TWI698399B - Metal chloride generating device and method for manufacturing metal powder - Google Patents

Metal chloride generating device and method for manufacturing metal powder Download PDF

Info

Publication number
TWI698399B
TWI698399B TW108111300A TW108111300A TWI698399B TW I698399 B TWI698399 B TW I698399B TW 108111300 A TW108111300 A TW 108111300A TW 108111300 A TW108111300 A TW 108111300A TW I698399 B TWI698399 B TW I698399B
Authority
TW
Taiwan
Prior art keywords
heating furnace
metal
gas
chloride
furnace
Prior art date
Application number
TW108111300A
Other languages
Chinese (zh)
Other versions
TW201942047A (en
Inventor
六角廣介
吉田貢
淺井剛
Original Assignee
日商東邦鈦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東邦鈦股份有限公司 filed Critical 日商東邦鈦股份有限公司
Publication of TW201942047A publication Critical patent/TW201942047A/en
Application granted granted Critical
Publication of TWI698399B publication Critical patent/TWI698399B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/04Halides
    • C01G3/05Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/02Rotary-drum furnaces, i.e. horizontal or slightly inclined of multiple-chamber or multiple-drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

提供可防止製造裝置之破損或破壞且穩定製造金屬粉體的方法、能實現此方法的金屬氯化物生成裝置,及包含金屬氯化物生成裝置的金屬粉體之製造系統。金屬氯化物生成裝置具有:具備「具有用以將金屬導入之金屬導入口之第1加熱爐」及「與第1加熱爐連結之第2加熱爐」的氯化爐、將第1加熱爐加熱的第1加熱器及將第2加熱爐加熱的第2加熱器。第2加熱爐具有用以將金屬之氯化物之氣體排出的排出口。氯化爐具有用以將含氯之氣體導入的第1氣體導入口,第1氣體導入口為第1加熱器與第2加熱器之任一者所圍繞。To provide a method to prevent damage or destruction of the manufacturing device and to stably manufacture metal powder, a metal chloride generating device capable of realizing this method, and a metal powder manufacturing system including the metal chloride generating device. The metal chloride generation device has: a chlorination furnace equipped with "a first heating furnace with a metal inlet for introducing metal" and a "second heating furnace connected to the first heating furnace", and heating the first heating furnace The first heater and the second heater that heats the second heating furnace. The second heating furnace has a discharge port for discharging metal chloride gas. The chlorination furnace has a first gas inlet for introducing chlorine-containing gas, and the first gas inlet is surrounded by either the first heater and the second heater.

Description

金屬氯化物生成裝置及金屬粉體之製造方法Metal chloride generating device and manufacturing method of metal powder

本發明之實施型態之一,係關於金屬氯化物生成裝置、用以製造金屬粉體的系統,及使用此系統的金屬粉體之製造方法。One of the embodiments of the present invention relates to a metal chloride generating device, a system for producing metal powder, and a method for producing metal powder using this system.

微細的金屬粒子(金屬粉體)已利用於各種領域,舉例而言,銅或鎳、銀等展現高導電性的金屬之粉體已廣泛利用於作為堆疊陶瓷電容器(MLCC)之內部電極等電子零件的原始材料。雖已知有數個製造此種金屬粉體的方法,但可舉出氣相法作為其一例。在此方法,例如專利文獻1、2所揭露,藉由使金屬氯化物之氣體與氫等還原性氣體接觸而還原,來形成金屬粉體。Fine metal particles (metal powders) have been used in various fields. For example, powders of metals exhibiting high conductivity such as copper, nickel, and silver have been widely used as internal electrodes for stacked ceramic capacitors (MLCC). The original material of the part. Although several methods of producing such metal powders are known, a gas phase method can be cited as an example. In this method, as disclosed in Patent Documents 1 and 2, for example, a metal chloride gas is brought into contact with a reducing gas such as hydrogen and reduced to form a metal powder.

『專利文獻』 《專利文獻1》:日本專利公告第H6-76609號公報 《專利文獻2》:日本專利公開第H10-219313號公報『Patent Literature』 "Patent Document 1": Japanese Patent Publication No. H6-76609 "Patent Document 2": Japanese Patent Publication No. H10-219313

本發明之實施型態之一,其問題之一在於要提供可防止製造裝置之破損或破壞且穩定製造金屬粉體的方法、能實現此方法的金屬氯化物生成裝置,及包含金屬氯化物生成裝置的金屬粉體之製造系統。One of the problems of one of the embodiments of the present invention is to provide a method for preventing damage or destruction of the manufacturing device and stably manufacturing metal powder, a metal chloride generating device that can realize this method, and a metal chloride generating device containing The manufacturing system of the metal powder of the device.

本發明相關之實施型態之一係金屬氯化物生成裝置。此金屬氯化物生成裝置具有:具備「具有用以將金屬導入之金屬導入口之第1加熱爐」及「與第1加熱爐連結之第2加熱爐」的氯化爐、將第1加熱爐加熱的第1加熱器及將第2加熱爐加熱的第2加熱器。第2加熱爐具有用以將金屬之氯化物之氣體排出的排出口。氯化爐具有用以將含氯之氣體導入的第1氣體導入口,第1氣體導入口為第1加熱器與第2加熱器之任一者所圍繞。One of the embodiments related to the present invention is a metal chloride generating device. This metal chloride generator has: a chlorination furnace equipped with "a first heating furnace with a metal introduction port for introducing metal" and a "second heating furnace connected to the first heating furnace", and a first heating furnace The first heater for heating and the second heater for heating the second furnace. The second heating furnace has a discharge port for discharging metal chloride gas. The chlorination furnace has a first gas inlet for introducing chlorine-containing gas, and the first gas inlet is surrounded by either the first heater and the second heater.

本發明相關之實施型態之一係金屬氯化物生成裝置。此金屬氯化物生成裝置具有「具有用以將金屬導入之金屬導入口與用以將氮導入之氣體導入口」的第1加熱爐、與第1加熱爐連結且具有用以將金屬之氯化物排出之排出口的第2加熱爐、將第1加熱爐加熱的第1加熱器、將第2加熱爐加熱的第2加熱器及用以將氮加熱的第3加熱器。One of the embodiments related to the present invention is a metal chloride generating device. This metal chloride generating device has a first heating furnace that "has a metal introduction port for introducing metal and a gas introduction port for introducing nitrogen", connected to the first heating furnace, and has a chloride for metal The second heating furnace at the discharge outlet, the first heater for heating the first heating furnace, the second heater for heating the second heating furnace, and the third heater for heating nitrogen.

本發明相關之實施型態之一係製造金屬粉體的方法。此方法包含:在以藉由第1加熱器與第2加熱器加熱的方式構成的氯化爐中,使金屬與氯氣反應以生成金屬之氯化物,以及藉由自設置於氯化爐之第1氣體導入口將含氯之氣體導入,將氯化物之蒸氣輸送至還原爐。第1氣體導入口為第1加熱器與第2加熱器之任一者所圍繞。One of the related embodiments of the present invention is a method of manufacturing metal powder. This method includes: in a chlorination furnace constructed by heating by a first heater and a second heater, reacting metal with chlorine gas to generate chlorides of the metal, and self-installing in the chlorination furnace 1 The gas inlet introduces chlorine-containing gas and transports the chloride vapor to the reduction furnace. The first gas inlet is surrounded by either the first heater and the second heater.

本發明相關之實施型態之一係製造金屬粉體的方法。此方法包含:將經加熱之氮導入氯化爐並同時在氯化爐中使金屬與氯氣反應以生成金屬之氯化物,以及使用含氯之氣體將氯化物之蒸氣輸送至還原爐。One of the related embodiments of the present invention is a method of manufacturing metal powder. The method includes: introducing heated nitrogen into a chlorination furnace and simultaneously reacting metal and chlorine gas in the chlorination furnace to generate metal chloride, and using a chlorine-containing gas to transport the chloride vapor to the reduction furnace.

本發明相關之實施型態之一係金屬氯化物生成裝置。此金屬氯化物生成裝置具有:具備「具有用以將金屬導入之金屬導入口之第1加熱爐」及「與第1加熱爐連結之第2加熱爐」的氯化爐。第2加熱爐具有用以將金屬之氯化物之氣體排出的排出口及用以將含氯之氣體導入的第1氣體導入口。One of the embodiments related to the present invention is a metal chloride generating device. This metal chloride generating device has a chlorination furnace equipped with "a first heating furnace with a metal introduction port for introducing metal" and a "second heating furnace connected to the first heating furnace". The second heating furnace has a discharge port for discharging metal chloride gas and a first gas introduction port for introducing chlorine-containing gas.

本發明相關之實施型態之一係金屬氯化物生成裝置。此金屬氯化物生成裝置具有:具備「第1加熱爐」及「與第1加熱爐連結之第2加熱爐」的氯化爐。第1加熱爐具有用以將金屬導入的金屬導入口及用以將含氯之氣體導入的第1氣體導入口。第2加熱爐具有用以將金屬之氯化物之氣體排出的排出口。第1氣體導入口在較用以將金屬導入之金屬導入口還更接近第1加熱爐與第2加熱爐之連結部的位置。金屬氯化物生成裝置亦可更具有將第1加熱爐加熱的第1加熱器。並且,第1氣體導入口亦可為第1加熱器所圍繞。One of the embodiments related to the present invention is a metal chloride generating device. This metal chloride generation device has a chlorination furnace equipped with a "first heating furnace" and a "second heating furnace connected to the first heating furnace". The first heating furnace has a metal introduction port for introducing metal and a first gas introduction port for introducing chlorine-containing gas. The second heating furnace has a discharge port for discharging metal chloride gas. The first gas introduction port is closer to the connection part of the first heating furnace and the second heating furnace than the metal introduction port for introducing metal. The metal chloride generating device may further have a first heater for heating the first heating furnace. In addition, the first gas inlet may be surrounded by the first heater.

以下參照圖式等同時說明本發明之各實施型態。惟本發明可在不脫離其要旨的範圍中以各式各樣的態樣實施,而非受以下示例之實施型態之記載內容限定解釋者。Hereinafter, each embodiment of the present invention will be described with reference to the drawings. However, the present invention can be implemented in various forms within the scope not departing from the gist thereof, and is not limited to the explanation by the description of the following example implementation forms.

