TWI697194B - Permanent magnet motor rotor position detecting device and method thereof - Google Patents

Permanent magnet motor rotor position detecting device and method thereof Download PDF

Info

Publication number
TWI697194B
TWI697194B TW108123687A TW108123687A TWI697194B TW I697194 B TWI697194 B TW I697194B TW 108123687 A TW108123687 A TW 108123687A TW 108123687 A TW108123687 A TW 108123687A TW I697194 B TWI697194 B TW I697194B
Authority
TW
Taiwan
Prior art keywords
current
phase
permanent magnet
magnet motor
positive
Prior art date
Application number
TW108123687A
Other languages
Chinese (zh)
Other versions
TW202103433A (en
Inventor
黎永昇
陳豪宇
Original Assignee
微星科技股份有限公司
大陸商恩斯邁電子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微星科技股份有限公司, 大陸商恩斯邁電子(深圳)有限公司 filed Critical 微星科技股份有限公司
Priority to TW108123687A priority Critical patent/TWI697194B/en
Application granted granted Critical
Publication of TWI697194B publication Critical patent/TWI697194B/en
Publication of TW202103433A publication Critical patent/TW202103433A/en

Links

Images

Abstract

A permanent magnet motor rotor position detecting device and method thereof, comprising: inputting a first forward test voltage to a permanent magnet motor, corresponding to generating a first forward test current; generating a first reverse test current to the permanent magnet motor according to the first forward test current, recording a first current zero crossing time point; after the first current zero crossing time point, inputting a second forward test voltage to the permanent magnet motor, corresponding to generating a second forward test current; generating a second reverse test current to the permanent magnet motor according to the second forward test current; detecting a total current on the permanent magnet motor to obtain a plurality of total current peaks; obtaining a rotor position phase difference according to the total current peaks.

Description

永磁馬達轉子位置偵測裝置及其方法Permanent magnet motor rotor position detection device and method

本案是關於永磁馬達控制領域,特別是一種永磁馬達轉子位置偵測裝置及其方法。 This case relates to the field of permanent magnet motor control, in particular to a permanent magnet motor rotor position detection device and method.

永磁馬達由於高性能及低成本的優點以廣泛運用在各個領域。永磁馬達包括轉子及定子,永磁馬達透過定子以產生磁場來吸引或排斥轉子,並藉由轉子的旋轉進一步產生馬達扭矩以達到輸出的功能。其中,為了準確控制永磁馬達以達到理想的輸出功率,需要量測轉子的位置。 Due to the advantages of high performance and low cost, permanent magnet motors are widely used in various fields. The permanent magnet motor includes a rotor and a stator. The permanent magnet motor generates a magnetic field through the stator to attract or repel the rotor, and further generates motor torque through the rotation of the rotor to achieve the output function. Among them, in order to accurately control the permanent magnet motor to achieve the desired output power, the position of the rotor needs to be measured.

目前永磁馬達通常搭配編碼器(encoder)以準確量測轉子的位置,但是編碼器只能量測轉子的相對位置,因此對於量測轉子的絕對位置(即,停止狀態時的位置)仍然沒幫助。因此,為了量測轉子處於停止狀態時的位置,部分永磁馬達更搭配有感測器(sensor)以做量測,但是相對的提高了成本。反之,無感測器的永磁馬達雖然具有低成本的優勢,但是卻不易準確量測永磁馬達的轉子位置。並且無感測器的永磁馬達如果不能準確偵測到轉子位置,可能導致馬達的啟動扭矩減少或是在啟動時發生暫時性的反轉,並使得馬達本身或是馬達驅動的裝置受損。 At present, permanent magnet motors are usually equipped with an encoder to accurately measure the position of the rotor, but the encoder can only measure the relative position of the rotor, so there is still no way to measure the absolute position of the rotor (that is, the position when it is stopped) help. Therefore, in order to measure the position of the rotor when it is stopped, some permanent magnet motors are more equipped with sensors for measurement, but the cost is relatively increased. On the contrary, although the sensorless permanent magnet motor has the advantage of low cost, it is not easy to accurately measure the rotor position of the permanent magnet motor. If the sensorless permanent magnet motor cannot accurately detect the rotor position, the starting torque of the motor may be reduced or a temporary reversal may occur during start-up, and the motor itself or the motor-driven device may be damaged.

有鑑於此,本案提出一種永磁馬達轉子位置偵測裝置及其方法。 In view of this, this case proposes a permanent magnet motor rotor position detection device and method.

一種永磁馬達轉子位置偵測方法,包括:第一電壓輸入步驟,輸入第一正向測試電壓至永磁馬達上,對應產生第一正向測試電流;第一反向電流輸入步驟,依據第一正向測試電流,產生第一反向測試電流至永磁馬達,紀錄第一電流零交越時間點;第二電壓輸入步驟,在第一電流零交越時間點後,輸入第二正向測試電壓至永磁馬達上,對應產生第二正向測試電流,其中第一正向測試電流對應的第一正相位與第二正向測試電流對應的第二正相位相差180度;第二反向電流輸入步驟,依據第二正向測試電流,產生第二反向測試電流至永磁馬達,紀錄第二電流零交越時間點,其中第一反向測試電流對應的第一負相位與第二反向測試電流對應的第二負相位相差180度;電流偵測步驟,偵測永磁馬達上的總電流以獲得多個總電流峰值;以及相位差獲得步驟,依據總電流峰值以獲得轉子位置相位差。 A rotor position detection method for a permanent magnet motor includes: a first voltage input step, inputting a first forward test voltage to the permanent magnet motor, correspondingly generating a first forward test current; a first reverse current input step, based on the A forward test current, generating the first reverse test current to the permanent magnet motor, recording the first current zero-crossing time point; the second voltage input step, after the first current zero-crossing time point, input the second forward direction The test voltage is applied to the permanent magnet motor, corresponding to the second forward test current, wherein the first positive phase corresponding to the first positive test current differs from the second positive phase corresponding to the second positive test current by 180 degrees; In the current input step, according to the second forward test current, a second reverse test current is generated to the permanent magnet motor, and the zero-crossing time point of the second current is recorded, wherein the first negative phase corresponding to the first reverse test current and the first The second negative phase corresponding to the second reverse test current differs by 180 degrees; the current detection step detects the total current on the permanent magnet motor to obtain multiple total current peaks; and the phase difference acquisition step obtains the rotor based on the total current peak The position is out of phase.

依據一些實施例,一種永磁馬達轉子位置偵測裝置,包括:電壓輸入單元、反向電流輸入單元、電流偵測單元、及處理器。處理器耦接於電壓輸入單元、反向電流輸入單元、及電流偵測單元。電壓輸入單元用於依據多個電流零交越時間點以一對一的方式輸入多個正向測試電壓至永磁馬達,並且對應產生多個正向測試電流。反向電流輸入單元用於依據正向測試電流以分別產生負向測試電流至永磁馬達。電流偵測單元偵測永磁馬達上的總電流以獲得多個總電流峰值及電流零交越點。處理器用於依據總電流峰值以獲得轉子位置相位差。 According to some embodiments, a permanent magnet motor rotor position detection device includes a voltage input unit, a reverse current input unit, a current detection unit, and a processor. The processor is coupled to the voltage input unit, the reverse current input unit, and the current detection unit. The voltage input unit is used to input multiple forward test voltages to the permanent magnet motor in a one-to-one manner according to multiple current zero-crossing time points, and correspondingly generate multiple forward test currents. The reverse current input unit is used to generate a negative test current to the permanent magnet motor according to the positive test current, respectively. The current detection unit detects the total current on the permanent magnet motor to obtain multiple total current peaks and current zero crossing points. The processor is used to obtain the rotor position phase difference according to the total current peak value.

綜上所述,本案中一些實施例的永磁馬達轉子位置偵測裝置及其方法能藉由輸入不同相位的正向測試電壓至永磁馬達,並且偵測總電流峰值以獲得轉子位置相位差。 In summary, the permanent magnet motor rotor position detection device and method of some embodiments in this case can obtain the rotor current phase difference by inputting forward test voltages of different phases to the permanent magnet motor and detecting the peak value of the total current .

