TWI697518B - Manufacturing method of metal oxide particle material - Google Patents

Manufacturing method of metal oxide particle material Download PDF

Info

Publication number
TWI697518B
TWI697518B TW108136217A TW108136217A TWI697518B TW I697518 B TWI697518 B TW I697518B TW 108136217 A TW108136217 A TW 108136217A TW 108136217 A TW108136217 A TW 108136217A TW I697518 B TWI697518 B TW I697518B
Authority
TW
Taiwan
Prior art keywords
particle material
metal
metal oxide
moisture content
manufacturing
Prior art date
Application number
TW108136217A
Other languages
Chinese (zh)
Other versions
TW202031766A (en
Inventor
渡邊友祐
富田亘孝
新井雄己
Original Assignee
日商亞都瑪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68314154&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI697518(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商亞都瑪科技股份有限公司 filed Critical 日商亞都瑪科技股份有限公司
Application granted granted Critical
Publication of TWI697518B publication Critical patent/TWI697518B/en
Publication of TW202031766A publication Critical patent/TW202031766A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
    • C01B13/324Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state by solid combustion synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00186Controlling or regulating processes controlling the composition of the reactive mixture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Abstract

本發明所要解決的課題為提供一種能夠減少含有的水分的量之金屬氧化物粒子材料之製造方法。 本發明的解決手段為一種金屬氧化物粒子材料之製造方法,其具有:調製具有金屬粒子材料、與將前述金屬粒子材料分散的分散媒之金屬粒子材料分散系統之調製步驟;以及藉由將前述金屬粒子材料分散系統供給至氧化性環境氣體中使前述金屬粒子材料燃燒來製造金屬氧化物粒子材料之燃燒步驟,其中前述製造方法具有將前述分散媒及前述氧化性環境氣體中所含有的水分控制在一定值以下之水分含量控制步驟。 The problem to be solved by the present invention is to provide a method for producing a metal oxide particle material capable of reducing the amount of water contained. The solution of the present invention is a method of manufacturing a metal oxide particle material, which includes: preparing a metal particle material dispersion system having a metal particle material and a dispersion medium for dispersing the metal particle material; and by combining the foregoing The metal particle material dispersion system is supplied to the oxidizing ambient gas to burn the aforementioned metal particle material to produce the combustion step of the metal oxide particle material, wherein the aforementioned manufacturing method includes controlling the moisture contained in the aforementioned dispersion medium and the aforementioned oxidizing ambient gas Steps for controlling moisture content below a certain value.

Description

金屬氧化物粒子材料之製造方法Manufacturing method of metal oxide particle material

本發明係關於一種金屬氧化物粒子材料之製造方法,其能夠製造介電損耗正切小的金屬氧化物粒子材料。The present invention relates to a method for manufacturing a metal oxide particle material, which can manufacture a metal oxide particle material with a small dielectric loss tangent.

已採用金屬氧化物粒子材料作為半導體裝置的封裝材、基板材料、其他的電子材料,尤其是已知一種在樹脂材料中分散有金屬氧化物粒子材料之樹脂組成物(專利文獻1~3等)。Metal oxide particle materials have been used as packaging materials, substrate materials, and other electronic materials for semiconductor devices. In particular, a resin composition in which metal oxide particles are dispersed in a resin material is known (Patent Documents 1 to 3, etc.) .

已知一種藉由將由金屬構成的粒子材料投入至氧化性環境氣體中燃燒來製成金屬氧化物粒子材料之方法(VMC法)作為製造金屬氧化物粒子材料的方法中的1種(專利文獻3、4等)。A method (VMC method) for preparing a metal oxide particle material by throwing a metal particle material into an oxidizing atmosphere and burning it is known as one of the methods for producing a metal oxide particle material (Patent Document 3 , 4, etc.).

另外,專利文獻2已揭示將樹脂材料中分散有金屬氧化物粒子材料的樹脂組成物應用於電子材料時,針對分散的金屬氧化物粒子材料,藉由使其物理吸附水的量在50ppm以下而讓壓力鍋試驗的結果變好。In addition, Patent Document 2 has disclosed that when a resin composition in which a metal oxide particle material is dispersed in a resin material is applied to an electronic material, the amount of the dispersed metal oxide particle material is made to physically adsorb water to 50 ppm or less. Make the results of the pressure cooker test better.

就專利文獻2中使金屬氧化物粒子材料的物理吸附水的量減少的方法而言,已揭示採用熱處理法,也就是對所製造的金屬氧化物粒子材料進行加熱、乾燥。還有,二氧化矽若加熱到超過200℃,則表面OH基(結合水)開始被去除(例如參照非專利文獻1),因此二氧化矽的物理吸附水係藉由加熱到200℃來進行測定。Regarding the method of reducing the amount of physically adsorbed water of the metal oxide particle material in Patent Document 2, it has been disclosed that the heat treatment method is adopted, that is, the produced metal oxide particle material is heated and dried. Also, if silicon dioxide is heated to more than 200°C, the surface OH groups (bound water) will start to be removed (for example, refer to Non-Patent Document 1), so the physical adsorption of silicon dioxide is carried out by heating to 200°C Determination.

又,在專利文獻3中,「藉由在反應容器內將金屬粉末供給至由可燃氣體與助燃氣體構成的高溫火焰中,並在該火焰中使該金屬粉末氧化來合成金屬氧化物粉末之金屬氧化物粉末之製造方法」係要點在於透過適度地控制伴隨著可燃氣體燃燒而產生的水蒸氣量來得到優良的金屬氧化物之發明(專利文獻3的第[0034]段)。此處,在專利文獻3中成為問題的水蒸氣由於不從外部供給,因此主要是作為由反應性氣體(例如丙烷)的燃燒所產生的理論水蒸氣量而計算(專利文獻3的第[0035]段)。專利文獻3中揭示的發明是一種目的在於提供「半導體封裝材料的流動性與成形性改善效果優異,且能夠提高機械強度及焊料耐熱性之金屬氧化物粉末及其製造方法」之發明。 [先前技術文獻] [專利文獻] In addition, in Patent Document 3, "the metal powder of the metal oxide powder is synthesized by supplying metal powder in a reaction vessel to a high-temperature flame composed of combustible gas and combustion-supporting gas, and oxidizing the metal powder in the flame. The main point of the "Method of Manufacturing Oxide Powder" lies in the invention of obtaining excellent metal oxides by appropriately controlling the amount of water vapor generated by the combustion of combustible gas (Patent Document 3, paragraph [0034]). Here, since the water vapor that is a problem in Patent Document 3 is not supplied from the outside, it is mainly calculated as the theoretical amount of water vapor generated by the combustion of a reactive gas (for example, propane) (Patent Document 3 No. [0035] ]segment). The invention disclosed in Patent Document 3 is an invention aimed at providing "a metal oxide powder that has excellent fluidity and formability improvement effects of semiconductor packaging materials, and can improve mechanical strength and solder heat resistance, and a manufacturing method thereof." [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本特開昭58-138740號公報 [專利文獻2]日本特開昭60-199020號公報(請求項2等) [專利文獻3]日本特開2005-139295號公報 [專利文獻4]日本特開昭60-255602號公報 [非專利文獻] [Patent Document 1] Japanese Patent Laid-Open No. 58-138740 [Patent Document 2] Japanese Patent Application Laid-Open No. 60-199020 (claim 2 etc.) [Patent Document 3] Japanese Patent Application Publication No. 2005-139295 [Patent Document 4] Japanese Patent Application Publication No. 60-255602 [Non-Patent Literature]