圖式為使說明更為明確,相較於實際的態樣,對於各部分的幅寬、厚度、形狀等有示意表現的情形,但終究為一例,並非限定本發明之解釋者。在本說明書與各圖中,對於具備與有關於已出現之圖而已說明者同樣之功能的要件,有時標注相同符號,省略重複的說明。The drawing is to make the description clearer. Compared with the actual state, the drawings show schematic representations of the width, thickness, shape, etc. of each part, but it is an example after all and does not limit the interpreter of the present invention. In this specification and the figures, the same reference numerals are sometimes attached to elements that have the same functions as those described in the figures that have already appeared, and repeated descriptions are omitted.

在本說明書及申請專利範圍中,當表現「在某結構體之上或下配置其他結構體」的態樣時,簡述為「上」或「下」的情形,除非特別註記,否則定為包含:以接觸於某結構體的方式將其他結構體配置於正上或正下的情形,以及於某結構體之上方或下方更中介另外的結構體而配置其他結構體的情形二者。並且,上述結構體之配置主要係依據金屬之氯化物之氣體的移動順序來說明,亦包含稱為上的結構體與稱為下的結構體定位成例如水平的情形。In this specification and the scope of the patent application, when the state of "arranging other structures on or under a certain structure" is simply described as "up" or "down", unless otherwise noted, it is defined as Including: the case where other structures are arranged directly above or below by contacting a certain structure, and the case where other structures are arranged above or below a certain structure by interposing another structure. In addition, the arrangement of the above-mentioned structure is mainly explained based on the movement sequence of the metal chloride gas, and it also includes the case where the structure called the upper and the structure called the lower are positioned horizontally, for example.

(第1實施型態)(First implementation type)

茲說明本發明之實施型態之一相關之金屬氯化物生成裝置110及包含其之金屬粉體製造系統(以下簡稱為系統)100。The metal chloride generating device 110 and the metal powder manufacturing system (hereinafter referred to as the system) 100 including the metal chloride generating device 110 related to one of the embodiments of the present invention will be described.

1.整體構造1. Overall structure

於圖1繪示系統100之構造的概要。系統100具備金屬氯化物生成裝置110與還原爐200作為主要的構造。雖未圖示,但系統100亦可更具備接續於還原爐200的分離裝置300,或者接續於還原爐200或分離裝置300的袋濾器等回收裝置。金屬氯化物生成裝置110與還原爐200係藉由第1輸送管112連結,還原爐200與分離裝置300係藉由第2輸送管202連結。The outline of the structure of the system 100 is shown in FIG. 1. The system 100 includes a metal chloride generator 110 and a reduction furnace 200 as main structures. Although not shown, the system 100 may further include a separation device 300 connected to the reduction furnace 200, or a recovery device such as a bag filter connected to the reduction furnace 200 or the separation device 300. The metal chloride generating device 110 and the reduction furnace 200 are connected by a first transfer pipe 112, and the reduction furnace 200 and the separation device 300 are connected by a second transfer pipe 202.

金屬氯化物生成裝置110具有藉由0價之金屬與氯氣的反應來生成金屬之氯化物(以下簡稱為氯化物)之功能作為功能之一。氯化物在金屬氯化物生成裝置110內存在為氣體(蒸氣),依金屬之種類或反應條件而有一部分存在為液體。氯化物之蒸氣通過第1輸送管112導入還原爐200。作為金屬,可使用銅或銀、鎳等。所使用之金屬的形狀並無限制,可使用例如顆粒狀、線狀、板狀之金屬。The metal chloride generating device 110 has a function of generating a metal chloride (hereinafter referred to as a chloride) by the reaction of a zero-valent metal and chlorine gas as one of the functions. The chloride exists as a gas (vapor) in the metal chloride generating device 110, and a part of it exists as a liquid depending on the type of metal or reaction conditions. The chloride vapor is introduced into the reduction furnace 200 through the first delivery pipe 112. As the metal, copper, silver, nickel, etc. can be used. The shape of the metal used is not limited, and metals in the form of particles, wires, and plates can be used, for example.

還原爐200與第1輸送管112接續,並具有用以將自金屬氯化物生成裝置110輸送之氯化物之蒸氣導入還原爐200內的氣體導入口(第5氣體導入口)204。還原爐200更具備用以將係為用於氯化物還原之還原性氣體的氫或肼、氨、甲烷等導入的氣體導入口(第6氣體導入口)206。在還原爐200內,氯化物還原,藉此生成金屬粉體。於還原爐200自外部中介未圖示之氣體導入口導入氮氣等惰性氣體,藉此生成之金屬粉體在冷卻的同時,通過第2輸送管202往分離裝置300或回收裝置輸送。The reduction furnace 200 is connected to the first delivery pipe 112 and has a gas introduction port (fifth gas introduction port) 204 for introducing the chloride vapor delivered from the metal chloride generation device 110 into the reduction furnace 200. The reduction furnace 200 is further provided with a gas introduction port (sixth gas introduction port) 206 for introducing hydrogen, hydrazine, ammonia, methane, etc., which are reducing gases used for chloride reduction. In the reduction furnace 200, the chloride is reduced, thereby generating metal powder. In the reduction furnace 200, an inert gas such as nitrogen is introduced from an external intermediary gas inlet (not shown), and the produced metal powder is transported to the separation device 300 or the recovery device through the second transport pipe 202 while being cooled.

雖勉予省略詳細的說明,但分離裝置300具有藉由將金屬粉體所包含之凝聚物或在還原爐200內副產之金屬之燒結物去除來純化金屬粉體的功能。回收裝置設置成用以將經純化的金屬粉體自氮氣單獨分離。於圖1雖未詳細繪示,但如後所述,於金屬氯化物生成裝置110設置有用以將各種氣體導入的氣體導入口。Although detailed description is omitted, the separation device 300 has a function of purifying the metal powder by removing the agglomerates contained in the metal powder or the sintered product of the metal by-produced in the reduction furnace 200. The recovery device is configured to separate the purified metal powder from nitrogen separately. Although not shown in detail in FIG. 1, as described later, the metal chloride generating device 110 is provided with a gas introduction port for introducing various gases.

2.金屬氯化物生成裝置2. Metal chloride generator

金屬氯化物生成裝置110的剖面示意圖繪示於圖2。金屬氯化物生成裝置110具有氯化爐120、設置成圍繞氯化爐120且用以將氯化爐120加熱的第1加熱器160與第2加熱器162作為主要的構造。第1加熱器160與第2加熱器162能夠分別獨立控制。A schematic cross-sectional view of the metal chloride generating device 110 is shown in FIG. 2. The metal chloride generating device 110 has a chlorination furnace 120, and a first heater 160 and a second heater 162 provided to surround the chlorination furnace 120 and heat the chlorination furnace 120 as main structures. The first heater 160 and the second heater 162 can be independently controlled.

氯化爐120具備第1加熱爐122與第2加熱爐124。在圖2所示之例,第2加熱爐124雖位於第1加熱爐122之下,但亦可將第1加熱爐122與第2加熱爐124水平配置。並且,還原爐200也是亦可設置於第1加熱爐122或第2加熱爐124之下(參照圖1),或者亦可將此等水平配置。並且,在圖2所示之例,第1加熱爐122與第2加熱爐124的連結部123的內徑小於其他部分,但亦可如圖3所示,自第1加熱爐122至第2加熱爐124,氯化爐120的內徑相同。或者,亦可第1加熱爐122與第2加熱爐124的內徑相異。The chlorination furnace 120 includes a first heating furnace 122 and a second heating furnace 124. In the example shown in FIG. 2, although the second heating furnace 124 is located below the first heating furnace 122, the first heating furnace 122 and the second heating furnace 124 may be arranged horizontally. In addition, the reduction furnace 200 may also be installed under the first heating furnace 122 or the second heating furnace 124 (refer to FIG. 1), or may be arranged horizontally. In addition, in the example shown in FIG. 2, the inner diameter of the connecting portion 123 of the first heating furnace 122 and the second heating furnace 124 is smaller than the other parts, but as shown in FIG. 3, from the first heating furnace 122 to the second heating furnace The inner diameters of the heating furnace 124 and the chlorination furnace 120 are the same. Alternatively, the inner diameters of the first heating furnace 122 and the second heating furnace 124 may be different.

氯化爐120亦可具有區分第1加熱爐122與第2加熱爐124的分隔部件126(參照圖3)作為任意構造。亦即,氯化爐120亦可具備第1加熱爐122及藉由分隔部件126來與第1加熱爐122連結的第2加熱爐124。分隔部件126具備有至少一個開孔,藉此,導入第1加熱爐122或第2加熱爐124的氣體、由此等生成之氯化物之蒸氣可穿過分隔部件126。雖勉予省略詳細的說明,但開孔的數量或大小、配置等,考量反應條件或氯化物之蒸氣壓、所使用之金屬的形狀或大小等而適當設計即可。並且,在生成熔融之氯化物的情況下,以液狀之氯化物可穿過分隔部件126的方式設計分隔部件126即可。於圖3,繪示有金屬做成顆粒114並於第1加熱爐122內配置於分隔部件126上的態樣。The chlorination furnace 120 may have the partition member 126 (refer FIG. 3) which distinguishes the 1st heating furnace 122 and the 2nd heating furnace 124 as an arbitrary structure. That is, the chlorination furnace 120 may include a first heating furnace 122 and a second heating furnace 124 connected to the first heating furnace 122 by the partition member 126. The partition member 126 is provided with at least one opening, whereby the gas introduced into the first heating furnace 122 or the second heating furnace 124 and the vapor of the chloride generated therefrom can pass through the partition member 126. Although detailed description is omitted, the number, size, arrangement, etc. of the openings may be appropriately designed in consideration of reaction conditions, the vapor pressure of the chloride, and the shape or size of the metal used. In addition, in the case of generating molten chloride, the partition member 126 may be designed such that the liquid chloride can pass through the partition member 126. In FIG. 3, a state where metal particles 114 are made and arranged on the partition member 126 in the first heating furnace 122 is shown.