10:永磁馬達轉子位置偵測裝置 10: Permanent magnet motor rotor position detection device

100:電壓輸入單元 100: voltage input unit

200:反向電流輸入單元 200: reverse current input unit

300:電流偵測單元 300: current detection unit

400:處理器 400: processor

500:儲存單元 500: storage unit

20:永磁馬達 20: Permanent magnet motor

30:轉子 30: rotor

32:N極 32: N pole

34:S極 34: S pole

40:定子 40: stator

50:控制裝置 50: control device

Dd:d方向 D d : d direction

Dq:q方向 D q : q direction

LU:線圈 L U : coil

LV:線圈 L V : coil

LW:線圈 L W : coil

VU:U相位電壓 V U : U phase voltage

VV:V相位電壓 V V : V phase voltage

VW:W相位電壓 V W : W phase voltage

I:總電流 I: total current

T:時間 T: time

T2:第二工作時間 T2: Second working time

S100-S400:步驟 S100-S400: steps

圖1繪示本案一些實施例之永磁馬達的示意圖。 FIG. 1 is a schematic diagram of a permanent magnet motor according to some embodiments of this case.

圖2繪示本案一些實施例之永磁馬達的示意圖。 FIG. 2 is a schematic diagram of a permanent magnet motor according to some embodiments of this case.

圖3繪示本案一些實施例之永磁馬達轉子位置偵測裝置的示意圖。 FIG. 3 is a schematic diagram of a permanent magnet motor rotor position detection device according to some embodiments of the present invention.

圖4繪示本案一些實施例之永磁馬達轉子位置偵測方式的示意圖。 FIG. 4 illustrates a schematic diagram of a permanent magnet motor rotor position detection method according to some embodiments of the present invention.

圖5繪示本案一些實施例之電流零交越時間點的示意圖。 FIG. 5 is a schematic diagram of current zero-crossing time points in some embodiments of the present case.

圖6繪示本案一對照實施例之感測器的量測相位與轉子位置相位差的關係圖。 FIG. 6 is a graph showing the relationship between the measurement phase of the sensor and the rotor position phase difference in a comparative embodiment of this case.

圖7繪示本案一實施例之感測器的量測相位與轉子位置相位差的關係圖。 7 is a diagram illustrating the relationship between the measurement phase of the sensor and the phase difference of the rotor position according to an embodiment of the present invention.

圖8繪示本案一對照實施例之總電流的示意圖。 FIG. 8 shows a schematic diagram of the total current of a comparative example of this case.

圖9繪示本案一實施例之總電流的示意圖。 FIG. 9 is a schematic diagram of the total current according to an embodiment of this case.

圖1及圖2繪示本案一些實施例之永磁馬達20的示意圖。請同時參照圖1及圖2,在一些實施例,永磁馬達20包括轉子30、定子40及控制裝置50。轉子30具有一對磁極,分別為N極32及S極34,以形成轉子磁場於永磁馬達20中。定子40包括線圈LU、線圈LV及線圈LW,並且線圈LU、線圈LV及線圈LW兩兩相差120度。線圈LU耦接於U相位電壓VU,線 圈LV耦接於V相位電壓VV,線圈LW耦接於W相位電壓VW。控制裝置50用於控制U相位電壓VU、V相位電壓VV及W相位電壓Vw,也就是能控制線圈LU、線圈LV及線圈LW中的輸入電流。由於電生磁線圈LU、線圈LV及線圈LW中的輸入電流能在永磁馬達20中形成定子磁場。而定子磁場能與轉子磁場能互相吸引或互相排斥,因此藉由控制U相位電壓VU、V相位電壓VV及W相位電壓Vw就能控制轉子30旋轉。以下為便於說明,簡化「線圈LU、線圈LV及線圈LW中的輸入電流」為某一相位的輸入電流,因此不同相位的輸入電流對應不同U相位電壓VU、V相位電壓VV及W相位電壓Vw的組合。 1 and 2 are schematic diagrams of permanent magnet motors 20 according to some embodiments of the present invention. Please refer to FIGS. 1 and 2 simultaneously. In some embodiments, the permanent magnet motor 20 includes a rotor 30, a stator 40 and a control device 50. The rotor 30 has a pair of magnetic poles, respectively N pole 32 and S pole 34, to form a rotor magnetic field in the permanent magnet motor 20. The stator 40 includes a coil L U , a coil L V and a coil L W , and the coil L U , the coil L V and the coil L W differ from each other by 120 degrees. Coil L U is coupled to U phase voltage V U , coil L V is coupled to V phase voltage V V , and coil L W is coupled to W phase voltage V W. The control device 50 is used to control the U-phase voltage V U , the V-phase voltage V V and the W-phase voltage V w , that is, the input current in the coil L U , the coil L V and the coil L W can be controlled. The stator magnetic field can be formed in the permanent magnet motor 20 due to the input currents in the electro-magnetic coil L U , the coil L V and the coil L W. Since the stator magnetic field and the rotor magnetic field can attract or repel each other, the rotor 30 can be controlled to rotate by controlling the U-phase voltage V U , the V-phase voltage V V and the W-phase voltage V w . For ease of explanation, the simplified “input current in coil L U , coil L V and coil L W” is the input current of a certain phase, so the input currents of different phases correspond to different U phase voltages V U and V phase voltages V V And W phase voltage V w combination.

承上,永磁馬達20包括d方向Dd及q方向Dq,d方向Dd為轉子30的水平方向,q方向Dq為轉子30的垂直方向,d方向Dd與q方向Dq互相垂直。由於d方向Dd對應的相位的輸入電流對轉子30形成的扭矩最小,q方向Dq對應的相位的輸入電流對轉子30形成的扭矩最大,因此偵測永磁馬達20的q方向Dq對應的相位與輸入電流的相位之間的相位差,即可使永磁馬達20以最大扭矩進行輸出。以下為便於說明,以「轉子位置相位差」簡稱永磁馬達20的q方向Dq對應的相位與輸入電流的相位之間的相位差。 As mentioned above, the permanent magnet motor 20 includes the d direction D d and the q direction D q , the d direction D d is the horizontal direction of the rotor 30, the q direction D q is the vertical direction of the rotor 30, and the d direction D d and the q direction D q are mutually vertical. Since the input current of the phase corresponding to the d direction D d has the smallest torque on the rotor 30 and the input current of the phase corresponding to the q direction D q has the greatest torque on the rotor 30, the detection of the q direction D q of the permanent magnet motor 20 corresponds to The phase difference between the phase of and the phase of the input current allows the permanent magnet motor 20 to output at maximum torque. For ease of explanation, the phase difference between the phase corresponding to the q direction D q of the permanent magnet motor 20 and the phase of the input current is referred to as “rotor position phase difference” for short.

圖3為本案一些實施例之永磁馬達轉子位置偵測裝置10的示意圖。請參照圖3,在一些實施例,永磁馬達轉子位置偵測裝置10包括電壓輸入單元100、反向電流輸入單元200、電流偵測單元300、處理器400及儲存單元500。其中電壓輸入單元100、反向電流輸入單元200、電流偵測單元300及儲存單元500耦接於處理器400。在一些實施例中,電壓輸入單元100、反向電流輸入單元200、電流偵測單元300耦接於儲存單元500。 FIG. 3 is a schematic diagram of a permanent magnet motor rotor position detection device 10 according to some embodiments of the present invention. 3, in some embodiments, the permanent magnet motor rotor position detection device 10 includes a voltage input unit 100, a reverse current input unit 200, a current detection unit 300, a processor 400, and a storage unit 500. The voltage input unit 100, the reverse current input unit 200, the current detection unit 300 and the storage unit 500 are coupled to the processor 400. In some embodiments, the voltage input unit 100, the reverse current input unit 200, and the current detection unit 300 are coupled to the storage unit 500.

請同時參照圖2及圖3,在一些實施例,永磁馬達轉子位置偵測裝置10能內置於永磁馬達20中,以做為永磁馬達20的控制裝置50。反之,在一些實施例,永磁馬達轉子位置偵測裝置10能外接於永磁馬達20,並且控制永磁馬達20中的控制裝置50。 Please refer to FIG. 2 and FIG. 3 at the same time. In some embodiments, the permanent magnet motor rotor position detection device 10 can be built into the permanent magnet motor 20 as a control device 50 of the permanent magnet motor 20. On the contrary, in some embodiments, the permanent magnet motor rotor position detection device 10 can be externally connected to the permanent magnet motor 20 and control the control device 50 in the permanent magnet motor 20.