[非專利文獻1]微粒體的表面化學與附著現象,近澤正敏、武井孝,日本海水學會誌,1987年41卷4號p.168-180[Non-Patent Document 1] Surface Chemistry and Adhesion Phenomenon of Microsomes, Masatoshi Kinzawa, Takashi Takei, Journal of the Japan Sea Society, 1987, Volume 41, No. 4, p.168-180

[發明欲解決之課題][The problem to be solved by the invention]

本發明人等在將金屬氧化物粒子材料應用於電子材料時,發現除了減少物理吸附水的量之外,還能夠透過減少物理吸附水以外所含有的水(結合水等)來提高電氣特性(例如降低介電損耗正切:Df)。When the inventors of the present invention applied metal oxide particle materials to electronic materials, they found that in addition to reducing the amount of physically adsorbed water, it was also possible to improve electrical characteristics by reducing the water (bound water, etc.) contained in addition to the physically adsorbed water ( For example, reducing the dielectric loss tangent: Df).

此處,在專利文獻2所揭示的發明中,如請求項1將粒徑限定為20~100μm,已假定處理粒徑較大的粒子。近年來,隨著半導體元件結構、電路的微細化,電子材料用填充劑的粒徑已從亞微米減小至奈米級。物理吸附的水分含量會與粒子材料的表面積成比例增加,因此粒徑變小時,表面積亦增加,物理吸附水的量也會增加。例如在粒徑從亞微米變成奈米級的粒子材料中,與專利文獻2中規定的「50ppm以下的水分含量」同等的水分含量會變成數十倍而達到超過1000ppm的量。即使以這樣的水分含量為目標而以降低水分含量為目的來進行加熱,也無法期望將所含的水分降低到能夠提高電氣特性的程度,無法達到充足的電氣特性。尤其是即便減少物理吸附水的量,之後亦有空氣中的水分迅速地重新結合之情形。Here, in the invention disclosed in Patent Document 2, as in Claim 1, the particle size is limited to 20 to 100 μm, and it is assumed that particles with a larger particle size are handled. In recent years, with the miniaturization of semiconductor device structures and circuits, the particle size of fillers for electronic materials has decreased from submicron to nanometer level. The content of physically adsorbed water will increase in proportion to the surface area of the particle material. Therefore, as the particle size becomes smaller, the surface area increases, and the amount of physically adsorbed water also increases. For example, in a particle material whose particle size is changed from submicron to nanometer level, the water content equivalent to the "water content of 50 ppm or less" specified in Patent Document 2 becomes several tens of times greater than 1000 ppm. Even if heating is performed for the purpose of reducing the moisture content with such a moisture content as the target, the moisture content cannot be expected to be reduced to the extent that the electrical characteristics can be improved, and sufficient electrical characteristics cannot be achieved. In particular, even if the amount of physically adsorbed water is reduced, the moisture in the air will quickly recombine afterwards.

再者,從實現適當的電氣特性的觀點來看,已知水分含量少者較佳,不希望像專利文獻3所揭示的發明(例如第0034段)那樣主動地供給水分。Furthermore, from the viewpoint of realizing appropriate electrical characteristics, it is known that a lower water content is better, and it is not desirable to actively supply water as in the invention disclosed in Patent Document 3 (for example, paragraph 0034).

本發明人等所要解決的課題為提供一種能夠減少物理吸附水以外所含有的水分之金屬氧化物粒子材料之製造方法。 [用以解決課題之手段] The problem to be solved by the inventors is to provide a method for producing a metal oxide particle material capable of reducing moisture contained in addition to physically adsorbed water. [Means to solve the problem]

(1)本發明人等為解決上述課題而專心致力於研究,結果發現能夠藉由調節VMC法中的製造條件來降低物理吸附水、其以外的水分的量,而完成以下的發明。(1) The inventors of the present invention devoted themselves to research to solve the above-mentioned problems. As a result, they found that the amount of physically adsorbed water and other moisture can be reduced by adjusting the production conditions in the VMC method, and completed the following invention.

即,解決上述課題之本發明之金屬氧化物粒子材料之製造方法為一種金屬氧化物粒子材料之製造方法,其具有: 調製具有金屬粒子材料、與將前述金屬粒子材料分散的分散媒之金屬粒子材料分散系統之調製步驟;以及 藉由將前述金屬粒子材料分散系統供給至氧化性環境氣體中使前述金屬粒子材料燃燒來製造金屬氧化物粒子材料之燃燒步驟, 其中前述製造方法具有將前述分散媒及前述氧化性環境氣體中所含有的水分控制在一定值以下之水分含量控制步驟。 That is, the manufacturing method of the metal oxide particle material of the present invention to solve the above-mentioned problems is a method of manufacturing the metal oxide particle material, which has: The step of preparing a metal particle material dispersion system having a metal particle material and a dispersion medium for dispersing the metal particle material; and The combustion step of producing the metal oxide particle material by supplying the metal particle material dispersion system to the oxidizing atmosphere to burn the metal particle material, The aforementioned manufacturing method has a moisture content control step of controlling the moisture contained in the aforementioned dispersion medium and the aforementioned oxidizing ambient gas below a certain value.

VMC法為藉由將金屬粒子材料氧化來製造金屬氧化物的方法。藉由減少使金屬粒子材料氧化的環境中所含有的水分含量,而能夠減少所製造的金屬氧化物中含有之被稱為結合水等之水分含量。比起在製造金屬氧化物粒子材料後去除水分,能夠更簡單地控制水分含量。The VMC method is a method of manufacturing metal oxides by oxidizing metal particle materials. By reducing the moisture content contained in the environment where the metal particle material is oxidized, the moisture content called bound water contained in the produced metal oxide can be reduced. It is easier to control the moisture content than to remove the moisture after manufacturing the metal oxide particle material.