作為使用於氯化爐120之材料,可利用石英或陶瓷等,可考量所使用之金屬或其氯化物之熔點而選擇。作為使用於分隔部件126之材料,可列舉例如:石英或氧化鋁、氧化鋯等金屬或半金屬的氧化物、陶瓷、氮化硼等氮化物、石墨等。As the material used in the chlorination furnace 120, quartz or ceramics can be used, and the melting point of the metal or its chloride can be considered. Examples of materials used for the partition member 126 include metal or semimetal oxides such as quartz, alumina, and zirconia, nitrides such as ceramics, and boron nitride, graphite, and the like.

如圖2所示,於第1加熱爐122具有用以將金屬導入第1加熱爐122的金屬導入口128。用於氯化的含氯之氣體,亦可使用金屬導入口128導入第1加熱爐122。或者,亦可設置氣體導入口(第3氣體導入口)130作為任意構造,中介閥132而將含氯之氣體導入。含氯之氣體亦可包含用以將氯稀釋的氮或氬、氦等惰性氣體。藉由使用含惰性氣體與氯之氣體(以下亦稱為混合氣體),能輕易且精密控制氯的量。在圖2所示之例,第3氣體導入口130為第1加熱器160所圍繞,但第3氣體導入口130亦可自第1加熱器160露出而不為第1加熱器160所圍繞。As shown in FIG. 2, the first heating furnace 122 has a metal introduction port 128 for introducing metal into the first heating furnace 122. The chlorine-containing gas used for chlorination may be introduced into the first heating furnace 122 using the metal inlet 128. Alternatively, a gas introduction port (third gas introduction port) 130 may be provided as an arbitrary structure, and the valve 132 may be interposed to introduce chlorine-containing gas. The chlorine-containing gas may also include nitrogen or inert gases such as argon and helium for diluting chlorine. By using a gas containing inert gas and chlorine (hereinafter also referred to as mixed gas), the amount of chlorine can be easily and precisely controlled. In the example shown in FIG. 2, the third gas introduction port 130 is surrounded by the first heater 160, but the third gas introduction port 130 may be exposed from the first heater 160 instead of being surrounded by the first heater 160.

第1加熱爐122係藉由第1加熱器160加熱,配置於第1加熱爐122內之金屬與自金屬導入口128及/或第3氣體導入口130導入之氯氣反應,產出金屬之氯化物。氯化物依金屬之種類而在氯化爐120內存在為氣體(蒸氣),或者取得氣體與液體之間的平衡狀態。在後者的情況下,氯化物係一部分為熔融狀態,一部分存在為蒸氣。在第1加熱爐122內生成之熔融氯化物與氯化物之蒸氣,中介連結部123(在設置分隔部件126的情況下為其開孔)往第2加熱爐124移動。The first heating furnace 122 is heated by the first heater 160, and the metal arranged in the first heating furnace 122 reacts with the chlorine gas introduced from the metal inlet 128 and/or the third gas inlet 130 to produce metal chlorine化物. Depending on the type of metal, the chloride is a gas (vapor) in the chlorination furnace 120, or a state of equilibrium between gas and liquid is achieved. In the latter case, part of the chloride system is in a molten state, and part of it is present as vapor. The vapor of the molten chloride and the chloride generated in the first heating furnace 122 moves to the second heating furnace 124 by the intermediary connecting portion 123 (when the partition member 126 is provided, the hole is opened).

第2加熱爐124具有「將在第1加熱爐122生成之氯化物之蒸氣輸送至還原爐200」之功能及「在生成熔融之氯化物的情況下將之氣化以生成氯化物之蒸氣並將之輸送至還原爐200」之功能作為主要功能。第2加熱爐124為第2加熱器162所圍繞而加熱。如上已述,第1加熱器160與第2加熱器162係獨立控制,可分別以相異的溫度加熱第1加熱爐122與第2加熱爐124。以第2加熱爐124之溫度呈較第1加熱爐122之溫度還高的方式驅動第1加熱器160與第2加熱器162。舉例而言,藉由以第2加熱爐124之溫度呈200~300℃之高的方式控制第1加熱爐122與第2加熱爐124之溫度,即使在生成熔融之氯化物而自第1加熱爐122往第2加熱爐124移動的情況下,仍可使氯化物在第2加熱爐124內迅速氣化。The second heating furnace 124 has the function of "transmitting the vapor of the chloride generated in the first heating furnace 122 to the reduction furnace 200" and "when generating molten chloride, it is vaporized to generate the vapor of chloride. The main function is to transport it to the reduction furnace 200". The second heating furnace 124 is surrounded and heated by the second heater 162. As described above, the first heater 160 and the second heater 162 are independently controlled, and the first heating furnace 122 and the second heating furnace 124 can be heated at different temperatures, respectively. The first heater 160 and the second heater 162 are driven so that the temperature of the second heating furnace 124 is higher than the temperature of the first heating furnace 122. For example, by controlling the temperature of the first heating furnace 122 and the second heating furnace 124 so that the temperature of the second heating furnace 124 is as high as 200-300°C, even when molten chloride is generated, the temperature of the first heating furnace When the furnace 122 moves to the second heating furnace 124, the chloride can still be rapidly vaporized in the second heating furnace 124.

此外,為了使熔融之氯化物有效率氣化,亦可於第2加熱爐124內填充氣化輔助材140。作為氣化輔助材140,係「包含例如:石英或氧化鋁、氧化鋯等金屬或半金屬的氧化物、陶瓷、氮化硼等氮化物、石墨」之粒子或顆粒,藉此,可提供用以將熔融之氯化物氣化的廣大加熱面積。In addition, in order to efficiently vaporize the molten chloride, the second heating furnace 124 may be filled with the vaporization auxiliary material 140. As the gasification auxiliary material 140, particles or particles containing metal or semi-metal oxides such as quartz, aluminum oxide, and zirconium oxide, ceramics, nitrides such as boron nitride, and graphite. With a large heating area to vaporize molten chloride.

第2加熱爐124具有用以將在第1加熱爐122或第2加熱爐124生成之氯化物之蒸氣往還原爐200輸送的排出口134。再者,於氯化爐120,更詳細而言,於第1加熱爐122與第2加熱爐124之至少任一者設置有用以將含氯之氣體導入的氣體導入口(第1氣體導入口)136。第1氣體導入口136亦可配置成為第1加熱器160與第2加熱器162之任一者所圍繞。在圖2所示之例,第1氣體導入口136設置於第2加熱爐124,為第2加熱器162所圍繞。第1氣體導入口136進一步中介閥138,而與未圖示之氯氣源(氣體鋼瓶等)接續。中介第1氣體導入口136而導入的含氯之氣體,亦可包含惰性氣體。The second heating furnace 124 has a discharge port 134 for conveying the chloride vapor generated in the first heating furnace 122 or the second heating furnace 124 to the reduction furnace 200. Furthermore, in the chlorination furnace 120, in more detail, at least any one of the first heating furnace 122 and the second heating furnace 124 is provided with a gas introduction port (first gas introduction port) for introducing chlorine-containing gas ) 136. The first gas introduction port 136 may be arranged so as to surround either the first heater 160 and the second heater 162. In the example shown in FIG. 2, the first gas inlet 136 is provided in the second heating furnace 124 and is surrounded by the second heater 162. The first gas inlet 136 further mediates the valve 138 and is connected to a chlorine gas source (gas cylinder, etc.) not shown. The chlorine-containing gas introduced through the first gas inlet 136 may also include an inert gas.

用以將氯化物之蒸氣往還原爐200輸送的排出口134,以配置於較第2加熱爐124之底部還高的位置為符合期望。此係因要防止熔融之氯化物在未氣化的狀態流入還原爐200之故。It is desirable that the discharge port 134 for transporting the chloride vapor to the reduction furnace 200 is arranged at a position higher than the bottom of the second heating furnace 124. This is to prevent the molten chloride from flowing into the reduction furnace 200 in an unvaporized state.

在將第1氣體導入口136設置於第2加熱爐124的情況下,第1氣體導入口136可配置於較排出口134還低的位置(更遠離第1加熱爐122的位置)。此係因:由於熔融之氯化物容易蓄積於第2加熱爐124之下部,故藉由自第2加熱爐124之下部將含氯之氣體導入,可有效率將氯化物之氣體往排出口134導入之故。When the first gas introduction port 136 is provided in the second heating furnace 124, the first gas introduction port 136 may be arranged at a position lower than the discharge port 134 (a position farther from the first heating furnace 122). This is because the molten chloride tends to accumulate in the lower part of the second heating furnace 124, so by introducing the chlorine-containing gas from the lower part of the second heating furnace 124, the chloride gas can be efficiently sent to the discharge port 134 Because of the import.

自金屬導入口128或第1氣體導入口136、第3氣體導入口130導入的含氯之氣體,對氯化爐120賦予正壓。職是,在氯化爐120生成之氯化物之蒸氣,藉由此正壓中介排出口134導入第1輸送管112,往還原爐200輸送。自金屬導入口128或第3氣體導入口130導入之氯,其全部或大部分係藉由與金屬之反應來消耗。然而,自第1氣體導入口136導入之氯,若與自金屬導入口128或第3氣體導入口130導入之氯相比,對於與金屬之反應的貢獻較小,消耗率較小。因此,氯化物之蒸氣,至少與中介第1氣體導入口136而加入之氯接觸,同時往還原爐200輸送。The chlorine-containing gas introduced from the metal inlet 128 or the first gas inlet 136 and the third gas inlet 130 applies a positive pressure to the chlorination furnace 120. The function is that the chloride vapor generated in the chlorination furnace 120 is introduced into the first delivery pipe 112 through the positive pressure intermediate discharge port 134 and delivered to the reduction furnace 200. All or most of the chlorine introduced from the metal inlet 128 or the third gas inlet 130 is consumed by the reaction with the metal. However, the chlorine introduced from the first gas introduction port 136, if compared with the chlorine introduced from the metal introduction port 128 or the third gas introduction port 130, contributes less to the reaction with the metal and has a lower consumption rate. Therefore, the vapor of the chloride comes into contact with at least the chlorine added through the first gas inlet 136 and is sent to the reduction furnace 200 at the same time.

如上所述,往還原爐200輸送之氯化物,在還原爐200內還原而產出金屬粉末。所獲得之金屬粉末進一步往分離裝置300輸送並純化,進一步藉由回收裝置單獨分離。As described above, the chloride delivered to the reduction furnace 200 is reduced in the reduction furnace 200 to produce metal powder. The obtained metal powder is further transported to the separation device 300 and purified, and further separated separately by the recovery device.