在一些實施例,電壓輸入單元100用於輸入正向測試電壓至永磁馬達20,或者也可以說,電壓輸入單元100用於輸入正向測試電流至永磁馬達20,因為當正向測試電壓施加在永磁馬達20時,即對應產生正向測試電流。需特別說明的是,正向測試電壓為突波電壓,當突波電壓施加在永磁馬達20之後,突波電壓對應產生的電流會隨時間震盪並逐漸衰減。因此,正向測試電流也會隨時間震盪並逐漸衰減。 In some embodiments, the voltage input unit 100 is used to input a forward test voltage to the permanent magnet motor 20, or it can be said that the voltage input unit 100 is used to input a forward test current to the permanent magnet motor 20, because when the forward test voltage When applied to the permanent magnet motor 20, a corresponding forward test current is generated. It should be noted that the forward test voltage is a surge voltage. After the surge voltage is applied to the permanent magnet motor 20, the current generated by the surge voltage will oscillate with time and gradually attenuate. Therefore, the forward test current will also oscillate with time and gradually decay.

在一些實施例,電壓輸入單元100用於依序輸入多個正向測試電壓至永磁馬達20,也就是電壓輸入單元100用於依序輸入多個正向測試電流至永磁馬達20。各個正向測試電流分別具有一個電流峰值,也就是正向測試電流的最大電流值。此外,各個正向測試電流分別對應一個正相位,也就對應正向測試電壓。依據一些實施例,永磁馬達轉子位置偵測裝置10偵測出轉子位置相位差,需經由電壓輸入單元100輸入十二個不同相位對應的正向測試電流至永磁馬達20,依據正向測試電流輸入至永磁馬達20的順序,這十二個正相位依序為0度、180度、30度、210度、60度、240度、90度、270度、120度、300度、150度、及330度。 In some embodiments, the voltage input unit 100 is used to sequentially input multiple forward test voltages to the permanent magnet motor 20, that is, the voltage input unit 100 is used to sequentially input multiple forward test currents to the permanent magnet motor 20. Each forward test current has a current peak value, which is the maximum current value of the forward test current. In addition, each forward test current corresponds to a positive phase, which corresponds to a forward test voltage. According to some embodiments, the permanent magnet motor rotor position detection device 10 detects the rotor position phase difference and needs to input twelve positive test currents corresponding to different phases to the permanent magnet motor 20 through the voltage input unit 100 according to the forward test The sequence of the current input to the permanent magnet motor 20, the twelve positive phases are 0 degrees, 180 degrees, 30 degrees, 210 degrees, 60 degrees, 240 degrees, 90 degrees, 270 degrees, 120 degrees, 300 degrees, 150 Degrees, and 330 degrees.

在一些實施例,反向電流輸入單元200用於輸入負向測試電壓至永磁馬達20,也就是輸入負向測試電流至永磁馬達20。電流偵測單元300用於偵測永磁馬達20中的總電流I,並且獲得各個正向測試電流對應的 電流峰值。需特別說明的是,負向測試電壓為突波電壓。因此任一時間點的總電流I為永磁馬達20此時間點之前所接受的正向測試電壓或負向測試電壓對應產生的電流總合。 In some embodiments, the reverse current input unit 200 is used to input a negative test voltage to the permanent magnet motor 20, that is, to input a negative test current to the permanent magnet motor 20. The current detection unit 300 is used to detect the total current I in the permanent magnet motor 20 and obtain the corresponding Peak current. It should be noted that the negative test voltage is a surge voltage. Therefore, the total current I at any time point is the total current generated by the positive test voltage or the negative test voltage received by the permanent magnet motor 20 before this time point.

在一些實施例,反向電流輸入單元200用於依據正向測試電流以產生負向測試電流。具體而言,反向電流輸入單元200產生的負向測試電流與正向測試電流為一對一的關係。換句話說,每當電壓輸入單元100輸入正向測試電壓至永磁馬達20時,反向電流輸入單元200偵測到正向測試電壓,才對應輸入負向測試電壓至永磁馬達20。其中,負向測試電壓施加在永磁馬達20的時間與正向測試電壓施加在永磁馬達20的時間相同,也就是負向測試電流用於抵消對應的正向測試電流,使總電流I震盪衰減所需的時間縮短。由於總電流I震盪衰減時間縮短,因此轉子30不會因為正向測試電流而轉動造成轉子位置相位差的量測誤差。依據一些實施例,正向測試電壓停止輸入之後,負向測試電壓在第一工作時間之後才開始輸入。依據一些實施例,正向測試電壓為41伏特(V)並持續3/8000秒的突波電壓,負向測試電壓為-41伏特(V)並持續3/8000秒的突波電壓,第一工作時間為3/8000秒,也就是正向測試電壓停止輸入與負向測試電壓開始輸入之間的時間差為3/8000秒。 In some embodiments, the reverse current input unit 200 is used to generate a negative test current according to the positive test current. Specifically, the negative test current and the positive test current generated by the reverse current input unit 200 have a one-to-one relationship. In other words, whenever the voltage input unit 100 inputs the forward test voltage to the permanent magnet motor 20, the reverse current input unit 200 detects the forward test voltage, and then correspondingly inputs the negative test voltage to the permanent magnet motor 20. The negative test voltage is applied to the permanent magnet motor 20 at the same time as the positive test voltage is applied to the permanent magnet motor 20, that is, the negative test current is used to cancel the corresponding positive test current, so that the total current I oscillates The time required for attenuation is shortened. Since the decay time of the oscillation of the total current I is shortened, the rotor 30 will not rotate due to the forward test current causing measurement error of the rotor position phase difference. According to some embodiments, after the input of the positive test voltage stops, the input of the negative test voltage does not start until after the first working time. According to some embodiments, the positive test voltage is 41 volts (V) for 3/8000 seconds of surge voltage, and the negative test voltage is -41 volts (V) for 3/8000 seconds of surge voltage, the first The working time is 3/8000 seconds, that is, the time difference between the stop input of the positive test voltage and the start input of the negative test voltage is 3/8000 seconds.

在一些實施例,電流偵測單元300用於獲得電流零交越點。電壓輸入單元100用於依據電流零交越時間點以一對一的方式輸入正向測試電壓至永磁馬達20。具體而言,電流零交越時間點為總電流I交越過「零」電流值為的時間點,特別是負向測試電壓施加在永磁馬達20結束之後,總電流I第一次交越「零」電流值的時間點。因此每一個正向測試電壓及其 對應的負向測試電壓會產生一個電流零交越時間點,而此電流零交越時間點就是電壓輸入單元100輸入下一個正向測試電壓至永磁馬達20的時間點。所以,藉由電壓輸入單元100控制輸入正向測試電壓的時間,當前一個正向測試電壓產生的總電流I震盪衰減至可忽略時,電壓輸入單元100才輸入下一個正向測試電壓,使每一次正向測試電流之間不會互相干擾以減少轉子位置相位差的量測誤差。依據一些實施例,負向測試電壓停止輸入的時間點早於電流零交越時間點,負向測試電壓停止輸入的時間點與電流零交越時間點之間相差第二工作時間T2。依據一些實施例,由於正向測試電流之間幾乎為反向,並且相位差為180度或150度,即使總電流I仍然有前一個正向測試電壓造成的震盪,也會被下一個輸入的正向測試電壓所蓋過而忽略。需特別說明的是,在測試開始時,因為總電流I的起始值為零,電壓輸入單元100輸入的第一個正向測試電壓不需依據電流零交越時間即輸入至永磁馬達20。依據一些實施例,第一個正向測試電壓的正相位為0度。 In some embodiments, the current detection unit 300 is used to obtain a current zero crossing point. The voltage input unit 100 is used to input the forward test voltage to the permanent magnet motor 20 in a one-to-one manner according to the current zero crossing time point. Specifically, the current zero crossing time point is the time point when the total current I crosses the "zero" current value, especially after the negative test voltage is applied to the permanent magnet motor 20, the total current I crosses for the first time. Time point of "zero" current value. So each forward test voltage and its The corresponding negative test voltage will generate a current zero-crossing time point, and this current zero-crossing time point is the time point when the voltage input unit 100 inputs the next positive test voltage to the permanent magnet motor 20. Therefore, the voltage input unit 100 controls the time to input the forward test voltage. When the total current I oscillation generated by the previous forward test voltage decays to a negligible level, the voltage input unit 100 inputs the next forward test voltage, so that each A forward test current will not interfere with each other to reduce the measurement error of the rotor position phase difference. According to some embodiments, the time point when the negative test voltage stops inputting is earlier than the current zero-crossing time point, and the time point when the negative test voltage stops inputting and the current zero-crossing time point differ by a second working time T2. According to some embodiments, since the forward test currents are almost reversed and the phase difference is 180 degrees or 150 degrees, even if the total current I still has the oscillation caused by the previous forward test voltage, it will be input by the next input. The positive test voltage is overwritten and ignored. It should be noted that at the beginning of the test, because the initial value of the total current I is zero, the first forward test voltage input by the voltage input unit 100 does not need to be input to the permanent magnet motor 20 according to the current zero crossing time . According to some embodiments, the positive phase of the first positive test voltage is 0 degrees.