(2)在上述(1)之發明中,前述分散媒及前述氧化性環境氣體的至少一部分為空氣,前述水分含量控制步驟具有將前述空氣中所含的水分的至少一部分去除之乾燥步驟。藉由具備主動地除去水分而使水分含量減少之步驟,而能夠控制所製造的金屬氧化物的含水量。還有,本說明書中的「空氣」是指「外部空氣」。(2) In the invention of (1) above, at least a part of the dispersion medium and the oxidizing ambient gas is air, and the moisture content control step includes a drying step of removing at least a part of the moisture contained in the air. By having a step of actively removing moisture to reduce the moisture content, the moisture content of the produced metal oxide can be controlled. In addition, "air" in this manual means "outside air".

(3)在上述(1)之發明中,前述分散媒及前述氧化性環境氣體的至少一部分為空氣,前述水分含量控制步驟係測定前述空氣的絕對濕度並在所測定的絕對濕度為指定值以下的情況下進行前述燃燒步驟之步驟。藉由在使金屬粒子材料氧化的環境中導入空氣並管理導入的空氣的濕度,而能夠控制所製造的金屬氧化物的水分含量。(3) In the invention of (1) above, at least a part of the dispersion medium and the oxidizing ambient gas is air, and the moisture content control step is to measure the absolute humidity of the air, and the measured absolute humidity is below a specified value In the case of the previous combustion step. By introducing air into an environment where the metal particle material is oxidized and managing the humidity of the introduced air, the moisture content of the produced metal oxide can be controlled.

(4)在上述(1)~(3)之發明中,就具體控制的水分含量而言,前述水分含量控制步驟係將前述分散媒及前述氧化性環境氣體中所含的水分含量控制在10.0g/Nm 3以下之步驟。還有,在本說明書中,當體積以「Nm 3」表示時係表示換算成在標準狀態(25℃、1atm)下的體積的值。 (4) In the above inventions (1) to (3), in terms of the specific controlled moisture content, the moisture content control step is to control the moisture content contained in the dispersion medium and the oxidizing ambient gas to 10.0 Steps below g/Nm 3 . In addition, in this specification, when the volume is expressed as "Nm 3 ", it means a value converted into a volume in a standard state (25°C, 1 atm).

(5)在上述(1)~(4)之發明中,前述水分含量控制步驟可為:將所得到的金屬氧化物粒子材料的水分含量控制在於200℃下加熱時每單位表面積(m 2)為40ppm以下之步驟。藉由使水分含量在此範圍內,而能夠提高電氣特性。藉由在200℃下加熱來測定物理吸附水的量。每單位表面積(m 2)的水分含量係以(於200℃下加熱時的水分含量:ppm)÷(比表面積:m 2/g)進行計算。比表面積係採用使用氮氣的BET法進行測定而得到的值。 [發明之效果] (5) In the above inventions (1) to (4), the aforementioned moisture content control step may be: control the moisture content of the obtained metal oxide particle material to per unit surface area (m 2 ) when heated at 200°C Steps below 40ppm. By keeping the moisture content within this range, electrical characteristics can be improved. The amount of physically adsorbed water was measured by heating at 200°C. The moisture content per unit surface area (m 2 ) is calculated as (moisture content when heated at 200°C: ppm)÷(specific surface area: m 2 /g). The specific surface area is a value measured by the BET method using nitrogen gas. [Effects of Invention]

本發明之金屬氧化物粒子材料之製造方法能夠藉由具有上述的構成而簡單地製造水分含量能降低的金屬氧化物粒子材料。The method for producing a metal oxide particle material of the present invention can easily produce a metal oxide particle material whose moisture content can be reduced by having the above-mentioned configuration.

[用以實施發明的形態][Form to implement the invention]

根據以下的實施形態,詳細地針對本發明之金屬氧化物粒子材料之製造方法進行說明。本實施形態之金屬氧化物粒子材料之製造方法係從金屬粒子材料製造金屬氧化物粒子材料之方法。本實施形態之金屬氧化物粒子材料之製造方法具有調製步驟、燃燒步驟與水分含量控制步驟。According to the following embodiments, the method of manufacturing the metal oxide particle material of the present invention will be described in detail. The manufacturing method of the metal oxide particle material of this embodiment is a method of manufacturing the metal oxide particle material from the metal particle material. The manufacturing method of the metal oxide particle material of this embodiment has a preparation step, a combustion step, and a moisture content control step.

・調製步驟 調製步驟係調製金屬粒子材料分散系統之步驟。金屬粒子材料分散系統具有金屬粒子材料與分散媒,其中金屬粒子材料係分散於分散媒中。金屬粒子材料係包含矽、鋁等金屬單質、由多種金屬元素構成的合金・金屬間化合物等的粒子材料。粒子材料的粒徑並沒有特別的限定,但金屬粒子材料的粒徑(粒度分布)只要是在氧化性環境氣體中能夠形成燃燒(爆燃)的範圍內即可。就上限值而言,以採用400μm左右為佳,更佳為60μm以下。這是因為粒徑小,容易因爆燃而將含有的金屬全部都轉化為氧化物。又,從操作性的觀點來看,亦能夠將下限值限制在1μm左右。還有,針對上述理由而對此等的上限值及下限值規定較佳的範圍,當然根據其他理由也能夠採用該範圍以外的上限值及下限值的組合。 ・Preparation procedure The preparation step is a step of preparing the metal particle material dispersion system. The metal particle material dispersion system has a metal particle material and a dispersion medium, wherein the metal particle material is dispersed in the dispersion medium. The metal particle material is a particle material containing simple metals such as silicon and aluminum, alloys made of multiple metal elements, intermetallic compounds, and the like. The particle size of the particle material is not particularly limited, but the particle size (particle size distribution) of the metal particle material may be within a range that can cause combustion (deflagration) in an oxidizing atmosphere. As for the upper limit, it is preferably about 400 μm, more preferably 60 μm or less. This is because the particle size is small and it is easy to convert all the contained metals into oxides due to deflagration. In addition, from the viewpoint of operability, the lower limit can also be limited to about 1 μm. In addition, the upper limit value and the lower limit value are defined in a preferable range for the above-mentioned reasons. Of course, a combination of the upper limit value and the lower limit value outside the range can be adopted for other reasons.