3.氯之貢獻3. The contribution of chlorine

在本實施型態之系統100之金屬氯化物生成裝置110,中介金屬導入口128或第3氣體導入口130導入含氯之氣體。此氣體係為了賦予用以將金屬氯化及用以將生成之氯化物之蒸氣輸送至第2加熱爐124的正壓而導入。In the metal chloride generating device 110 of the system 100 of this embodiment, the intermediary metal inlet 128 or the third gas inlet 130 introduces a gas containing chlorine. This gas system is introduced in order to provide positive pressure for chlorinating the metal and for transporting the vapor of the generated chloride to the second heating furnace 124.

另一方面,在金屬氯化物生成裝置110,進一步中介第1氣體導入口136將含氯之氣體導入第2加熱爐124,對於氯化爐120賦予正壓。藉此,可有效率將氯化物之蒸氣送進排出口134,將氯化物之蒸氣迅速往還原爐200輸送。其結果,可抑制:氯化物殘存於第2加熱爐124,或者在第2加熱爐124或第1輸送管112內氯化物固化、析出這樣的缺陷。並且,亦可同時防止中介第6氣體導入口206而導入還原爐200之還原性氣體逆流過第1輸送管112。職是,亦可防止在第1輸送管112內氯化物還原而金屬析出使第1輸送管112堵塞、破損之缺陷。On the other hand, in the metal chloride generating device 110, the gas containing chlorine is further introduced into the second heating furnace 124 through the first gas introduction port 136, and a positive pressure is applied to the chlorination furnace 120. Thereby, the vapor of chloride can be efficiently sent to the exhaust port 134, and the vapor of chloride can be quickly transported to the reduction furnace 200. As a result, it is possible to suppress defects such as the chloride remaining in the second heating furnace 124 or the solidification and precipitation of the chloride in the second heating furnace 124 or the first conveying pipe 112. In addition, it is also possible to prevent the reducing gas introduced into the reduction furnace 200 through the sixth gas inlet 206 from flowing back through the first delivery pipe 112 at the same time. The function is to prevent the defects in the first conveying pipe 112 that the chloride is reduced and the metal is deposited, which causes the first conveying pipe 112 to be blocked and damaged.

於此,中介第1氣體導入口136導入的含氯之氣體,不僅如上所述作為用以賦予單純將氯化物之蒸氣中介排出口134往還原爐200導入之正壓的物理手段發揮功能,還如以下所述作為用以更有效防止系統100之缺陷發生的化學手段發揮功能。Here, the chlorine-containing gas introduced through the first gas inlet 136 not only functions as a physical means for imparting a positive pressure for simply introducing the chloride vapor intermediate outlet 134 into the reduction furnace 200 as described above, but also It functions as a chemical means to more effectively prevent defects in the system 100 as described below.

金屬與氯化物存在於由以下之式所示之平衡狀態。 『化1』

Figure 02_image001
Metal and chloride exist in an equilibrium state shown by the following formula. "Hua 1"
Figure 02_image001

在例如金屬為銅的情況下,以下之平衡成立。 『化2』

Figure 02_image003
For example, when the metal is copper, the following balance holds. "Hua 2"
Figure 02_image003

雖取決於金屬之種類或溫度,但即使假設在氯化爐120金屬完全變為氯化物,由於此平衡之存在,氯化物之一部分仍會變回金屬。職是,在第2加熱爐124或第1輸送管112中金屬會析出,而成為使堵塞發生的主要原因。Although it depends on the type or temperature of the metal, even if it is assumed that the metal is completely changed to chloride in the chlorination furnace 120, due to the existence of this equilibrium, part of the chloride will still be changed back to metal. The problem is that metal will precipitate in the second heating furnace 124 or the first conveying pipe 112, which is a major cause of clogging.

然而,發明人發現:藉由於此平衡系導入氯氣,使平衡向右側(氯化物側)移動,可防止氣體狀態之氯化物作為金屬析出。亦即,中介第1氣體導入口136而導入之氯,於已放入第1加熱爐122內之金屬的氯化幾乎不消耗,故可在第2加熱爐124或第1輸送管112內與氯化物之蒸氣接觸。職是,中介第1氣體導入口136而導入之氯,作為化學手段對於使上述金屬―氯化物間之平衡往氯化物側移動一事有所貢獻。其結果,可更有效抑制在第2加熱爐124或第1輸送管112內由氯化物之氣體析出金屬而導致第1輸送管112之堵塞或破損、第2加熱爐124之破壞等缺陷。However, the inventor found that by introducing chlorine gas due to this equilibrium system, the equilibrium is shifted to the right side (chloride side) to prevent gaseous chlorides from being precipitated as metals. That is, the chlorine introduced through the first gas inlet 136 is almost not consumed by the chlorination of the metal that has been put in the first heating furnace 122, so it can be combined with the second heating furnace 124 or the first conveying pipe 112 Contact with chloride vapor. The role is that the chlorine introduced through the first gas inlet 136 contributes as a chemical means to shift the balance between the metal and the chloride to the chloride side. As a result, it is possible to more effectively suppress defects such as clogging or breakage of the first conveying pipe 112 due to metal precipitation from the chloride gas in the second heating furnace 124 or the first conveying pipe 112, and destruction of the second heating furnace 124.

藉由如此不僅在物理手段,還在化學手段上自第1氣體導入口136將含氯之氣體導入,可提供能穩定長時間驅動而不會發生破損或破壞的金屬粉體製造系統,進一步藉由利用此系統,能夠有效率製造金屬粉末。By introducing chlorine-containing gas from the first gas inlet 136 not only by physical means, but also by chemical means, it is possible to provide a metal powder manufacturing system that can be driven stably for a long time without breakage or damage. By using this system, metal powder can be produced efficiently.

4.變形例4. Modifications

金屬氯化物生成裝置110並不受限於圖2或圖3所示之構造。舉例而言,如圖4所示,氯化爐120亦可具備「供給作為化學手段發揮功能的含氯之氣體」的多個氣體導入口。氯氣可伴隨惰性氣體供給。在圖4所示之例,於第2加熱爐124進一步設置有用以將含氯之氣體導入的氣體導入口(第2氣體導入口)142。第2氣體導入口142可配置於較排出口134還上方之處。亦即,可以自第1加熱爐122至排出口134的距離較自第1加熱爐122至第2氣體導入口142的距離還大的方式,設置第2氣體導入口142。第2氣體導入口142與未圖示之氯源連結,含氯之氣體的供給係藉由閥144來控制。The metal chloride generating device 110 is not limited to the structure shown in FIG. 2 or FIG. 3. For example, as shown in FIG. 4, the chlorination furnace 120 may have a plurality of gas inlets for "supplying a gas containing chlorine that functions as a chemical means". Chlorine gas can be supplied with inert gas. In the example shown in FIG. 4, the second heating furnace 124 is further provided with a gas introduction port (second gas introduction port) 142 for introducing chlorine-containing gas. The second gas introduction port 142 may be arranged above the discharge port 134. That is, the second gas introduction port 142 may be provided so that the distance from the first heating furnace 122 to the discharge port 134 is larger than the distance from the first heating furnace 122 to the second gas introduction port 142. The second gas inlet 142 is connected to a chlorine source not shown, and the supply of chlorine-containing gas is controlled by a valve 144.

藉由採用此種構造,可使作為化學手段之貢獻增大,更有效防止在第2加熱爐124或第1輸送管112內之金屬的析出。By adopting this structure, the contribution as a chemical means can be increased, and the precipitation of metal in the second heating furnace 124 or the first conveying pipe 112 can be prevented more effectively.

或者,如圖5所示,金屬氯化物生成裝置110亦可具有用以將經加熱之惰性氣體導入的氣體導入口(第4氣體導入口)146及第3加熱器164。第4氣體導入口146設置於第1加熱爐122,中介閥148而連結至第3加熱器164。第3加熱器具有將惰性氣體加熱的功能。Alternatively, as shown in FIG. 5, the metal chloride generating device 110 may have a gas introduction port (fourth gas introduction port) 146 and a third heater 164 for introducing the heated inert gas. The fourth gas introduction port 146 is provided in the first heating furnace 122, and the intermediate valve 148 is connected to the third heater 164. The third heater has a function of heating the inert gas.

藉由將經加熱之惰性氣體供給至第1加熱爐122,可於氯化爐120內賦予更大的正壓,而不會引起第1加熱爐122之溫度下降。職是,在第1加熱爐122生成之氯化物的全部或大部分,變得能夠維持氣體狀態就此自第2加熱爐124中介第1輸送管往還原爐200導入。在氯化物之沸點為高的情況下,於第2加熱爐124中之氣化需要比較長的時間,故此構造在製造會產出沸點為高之氯化物的金屬之粉體時尤其有效。By supplying the heated inert gas to the first heating furnace 122, a larger positive pressure can be applied in the chlorination furnace 120 without causing the temperature of the first heating furnace 122 to drop. The job is that all or most of the chloride generated in the first heating furnace 122 becomes able to maintain a gas state and is introduced from the second heating furnace 124 to the reduction furnace 200 via the first transfer pipe. When the boiling point of the chloride is high, the gasification in the second heating furnace 124 takes a relatively long time. Therefore, this structure is particularly effective when producing metal powders that produce chlorides with a high boiling point.

此外,在設置第4氣體導入口146與第3加熱器164的情況下,不必非得設置第1氣體導入口136或第2氣體導入口142(參照圖6)。在氯化物之沸點比較低的情況下,透過採用此構造可有效率驅動系統100,且可削減系統100之製造成本,藉此,能夠以低成本提供金屬粉體。In addition, when the fourth gas introduction port 146 and the third heater 164 are provided, it is not necessary to provide the first gas introduction port 136 or the second gas introduction port 142 (see FIG. 6). In the case where the boiling point of the chloride is relatively low, by adopting this structure, the system 100 can be efficiently driven, and the manufacturing cost of the system 100 can be reduced, thereby, the metal powder can be provided at low cost.

