,響應測試訊號TEST_PD使高精度電壓檢測電路220變成不運作,且選擇器230將低電力電壓檢測電路210的檢測訊號DET_L輸出給控制器140。意即,非測試狀態當中,僅有低電力電壓檢測電路210會運作,低電力電壓檢測電路210的檢測訊號DET_L由選擇器230提供給控制器140。
第8圖表示根據本實施例在測試狀態時,電源切斷電壓位準V_PD的檢測範圍H3。如以上所記載,當測試執行時,由於使用高精度電壓檢測電路220檢測電源切斷電壓位準V_PD,因此檢測精度比使用低電力電壓檢測電路210時還高,能夠使檢測範圍H3的變動(Variation)變小。測試狀態當中,內部電路正在運作,例如,由於併行測定使得供給電壓變得脆弱。測試期間中正確檢測電源切斷電壓位準V_PD,藉此抑制如內部電路在比電源切斷電壓位準V_PD還低的電壓之下運作的情形,因此,能夠防止由於錯誤的運作而導致電路故障或信賴性下降等情形。另一方面,內部電路的測試並未執行的狀態下,使得高精度電壓檢測電路220不運作,僅讓低電力電壓檢測電路210運作,藉此,能夠遵守測試並未執行時或者待命狀態的容許消耗電力的約制。
此處,在電源開啟電壓位準V_PU的檢測時,對電源開啟檢測部190也要求高精度。因此,電源開啟檢測部190同樣也利用了高精度電壓檢測電路,且該高精度電壓檢測電路使用了基準電壓產生器或比較電路。從而,電源切斷檢測部200的高精度電壓檢測電路220,同樣也可以利用電源開啟檢測部190的高精度電壓檢測電路。在此情況下,電源開啟程序結束之後,高精度電壓檢測電路的檢測位準,就從電源開啟電壓位準V_PU變更為電源切斷電壓位準V_PD。
另外,以上記載的實施例中,高精度電壓檢測電路220響應來自於測試控制電路240的測試訊號TEST_PD而賦能(Enable)/失能(Disable),然而這是其中一例,扼要來說,也可以使得高精度電壓檢測電路220響應可識別測試動作實行的資訊而賦能(Enable)/失能(Disable)。例如,也可以使得高精度電壓檢測電路220響應從測試用焊墊或測試用外部端子所輸入關於測試的訊號而賦能(Enable)/失能(Disable),或者也可以使得高精度電壓檢測電路220響應從外部所輸入關於測試的指令而賦能(Enable)/失能(Disable)。這對於選擇器230的選擇運作也是同樣的。
其次,針對本發明別的實施例進行說明。以上記載的實施例中,表示高精度電壓檢測電路220使用來自於基準電壓產生器222產生的基準電壓Vref之例,而本實施例當中,高精度電壓檢測電路220使用來自於測試焊墊輸入的基準電壓Vref。
第9圖表示本實施例電源切斷檢測部200A的構成。如同圖所示,測試焊墊250例如並未接合外部端子的專用焊墊,在晶圓等級或晶片等級的測試時,透過探針測試(Probing)施加基準電壓Vref。基準電壓Vref例如電源切斷電壓位準V_PD。第10圖表示根據本實施例在測試時的電源切斷電壓位準V_PD的檢測範圍,檢測範圍的變動(Variation)事實上可以忽略。如此一來,比較電路224能夠使用從測試焊墊250輸入進來的基準電壓Vref,高精度檢測供給電壓Vcc是否下降到電源切斷電壓位準V_PD。
以上記載的實施例中,表示從測試焊墊250輸入基準電壓Vref之例,然而這是其中一例,也可以使得基準電壓Vref從電連接的外部端子輸入到測試焊墊250。外部端子例如測試運作時並未使用的端子。另外,以上記載的實施例中,例示了NAND型快閃記憶體,然而本發明並不限於此,亦可應用於其他非揮發性記憶體的電源切斷檢測。
詳述了關於本發明較佳的實施形態,但本發明並非限定於特定的實施形態,在申請專利範圍所記載的發明要旨的範圍內,可進行各種的變形/變更。
10:電源切斷檢測部 20:內部電路 100:快閃記憶體 110:記憶單元陣列 120:輸入輸出緩衝 130:位址暫存器 140:控制器 150:字元線選擇電路 160:頁緩衝/感測電路 170:列選擇電路 180:內部電壓產生電路 190:電源開啟檢測部 200:電源切斷檢測部 200A:電源切斷檢測部 210:低電力電壓檢測電路 220:高精度電壓檢測電路 222:基準電壓產生器 224:比較電路 230:選擇器 240:測試控制電路 250:測試焊墊 CMP:比較器
第1圖說明快閃記憶體的電源開啟檢測運作以及電源切斷檢測運作的示意圖。 第2圖表示既有的電源切斷檢測部。 第3圖表示既有的電源切斷檢測部的構成例。 第4圖表示關於本發明實施例的快閃記憶體內部構成的方塊圖。 第5圖表示關於本發明實施例的電源切斷檢測部的構成。 第6圖表示關於本發明實施例的基準電壓產生電路的一例。 第7圖表示關於本發明實施例的高精度電壓檢測電路的一例。 第8圖說明根據本發明實施例在測試狀態時的電源切斷檢測部的檢測範圍的變動。 第9圖表示關於本發明別的實施例的電源切斷檢測部的構成。 第10圖說明根據本發明別的實施例在測試狀態時的電源切斷檢測部的檢測範圍的變動。
140:控制器
200:電源切斷檢測部
210:低電力電壓檢測電路
220:高精度電壓檢測電路
222:基準電壓產生器
224:比較電路
230:選擇器
240:測試控制電路