本發明含有製造的金屬氧化物粒子材料所含的金屬元素。含有多種金屬元素時,係根據製造的金屬氧化物粒子材料中的構成比來控制存在比及混合比。其亦可含有金屬元素的元素。除了金屬元素以外所包含的元素,可以是在燃燒步驟中被氧化時汽化而未殘留在所製造的金屬氧化物粒子材料中的元素、或是被捕捉在所製造的金屬氧化物粒子材料中的元素。The present invention contains the metal element contained in the produced metal oxide particle material. When multiple metal elements are contained, the abundance ratio and mixing ratio are controlled according to the composition ratio in the metal oxide particle material to be produced. It may also contain metal elements. The elements contained in addition to the metal elements may be elements that are vaporized during oxidation in the combustion step and are not left in the metal oxide particle material produced, or may be trapped in the metal oxide particle material produced element.

分散媒除了控制含有的水分含量以外,並沒有特別限定。就分散媒而言,較佳為氣體。分散媒中可以含有與金屬粒子材料反應而形成氧化物的氧氣、或是作為透過熱分解而釋放氧氣的化合物之氧化氣體。就氣體而言,除了氧化性氣體以外,較佳為與金屬粒子材料之間反應性低的非活性氣體。就非活性氣體而言,可例示氮氣、氬氣。除了氣體以外,在分散媒中亦能夠含有液體、固體的化合物。就分散媒而言,較佳為包含空氣者,更佳為由空氣構成者。The dispersion medium is not particularly limited except for controlling the water content contained. As for the dispersion medium, a gas is preferred. The dispersion medium may contain oxygen that reacts with the metal particle material to form an oxide, or an oxidizing gas that is a compound that releases oxygen through thermal decomposition. As for the gas, in addition to the oxidizing gas, an inert gas having low reactivity with the metal particle material is preferable. Examples of inert gases include nitrogen and argon. In addition to gas, liquid and solid compounds can also be contained in the dispersion medium. As for the dispersing medium, those containing air are preferable, and those composed of air are more preferable.

分散媒中,透過燃燒而生成水分的化合物的含量係以受限制或不存在為較佳。就透過燃燒而生成水分的化合物而言,可列舉烴、醇、酮、醚等含氫化合物。再者,胺、氨等含氮化合物係透過氧化產生氮氧化物,因此較佳為不含有;含硫化合物係透過氧化產生硫氧化物,因此較佳為不含有。In the dispersion medium, the content of the compound that generates moisture through combustion is preferably limited or not present. Examples of compounds that generate moisture through combustion include hydrogen-containing compounds such as hydrocarbons, alcohols, ketones, and ethers. Furthermore, nitrogen-containing compounds such as amines and ammonia generate nitrogen oxides through oxidation, and therefore are preferably not contained; sulfur-containing compounds generate sulfur oxides through oxidation, and therefore are preferably not contained.

金屬粒子材料與分散媒的混合比並沒有特別限定。根據後述的氧化性環境氣體中之金屬粒子材料的濃度,所製造的金屬氧化物粒子材料的粒度分布、形態會變化,因此將金屬粒子材料分散系統投入至氧化性環境氣體中時,能夠以成為具有必要的粒度分布及形態之金屬粒子材料濃度的方式,決定金屬粒子材料分散系統中的濃度。當金屬粒子材料的濃度增加時,容易持續爆燃;當濃度降低時,能夠提高爆燃的穩定性。金屬粒子材料的濃度係只要能夠供給能產生足夠量的燃燒熱使火焰持續存在的金屬粒子材料即可。The mixing ratio of the metal particle material and the dispersion medium is not particularly limited. According to the concentration of the metal particle material in the oxidizing atmosphere described later, the particle size distribution and morphology of the metal oxide particle material produced will change. Therefore, when the metal particle material dispersion system is put into the oxidizing atmosphere, it can be The method of the metal particle material concentration with the necessary particle size distribution and morphology determines the concentration of the metal particle material dispersion system. When the concentration of metal particle materials increases, deflagration is likely to continue; when the concentration decreases, the stability of deflagration can be improved. The concentration of the metal particle material should only be capable of supplying a metal particle material capable of generating a sufficient amount of combustion heat to continue the flame.

金屬粒子材料分散系統的調製方法並沒有特別的限定。混合氣體與液體作為分散媒來使用時,金屬粒子材料、液體的分散媒、氣體的分散媒各自的混合順序並沒有限定。例如,能夠先將金屬粒子材料分散在液體的分散媒中後,再分散在氣體的分散媒中;或是將液體的分散媒分散在氣體的分散媒中後,再將金屬粒子材料分散;或是將金屬粒子材料分散在氣體的分散媒中後,再將液體的分散媒分散。再者,就金屬粒子材料分散系統而言,能夠採用並使用各個組成比不同(金屬粒子材料的濃度不同等)者。The preparation method of the metal particle material dispersion system is not particularly limited. When a mixed gas and liquid are used as a dispersion medium, the order of mixing the metal particle material, the liquid dispersion medium, and the gas dispersion medium is not limited. For example, the metal particle material can be dispersed in a liquid dispersion medium first, and then dispersed in a gas dispersion medium; or the liquid dispersion medium can be dispersed in a gas dispersion medium, and then the metal particle material can be dispersed; or After dispersing the metal particle material in the gas dispersion medium, the liquid dispersion medium is dispersed. Furthermore, as for the metal particle material dispersion system, it is possible to adopt and use those having different composition ratios (different concentrations of metal particle materials, etc.).

・燃燒步驟 燃燒步驟係藉由將金屬粒子材料分散系統供給至氧化性環境氣體中,使所含有的金屬粒子材料燃燒來製造金屬氧化物粒子材料之步驟。氧化性環境氣體係含有氧氣的氣體,或是透過熱分解產生氧氣的化合物。就氧化的環境氣體而言,尤其較佳為包含空氣者,更佳為由空氣構成者。 ・Combustion steps The combustion step is a step of producing a metal oxide particle material by supplying the metal particle material dispersion system to an oxidizing ambient gas and burning the contained metal particle material. Oxidizing ambient gas system is a gas containing oxygen, or a compound that generates oxygen through thermal decomposition. As for the oxidized ambient gas, those containing air are particularly preferred, and those composed of air are more preferred.

就燃燒所含有的金屬粒子材料之方法而言,係在某些點火源點火。就點火源而言,可例示使烴等可燃氣體燃燒所得到的化學火焰、或電漿、火花等。採用化學火焰時,期望透過燃燒而生成的水分的量總體上在限制量以下。金屬粒子材料係進行燃燒,最後被急速冷卻而生成金屬氧化物粒子材料。金屬氧化物粒子材料係透過重力等而從達到氧化性環境氣體中的燃燒狀態的區域中去除。As far as the method of burning the metal particles contained in the material is concerned, it is ignited at some ignition source. Examples of ignition sources include chemical flames obtained by burning combustible gases such as hydrocarbons, plasma, sparks, and the like. When a chemical flame is used, it is desirable that the amount of moisture generated through combustion is generally below the limit amount. The metal particle material is burned and finally rapidly cooled to produce the metal oxide particle material. The metal oxide particle material is removed from the area that has reached the combustion state in the oxidizing atmosphere by gravity or the like.