在一些實施例,處理器400用於依據總電流峰值以獲得轉子位置相位差。具體而言,處理器400從電壓輸入單元100獲得各個正向測試電流對應的相位,並且處理器400從電流偵測單元300獲得各個正向測試電流對應的總電流峰值。由於各個總電流峰值與其對應的正向測試電流的相位具有餘弦函數(Cosine)關係,因此藉由兩個以上不同相位的正向測試電流及對應的總電流峰值,處理器400即可運算獲得轉子位置相位差。並且隨著偵測的相位越多並且越平均,處理器400獲得的轉子位置相位差越準確。依據一些實施例,處理器400用於控制電壓輸入單元100輸 入永磁馬達20的正向測試電流的正相位,也就是處理器400本身就有各個正向測試電流對應的正相位的資訊。 In some embodiments, the processor 400 is used to obtain the rotor position phase difference according to the total current peak value. Specifically, the processor 400 obtains the phase corresponding to each forward test current from the voltage input unit 100, and the processor 400 obtains the total current peak corresponding to each forward test current from the current detection unit 300. Since each total current peak has a cosine function relationship with the phase of its corresponding forward test current, the processor 400 can calculate and obtain the rotor by two or more different phases of the forward test current and the corresponding total current peak The position is out of phase. And as the detected phases are more and more average, the rotor position phase difference obtained by the processor 400 is more accurate. According to some embodiments, the processor 400 is used to control the voltage input unit 100 to output The positive phase of the forward test current into the permanent magnet motor 20, that is, the processor 400 itself has information on the positive phase corresponding to each forward test current.

在一些實施例,處理器400依據總電流峰值及正相位,以相位差公式獲得轉子位置相位差,相位差公式為:

Figure 108123687-A0305-02-0010-1
其中,θ為轉子位置相位差,x為正相位,y為總電流峰值。 In some embodiments, the processor 400 obtains the rotor position phase difference according to the total current peak value and the positive phase according to the phase difference formula. The phase difference formula is:
Figure 108123687-A0305-02-0010-1
Where θ is the phase difference of the rotor position, x is the positive phase, and y is the peak value of the total current.

依據一些實施例,正向測試電流為相位為0度時,總電流峰值為b。正向測試電流為相位為90度時,總電流峰值為a。依據相位差公式,獲得轉子位置相位差

Figure 108123687-A0305-02-0010-3
。 According to some embodiments, when the forward test current is at a phase of 0 degrees, the peak value of the total current is b. When the forward test current is 90 degrees in phase, the peak value of the total current is a. According to the phase difference formula, obtain the rotor position phase difference
Figure 108123687-A0305-02-0010-3
.

Figure 108123687-A0305-02-0010-2
Figure 108123687-A0305-02-0010-2

在一些實施例,儲存單元500用於儲存相位與峰值電流關係表。並且處理器400依據總電流峰值、正相位、及該相位與峰值電流關係表,以K-近鄰演算法(K-nearest neighbor)查表獲得轉子位置相位差。 In some embodiments, the storage unit 500 is used to store a phase-to-peak current relationship table. In addition, the processor 400 uses a K-nearest neighbor algorithm (K-nearest neighbor) to look up the table to obtain the rotor position phase difference according to the total current peak value, the positive phase, and the relationship between the phase and the peak current table.

在一些實施例,處理器400以比例控制(P控制)收斂永磁馬達20中的總電流I,以減少總電流I震盪衰減的時間,並進一步減少各個正向測試電壓對下一個正向測試電壓的影響。在一些實施例,處理器400以比例-積分-微分控制(PID控制)收斂永磁馬達20中的總電流I,以減少總電流I震盪衰減的時間。 In some embodiments, the processor 400 converges the total current I in the permanent magnet motor 20 with proportional control (P control) to reduce the oscillation decay time of the total current I and further reduce each forward test voltage to the next forward test The effect of voltage. In some embodiments, the processor 400 converges the total current I in the permanent magnet motor 20 with proportional-integral-derivative control (PID control) to reduce the time when the total current I oscillates.

在一些實施例,電壓輸入單元100、反向電流輸入單元200、電流偵測單元300、處理器400能各自以單一電路來實現、或整合在同一電路。在一些實施例,電壓輸入單元100、反向電流輸入單元200、電流 偵測單元300、處理器400能整合為一單晶片微控制器(microcontroller),但本案不以此為限。 In some embodiments, the voltage input unit 100, the reverse current input unit 200, the current detection unit 300, and the processor 400 can each be implemented in a single circuit, or integrated in the same circuit. In some embodiments, the voltage input unit 100, the reverse current input unit 200, the current The detection unit 300 and the processor 400 can be integrated into a single-chip microcontroller, but this case is not limited to this.

圖4繪示本案一些實施例之永磁馬達轉子位置偵測方式的示意圖。請同時參閱圖3及圖4。在一些實施例,永磁馬達轉子位置偵測方式包括以下步驟:第一電壓輸入步驟(步驟S100);第一反向電流輸入步驟(步驟S150);第二電壓輸入步驟(步驟S200);第二反向電流輸入步驟(步驟S250);電流偵測步驟(步驟S300);及相位差獲得步驟(步驟S400)。 FIG. 4 illustrates a schematic diagram of a permanent magnet motor rotor position detection method according to some embodiments of the present invention. Please refer to Figure 3 and Figure 4 at the same time. In some embodiments, the permanent magnet motor rotor position detection method includes the following steps: a first voltage input step (step S100); a first reverse current input step (step S150); a second voltage input step (step S200); Two reverse current input steps (step S250); current detection step (step S300); and phase difference obtaining step (step S400).

第一電壓輸入步驟(步驟S100)包括:輸入第一正向測試電壓至永磁馬達20上,對應產生第一正向測試電流。具體而言,當永磁馬達轉子位置偵測裝置10開始偵測轉子30的轉子位置相位差,電壓輸入單元100輸入第一正向測試電壓至永磁馬達20,也就是,電壓輸入單元100輸入第一正向測試電流至永磁馬達20。 The first voltage input step (step S100) includes: inputting a first forward test voltage to the permanent magnet motor 20, and correspondingly generating a first forward test current. Specifically, when the permanent magnet motor rotor position detection device 10 starts to detect the rotor position phase difference of the rotor 30, the voltage input unit 100 inputs the first forward test voltage to the permanent magnet motor 20, that is, the voltage input unit 100 inputs The first forward test current is to the permanent magnet motor 20.

第一反向電流輸入步驟(步驟S150)包括:依據第一正向測試電流,產生第一反向測試電流至永磁馬達20,紀錄第一電流零交越時間點。具體而言,當反向電流輸入單元200偵測電壓輸入單元100輸出第一正向測試電壓,反向電流輸入單元200產生對應第一正向測試電壓的第一反向測試電壓至永磁馬達20,也就是反向電流輸入單元200產生第一反向測試電流至永磁馬達20。依據一些實施例,電壓輸入單元100發出正向測試電壓時,也會發送對應的測試訊號至反向電流輸入單元200,以驅動反向電流輸入單元200輸出對應正向測試電壓的負向測試電壓。 The first reverse current input step (step S150) includes: generating a first reverse test current to the permanent magnet motor 20 according to the first forward test current, and recording the zero-crossing time point of the first current. Specifically, when the reverse current input unit 200 detects that the voltage input unit 100 outputs the first forward test voltage, the reverse current input unit 200 generates the first reverse test voltage corresponding to the first forward test voltage to the permanent magnet motor 20, that is, the reverse current input unit 200 generates the first reverse test current to the permanent magnet motor 20. According to some embodiments, when the voltage input unit 100 emits a forward test voltage, a corresponding test signal is also sent to the reverse current input unit 200 to drive the reverse current input unit 200 to output a negative test voltage corresponding to the positive test voltage .