Claims (9)

  1. 一種半導體記憶裝置,包含:第1檢測電路,檢測供給電壓下降到一定電壓;第2檢測電路,具有比該第1檢測電路還高的檢測精度,檢測該供給電壓下降到該一定電壓;選擇裝置,當內部電路為測試狀態時,選擇該第2檢測電路;當該內部電路不為該測試狀態時,選擇該第1檢測電路;以及執行裝置,響應該第1檢測電路或該第2檢測電路的檢測結果,執行電源切斷運作。
  2. 如申請專利範圍第1項所述之半導體記憶裝置,其中,該第2檢測電路,包含:基準電壓產生電路,產生基準電壓;以及比較電路,比較該基準電壓以及電源電壓;其中,該第1檢測電路,不包含該基準電壓產生電路。
  3. 如申請專利範圍第1項所述之半導體記憶裝置,其中,該內部電路包含測試電路;其中,該選擇裝置,當該測試電路執行測試時,選擇該第2檢測電路,當該測試電路不執行測試時,選擇該第1檢測電路。
  4. 如申請專利範圍第3項所述之半導體記憶裝置,其中,該選擇裝置,基於從該測試電路輸出的測試訊號,選擇該第1檢測電路或該第2檢測電路。
  5. 如申請專利範圍第1項所述之半導體記憶裝置, 其中,該選擇裝置,當用以使測試開始的指令從外部輸入進來時,選擇該第2檢測電路。
  6. 如申請專利範圍第1項所述之半導體記憶裝置,其中,該選擇裝置,當訊號輸入到測試用焊墊(Pad)時,選擇該第2檢測電路。
  7. 如申請專利範圍第1項所述之半導體記憶裝置,其中,該第2檢測電路,利用從測試用焊墊(Pad)輸入的基準電壓,檢測該供給電壓下降到該一定電壓。
  8. 如申請專利範圍第3項所述之半導體記憶裝置,其中,該測試電路,執行記憶單元陣列或該記憶單元陣列的周邊電路的測試。
  9. 如申請專利範圍第1項至第8項任何一項所述之半導體記憶裝置,其中,該第1檢測電路以及該第2檢測電路檢測的電壓位準,比電源開啟檢測電路檢測的電壓位準還低,且比互補式金屬氧化物半導體可運作的電壓位準還高。
TW108133500A 2019-09-18 2019-09-18 半導體記憶裝置 TWI700700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108133500A TWI700700B (zh) 2019-09-18 2019-09-18 半導體記憶裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108133500A TWI700700B (zh) 2019-09-18 2019-09-18 半導體記憶裝置