前述的分散媒與氧化性環境氣體係以兩者皆為空氣為佳。又,分散媒及氧化性環境氣體中所含的氧氣等的量(A)較佳係比足以氧化金屬粒子材料所需的量(B:化學當量)還要多。例如,A/B較佳的下限值係可列舉1.1、1.2、1.3、1.4、1.5、1.8、2.0、3.0等。藉由提高此A/B的值而採用前述的化學火焰並從該化學火焰產生水蒸氣時,能夠將透過水分含量少的分散媒及氧化性環境氣體而產生的水蒸氣予以稀釋,而總體上降低後述的每單位體積的水分含量。The aforementioned dispersing medium and oxidizing ambient air system are preferably both air. In addition, the amount (A) of oxygen and the like contained in the dispersion medium and the oxidizing ambient gas is preferably more than the amount (B: chemical equivalent) required to oxidize the metal particle material. For example, a preferable lower limit of A/B can be 1.1, 1.2, 1.3, 1.4, 1.5, 1.8, 2.0, 3.0, etc. By increasing the value of A/B, when the aforementioned chemical flame is used and water vapor is generated from the chemical flame, the water vapor generated by the dispersion medium and oxidizing ambient gas with a low water content can be diluted, and overall Reduce the moisture content per unit volume described later.

・水分含量控制步驟 水分含量控制步驟係將分散媒及氧化性環境氣體中所含有的水分控制在一定值以下之步驟。將水分含量控制在一定值以下之方法並沒有特別的限定。例如能夠採用從分散媒、氧化性環境氣體中除去水分的乾燥步驟,或是採用水分含量原本就少的分散媒、氧化性環境氣體。就乾燥的方法而言,能夠採用:使用乾燥劑,使分散媒、氧化性環境氣體通過而進行乾燥之方法;進行冷卻使水分達到過飽和狀態而凝聚之方法等。 ・Moisture content control procedure The moisture content control step is the step of controlling the moisture contained in the dispersion medium and oxidizing ambient gas below a certain value. The method of controlling the moisture content below a certain value is not particularly limited. For example, it is possible to use a drying step to remove moisture from a dispersion medium or oxidizing ambient gas, or use a dispersion medium or oxidizing ambient gas with an inherently low moisture content. As for the drying method, it is possible to adopt a method of drying by using a desiccant to pass a dispersion medium and oxidizing ambient gas; a method of cooling to make the moisture reach a supersaturated state and agglomerate.

就分散媒、氧化性環境氣體而言,在至少一部分採用空氣時,能夠採用:使該空氣乾燥的步驟;或是進行測定空氣(大氣)的絕對濕度的測定步驟且在其絕對濕度在指定值以下時,實施調製步驟及燃燒步驟。例如,由於空氣中的濕度會隨著季節、天候而變動,因此亦能夠在透過測定步驟獲得所需的水分含量的空氣時,進行調製步驟及燃燒步驟。As for the dispersion medium and oxidizing ambient gas, when air is used in at least a part, it is possible to adopt: the step of drying the air; or the measurement step of measuring the absolute humidity of the air (atmosphere) and the absolute humidity is at a specified value In the following, the preparation step and the combustion step are implemented. For example, since the humidity in the air fluctuates with seasons and weather, it is also possible to perform the preparation step and the combustion step when the air with the required moisture content is obtained through the measurement step.

就水分含量而言,只要能控制在指定值以下就足夠,但以進行乾燥或是除濕使水分含量降低為佳。水分含量的指定值並沒有特別的限定,能夠例示20.0g/Nm 3、10.0g/Nm 3、5.0g/Nm 3等。又,亦能夠從所製造的金屬氧化物粒子材料的水分含量進行限定。藉由控制分散媒、氧化性環境氣體中的水分含量,或是控制燃燒時水分所生成的可燃氣體的量,亦能夠控制所製造的金屬氧化物粒子材料含有的水分含量(例如亦包含作為表面OH基等而存在的結合水)。能夠控制分散媒、氧化性環境氣體的水分含量或可燃氣體的量,使得金屬氧化物粒子材料的水分含量在每單位面積40ppm以下。若減少可燃氣體的量,金屬氧化物粒子材料的水分含量也有減少的傾向。又,特別是藉由亦減少結合水的量,物理吸附水的量也會減少。 As far as the moisture content is concerned, it is enough as long as it can be controlled below the specified value, but it is better to reduce the moisture content by drying or dehumidification. The specified value of the moisture content is not particularly limited, and 20.0 g/Nm 3 , 10.0 g/Nm 3 , 5.0 g/Nm 3 and the like can be exemplified. In addition, it can also be limited from the moisture content of the metal oxide particle material produced. By controlling the moisture content in the dispersion medium, oxidizing ambient gas, or controlling the amount of combustible gas generated by moisture during combustion, it is also possible to control the moisture content contained in the metal oxide particle material produced (for example, including the surface OH groups and other existing bound water). It is possible to control the moisture content of the dispersion medium and the oxidizing ambient gas or the amount of combustible gas so that the moisture content of the metal oxide particle material is below 40 ppm per unit area. If the amount of combustible gas is reduced, the moisture content of the metal oxide particle material also tends to decrease. Also, especially by reducing the amount of bound water, the amount of physically adsorbed water will also be reduced.

在本說明書中,「金屬氧化物粒子材料的水分含量」是指在燃燒步驟後將金屬氧化物粒子材料加熱到200℃為止所釋放的水分含量。還有,亦能夠視需要地使加熱的溫度達到500℃。加熱到500℃為止所生成的水分的量係除了物理吸附水的量以外,亦生成結合水。In this specification, the "moisture content of the metal oxide particle material" refers to the water content released by heating the metal oxide particle material to 200°C after the combustion step. In addition, the heating temperature can be set to 500°C as needed. The amount of water generated by heating to 500°C is not only the amount of physically adsorbed water, but also bound water.