第二電壓輸入步驟(步驟S200)包括:在第一電流零交越時間點後,輸入第二正向測試電壓至永磁馬達20上,對應產生第二正向測試電流,其中第二正向測試電流對應的第二正相位與第一正向測試電流對應的第一正相位相差180度。具體而言,由於第一正向測試電壓及第一負向測試電壓的作用,電流偵測單元300獲得的總電流I會震盪衰減至零,當第一負向測試電壓輸入結束之後,總電流I第一次交越「零」電流值的時間點為第一電流零交越時間點。當電流偵測單元300偵測到第一電流零交越時間點,電壓輸入單元100響應以輸入第二正向測試電壓至永磁馬達20。依據一些實施例,第一正相位為0度,第二正相位為180度。依據一些實施例,當電流偵測單元300偵測到零交越時間點,電流偵測單元300能發送驅動訊號至電壓輸入單元100,以驅動電壓輸入單元100輸入對應零交越時間點的正向測試電壓至永磁馬達20。 The second voltage input step (step S200) includes: after the first current zero crossing time point, input a second forward test voltage to the permanent magnet motor 20, correspondingly generating a second forward test current, of which the second forward direction The second positive phase corresponding to the test current differs from the first positive phase corresponding to the first positive test current by 180 degrees. Specifically, due to the effects of the first positive test voltage and the first negative test voltage, the total current I obtained by the current detection unit 300 will oscillate and decay to zero. After the input of the first negative test voltage ends, the total current I The time point of the first zero crossing current value is the time point of the first current zero crossing. When the current detection unit 300 detects the first current zero crossing time point, the voltage input unit 100 responds to input the second forward test voltage to the permanent magnet motor 20. According to some embodiments, the first positive phase is 0 degrees and the second positive phase is 180 degrees. According to some embodiments, when the current detection unit 300 detects a zero-crossing time point, the current detection unit 300 can send a driving signal to the voltage input unit 100 to drive the voltage input unit 100 to input a positive corresponding to the zero-crossing time point To the test voltage to the permanent magnet motor 20.

第二反向電流輸入步驟(步驟S250)包括:依據第二正向測試電流,產生第二反向測試電流至永磁馬達20,紀錄第二電流零交越時間點,其中第二反向測試電流對應的第二負相位與該第一反向測試電流對應的第一負相位相差180度。具體而言,當反向電流輸入單元200偵測電壓輸入單元100輸出第二正向測試電壓,反向電流輸入單元200產生對應第二正向測試電壓的第二反向測試電壓至永磁馬達20,也就是反向電流輸入單元200產生第二反向測試電流至永磁馬達20。 The second reverse current input step (step S250) includes: generating a second reverse test current to the permanent magnet motor 20 according to the second forward test current, and recording the second current zero-crossing time point, wherein the second reverse test The second negative phase corresponding to the current differs from the first negative phase corresponding to the first reverse test current by 180 degrees. Specifically, when the reverse current input unit 200 detects that the voltage input unit 100 outputs the second forward test voltage, the reverse current input unit 200 generates a second reverse test voltage corresponding to the second forward test voltage to the permanent magnet motor 20, that is, the reverse current input unit 200 generates a second reverse test current to the permanent magnet motor 20.

電流偵測步驟(步驟S300)包括:偵測永磁馬達20上的總電流I以獲得多個總電流峰值。具體而言,電流偵測單元300偵測永磁馬達20的總電流I,並依據各個正向測試電壓(例如,第一正向測試電壓及第 二正向測試電壓)獲得對應的總電流峰值。 The current detection step (step S300) includes: detecting the total current I on the permanent magnet motor 20 to obtain a plurality of total current peaks. Specifically, the current detection unit 300 detects the total current I of the permanent magnet motor 20 and based on each forward test voltage (for example, the first forward test voltage and the first Two forward test voltages) to obtain the corresponding total current peak.

相位差獲得步驟(步驟S400)包括:依據總電流峰值以獲得轉子位置相位差。具體而言,依據電流偵測單元300偵測到的總電流峰值,以及處理器400控制電壓輸入單元100輸入永磁馬達20的正向測試電流的正相位,處理器400可運算獲得轉子位置相位差。其中處理器400能依據相位差公式或K-近鄰演算法查表以轉子位置相位差,如前所述。 The phase difference obtaining step (step S400) includes obtaining the rotor position phase difference according to the total current peak value. Specifically, according to the peak value of the total current detected by the current detection unit 300 and the positive phase of the positive test current of the permanent magnet motor 20 that the processor 400 controls the voltage input unit 100 to input, the processor 400 can calculate the rotor position phase difference. The processor 400 can look up the table according to the phase difference formula or the K-nearest neighbor algorithm to determine the phase difference of the rotor position, as described above.

在一些實施例,永磁馬達轉子位置偵測方式更包括第三電壓輸入步驟、第三反向電流輸入步驟、第四電壓輸入步驟、及第四反向電流輸入步驟。並且第三電壓輸入步驟、第三反向電流輸入步驟、第四電壓輸入步驟、及第四反向電流輸入步驟執行的時間點在第二反向電流輸入步驟(步驟S250)與電流偵測步驟(步驟S300)之間。 In some embodiments, the permanent magnet motor rotor position detection method further includes a third voltage input step, a third reverse current input step, a fourth voltage input step, and a fourth reverse current input step. And the third voltage input step, the third reverse current input step, the fourth voltage input step, and the fourth reverse current input step are performed at the second reverse current input step (step S250) and the current detection step (Step S300).

第三電壓輸入步驟包括:輸入第三正向測試電壓至永磁馬達20上,對應產生第三正向測試電流。同理,在第二電流零交越時間點後,電壓輸入單元100輸入第三正向測試電壓至永磁馬達20。 The third voltage input step includes: inputting a third forward test voltage to the permanent magnet motor 20, and correspondingly generating a third forward test current. Similarly, after the second current zero crossing time point, the voltage input unit 100 inputs the third forward test voltage to the permanent magnet motor 20.

第三反向電流輸入步驟包括:依據第三正向測試電流,產生第三反向測試電流至永磁馬達20,紀錄第三電流零交越時間點。同理,當反向電流輸入單元200偵測電壓輸入單元100輸出第三正向測試電壓,反向電流輸入單元200產生對應第三正向測試電壓的第三反向測試電壓至永磁馬達20,也就是反向電流輸入單元200產生第三反向測試電流至永磁馬達20。 The third reverse current input step includes: generating a third reverse test current to the permanent magnet motor 20 according to the third forward test current, and recording the time point of the zero crossing of the third current. Similarly, when the reverse current input unit 200 detects that the voltage input unit 100 outputs a third forward test voltage, the reverse current input unit 200 generates a third reverse test voltage corresponding to the third forward test voltage to the permanent magnet motor 20 That is, the reverse current input unit 200 generates a third reverse test current to the permanent magnet motor 20.

第四電壓輸入步驟包括:在第三電流零交越時間點後,輸入第四正向測試電壓至永磁馬達20上,對應產生第四正向測試電流,其中 第四正向測試電流對應的第四正相位與第三正向測試電流對應的第三正相位相差180度。依據一些實施例,第三正相位為90度及第四正相位為270度。依據一些實施例,第三正相位為30度及第四正相位為210度。 The fourth voltage input step includes: after the third current zero crossing time point, input a fourth forward test voltage to the permanent magnet motor 20, correspondingly generating a fourth forward test current, wherein The fourth positive phase corresponding to the fourth positive test current differs from the third positive phase corresponding to the third positive test current by 180 degrees. According to some embodiments, the third positive phase is 90 degrees and the fourth positive phase is 270 degrees. According to some embodiments, the third positive phase is 30 degrees and the fourth positive phase is 210 degrees.

第四反向電流輸入步驟包括:依據第四正向測試電流,產生第四反向測試電流至永磁馬達20,紀錄第四電流零交越時間點,其中第三反向測試電流對應的第三負相位與第四反向測試電流對應的第四負相位相差180度。 The fourth reverse current input step includes: generating a fourth reverse test current to the permanent magnet motor 20 according to the fourth forward test current, and recording the zero-crossing time point of the fourth current, wherein the third reverse test current corresponds to the first The three negative phases differ from the fourth negative phase corresponding to the fourth reverse test current by 180 degrees.