(第2實施型態)(The second implementation type)

在本實施型態,描述使用系統100的金屬粉體之製造方法。於此,使用具備圖2所示之金屬氯化物生成裝置110的系統100,說明製造金屬粉體之方法作為範例。針對與在第1實施型態已述之構造相同或類似之構造,有時勉予省略說明。In this embodiment, a method of manufacturing metal powder using the system 100 is described. Here, the system 100 equipped with the metal chloride generating device 110 shown in FIG. 2 is used to illustrate the method of manufacturing metal powder as an example. The description of the structure that is the same as or similar to the structure described in the first embodiment is sometimes omitted.

首先,中介金屬導入口128將金屬放入第1加熱爐122。如上已述,作為金屬,可使用銅或銀、鎳等。於第2加熱爐124亦可預先填充氣化輔助材140。First, the intermediary metal introduction port 128 puts metal into the first heating furnace 122. As mentioned above, as the metal, copper, silver, nickel, etc. can be used. The second heating furnace 124 may also be filled with the auxiliary gasification material 140 in advance.

其此,使用第1加熱器160、第2加熱器162分別將第1加熱爐122、第2加熱爐124加熱。第1加熱爐122之溫度雖取決於金屬之種類,但可適當設定在例如800℃以上且1000℃以下的範圍。藉由將第1加熱爐122之溫度設定於較金屬之熔點還低的溫度,可防止係為原料之金屬(金屬之顆粒114)的熔融。在第1加熱爐122中,金屬會與氯反應而產出氯化物。Here, the first heater 160 and the second heater 162 are used to heat the first heating furnace 122 and the second heating furnace 124, respectively. Although the temperature of the first heating furnace 122 depends on the type of metal, it can be appropriately set in the range of, for example, 800°C or higher and 1000°C or lower. By setting the temperature of the first heating furnace 122 to a temperature lower than the melting point of the metal, it is possible to prevent the metal as the raw material (metal particles 114) from melting. In the first heating furnace 122, metal reacts with chlorine to produce chloride.

另一方面,第2加熱爐124之溫度設定成較第1加熱爐122之溫度還高即可。雖取決於金屬之種類,但可適當設定在例如900℃以上且1200℃以下的範圍。藉由將第2加熱爐124之溫度設定於較氯化物之沸點還高的溫度,可將氯化物迅速氣化。On the other hand, the temperature of the second heating furnace 124 may be set higher than the temperature of the first heating furnace 122. Although it depends on the type of metal, it can be appropriately set in the range of, for example, 900°C or higher and 1200°C or lower. By setting the temperature of the second heating furnace 124 to a temperature higher than the boiling point of the chloride, the chloride can be quickly vaporized.

在第1加熱爐122與第2加熱爐124之加熱的同時,將含氯之氣體中介第1氣體導入口136而導入第2加熱爐124。並且,中介金屬導入口128及/或第3氣體導入口130,將含氯之氣體導入第1加熱爐122。在對中介第1氣體導入口136而導入第2加熱爐124的含氯之氣體混合惰性氣體的情況下,例如將此混合氣體中之氯濃度調為0.001 wt%以上且20 wt%以下,或0.01 wt%以上且10 wt%以下,或0.1 wt%以上且2 wt%以下即可。此等氣體之流量因應比例適當調整即可。在使用第2氣體導入口142(參照圖4)將含氯之氣體導入的情況下,中介第1氣體導入口136與第2氣體導入口142而導入的含氯之氣體之組成或總流量可彼此相同,亦可相異。舉例而言,亦可使中介第1氣體導入口136而導入的含氯之氣體的流量,較中介第2氣體導入口142而導入的含氯之氣體之流量還大。中介第1氣體導入口136或第2氣體導入口142而導入第2加熱爐124的含氯之氣體中之氯的量,以較中介金屬導入口128及/或第3氣體導入口130而導入第1加熱爐122的含氯之氣體中所含之氯的量還少為佳。藉此,可降低所獲得之金屬粉體的氯含量。Simultaneously with the heating of the first heating furnace 122 and the second heating furnace 124, a chlorine-containing gas is introduced into the second heating furnace 124 through the first gas introduction port 136. In addition, the intermediary metal inlet 128 and/or the third gas inlet 130 introduce chlorine-containing gas into the first heating furnace 122. When the chlorine-containing gas introduced into the second heating furnace 124 through the first gas inlet 136 is mixed with an inert gas, for example, the chlorine concentration in the mixed gas is adjusted to 0.001 wt% or more and 20 wt% or less, or 0.01 wt% or more and 10 wt% or less, or 0.1 wt% or more and 2 wt% or less. The flow rate of these gases can be adjusted appropriately according to the ratio. When the second gas inlet 142 (refer to FIG. 4) is used to introduce the chlorine-containing gas, the composition or total flow rate of the chlorine-containing gas introduced through the first gas inlet 136 and the second gas inlet 142 can be They are the same or different from each other. For example, the flow rate of the chlorine-containing gas introduced through the first gas introduction port 136 may be greater than the flow rate of the chlorine-containing gas introduced through the second gas introduction port 142. The amount of chlorine in the chlorine-containing gas introduced into the second heating furnace 124 via the first gas introduction port 136 or the second gas introduction port 142 is more than that of the intermediary metal introduction port 128 and/or the third gas introduction port 130. It is preferable that the amount of chlorine contained in the chlorine-containing gas of the first heating furnace 122 is small. Thereby, the chlorine content of the obtained metal powder can be reduced.

此外,如圖4、圖5所示之例,在將經加熱之氮氣導入第1加熱爐122的情況下,氮氣之溫度調為例如800℃以上且1000℃以下即可。In addition, in the example shown in FIGS. 4 and 5, when the heated nitrogen gas is introduced into the first heating furnace 122, the temperature of the nitrogen gas may be adjusted to, for example, 800°C or more and 1000°C or less.

在氯化爐120生成之氯化物之蒸氣係自排出口134排出,經由第1輸送管112自第5氣體導入口204往還原爐200導入。選自氫或肼、氨、甲烷等之還原性氣體係自第6氣體導入口206(參照圖1)供給,其流量或濃度以成為與氯化物反應之化學計量比以上的方式調整即可。在還原爐生成之金屬的粉體,係藉由導入還原爐200的氮氣,物理性往分離裝置300或袋濾器等回收裝置(未圖示)運送而單獨分離。藉由以上之工序,可製造金屬的粉體。The vapor of the chloride generated in the chlorination furnace 120 is discharged from the discharge port 134 and is introduced into the reduction furnace 200 from the fifth gas inlet 204 through the first delivery pipe 112. A reducing gas system selected from hydrogen, hydrazine, ammonia, methane, etc. is supplied from the sixth gas inlet 206 (see FIG. 1), and the flow rate or concentration thereof may be adjusted so as to be at least the stoichiometric ratio of the reaction with chloride. The metal powder generated in the reduction furnace is physically separated by the nitrogen introduced into the reduction furnace 200 to a recovery device (not shown) such as a separator 300 or a bag filter. Through the above process, metal powder can be produced.

如在第1實施型態已述,自第1氣體導入口136或第2氣體導入口142導入第2加熱爐124的含氯之氣體,不僅具有迅速且穩定將氯化物之蒸氣往還原爐200輸送的功能作為物理手段,還具有防止金屬之析出的功能作為化學手段。職是,藉由應用本實施型態,可提供可穩定驅動且能夠有效率製造金屬粉體的金屬粉體製造系統。As described in the first embodiment, the chlorine-containing gas introduced into the second heating furnace 124 from the first gas introduction port 136 or the second gas introduction port 142 not only provides rapid and stable delivery of the chloride vapor to the reduction furnace 200 As a physical means, the transport function also has the function of preventing metal precipitation as a chemical means. The job is to provide a metal powder manufacturing system that can be stably driven and can efficiently manufacture metal powder by applying this embodiment.

(第3實施型態)(The third implementation type)

在本實施型態,說明結構與金屬氯化物生成裝置110相異的金屬氯化物生成裝置116之結構。針對與在第1實施型態已述之構造相同或類似之構造,有時勉予省略說明。In this embodiment, the structure of the metal chloride generating device 116 having a structure different from that of the metal chloride generating device 110 will be described. The description of the structure that is the same as or similar to the structure described in the first embodiment is sometimes omitted.

金屬氯化物生成裝置116,至少在第1加熱爐122與第2加熱爐124之內徑相異這點、第2加熱爐124具有管形狀這點,結構與金屬氯化物生成裝置110相異。The metal chloride generating device 116 differs in structure from the metal chloride generating device 110 at least in that the inner diameters of the first heating furnace 122 and the second heating furnace 124 are different, and the second heating furnace 124 has a tube shape.

更具體而言,如圖7所示,第2加熱爐124具有管形狀,其內徑與第1加熱爐122相比為小。藉由做成此種形狀,可更有效混合氯化物之蒸氣與氯氣,使中介第1氣體導入口136而導入的含氯之氣體之物理、化學上的效果增大。More specifically, as shown in FIG. 7, the second heating furnace 124 has a tube shape, and its inner diameter is smaller than that of the first heating furnace 122. By making it into such a shape, the vapor of the chloride and the chlorine gas can be mixed more effectively, and the physical and chemical effects of the chlorine-containing gas introduced through the first gas introduction port 136 are increased.

第1氣體導入口136設置於第1加熱爐122,為第1加熱器160所圍繞。第1氣體導入口136以較金屬導入口128還更接近第2加熱爐124的方式配置為佳。此係因:在產生熔融之氯化物的情況下,氯化物會堆積於第1加熱爐122之下部,在此部分氣化會優先發生。因此,如圖7所示,以上面位於較第1氣體導入口136還上方的方式將氣化輔助材140配置於第1加熱爐122內為佳。顆粒114可於氣化輔助材140上以與氣化輔助材140接觸的方式配置。The first gas inlet 136 is provided in the first heating furnace 122 and is surrounded by the first heater 160. The first gas inlet 136 is preferably arranged to be closer to the second heating furnace 124 than the metal inlet 128. This is because when molten chloride is generated, the chloride will accumulate in the lower part of the first heating furnace 122, and vaporization will occur preferentially in this part. Therefore, as shown in FIG. 7, it is preferable to arrange the vaporization auxiliary material 140 in the first heating furnace 122 so that the upper surface is located above the first gas introduction port 136. The particles 114 may be arranged on the gasification auxiliary material 140 in a manner in contact with the gasification auxiliary material 140.