・其他步驟 燃燒步驟後所得到的金屬氧化物粒子材料係藉由分級裝置進行分離回收。就分級裝置而言,可列舉過濾器、離心分離機等。分離的金屬氧化物粒子材料係以在乾燥的條件下進行保存為佳。尤其是以不與液體狀的水分接觸為佳,更佳為不暴露在高濕度氣體環境下(例如65%RH以上)。尤其是如後所述地將金屬氧化物材料分散在樹脂材料中時,較佳為到分散為止都不暴露在水分中,更佳為到樹脂材料硬化為止都不暴露在水分中,再更佳為在樹脂材料硬化後的使用態中也持續不暴露在水分中。又,除了水分含量控制步驟以外,亦能夠藉由減少可燃氣體的相對量來減少金屬氧化物粒子材料的水分含量。 ・Other steps The metal oxide particle material obtained after the combustion step is separated and recovered by a classification device. As for the classification device, a filter, a centrifugal separator, etc. can be cited. The separated metal oxide particle material is preferably stored under dry conditions. In particular, it is better not to come into contact with liquid moisture, and more preferably not to be exposed to a high-humidity gas environment (for example, 65% RH or more). In particular, when the metal oxide material is dispersed in the resin material as described later, it is preferable not to be exposed to moisture until the dispersion, more preferably not to be exposed to moisture until the resin material is hardened, and even more preferably In order to keep the resin material from being exposed to moisture even in the use state after the resin material is cured. Moreover, in addition to the moisture content control step, the moisture content of the metal oxide particle material can also be reduced by reducing the relative amount of combustible gas.

又,金屬氧化物粒子材料係能夠進行表面處理。藉由進行適當的表面處理,能夠抑制水分滲透到金屬氧化物粒子材料內,因此能夠使水分含量保持在較低。就表面處理而言,能夠例示矽氮烷化合物(六甲基二矽氮烷等)、矽烷化合物(苯基矽烷、烷基矽烷、甲基丙烯酸矽烷、胺基矽烷、環氧基矽烷等)。In addition, the metal oxide particle material system can be surface-treated. Appropriate surface treatment can prevent moisture from penetrating into the metal oxide particle material, so the moisture content can be kept low. In terms of surface treatment, silazane compounds (hexamethyldisilazane, etc.), silane compounds (phenylsilane, alkylsilane, methacrylic silane, aminosilane, epoxy silane, etc.) can be exemplified.

而且,製造金屬氧化物粒子材料後,能夠使其迅速地在樹脂材料中分散來製造樹脂組成物。就樹脂材料而言,並沒有特別的限定,可列舉熱硬化性樹脂(硬化前、硬化後之任一者皆可)、熱塑性樹脂等一般的樹脂材料,例如:環氧樹脂、三聚氰胺樹脂、丙烯酸樹脂、聚碳酸酯樹脂、聚酯、聚矽氧樹脂、液晶高分子(LCP)、聚醯亞胺、環狀烯烴高分子(COP)、聚苯醚(PPO)。樹脂材料係可使用單一種,或者可以將多種的樹脂材料混合(摻合化等)使用。樹脂材料係以水分的含量在1000ppm以下為佳,更佳為500ppm以下。 [實施例] Furthermore, after the metal oxide particle material is produced, it can be quickly dispersed in the resin material to produce a resin composition. The resin material is not particularly limited. Examples include thermosetting resins (either before or after curing), thermoplastic resins and other general resin materials, such as epoxy resin, melamine resin, acrylic Resin, polycarbonate resin, polyester, silicone resin, liquid crystal polymer (LCP), polyimide, cyclic olefin polymer (COP), polyphenylene oxide (PPO). A single type of resin material may be used, or multiple types of resin materials may be mixed (blended, etc.) for use. The resin material preferably has a moisture content of 1000 ppm or less, and more preferably 500 ppm or less. [Example]

根據實施例,針對本發明之金屬氧化物粒子材料之製造方法進行說明。According to embodiments, the method for manufacturing the metal oxide particle material of the present invention will be described.

(試驗) 將作為金屬粒子材料的金屬矽(體積平均粒徑15μm)分散在作為分散媒的空氣中來調製金屬粒子材料分散系統(調製步驟)。將金屬粒子材料分散系統以4Nm 3/小時的速度供給至作為氧化性環境氣體的空氣中。氧化性環境氣體係以15Nm 3/小時的速度供給至反應爐中。在反應爐中,使以1Nm 3/小時的速度供給的丙烷氣體燃燒成為點火源,金屬粒子材料分散系統係供給至此點火源中。將所得到的金屬氧化物粒子材料以袋濾器收集。 (Test) A metal particle material dispersion system was prepared by dispersing metallic silicon (volume average particle diameter: 15 μm) as a metal particle material in air as a dispersion medium (preparation step). The metal particle material dispersion system was supplied to the air as an oxidizing ambient gas at a rate of 4 Nm 3 /hour. The oxidizing atmosphere system is supplied into the reaction furnace at a rate of 15 Nm 3 /hour. In the reaction furnace, propane gas supplied at a rate of 1 Nm 3 /hour is burned as an ignition source, and a metal particle material dispersion system is supplied to this ignition source. The obtained metal oxide particle material is collected with a bag filter.

分散媒及氧化性環境氣體係採用空氣(VMC供給氣體),藉由調節濕度而分成兩階段調節含水量(水分含量控制步驟)。對於作為所得到的金屬氧化物粒子材料的二氧化矽粒子,分別針對加熱至200℃為止的情況、加熱至500℃為止的情況,以卡耳-費雪法測定水分含量。將結果示於表1。Air (VMC supply gas) is used as the dispersion medium and oxidizing ambient gas system, and the moisture content is adjusted in two stages by adjusting the humidity (moisture content control step). Regarding the silicon dioxide particles as the material of the obtained metal oxide particles, the water content was measured by the Karl-Fisher method for the case of heating to 200°C and the case of heating to 500°C. The results are shown in Table 1.

[表1] 水分含量(ppm) VMC供給氣體 200℃ 500℃ 溫度(℃) 相對濕度(%) 絕對濕度(g/Nm 3) 試驗例1 710 1328 33 50 17.79 試驗例2 279 551 20 25 4.3 [Table 1] Moisture content (ppm) VMC supply gas 200°C 500℃ Temperature(℃) Relative humidity(%) Absolute humidity (g/Nm 3 ) Test example 1 710 1328 33 50 17.79 Test example 2 279 551 20 25 4.3

從表1明顯地發現所得到的二氧化矽粒子中的水分含量亦隨著所使用的空氣中所含的水分含量而發生變化,因此發現藉由控制(減少)製造金屬氧化物時使用的環境中所含的水分含量,亦能夠控制(減少)所製造的金屬氧化物中所含的水分含量。還有,本次的試驗係確認藉由減少VMC供給氣體中所含的水分含量而能夠減少金屬氧化物粒子材料的水分含量之試驗。在本次的製造條件中,由於來自燃燒可燃氣體的水分或冷卻氣體環境中的水分等之分散媒及氧化性環境氣體以外的因素,金屬氧化物粒子材料的水分含量會提高。It is obvious from Table 1 that the moisture content in the obtained silicon dioxide particles also changes with the moisture content in the air used. Therefore, it is found that the environment used in the production of metal oxides can be controlled (reduced) The moisture content contained in it can also control (reduce) the moisture content contained in the produced metal oxide. In addition, this test confirms that the moisture content of the metal oxide particle material can be reduced by reducing the moisture content contained in the VMC supply gas. In the manufacturing conditions this time, the moisture content of the metal oxide particle material will increase due to factors other than the dispersion medium such as the moisture from the combustible gas or the moisture in the cooling gas environment, and the oxidizing ambient gas.