在一些實施例,永磁馬達轉子位置偵測方法分別對於永磁馬達20測試十二組正向測試電壓,也就是電壓輸入單元100輸入十二組不同的正相位的正向測試電流至永磁馬達20。其中,依據電壓輸入單元100輸入正向測試電流至永磁馬達20的順序,這十二組不同的正相位分別是0度、180度、30度、210度、60度、240度、90度、270度、120度、300度、150度、330度。並且每一組正向測試電壓對應一個電壓輸入步驟及一個反向電流輸入步驟。當十二組正向測試電壓都依序輸入至永磁馬達20之後,電流偵測單元300依據電流偵測步驟(步驟S300)偵測各個正向測試電壓對應的總電流峰值,處理器400依據相位差獲得步驟(步驟S400)獲得轉子位置相位差。依據一些實施例,0度、180度、30度、210度分別對應第一至第四的電壓輸入步驟及第一至第四的反向電流輸入步驟。60度、240度、90度、270度、120度、300度、150度、330度分別對應第五至第十二的電壓輸入步驟及第五至第十二的反向電流輸入步驟。 In some embodiments, the permanent magnet motor rotor position detection method tests twelve sets of forward test voltages for the permanent magnet motor 20 respectively, that is, the voltage input unit 100 inputs twelve sets of positive test currents of different positive phases to the permanent magnet Motor 20. Among them, according to the order in which the voltage input unit 100 inputs the forward test current to the permanent magnet motor 20, the twelve different sets of positive phases are 0 degrees, 180 degrees, 30 degrees, 210 degrees, 60 degrees, 240 degrees, and 90 degrees, respectively. , 270 degrees, 120 degrees, 300 degrees, 150 degrees, 330 degrees. And each set of forward test voltage corresponds to a voltage input step and a reverse current input step. After the twelve sets of forward test voltages are input to the permanent magnet motor 20 in sequence, the current detection unit 300 detects the total current peak corresponding to each forward test voltage according to the current detection step (step S300). The phase difference obtaining step (step S400) obtains the rotor position phase difference. According to some embodiments, 0 degrees, 180 degrees, 30 degrees, and 210 degrees correspond to the first to fourth voltage input steps and the first to fourth reverse current input steps, respectively. 60 degrees, 240 degrees, 90 degrees, 270 degrees, 120 degrees, 300 degrees, 150 degrees, and 330 degrees correspond to the fifth to twelfth voltage input steps and the fifth to twelfth reverse current input steps, respectively.

圖5繪示本案一些實施例之電流零交越時間點的示意圖。在一些實施例,請參照圖5,X軸為時間T,Y軸為總電流I,當總電流I通過 總電流峰值的時間點後,負向測試電壓開始施加在永磁馬達20以減少總電流I的震盪衰減時間。並且電流零交越時間點為負向測試電壓施加在永磁馬達20結束之後,總電流I第一次交越「零」電流值的時間點。負向測試電壓停止輸入的時間點與電流零交越時間點之間相差第二工作時間T2。 FIG. 5 is a schematic diagram of current zero-crossing time points in some embodiments of the present case. In some embodiments, please refer to FIG. 5, the X axis is the time T, and the Y axis is the total current I, when the total current I passes After the time point of the total current peak, a negative test voltage is applied to the permanent magnet motor 20 to reduce the oscillation decay time of the total current I. And the current zero crossing time point is the time point at which the total current I crosses the “zero” current value for the first time after the negative test voltage is applied to the permanent magnet motor 20 after the end. The time point at which the input of the negative test voltage stops and the time point at which the current crosses zero are different by the second working time T2.

圖6繪示本案一對照實施例之感測器的量測相位與轉子位置相位差的關係圖。圖7繪示本案一實施例之感測器的量測相位與轉子位置相位差的關係圖。其中,圖6及圖7的X軸為感測器的量測相位,Y軸為轉子位置相位差。請參照圖6,在一對照實施例中,永磁馬達20搭配有習知的感測器,並且未使用永磁馬達轉子位置偵測方法以偵測轉子位置相位差。請參照圖7,在一實施例中,永磁馬達20搭配有習知的感測器,並且使用永磁馬達轉子位置偵測方法以偵測與轉子位置相位差。從比較圖6及圖7可知,藉由永磁馬達轉子位置偵測方法偵測的轉子位置相位差與習知感測器的量測相位之間的關係接近理想的線性關係,因此圖7中的點幾乎收斂在線性關係的線(圖7中的虛線)上,也就是永磁馬達轉子位置偵測方法量測的轉子位置相位差具有較少的量測誤差。反之,未使用永磁馬達轉子位置偵測方法偵測的轉子位置相位差與習知感測器的量測相位之間的關係較發散,圖6中的點並未收斂在線性關係的線(圖6中的虛線)上,也就是轉子位置相位差量測的誤差較大。 FIG. 6 is a graph showing the relationship between the measurement phase of the sensor and the rotor position phase difference in a comparative embodiment of this case. 7 is a diagram illustrating the relationship between the measurement phase of the sensor and the phase difference of the rotor position according to an embodiment of the present invention. Among them, the X axis in FIGS. 6 and 7 is the measurement phase of the sensor, and the Y axis is the rotor position phase difference. Referring to FIG. 6, in a comparative embodiment, the permanent magnet motor 20 is equipped with a conventional sensor, and the permanent magnet motor rotor position detection method is not used to detect the rotor position phase difference. Referring to FIG. 7, in one embodiment, the permanent magnet motor 20 is equipped with a conventional sensor, and uses a permanent magnet motor rotor position detection method to detect a phase difference from the rotor position. It can be seen from comparing FIGS. 6 and 7 that the relationship between the phase difference of the rotor position detected by the rotor position detection method of the permanent magnet motor and the measurement phase of the conventional sensor is close to an ideal linear relationship, so FIG. 7 The point of almost converges on the line of the linear relationship (dashed line in FIG. 7), that is, the rotor position phase difference measured by the rotor position detection method of the permanent magnet motor has less measurement error. On the contrary, the relationship between the rotor position phase difference detected by the rotor position detection method of the permanent magnet motor and the measurement phase of the conventional sensor is more divergent, and the points in FIG. 6 do not converge on the line of linear relationship ( On the dotted line in Fig. 6, that is, the error of the rotor position phase difference measurement is large.

圖8繪示本案一對照實施例之總電流I的示意圖。圖9繪示本案一實施例之總電流I的示意圖。請參照圖8及圖9X軸為時間T,Y軸為總電流I。比較圖8及圖9,永磁馬達轉子位置偵測方法量測轉子位置相位差的過程中,總電流I的震盪衰減的時間較短。相對的,未使用永磁馬達轉 子位置偵測方法,總電流I的震盪衰減的時間較長。因此,永磁馬達轉子位置偵測方法能減少轉子30因總電流I而造成轉動的可能性,並減少轉子位置相位差的量測誤差。依據一對照實施例,未使用永磁馬達轉子位置偵測方法,總電流I的震盪收斂至適合下一個正向測試電壓輸入的時間長度為100/8000秒。依據一實施例,使用永磁馬達轉子位置偵測方法,總電流I的震盪收斂至適合下一個正向測試電壓輸入的時間長度為18/8000秒。 FIG. 8 shows a schematic diagram of the total current I of a comparative example of this case. FIG. 9 is a schematic diagram of the total current I according to an embodiment of the present case. Please refer to FIGS. 8 and 9. The X axis is time T, and the Y axis is total current I. Comparing FIG. 8 and FIG. 9, in the process of detecting the rotor position phase difference of the rotor position detection method of the permanent magnet motor, the oscillation attenuation time of the total current I is shorter. In contrast, no permanent magnet motor is used In the sub-position detection method, the oscillation of the total current I decays for a longer time. Therefore, the rotor position detection method of the permanent magnet motor can reduce the possibility of the rotor 30 rotating due to the total current I, and reduce the measurement error of the rotor position phase difference. According to a comparative embodiment, without using the permanent magnet motor rotor position detection method, the oscillation of the total current I converges to a time period suitable for the next forward test voltage input of 100/8000 seconds. According to an embodiment, using a permanent magnet motor rotor position detection method, the oscillation of the total current I converges to a time period suitable for the next forward test voltage input of 18/8000 seconds.

請續參照圖2及圖3,如前所述,在一些實施例,永磁馬達轉子位置偵測裝置10能內置於永磁馬達20中,以做為永磁馬達20的控制裝置50,因此永磁馬達20不需額外搭配感測器即可達到偵測轉子位置(即,轉子位置相位差)的功能。在一些實施例,永磁馬達轉子位置偵測裝置10能外接於永磁馬達20,藉由永磁馬達轉子位置偵測裝置10控制永磁馬達20中的控制裝置50,以達到偵測轉子位置的功能。 Please continue to refer to FIG. 2 and FIG. 3. As mentioned above, in some embodiments, the permanent magnet motor rotor position detection device 10 can be built into the permanent magnet motor 20 as the control device 50 of the permanent magnet motor 20. The magnetic motor 20 can achieve the function of detecting the rotor position (ie, the rotor position phase difference) without additional sensors. In some embodiments, the permanent magnet motor rotor position detection device 10 can be externally connected to the permanent magnet motor 20, and the permanent magnet motor rotor position detection device 10 controls the control device 50 in the permanent magnet motor 20 to achieve rotor position detection Function.