在此種構造中,驅動第1加熱器160、第2加熱器162將氯化爐120加熱,自金屬導入口128及/或第3氣體導入口130將含氯之氣體導入,藉此金屬與氯氣的反應發生而生成氯化物。存在為蒸氣之氯化物通過氣化輔助材140之間隙往第2加熱爐124移動。另一方面,處於熔融狀態之液狀的氯化物,在浸透氣化輔助材140之層的期間,吸收由第1加熱器160供給的熱能而氣化,之後往第2加熱爐124移動。如此一來,於金屬氯化物生成裝置116,會在第1加熱爐122中發生氯化物的生成與熔融狀態之氯化物的氣化。In this structure, the first heater 160 and the second heater 162 are driven to heat the chlorination furnace 120, and chlorine-containing gas is introduced from the metal inlet 128 and/or the third gas inlet 130, whereby the metal and The reaction of chlorine gas takes place to produce chloride. The chloride present as vapor moves to the second heating furnace 124 through the gap of the gasification auxiliary material 140. On the other hand, the liquid chloride in the molten state absorbs the heat energy supplied from the first heater 160 while immersing the layer of the gas-permeable auxiliary material 140 to vaporize, and then moves to the second heating furnace 124. In this way, in the metal chloride generating device 116, the generation of chloride and the vaporization of the chloride in the molten state occur in the first heating furnace 122.

如同金屬氯化物生成裝置110,自第1氣體導入口136導入的含氯之氣體,不僅可以物理手段將氯化物之蒸氣往第2加熱爐124導入,還可以化學手段防止氯化物析出金屬。職是,在管狀之第2加熱爐124內,亦可有效抑制金屬或氯化物之析出,可穩定使系統100運作而不會引起破損或破壞,可有效率提供金屬之粉體。Like the metal chloride generating device 110, the chlorine-containing gas introduced from the first gas inlet 136 can not only physically introduce the chloride vapor into the second heating furnace 124, but also chemically prevent the chloride from depositing metal. The job is that in the tubular second heating furnace 124, the precipitation of metals or chlorides can also be effectively suppressed, the system 100 can be operated stably without causing damage or damage, and metal powder can be efficiently provided.

再者,如圖7所示,亦可藉由將管狀之第2加熱爐124折疊,使總長增大而不會招致佔有面積的增大。在氯化物之沸點為高的情況下,在第2加熱爐124中之氣化需要比較長的時間,故此構造在製造會產出沸點為高之氯化物的金屬之粉體時尤其有效。Furthermore, as shown in FIG. 7, by folding the second heating furnace 124 in a tubular shape, the total length can be increased without incurring an increase in the occupied area. When the boiling point of the chloride is high, the gasification in the second heating furnace 124 takes a relatively long time, so this structure is particularly effective when producing metal powders that produce chlorides with a high boiling point.

『實施例』"Example"

(實施例1)(Example 1)

在本實施例,說明使用「具備具有圖2所示之結構作為基本結構之金屬氯化物生成裝置110」的系統100製造銅粉體之例。具體而言,於第1加熱爐122配置銅之顆粒,於第2加熱爐124配置石英之顆粒。在此狀態使用第1加熱器160與第2加熱器162,以第1加熱爐122與第2加熱爐124分別成為900℃、1150℃的方式進行加熱。分別自金屬導入口128與第1氣體導入口136將含氮與氯的混合氣體導入。混合氣體之氯濃度如表1所示。於表1亦記載有在將自第1氣體導入口136導入之混合氣體的流量調為1.0之情形中,自金屬導入口128導入之混合氣體的流量比(亦即自金屬導入口128導入之混合氣體相對於自第1氣體導入口136導入之混合氣體的流量比)。反應時間定為10小時。In this embodiment, an example of manufacturing copper powder using the system 100 "equipped with the metal chloride generating device 110 having the structure shown in FIG. 2 as a basic structure" is described. Specifically, copper pellets are placed in the first heating furnace 122, and quartz pellets are placed in the second heating furnace 124. In this state, the first heater 160 and the second heater 162 are used, and heating is performed so that the first heating furnace 122 and the second heating furnace 124 become 900°C and 1150°C, respectively. The mixed gas containing nitrogen and chlorine is introduced from the metal inlet 128 and the first gas inlet 136, respectively. The chlorine concentration of the mixed gas is shown in Table 1. Table 1 also shows that when the flow rate of the mixed gas introduced from the first gas inlet 136 is adjusted to 1.0, the ratio of the flow rate of the mixed gas introduced from the metal inlet 128 (that is, the ratio of the mixed gas introduced from the metal inlet 128) The flow rate ratio of the mixed gas to the mixed gas introduced from the first gas inlet 136). The reaction time was set at 10 hours.

『表1』

Figure 108111300-A0304-0001
"Table 1"
Figure 108111300-A0304-0001

反應結束後,拆下第1加熱器160與第2加熱器162,觀察氯化爐120。其結果,於第2加熱爐124之下部未觀察到氯化銅的堆積,確認到第2加熱爐124之破損亦未發生。After the completion of the reaction, the first heater 160 and the second heater 162 were removed, and the chlorination furnace 120 was observed. As a result, the accumulation of copper chloride was not observed in the lower part of the second heating furnace 124, and it was confirmed that the damage of the second heating furnace 124 did not occur.

(實施例2)(Example 2)

在本實施例,說明使用「具備具有圖4所示之結構作為基本結構之金屬氯化物生成裝置110」的系統100製造銅粉體之例。具體而言,於第1加熱爐122配置銅之顆粒,於第2加熱爐124配置石英之顆粒。在此狀態使用第1加熱器160與第2加熱器162,以第1加熱爐122與第2加熱爐124分別成為900℃、1150℃的方式進行加熱。自金屬導入口128、第1氣體導入口136及第2氣體導入口142同時導入含氮與氯的混合氣體。反應分二階段進行。在將自第1氣體導入口136導入之混合氣體的流量調為1.0時,自第2氣體導入口142及金屬導入口128導入之混合氣體的流量及各自之混合氣體中的氯濃度,係如同表2所示。第1氣體導入口136與第2氣體導入口142接續至同一個混合氣體源,自此等氣體導入口導入之混合氣體之各成分的濃度相同。第1階段與第2階段之反應時間分別為9小時、8小時。In this embodiment, an example of manufacturing copper powder using the system 100 "equipped with the metal chloride generating device 110 having the structure shown in FIG. 4 as a basic structure" is described. Specifically, copper pellets are placed in the first heating furnace 122, and quartz pellets are placed in the second heating furnace 124. In this state, the first heater 160 and the second heater 162 are used, and heating is performed so that the first heating furnace 122 and the second heating furnace 124 become 900°C and 1150°C, respectively. A mixed gas containing nitrogen and chlorine is simultaneously introduced from the metal inlet 128, the first gas inlet 136, and the second gas inlet 142. The reaction is carried out in two stages. When the flow rate of the mixed gas introduced from the first gas inlet 136 is adjusted to 1.0, the flow rate of the mixed gas introduced from the second gas inlet 142 and the metal inlet 128 and the chlorine concentration in the respective mixed gas are as follows Table 2 shows. The first gas inlet 136 and the second gas inlet 142 are connected to the same mixed gas source, and the concentrations of the components of the mixed gas introduced from these gas inlets are the same. The reaction time of the first stage and the second stage are 9 hours and 8 hours respectively.

『表2』

Figure 108111300-A0304-0002
"Table 2"
Figure 108111300-A0304-0002

各階段之反應結束後,拆下第1加熱器160與第2加熱器162,觀察氯化爐120。其結果,與實施例1相比,確認到氯化爐120內部之金屬銅的析出大幅減少。並且,確認到第1輸送管112內部之銅的析出亦減少。After the reaction in each stage is completed, the first heater 160 and the second heater 162 are removed, and the chlorination furnace 120 is observed. As a result, compared with Example 1, it was confirmed that the precipitation of metallic copper inside the chlorination furnace 120 was significantly reduced. In addition, it was confirmed that the precipitation of copper inside the first transfer pipe 112 also decreased.

(實施例3)(Example 3)

在本實施例,揭示使用系統100研究自第1氣體導入口136導入之混合氣體之氯濃度之影響的結果,所述系統100具備具有圖2所示之結構作為基本結構的金屬氯化物生成裝置110。具體而言,於第1加熱爐122配置銅之顆粒,於第2加熱爐124配置石英之顆粒。在此狀態,使用第1加熱器160與第2加熱器162,以第1加熱爐122與第2加熱爐124分別成為900℃、1150℃的方式進行加熱。自金屬導入口128與第1氣體導入口136一同將含氮與氯的混合氣體導入。在將自第1氣體導入口136導入之混合氣體的流量調為1.0時之自金屬導入口128導入之混合氣體的流量固定成3.2,自金屬導入口128導入之混合氣體的氯濃度固定成43 wt%,使自第1氣體導入口136導入之混合氣體中之氯氣濃度如表3所示變化。在表3中之實驗3係比較例,係自第1氣體導入口136僅導入氮的實驗。反應時間定為10小時。In this embodiment, the results of investigating the influence of the chlorine concentration of the mixed gas introduced from the first gas inlet 136 using the system 100 is disclosed. The system 100 is equipped with a metal chloride generating device having the structure shown in FIG. 2 as a basic structure. 110. Specifically, copper pellets are placed in the first heating furnace 122, and quartz pellets are placed in the second heating furnace 124. In this state, the first heater 160 and the second heater 162 are used to heat so that the first heating furnace 122 and the second heating furnace 124 become 900°C and 1150°C, respectively. A mixed gas containing nitrogen and chlorine is introduced from the metal inlet 128 together with the first gas inlet 136. When the flow rate of the mixed gas introduced from the first gas inlet 136 is adjusted to 1.0, the flow rate of the mixed gas introduced from the metal inlet 128 is fixed to 3.2, and the chlorine concentration of the mixed gas introduced from the metal inlet 128 is fixed to 43 wt%, the concentration of chlorine in the mixed gas introduced from the first gas inlet 136 is changed as shown in Table 3. Experiment 3 in Table 3 is a comparative example in which only nitrogen is introduced from the first gas inlet 136. The reaction time was set at 10 hours.