詳情未顯示,但確認藉由使加熱至200℃為止時生成的水分含量、加熱至500℃為止時生成的水分含量皆降低,而介電損耗正切值能夠降低。The details are not shown, but it is confirmed that the dielectric loss tangent value can be reduced by reducing the moisture content generated when heated to 200°C and the moisture content generated when heated to 500°C.

無。no.

無。no.

無。no.

Claims (4)

一種金屬氧化物粒子材料之製造方法,其係具有下述步驟的金屬氧化物粒子材料之製造方法: 調製具有金屬粒子材料、與將該金屬粒子材料分散的分散媒之金屬粒子材料分散系統之調製步驟;以及 藉由將該金屬粒子材料分散系統供給至氧化性環境氣體中使該金屬粒子材料燃燒來製造金屬氧化物粒子材料之燃燒步驟, 其中該製造方法具有將該分散媒及該氧化性環境氣體中所含有的水分控制在一定值以下之水分含量控制步驟, 該分散媒及該氧化性環境氣體的至少一部分為空氣, 該水分含量控制步驟具有將該空氣中所含的水分的至少一部分去除之乾燥步驟。 A manufacturing method of metal oxide particle material, which has the following steps: A step of preparing a metal particle material dispersion system having a metal particle material and a dispersion medium for dispersing the metal particle material; and The combustion step of manufacturing the metal oxide particle material by supplying the metal particle material dispersion system to the oxidizing ambient gas to burn the metal particle material, Wherein the manufacturing method has a moisture content control step of controlling the moisture contained in the dispersion medium and the oxidizing ambient gas below a certain value, At least a part of the dispersion medium and the oxidizing ambient gas is air, The moisture content control step includes a drying step of removing at least a part of the moisture contained in the air. 一種金屬氧化物粒子材料之製造方法,其係具有下述步驟的金屬氧化物粒子材料之製造方法: 調製具有金屬粒子材料、與將該金屬粒子材料分散的分散媒之金屬粒子材料分散系統之調製步驟;以及 藉由將該金屬粒子材料分散系統供給至氧化性環境氣體中使該金屬粒子材料燃燒來製造金屬氧化物粒子材料之燃燒步驟, 其中該製造方法具有將該分散媒及該氧化性環境氣體中所含有的水分控制在一定值以下之水分含量控制步驟, 該分散媒及該氧化性環境氣體的至少一部分為空氣, 該水分含量控制步驟係測定該空氣的絕對濕度,並在所測定的絕對濕度為指定值以下的情況下進行該燃燒步驟之步驟。 A manufacturing method of metal oxide particle material, which has the following steps: A step of preparing a metal particle material dispersion system having a metal particle material and a dispersion medium for dispersing the metal particle material; and The combustion step of manufacturing the metal oxide particle material by supplying the metal particle material dispersion system to the oxidizing ambient gas to burn the metal particle material, Wherein the manufacturing method has a moisture content control step of controlling the moisture contained in the dispersion medium and the oxidizing ambient gas below a certain value, At least a part of the dispersion medium and the oxidizing ambient gas is air, The moisture content control step is to measure the absolute humidity of the air, and to perform the combustion step when the measured absolute humidity is below a specified value. 一種金屬氧化物粒子材料之製造方法,其係具有下述步驟的金屬氧化物粒子材料之製造方法: 調製具有金屬粒子材料、與將該金屬粒子材料分散的分散媒之金屬粒子材料分散系統之調製步驟;以及 藉由將該金屬粒子材料分散系統供給至氧化性環境氣體中使該金屬粒子材料燃燒來製造金屬氧化物粒子材料之燃燒步驟, 其中該製造方法具有將該分散媒及該氧化性環境氣體中所含有的水分控制在一定值以下之水分含量控制步驟, 該水分含量控制步驟係將該分散媒及該氧化性環境氣體中所含的水分含量控制在10.0g/Nm 3以下之步驟。 A method for manufacturing metal oxide particle materials, which is a method for manufacturing metal oxide particle materials with the following steps: Preparation of a metal particle material dispersion system with a metal particle material and a dispersion medium for dispersing the metal particle material Step; and by supplying the metal particle material dispersion system to the oxidizing environment gas to burn the metal particle material to produce a combustion step of metal oxide particle material, wherein the manufacturing method has the dispersion medium and the oxidizing environment The moisture content control step of controlling the moisture contained in the gas below a certain value is a step of controlling the moisture content of the dispersion medium and the oxidizing ambient gas below 10.0 g/Nm 3 . 一種金屬氧化物粒子材料之製造方法,其係具有下述步驟的金屬氧化物粒子材料之製造方法: 調製具有金屬粒子材料、與將該金屬粒子材料分散的分散媒之金屬粒子材料分散系統之調製步驟;以及 藉由將該金屬粒子材料分散系統供給至氧化性環境氣體中使該金屬粒子材料燃燒來製造金屬氧化物粒子材料之燃燒步驟, 其中該製造方法具有將該分散媒及該氧化性環境氣體中所含有的水分控制在一定值以下之水分含量控制步驟, 該水分含量控制步驟係將所得到的金屬氧化物粒子材料的水分含量控制在於200℃下加熱時每單位表面積(m 2)為40ppm以下之步驟。 A method for manufacturing metal oxide particle materials, which is a method for manufacturing metal oxide particle materials with the following steps: Preparation of a metal particle material dispersion system with a metal particle material and a dispersion medium for dispersing the metal particle material Step; and by supplying the metal particle material dispersion system to the oxidizing environment gas to burn the metal particle material to produce a combustion step of metal oxide particle material, wherein the manufacturing method has the dispersion medium and the oxidizing environment The moisture content control step in which the moisture contained in the gas is controlled below a certain value. The moisture content control step is to control the moisture content of the obtained metal oxide particle material to a unit surface area (m 2 ) when heated at 200°C Steps below 40ppm.
TW108136217A 2019-02-27 2019-10-07 Manufacturing method of metal oxide particle material TWI697518B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034937A JP6595137B1 (en) 2019-02-27 2019-02-27 Method for producing metal oxide particulate material
JP2019-034937 2019-02-27