綜上所述,本案中一些實施例的永磁馬達轉子位置偵測裝置及其方法能藉由輸入不同相位的正向測試電壓至永磁馬達,並且偵測總電流峰值以獲得轉子位置相位差。在一些實施例,當永磁馬達轉子位置偵測裝置輸入正向測試電流至永磁馬達,能即時輸入對應的反向測試電流至永磁馬達。因此能使總電流的震盪收斂時間減少,同時轉子不會因為正向測試電壓而轉動,因此減少轉子位置相位差的量測誤差。 In summary, the permanent magnet motor rotor position detection device and method of some embodiments in this case can obtain the rotor current phase difference by inputting forward test voltages of different phases to the permanent magnet motor and detecting the peak value of the total current . In some embodiments, when the permanent magnet motor rotor position detection device inputs the forward test current to the permanent magnet motor, the corresponding reverse test current can be input to the permanent magnet motor in real time. Therefore, the oscillation convergence time of the total current can be reduced, and at the same time the rotor will not rotate because of the forward test voltage, thus reducing the measurement error of the rotor position phase difference.

10:永磁馬達轉子位置偵測裝置 10: Permanent magnet motor rotor position detection device

20:永磁馬達 20: Permanent magnet motor

100:電壓輸入單元 100: voltage input unit

200:反向電流輸入單元 200: reverse current input unit

300:電流偵測單元 300: current detection unit

400:處理器 400: processor

500:儲存單元 500: storage unit

Claims (10)

一種永磁馬達轉子位置偵測方法,包括:一第一電壓輸入步驟,輸入一第一正向之三相測試電壓至一永磁馬達上,對應產生一第一正向之三相測試電流;一第一反向電流輸入步驟,依據該第一正向之三相測試電流,產生用於抵銷該第一正向之三相測試電流的一第一反向之三相測試電流至該永磁馬達,紀錄一第一電流零交越時間點;一第二電壓輸入步驟,在該第一電流零交越時間點後,輸入一第二正向之三相測試電壓至該永磁馬達上,對應產生一第二正向之三相測試電流,其中該第一正向之三相測試電流對應的一第一正相位與該第二正向之三相測試電流對應的一第二正相位相差180度;一第二反向電流輸入步驟,依據該第二正向之三相測試電流,產生用於抵銷該第二正向之三相測試電流的一第二反向之三相測試電流至該永磁馬達,紀錄一第二電流零交越時間點,其中該第一反向之三相測試電流對應的一第一負相位與該第二反向之三相測試電流對應的一第二負相位相差180度;一電流偵測步驟,偵測該永磁馬達上的一總電流以獲得多個總電流峰值;及一相位差獲得步驟,依據該些總電流峰值以獲得一轉子位置相位差。 A permanent magnet motor rotor position detection method includes: a first voltage input step, inputting a first positive three-phase test voltage to a permanent magnet motor, correspondingly generating a first positive three-phase test current; A first reverse current input step, based on the first forward three-phase test current, generates a first reverse three-phase test current to offset the first forward three-phase test current to the permanent Magnetic motor, record a first current zero crossing time point; a second voltage input step, after the first current zero crossing time point, input a second positive three-phase test voltage to the permanent magnet motor , Corresponding to a second positive three-phase test current, wherein a first positive phase corresponding to the first positive three-phase test current corresponds to a second positive phase corresponding to the second positive three-phase test current 180 degrees out of phase; a second reverse current input step, based on the second forward three-phase test current, generates a second reverse three-phase test used to offset the second forward three-phase test current Current to the permanent magnet motor, recording a second current zero crossing time point, wherein a first negative phase corresponding to the first reverse three-phase test current and a second negative phase corresponding to the second reverse three-phase test current The second negative phase differs by 180 degrees; a current detection step to detect a total current on the permanent magnet motor to obtain a plurality of total current peaks; and a phase difference obtaining step to obtain a rotor based on the total current peaks The position is out of phase. 如請求項1所述之永磁馬達轉子位置偵測方法,更包括: 一第三電壓輸入步驟,輸入一第三正向之三相測試電壓至該永磁馬達上,對應產生一第三正向之三相測試電流;一第三反向電流輸入步驟,依據該第三正向之三相測試電流,產生用於抵銷該第三正向之三相測試電流的一第三反向之三相測試電流至該永磁馬達,紀錄一第三電流零交越時間點;一第四電壓輸入步驟,在該第三電流零交越時間點後,輸入一第四正向之三相測試電壓至該永磁馬達上,對應產生一第四正向之三相測試電流,其中該第三正向之三相測試電流對應的一第三正相位與該第四正向之三相測試電流對應的一第四正相位相差180度;及一第四反向電流輸入步驟,依據該第四正向之三相測試電流,產生用於抵銷該第四正向之三相測試電流的一第四反向之三相測試電流至該永磁馬達,紀錄一第四電流零交越時間點,其中該第三反向之三相測試電流對應的一第三負相位與該第四反向之三相測試電流對應的一第四負相位相差180度。 The method for detecting the rotor position of a permanent magnet motor as described in claim 1 further includes: A third voltage input step, inputting a third forward three-phase test voltage to the permanent magnet motor, correspondingly generating a third forward three-phase test current; a third reverse current input step, based on the third Three forward three-phase test currents generate a third reverse three-phase test current to offset the third forward three-phase test current to the permanent magnet motor, and record a third current zero crossing time A fourth voltage input step, after the third current zero crossing time point, input a fourth forward three-phase test voltage to the permanent magnet motor, corresponding to a fourth forward three-phase test Current, wherein a third positive phase corresponding to the third positive three-phase test current differs from a fourth positive phase corresponding to the fourth positive three-phase test current by 180 degrees; and a fourth reverse current input Step, according to the fourth forward three-phase test current, generate a fourth reverse three-phase test current to offset the fourth forward three-phase test current to the permanent magnet motor, record a fourth The current zero-crossing time point, wherein a third negative phase corresponding to the third reverse three-phase test current and a fourth negative phase corresponding to the fourth reverse three-phase test current are different by 180 degrees. 如請求項2所述之永磁馬達轉子位置偵測方法,其中該第一正相位為0度、該第二正相位為180度、該第三正相位為90度、及該第四正相位為270度。 The permanent magnet motor rotor position detection method according to claim 2, wherein the first positive phase is 0 degrees, the second positive phase is 180 degrees, the third positive phase is 90 degrees, and the fourth positive phase Is 270 degrees. 如請求項3所述的永磁馬達轉子位置偵測方法,其中該相位差獲得步驟更包括:依據該些總電流峰值、該第一正相位、該第二正相位、該第三正相位、及該第四正相位,以一相位差公式獲得該轉子位置相位差,該相位差公式為:
Figure 108123687-A0305-02-0020-4
其中,θ為該轉子位置相位差,x為該第一正相位、該第二正相位、該第三正相位、及該第四正相位,y為該些總電流峰值。
The permanent magnet motor rotor position detection method according to claim 3, wherein the step of obtaining the phase difference further includes: according to the total current peaks, the first positive phase, the second positive phase, the third positive phase, And the fourth positive phase, the rotor position phase difference is obtained by a phase difference formula, the phase difference formula is:
Figure 108123687-A0305-02-0020-4
Where θ is the phase difference of the rotor position, x is the first positive phase, the second positive phase, the third positive phase, and the fourth positive phase, and y is the total current peaks.
如請求項3所述的永磁馬達轉子位置偵測方法,其中該相位差獲得步驟更包括:依據該些總電流峰值、該第一正相位、該第二正相位、該第三正相位、該第四正相位、及一相位與峰值電流關係表,以一K-近鄰演算法(K-nearest neighbor)獲得該轉子位置相位差。 The permanent magnet motor rotor position detection method according to claim 3, wherein the step of obtaining the phase difference further includes: according to the total current peaks, the first positive phase, the second positive phase, the third positive phase, The fourth positive phase and a relation table between the phase and the peak current are obtained by a K-nearest neighbor algorithm (K-nearest neighbor). 一種永磁馬達轉子位置偵測裝置,包括:一電壓輸入單元,用於依據多個電流零交越時間點以一對一的方式輸入多個正向之三相測試電壓至一永磁馬達,對應產生多個正向之三相測試電流,其中任二接續產生的該些正向之三相測試電流之間的相位差為180度或150度;一反向電流輸入單元,用於依據各該正向之三相測試電流以分別產生一反向之三相測試電流至該永磁馬達,該反向之三相測試電流用於抵銷對應的該正向之三相測試電流;一電流偵測單元,偵測該永磁馬達上的一總電流以獲得多個總電流峰值及該些電流零交越時間點;及一處理器,耦接於該電壓輸入單元、該反向電流輸入單元、及該電流偵測單元,該處理器用於依據該些總電流峰值以獲得一轉子位置相位差。 A permanent magnet motor rotor position detection device includes: a voltage input unit for inputting a plurality of positive three-phase test voltages to a permanent magnet motor in a one-to-one manner according to a plurality of current zero-crossing time points, Correspondingly generate multiple forward three-phase test currents, of which the phase difference between any two forward three-phase test currents generated is 180 degrees or 150 degrees; a reverse current input unit is used to The forward three-phase test current generates a reverse three-phase test current to the permanent magnet motor, respectively, and the reverse three-phase test current is used to offset the corresponding forward three-phase test current; a current A detection unit, which detects a total current on the permanent magnet motor to obtain a plurality of total current peaks and zero-crossing time points of the currents; and a processor, coupled to the voltage input unit and the reverse current input The unit and the current detection unit, the processor is used to obtain a rotor position phase difference according to the total current peaks. 如請求項6所述的永磁馬達轉子位置偵測裝置,其中該些正向之三相測試電流以一對一的方式對應該些總電流峰值,並且該些正向之三相測試電流以一對一的方式對應該些電流零交越時間點。 The permanent magnet motor rotor position detection device according to claim 6, wherein the forward three-phase test currents correspond to the total current peaks in a one-to-one manner, and the forward three-phase test currents are The one-to-one approach corresponds to the current zero-crossing time points. 如請求項6所述的永磁馬達轉子位置偵測裝置,其中該些正向之三相測試電流分別對應一正相位,依據該些正向之三相測試電流輸入至該永磁馬達的順序,該些正相位依序為0度、180度、30度、210度、60度、240度、90度、270度、120度、300度、150度、及330度。 The permanent magnet motor rotor position detection device according to claim 6, wherein the positive three-phase test currents respectively correspond to a positive phase, according to the order in which the positive three-phase test currents are input to the permanent magnet motor The positive phases are 0 degrees, 180 degrees, 30 degrees, 210 degrees, 60 degrees, 240 degrees, 90 degrees, 270 degrees, 120 degrees, 300 degrees, 150 degrees, and 330 degrees in sequence. 如請求項8所述的永磁馬達轉子位置偵測裝置,其中該處理器依據該些總電流峰值及該些正相位,以一相位差公式獲得該轉子位置相位差,該相位差公式為:
Figure 108123687-A0305-02-0021-5
其中,θ為該轉子位置相位差,x為該些正相位,y為該些總電流峰值。
The permanent magnet motor rotor position detection device according to claim 8, wherein the processor obtains the rotor position phase difference according to the total current peak value and the positive phases with a phase difference formula, the phase difference formula is:
Figure 108123687-A0305-02-0021-5
Where θ is the phase difference of the rotor position, x is the positive phases, and y is the total current peaks.
如請求項8所永磁馬達轉子位置偵測裝置,更包括一儲存單元,該儲存單元用於儲存一相位與峰值電流關係表,並且該處理器依據該些總電流峰值、該些正相位、及該相位與峰值電流關係表,以一K-近鄰演算法(K-nearest neighbor)獲得該轉子位置相位差。 As described in claim 8, the rotor position detection device of the permanent magnet motor further includes a storage unit for storing a phase-to-peak current relationship table, and the processor is based on the total current peaks, the positive phases, And the relationship table between the phase and the peak current, the rotor position phase difference is obtained by a K-nearest neighbor algorithm (K-nearest neighbor).
TW108123687A 2019-07-04 2019-07-04 Permanent magnet motor rotor position detecting device and method thereof TWI697194B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108123687A TWI697194B (en) 2019-07-04 2019-07-04 Permanent magnet motor rotor position detecting device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123687A TWI697194B (en) 2019-07-04 2019-07-04 Permanent magnet motor rotor position detecting device and method thereof