『表3』

Figure 108111300-A0304-0003
"table 3"
Figure 108111300-A0304-0003

如表3所示,可知藉由自第1氣體導入口136將含氯之氣體導入,可獲得與計算值(目標反應量)幾乎同量的銅粉體(實驗1、2)。相對於此,在未將氯氣自第1氣體導入口136導入的情況(實驗3)下,回收量偏離目標反應量,與實驗1及實驗2相比,止於低回收率。此事默示:在氯化爐120內有銅析出。As shown in Table 3, it can be seen that by introducing the chlorine-containing gas from the first gas inlet 136, copper powder of almost the same amount as the calculated value (target reaction amount) can be obtained (Experiments 1, 2). In contrast, in the case where the chlorine gas was not introduced from the first gas introduction port 136 (Experiment 3), the recovery amount deviated from the target reaction amount, and the recovery rate was low compared to Experiment 1 and Experiment 2. This incident implies that copper precipitated in the chlorination furnace 120.

反應結束後,拆下第1加熱器160與第2加熱器162,觀察氯化爐120。其結果,在自第1氣體導入口136將含氯之氣體導入的情況下,於氯化爐120內銅未析出,或者即使析出仍為不會對系統100之驅動造成影響之程度的量。相對於此,在未將氯氣自第1氣體導入口136導入的情況(實驗3)下,以目視觀察到在氯化爐120內有銅析出。After the completion of the reaction, the first heater 160 and the second heater 162 were removed, and the chlorination furnace 120 was observed. As a result, when the chlorine-containing gas is introduced from the first gas introduction port 136, copper is not precipitated in the chlorination furnace 120, or even if it precipitates, the amount does not affect the driving of the system 100. On the other hand, when the chlorine gas was not introduced from the first gas introduction port 136 (Experiment 3), it was visually observed that copper was deposited in the chlorination furnace 120.

如由實施例1、2、3可理解,確認到藉由應用本發明之實施型態,能夠抑制金屬或氯化物堆積於氯化爐120內部或於第1輸送管112內部析出等缺陷。As can be understood from Examples 1, 2, and 3, it was confirmed that by applying the implementation mode of the present invention, defects such as accumulation of metals or chlorides in the chlorination furnace 120 or precipitation in the first delivery pipe 112 can be suppressed.

作為本發明之實施型態,於上已述之各實施型態只要不相互矛盾,即可適當組合而實施。並且,以各實施型態之裝置為基礎,本技術領域具通常知識者進行適當構造要件的追加、刪除或設計變更者,或者進行工序的追加、省略或條件變更者,亦只要具備本發明的要旨,即為本發明之範圍所包含。As the embodiment of the present invention, the various embodiments described above can be combined appropriately as long as they do not contradict each other. In addition, based on the devices of each implementation type, those with ordinary knowledge in the technical field who add, delete, or change the design of appropriate structural elements, or who perform the addition, omission, or condition change of the process, also have the requirements of the present invention. The gist is included in the scope of the present invention.

即使係與藉由於上已述之各實施型態之態樣所帶來之作用效果相異的其他作用效果,對於自本說明書之記載可明確得知者,或者本技術領域具通常知識者得輕易預測者,亦可當然理解為由本發明所促成者。Even if it is other effects that are different from the effects brought about by the various implementation modes described above, those that can be clearly known from the description of this specification, or those with ordinary knowledge in the technical field can obtain Those who are easy to predict can of course also be understood as those facilitated by the present invention.

100‧‧‧金屬粉體製造系統 110‧‧‧金屬氯化物生成裝置 112‧‧‧第1輸送管 114‧‧‧顆粒 116‧‧‧金屬氯化物生成裝置 120‧‧‧氯化爐 122‧‧‧第1加熱爐 123‧‧‧連結部 124‧‧‧第2加熱爐 126‧‧‧分隔部件 128‧‧‧金屬導入口 130‧‧‧第3氣體導入口 132‧‧‧閥 134‧‧‧排出口 136‧‧‧第1氣體導入口 138‧‧‧閥 140‧‧‧氣化輔助材 142‧‧‧第2氣體導入口 144‧‧‧閥 146‧‧‧第4氣體導入口 148‧‧‧閥 160‧‧‧第1加熱器 162‧‧‧第2加熱器 164‧‧‧第3加熱器 200‧‧‧還原爐 202‧‧‧第2輸送管 204‧‧‧第5氣體導入口 206‧‧‧第6氣體導入口 300‧‧‧分離裝置100‧‧‧Metal Powder Manufacturing System 110‧‧‧Metal Chloride Generator 112‧‧‧The first delivery pipe 114‧‧‧Particle 116‧‧‧Metal Chloride Generator 120‧‧‧Chlorination furnace 122‧‧‧The first heating furnace 123‧‧‧Connecting part 124‧‧‧The second heating furnace 126‧‧‧Partition 128‧‧‧Metal inlet 130‧‧‧3rd gas inlet 132‧‧‧valve 134‧‧‧Exhaust outlet 136‧‧‧The first gas inlet 138‧‧‧valve 140‧‧‧Auxiliary materials for gasification 142‧‧‧Second gas inlet 144‧‧‧valve 146‧‧‧4th gas inlet 148‧‧‧valve 160‧‧‧The first heater 162‧‧‧Second heater 164‧‧‧The third heater 200‧‧‧Reduction furnace 202‧‧‧Second delivery pipe 204‧‧‧The fifth gas inlet 206‧‧‧The 6th gas inlet 300‧‧‧Separation device

〈圖1〉本發明之實施型態之一相關之金屬粉體製造系統的概略構造圖。 〈圖2〉本發明之實施型態之一相關之金屬氯化物生成裝置的剖面示意圖。 〈圖3〉本發明之實施型態之一相關之金屬氯化物生成裝置的剖面示意圖。 〈圖4〉本發明之實施型態之一相關之金屬氯化物生成裝置的剖面示意圖。 〈圖5〉本發明之實施型態之一相關之金屬氯化物生成裝置的剖面示意圖。 〈圖6〉本發明之實施型態之一相關之金屬氯化物生成裝置的剖面示意圖。 〈圖7〉本發明之實施型態之一相關之金屬氯化物生成裝置的側視示意圖。<Figure 1> A schematic configuration diagram of a metal powder manufacturing system related to one of the embodiments of the present invention. <Figure 2> A schematic cross-sectional view of a metal chloride generating device related to one embodiment of the present invention. <Figure 3> A schematic cross-sectional view of a metal chloride generating device related to one of the embodiments of the present invention. <Figure 4> A schematic cross-sectional view of a metal chloride generating device related to one of the embodiments of the present invention. <Figure 5> A schematic cross-sectional view of a metal chloride generating device related to one of the embodiments of the present invention. <Figure 6> A schematic cross-sectional view of a metal chloride generating device related to one embodiment of the present invention. <Figure 7> A schematic side view of a metal chloride generating device related to one embodiment of the present invention.

110‧‧‧金屬氯化物生成裝置 110‧‧‧Metal Chloride Generator

112‧‧‧第1輸送管 112‧‧‧The first delivery pipe

114‧‧‧顆粒 114‧‧‧Particle

120‧‧‧氯化爐 120‧‧‧Chlorination furnace

122‧‧‧第1加熱爐 122‧‧‧The first heating furnace

123‧‧‧連結部 123‧‧‧Connecting part

124‧‧‧第2加熱爐 124‧‧‧The second heating furnace

128‧‧‧金屬導入口 128‧‧‧Metal inlet

130‧‧‧第3氣體導入口 130‧‧‧3rd gas inlet

132‧‧‧閥 132‧‧‧valve

134‧‧‧排出口 134‧‧‧Exhaust outlet

136‧‧‧第1氣體導入口 136‧‧‧The first gas inlet

138‧‧‧閥 138‧‧‧valve

140‧‧‧氣化輔助材 140‧‧‧Auxiliary materials for gasification

160‧‧‧第1加熱器 160‧‧‧The first heater

162‧‧‧第2加熱器 162‧‧‧Second heater

Claims (14)