Publications (2)

Publication Number Publication Date
TWI697518B true TWI697518B (en) 2020-07-01
TW202031766A TW202031766A (en) 2020-09-01

Family

ID=68314154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136217A TWI697518B (en) 2019-02-27 2019-10-07 Manufacturing method of metal oxide particle material

Country Status (4)

Country Link
JP (1) JP6595137B1 (en)
KR (1) KR102103119B1 (en)
CN (1) CN111320139A (en)
TW (1) TWI697518B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7041788B1 (en) 2021-10-20 2022-03-24 デンカ株式会社 Spherical silica particles and a resin composition using the same
JP7041786B1 (en) 2021-10-20 2022-03-24 デンカ株式会社 Spherical silica particles and a resin composition using the same
JP7041787B1 (en) 2021-10-20 2022-03-24 デンカ株式会社 Method for manufacturing spherical silica particles
JP2023112353A (en) * 2022-02-01 2023-08-14 株式会社アドマテックス Composite oxide particle material and manufacturing method thereof, filler, filler-containing slurry composition, and filler-containing resin composition
CN114702038B (en) * 2022-04-25 2023-09-29 江苏联瑞新材料股份有限公司 Preparation method of spherical silicon dioxide micro powder with ultralow dielectric loss

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139295A (en) * 2003-11-06 2005-06-02 Denki Kagaku Kogyo Kk Metal oxide powder, method for producing the same and use

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH604897A5 (en) * 1976-05-21 1978-09-15 Alusuisse
JPS58138740A (en) 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition
JPS60255602A (en) 1984-05-29 1985-12-17 Toyota Motor Corp Preparation of ultrafine particle of oxide
JPS60199020A (en) 1984-03-24 1985-10-08 Matsushita Electric Works Ltd Sealing material for semiconductor
JPS6479005A (en) * 1987-09-22 1989-03-24 Toyota Motor Corp Production of superfine oxide powder
JPH02184508A (en) * 1989-01-10 1990-07-19 Toyota Motor Corp Production of metal oxide powder
JP2679216B2 (en) * 1989-02-20 1997-11-19 トヨタ自動車株式会社 Method for producing oxide powder
JP3253338B2 (en) * 1992-01-16 2002-02-04 信越化学工業株式会社 Method for producing metal oxide powder
JPH05193910A (en) * 1992-01-21 1993-08-03 Toyota Motor Corp Production of metal oxide powder
JP3229353B2 (en) * 1992-01-21 2001-11-19 トヨタ自動車株式会社 Method for producing metal oxide powder
JP2868039B2 (en) * 1992-01-31 1999-03-10 日亜化学工業株式会社 Method for producing lower metal oxide
JP3733599B2 (en) * 1993-08-11 2006-01-11 住友化学株式会社 Metal oxide powder and method for producing the same
JPH07247105A (en) * 1994-03-14 1995-09-26 Toyota Motor Corp Production of metal oxide powder and producing device
ATE178286T1 (en) * 1994-09-22 1999-04-15 Asea Brown Boveri METHOD FOR PRODUCING A MIXED METAL OXYDE POWDER AND THE MIXED METAL OXYDE POWDER PRODUCED BY THIS METHOD
JP3814841B2 (en) * 1995-07-06 2006-08-30 住友化学株式会社 Method for producing metal oxide powder
ATE399740T1 (en) * 2001-03-24 2008-07-15 Evonik Degussa Gmbh DOPPED OXIDE PARTICLES SURROUNDED WITH A SHELL
DE10317067A1 (en) * 2003-04-14 2004-11-11 Degussa Ag Domains in a metal oxide matrix
DE102006027302A1 (en) * 2006-06-13 2008-01-10 Evonik Degussa Gmbh Process for the preparation of mixed oxide powders
JP6971110B2 (en) * 2017-09-28 2021-11-24 株式会社フジミインコーポレーテッド A method for producing a coated particle powder, and a method for producing a dispersion containing the coated particle powder and a dispersion medium.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139295A (en) * 2003-11-06 2005-06-02 Denki Kagaku Kogyo Kk Metal oxide powder, method for producing the same and use

Also Published As

Publication number Publication date
TW202031766A (en) 2020-09-01
JP6595137B1 (en) 2019-10-23
KR102103119B1 (en) 2020-04-21
CN111320139A (en) 2020-06-23
JP2020138880A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
TWI697518B (en) Manufacturing method of metal oxide particle material
TWI707825B (en) Filler for insulating electronic material for high frequency and its manufacturing method, method for manufacturing resin composition for electronic material, substrate for high frequency, and slurry for electronic material
CN112601713B (en) Silica powder having excellent dispersibility, resin composition using same, and method for producing same
Zhao et al. Enhanced thermal degradation stability of the Sr 2 Si 5 N 8: Eu 2+ phosphor by ultra-thin Al 2 O 3 coating through the atomic layer deposition technique in a fluidized bed reactor
JP6381486B2 (en) Reactive curing process for semiconductor substrates
KR101952993B1 (en) Process for producing heat-resistant aluminum hydroxide
US20130299737A1 (en) Oxygen-selective adsorbent having fast adsorption rate and preparation method thereof
JP2005162555A (en) Spherical aluminum nitride and its manufacturing method
JP7027196B2 (en) Manufacturing method of aluminum nitride powder
CN109763202A (en) A kind of preparation method of aluminium nitride fibres
JP2021161008A (en) Silica particle, method of producing the same, and slurry composition
US8273410B2 (en) Process for manufacturing hydrophobized microporous film
JP5823026B2 (en) Silicon dioxide powder with large pore length
JP7361633B2 (en) aluminum nitride particles
JP2021127254A (en) Particle material and production method thereof, dielectric material, slurry composition, and resin composition
JP4065945B2 (en) Method for producing water-resistant aluminum nitride powder coated with carbonaceous film
WO2023013046A1 (en) Particle material, method for manufacturing same, filler for semiconductor mounting material, slurry material, and semicondutor mounting material
JP5637691B2 (en) polymer
TW202346206A (en) Method for producing silicon monoxide
JP4399580B2 (en) Water resistant aluminum nitride powder and method for producing the same
JP7082257B1 (en) Fillers for semiconductor mounting materials, their manufacturing methods, and semiconductor mounting materials
WO2020195776A1 (en) Aluminum nitride particles
JP2006016214A (en) Method for manufacturing aluminum nitride powder
CN118239492A (en) Black silicon dioxide filler and preparation method and application thereof
JP2018038987A (en) Hydrogen-occluding carbon material and method for producing the same