Publications (2)

Publication Number Publication Date
TWI697194B true TWI697194B (en) 2020-06-21
TW202103433A TW202103433A (en) 2021-01-16

Family

ID=72176416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123687A TWI697194B (en) 2019-07-04 2019-07-04 Permanent magnet motor rotor position detecting device and method thereof

Country Status (1)

Country Link
TW (1) TWI697194B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809550B (en) * 2021-11-04 2023-07-21 晶豪科技股份有限公司 Method for determining initial rotor position of permanent magnet synchronous motor and motor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120727A1 (en) * 2007-03-30 2008-10-09 Shindengen Electric Manufacturing Co., Ltd. Brushless motor control device and brushless motor controlling method
US20120256575A1 (en) * 2011-04-08 2012-10-11 Industrial Technology Research Institute Control method for sensorless motors with energy recovery ability
EP2053734B1 (en) * 2007-10-26 2012-12-19 Hitachi Ltd. Motor control apparatus and motor system
TW201448448A (en) * 2013-02-20 2014-12-16 Microchip Tech Inc Method and system for determining the position of a synchronous motor's rotor
WO2015033651A1 (en) * 2013-09-06 2015-03-12 株式会社日立産機システム Control device and ac electric motor system using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120727A1 (en) * 2007-03-30 2008-10-09 Shindengen Electric Manufacturing Co., Ltd. Brushless motor control device and brushless motor controlling method
EP2053734B1 (en) * 2007-10-26 2012-12-19 Hitachi Ltd. Motor control apparatus and motor system
US20120256575A1 (en) * 2011-04-08 2012-10-11 Industrial Technology Research Institute Control method for sensorless motors with energy recovery ability
TW201448448A (en) * 2013-02-20 2014-12-16 Microchip Tech Inc Method and system for determining the position of a synchronous motor's rotor
WO2015033651A1 (en) * 2013-09-06 2015-03-12 株式会社日立産機システム Control device and ac electric motor system using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809550B (en) * 2021-11-04 2023-07-21 晶豪科技股份有限公司 Method for determining initial rotor position of permanent magnet synchronous motor and motor device

Also Published As

Publication number Publication date
TW202103433A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
Lu et al. Artificial inductance concept to compensate nonlinear inductance effects in the back EMF-based sensorless control method for PMSM
JP6050339B2 (en) Electric drive unit
US6566830B2 (en) Method and system for controlling a permanent magnet machine
US9912275B2 (en) Normalization of motor phase measurements
KR102358820B1 (en) Method for sensor-free determination of the orientation of the rotor of an ironless PMSM motor
US20020171388A1 (en) Apparatus for driving three-phase half-wave drive brushless motor
US20150372629A1 (en) System, method and apparatus of sensor-less field oriented control for permanent magnet motor
Luukko et al. Estimation of the flux linkage in a direct-torque-controlled drive
Varatharajan et al. Sensorless self-commissioning of synchronous reluctance machine with rotor self-locking mechanism
TWI697194B (en) Permanent magnet motor rotor position detecting device and method thereof
JP2001197777A (en) Brushless machine control
JP4140304B2 (en) Motor control device
JP2017143612A (en) Sensorless starting method for three-phase brushless motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP5967662B2 (en) Back electromotive force detection for motor control
JP2017131000A (en) Sensorless drive method for three-phase brushless motor
JP2001078486A (en) Vector controller of permanent magnet system of synchronous motor
JP2006158022A (en) Dc brushless motor device and turbo-molecular pump
JP3480572B2 (en) Control device for permanent magnet synchronous motor
JP6383128B1 (en) Method for estimating inductance electromotive force of motor and field position estimating method
CN111697888A (en) Detection of type of motor for configuration of variable speed drive
JP2007082380A (en) Synchronous motor control device
JP6707050B2 (en) Synchronous motor controller
TWI812400B (en) A method of determining an initial rotor position for a synchronous motor and a controller therefor
JP6402276B1 (en) Electric field position detection method