一種金屬氯化物生成裝置,其具有:氯化爐,具備具有用以將金屬導入之金屬導入口的第1加熱爐及與前述第1加熱爐連結的第2加熱爐;第1加熱器,將前述第1加熱爐加熱;以及第2加熱器,將前述第2加熱爐加熱;其中前述第2加熱爐具有用以將前述金屬之氯化物之氣體排出的排出口;前述氯化爐具有用以將含氯之氣體導入的第1氣體導入口;前述第1氣體導入口為前述第1加熱器與前述第2加熱器之任一者所圍繞。 A metal chloride generating device, comprising: a chlorination furnace, a first heating furnace having a metal introduction port for introducing metal, and a second heating furnace connected to the first heating furnace; a first heater, The first heating furnace heats; and the second heater heats the second heating furnace; wherein the second heating furnace has a discharge port for discharging the gas of the metal chloride; the chlorination furnace has A first gas introduction port for introducing chlorine-containing gas; the first gas introduction port is surrounded by either the first heater and the second heater. 如請求項1所述之金屬氯化物生成裝置,其中前述第1氣體導入口設置於前述第2加熱爐,配置成與前述排出口相比,遠離前述第1加熱爐。 The metal chloride generating device according to claim 1, wherein the first gas inlet is provided in the second heating furnace, and is arranged to be farther from the first heating furnace than the discharge port. 如請求項1所述之金屬氯化物生成裝置,其中前述第1氣體導入口設置於前述第1加熱爐;前述第1氣體導入口較前述金屬導入口還接近前述第1加熱爐與前述第2加熱爐之連結部。 The metal chloride generation device according to claim 1, wherein the first gas inlet is provided in the first heating furnace; the first gas inlet is closer to the first heating furnace and the second heating furnace than the metal inlet The connecting part of the heating furnace. 如請求項2所述之金屬氯化物生成裝置,其中前述第2加熱爐更包含用以將含氯之氣體導入的第2氣體導入口; 前述第2氣體導入口配置成與前述排出口相比,更為接近前述第1加熱爐。 The metal chloride generating device according to claim 2, wherein the second heating furnace further includes a second gas inlet for introducing chlorine-containing gas; The second gas introduction port is arranged closer to the first heating furnace than the discharge port. 如請求項1所述之金屬氯化物生成裝置,其中前述第2加熱器係以在較前述第1加熱爐之溫度還高之溫度下將前述第2加熱爐加熱的方式構成。 The metal chloride generating device according to claim 1, wherein the second heater is configured to heat the second heating furnace at a temperature higher than the temperature of the first heating furnace. 如請求項1所述之金屬氯化物生成裝置,其中前述第1加熱爐更具有用以將含氯之氣體導入的第3氣體導入口;前述第3氣體導入口自前述第1加熱器露出。 The metal chloride generating device according to claim 1, wherein the first heating furnace further has a third gas introduction port for introducing chlorine-containing gas; the third gas introduction port is exposed from the first heater. 如請求項1所述之金屬氯化物生成裝置,其中前述第1加熱爐具有:用以將含氯之氣體導入的第4氣體導入口;及用以將前述氮加熱的第3加熱器。 The metal chloride generating device according to claim 1, wherein the first heating furnace has: a fourth gas introduction port for introducing chlorine-containing gas; and a third heater for heating the nitrogen. 如請求項1所述之金屬氯化物生成裝置,其中前述第2加熱爐之內徑小於前述第1加熱爐之內徑。 The metal chloride generating device according to claim 1, wherein the inner diameter of the second heating furnace is smaller than the inner diameter of the first heating furnace. 一種製造金屬粉體之方法,其包含:在具備具有第1加熱器的第1加熱爐與接續於前述第1加熱爐且具有第2加熱器的第2加熱爐之氯化爐的前述第1加熱爐中,使金屬與氯氣反應以生成前述金屬之氯化物;在前述第2加熱爐中,將前述氯化物氣化;以及藉由自設置於前述第1加熱爐或前述第2加熱爐之第1氣體導入口將含氯之氣體導入,將前述氯化物之蒸氣輸送至還原爐。 A method of manufacturing metal powder, comprising: in the first heating furnace with a first heater and a second heating furnace with a second heater connected to the first heating furnace in the first chlorination furnace In the heating furnace, the metal is reacted with chlorine gas to produce the chloride of the metal; in the second heating furnace, the chloride is gasified; and by self-installing in the first heating furnace or the second heating furnace The first gas inlet introduces chlorine-containing gas, and conveys the aforementioned chloride vapor to the reduction furnace. 如請求項9所述之方法,其中在前述第2加熱爐中進行之前述氯化物之前述氣化,在較生成前述氯化物之溫度還高的溫度下進行。 The method according to claim 9, wherein the gasification of the chloride in the second heating furnace is performed at a temperature higher than the temperature at which the chloride is generated. 如請求項9所述之方法,其中前述第1氣體導入口設置於前述第1加熱爐。 The method according to claim 9, wherein the first gas inlet is provided in the first heating furnace. 如請求項9所述之方法,其中前述第1氣體導入口設置於前述第2加熱爐。 The method according to claim 9, wherein the first gas inlet is provided in the second heating furnace. 如請求項12所述之方法,其中前述氯化物之前述蒸氣往前述還原爐之輸送,係中介設置於前述第2加熱爐之排出口來進行;前述含氯之氣體之導入,係使用前述第1氣體導入口及設置於前述第2加熱爐之第2氣體導入口來進行。 The method according to claim 12, wherein the transportation of the vapor of the chloride to the reduction furnace is carried out by intermediary installation at the outlet of the second heating furnace; and the introduction of the chlorine-containing gas is performed using the first 1 gas inlet and the second gas inlet provided in the aforementioned second heating furnace. 如請求項9所述之方法,其更包含將經加熱之氮導入前述第1加熱爐。 The method according to claim 9, which further comprises introducing heated nitrogen into the aforementioned first heating furnace.
TW108111300A 2018-03-30 2019-03-29 Metal chloride generating device and method for manufacturing metal powder TWI698399B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-066921 2018-03-30
JP2018066921 2018-03-30

Publications (2)

Publication Number Publication Date
TW201942047A TW201942047A (en) 2019-11-01
TWI698399B true TWI698399B (en) 2020-07-11

Family

ID=68062002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111300A TWI698399B (en) 2018-03-30 2019-03-29 Metal chloride generating device and method for manufacturing metal powder

Country Status (5)

Country Link
JP (1) JP6591129B1 (en)
KR (1) KR102445498B1 (en)
CN (1) CN111936424B (en)
TW (1) TWI698399B (en)
WO (1) WO2019189411A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704083B1 (en) * 2019-11-22 2020-06-03 東邦チタニウム株式会社 Copper powder and its manufacturing method
WO2022202632A1 (en) * 2021-03-24 2022-09-29 富士フイルム株式会社 Heat treatment device and method for manufacturing heat treatment object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463212A (en) * 2001-06-14 2003-12-24 东邦钛株式会社 Method for mfg. metal powder metal powder, conductive paste therefor, and laminated ceramic capacitor
TW200406270A (en) * 2002-08-28 2004-05-01 Toho Titanium Co Ltd Metallic nickel powder and process for production thereof
JP2005256125A (en) * 2004-03-12 2005-09-22 Fujikura Ltd Metal powder production apparatus
TW200603918A (en) * 2004-06-16 2006-02-01 Toho Titanium Co Ltd Nickel powder and process for production thereof
JP2006307286A (en) * 2005-04-28 2006-11-09 Fujikura Ltd Method for producing metallic powder and apparatus therefor
JP2009013456A (en) * 2007-07-03 2009-01-22 Toho Titanium Co Ltd Nickel alloy powder production method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598652B2 (en) * 1987-10-27 1997-04-09 川崎製鉄株式会社 Gas phase chemical reactor
JP4540364B2 (en) * 2004-03-01 2010-09-08 東邦チタニウム株式会社 Nickel powder, and conductive paste and multilayer ceramic capacitor using the same
CN100569352C (en) * 2006-08-01 2009-12-16 遵义钛业股份有限公司 Multi-laminar flow cribriform-plate-free boiling chloridization furnace
JP6082574B2 (en) * 2012-11-26 2017-02-15 東邦チタニウム株式会社 Method and apparatus for producing metal powder
CN103851631B (en) * 2012-11-29 2016-06-08 李文智 Environmental protection heat treatment system
CN204261660U (en) * 2014-12-12 2015-04-15 江苏凌云药业有限公司 Two-stage introduce chlorine gas to make reaction device
CN204261663U (en) * 2014-12-12 2015-04-15 江苏凌云药业有限公司 The two-stage introduce chlorine gas to make reaction device of protective device revealed by band
CN204261655U (en) * 2014-12-12 2015-04-15 江苏凌云药业有限公司 There is the two-stage introduce chlorine gas to make reaction device of B-grade condensation
CN204261659U (en) * 2014-12-12 2015-04-15 江苏凌云药业有限公司 There is the two-stage introduce chlorine gas to make reaction device of lighting apparatus
CN204275954U (en) * 2014-12-16 2015-04-22 江苏凌云药业有限公司 There is the two-stage introduce chlorine gas to make reaction device of automatic induction lighting device
CN105858720B (en) * 2016-06-27 2017-08-15 攀钢集团攀枝花钢铁研究院有限公司 One kind production TiCl4Boiling chloridizing furnace and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463212A (en) * 2001-06-14 2003-12-24 东邦钛株式会社 Method for mfg. metal powder metal powder, conductive paste therefor, and laminated ceramic capacitor
TW200406270A (en) * 2002-08-28 2004-05-01 Toho Titanium Co Ltd Metallic nickel powder and process for production thereof
JP2005256125A (en) * 2004-03-12 2005-09-22 Fujikura Ltd Metal powder production apparatus
TW200603918A (en) * 2004-06-16 2006-02-01 Toho Titanium Co Ltd Nickel powder and process for production thereof
JP2006307286A (en) * 2005-04-28 2006-11-09 Fujikura Ltd Method for producing metallic powder and apparatus therefor
JP2009013456A (en) * 2007-07-03 2009-01-22 Toho Titanium Co Ltd Nickel alloy powder production method

Also Published As

Publication number Publication date
KR20200131875A (en) 2020-11-24
TW201942047A (en) 2019-11-01
JPWO2019189411A1 (en) 2020-04-30
JP6591129B1 (en) 2019-10-16
CN111936424A (en) 2020-11-13
KR102445498B1 (en) 2022-09-21
CN111936424B (en) 2022-12-02
WO2019189411A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
TWI698399B (en) Metal chloride generating device and method for manufacturing metal powder
JP5817636B2 (en) Method for producing metal powder
NL2026635B1 (en) Integrated manufacturing of core-shell particles for Li-ion batteries
TWI778941B (en) Silica to high purity silicon production apparatus and rocess
JP2016204755A (en) High purity tungsten hexachloride and method for making same
TW202007790A (en) Method for producing high-bulk-density molybdenum oxychloride
KR100658113B1 (en) A production process of Fe nano powder with silica coating by Chemical Vapor Condensation
JP2007008779A (en) Method and device for manufacturing single crystal
JP4357533B2 (en) Apparatus and method for depositing ultrafine particles from the gas phase
JP5205776B2 (en) Method and apparatus for producing solid product
RU2434807C1 (en) Method of producing nanopowder of carbon-element systems
JP2598652B2 (en) Gas phase chemical reactor
JP4736365B2 (en) Method for producing aluminum nitride single crystal
JP5022848B2 (en) Method and apparatus for producing SiO powder
JPH01226709A (en) Production of high-purity aluminum nitride powder
JP6106212B2 (en) Complex mass synthesizer, reactor for complex synthesizer, and complex synthesis method using the same
JP2009292675A (en) Manufacturing method and device for silicon or halogenated silane
TWI482736B (en) Manufacture of high purity silicon micropowder
JP2007063607A (en) Method and device for producing metal powder
JP4949340B2 (en) High purity magnesium oxide fine powder production apparatus and high purity magnesium oxide fine powder production method using the same
US10829834B2 (en) Apparatus and method for recovery of material
JP2005163124A (en) Metal ultrafine particle production device
JPS6257642A (en) Method and apparatus for producing ultrafine powder
JP2010076951A (en) Method for producing silicon
JP2024016488A (en) Method for manufacturing Al-AlN composite material