Publications (2)

Publication Number Publication Date
TWI700700B true TWI700700B (zh) 2020-08-01
TW202113855A TW202113855A (zh) 2021-04-01

Family

ID=73002938

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133500A TWI700700B (zh) 2019-09-18 2019-09-18 半導體記憶裝置

Country Status (1)

Country Link
TW (1) TWI700700B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247081A (zh) * 2007-02-16 2008-08-20 富士通株式会社 检测电路及电源系统
TW201312909A (zh) * 2011-09-07 2013-03-16 Leadtrend Tech Corp 停滯時間之控制方法以及具有自調停滯時間之控制器
CN104252192A (zh) * 2013-06-28 2014-12-31 索尼公司 电压检测器、电子设备和电压检测器的控制方式
CN105976773A (zh) * 2015-03-13 2016-09-28 辛纳普蒂克斯显像装置合同会社 半导体装置及电子设备
US20180329385A1 (en) * 2017-05-15 2018-11-15 Rockwell Automation Asia Pacific Business Center, Pte. Ltd. Safety Input System for Monitoring a Sensor in an Industrial Automation System
US10401399B2 (en) * 2017-09-07 2019-09-03 Nuvoton Technology Corporation Low-power voltage detection circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247081A (zh) * 2007-02-16 2008-08-20 富士通株式会社 检测电路及电源系统
TW201312909A (zh) * 2011-09-07 2013-03-16 Leadtrend Tech Corp 停滯時間之控制方法以及具有自調停滯時間之控制器
CN104252192A (zh) * 2013-06-28 2014-12-31 索尼公司 电压检测器、电子设备和电压检测器的控制方式
CN105976773A (zh) * 2015-03-13 2016-09-28 辛纳普蒂克斯显像装置合同会社 半导体装置及电子设备
US20180329385A1 (en) * 2017-05-15 2018-11-15 Rockwell Automation Asia Pacific Business Center, Pte. Ltd. Safety Input System for Monitoring a Sensor in an Industrial Automation System
US10401399B2 (en) * 2017-09-07 2019-09-03 Nuvoton Technology Corporation Low-power voltage detection circuit

Also Published As

Publication number Publication date
TW202113855A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
CN111933210B (zh) 半导体存储装置
US6108246A (en) Semiconductor memory device
US7661041B2 (en) Test circuit and method for multilevel cell flash memory
JP4413406B2 (ja) 不揮発性半導体メモリ及びそのテスト方法
US7751248B2 (en) Indirect measurement of negative margin voltages in endurance testing of EEPROM cells
CN111933208B (zh) 半导体存储装置
CN113628660B (zh) 断电检测电路及半导体存储装置
US8379455B2 (en) Nonvolatile semiconductor storage device including failure detection circuit and method of detecting failure on nonvolatile semiconductor storage device
TWI700700B (zh) 半導體記憶裝置
JP2008004264A (ja) 不揮発性半導体メモリ及び不揮発性半導体メモリにおける不良カラムの検出及び置き換え方法
TWI702796B (zh) 基準電壓產生電路、電源開啟檢測電路以及半導體裝置
US20050229050A1 (en) Semiconductor device
CN113345494B (zh) 半导体装置
TWI727424B (zh) 半導體記憶裝置
JP2006311579A (ja) 検知回路
US5745411A (en) Semiconductor memory device
CN110491436B (zh) 半导体元件
JP2006216196A (ja) 不揮発性半導体記憶装置